Thèse soutenue

Photonique quantique expérimentale : cohérence, non localité et cryptographie

FR  |  
EN
Auteur / Autrice : Djeylan Aktas
Direction : Sébastien TanzilliLaurent Labonté
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 14/12/2016
Etablissement(s) : Université Côte d'Azur (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences fondamentales et appliquées (Nice ; 2000-....)
Partenaire(s) de recherche : établissement de préparation : Université de Nice (1965-2019)
Laboratoire : Laboratoire de physique de la matière condensée (Nice)
Jury : Président / Présidente : John Rarity
Examinateurs / Examinatrices : Sébastien Tanzilli, Laurent Labonté, John Rarity, Hugo Zbinden, Juan Ariel Levenson
Rapporteurs / Rapporteuses : Hugo Zbinden, Juan Ariel Levenson

Résumé

FR  |  
EN

Cette thèse s'articule autour de l'étude de la cohérence de la lumière produite à partir de sources de paires de photons intriqués et de micro-lasers. Nous avons produit et manipulé des états photoniques intriqués, et conduit des investigations à la fois fondamentales et appliquées. Les deux études menées sur les aspects fondamentaux de la non localité avaient pour but de relaxer partiellement deux contraintes sur lesquelles s'appuie l'inégalité de Bell standard en vue d'applications à la cryptographie quantique. Ainsi, en collaboration avec l'Université de Genève, nous avons redéfini la notion de localité en prenant en compte les influences sur les mesures de corrélations des choix des configurations expérimentales et d'une efficacité globale de détection limitée. Cela a permis de définir des inégalités de Bell généralisées et les violations expérimentales qui en découlent permettent d'attester de la non localité des états quantiques observés. Nous avons aussi étudié et mis en place une solution expérimentale autorisant l'émission de photons intriqués dans des pairs de canaux télécoms pour la cryptographie quantique. Nous avons montré la préservation de l'intrication sur 150 km et obtenu des débits records en comparaison avec les réalisations similaires. Enfin, nous avons étudié les propriétés de l’émission de lasers à semi-conducteurs aux dimensions réduites. L’émission de ces composants microscopiques s'accompagne de grandes fluctuations en intensité lorsque ceux-ci sont pompés en-dessous du seuil laser. Cette étude a permis de mieux comprendre comment se construit la cohérence laser dans ces systèmes.