Synthèse avancée de matériaux hybrides pHEMA-TiO₂ par méthode sol-gel et polymérisation induite par hautes pressions, analyse de leurs propriétés optiques
Auteur / Autrice : | Egor Evlyukhin |
Direction : | Luc Museur |
Type : | Thèse de doctorat |
Discipline(s) : | Physique |
Date : | Soutenance le 03/12/2015 |
Etablissement(s) : | Sorbonne Paris Cité |
Ecole(s) doctorale(s) : | École doctorale Galilée (Villetaneuse, Seine-Saint-Denis) |
Partenaire(s) de recherche : | établissement de préparation : Université Sorbonne Paris Nord (Bobigny, Villetaneuse, Seine-Saint-Denis ; 1970-....) |
Jury : | Président / Présidente : Vincent Lorent |
Examinateurs / Examinatrices : Christian Perruchot, Andrei Kanaev | |
Rapporteurs / Rapporteuses : Laurence Rozès, Loppinet Benoit |
Mots clés
Résumé
Les propriétés fonctionnelles spécifiques des matériaux hybrides organique-inorganique dépendent de leur structure à l’échelle microscopique ainsi que de la nature de l’interface entre leurs composantes organique et inorganique. L’une des voies principales pour synthétiser ces matériaux, consiste à incorporer des blocs inorganiques à l’intérieur d’un polymère. En pratique les applications des matériaux hybrides sont souvent limitées par leur comportement mécanique. En effet, l’augmentation de la concentration de la composante inorganique, à priori souhaitable pour améliorer les propriétés fonctionnelles du matériau, entraine généralement une dégradation des propriétés mécaniques en limitant l’étendue de la polymérisation de la phase organique. La fabrication de matériaux hybrides offrant une combinaison optimale des propriétés mécaniques et fonctionnelles est un problème important auquel nous apportons quelques éléments de réponses dans cette thèse. Pour cela nous démontrons et étudions une nouvelle approche pour la synthèse de matériaux hybrides photosensibles pHEMA-TiO₂ (pHEMA=poly-(2-hydroxyéthyl)méthacrylate) dans lesquels des nanoparticules inorganiques sont dispersées dans un polymère. Le procédé que nous proposons est basé sur l’utilisation de hautes pressions (HP)pour provoquer la polymérisation de la phase organique en l’absence de tout initiateur chimique. Nous avons d’abord observé la polymérisation spontanée du HEMA sous pression statique. La réaction se produit dans un domaine de pression limitée 0.1-1.6 GPa, en dessous du seuil de transition vitreuse, et est très peu efficace puisque le taux de conversion des monomères n’excède pas 28 % après 41 jours. La réaction peut cependant être considérablement accélérée lorsque l’échantillon sous pression est irradié dans le domaine UV. Nous avons montré que cela résultait de l’excitation à un photon de l’état triplet HEMA (T1) rendue possible par la modification de la structure électronique du HEMA sous HP. Cette méthode ne pouvant être utilisée pour la synthèse de matériaux photosensibles dans le domaine UV, nous avons développé une approche originale basée un cycle de compression-décompression. Lors de la phase de compression (> 6.5 GPa) des biradicaux (HEMA)₂ sont formés à partir de monomères excités HEMA (T1). À cette pression les contraintes stériques empêchent la formation de plus longs oligomères. La polymérisation ne se produit que dans une seconde étape lorsque l’échantillon, décompressé entre 0.1 et 2 GPa, est en phase liquide. Le taux de conversion des monomères dépasse alors 90 % en moins de 5 min. Les mesures de chromatographie d’exclusion stérique montrent la formation de longues chaines polymère (45000g/mol) et soulignent l’absence des dimères (HEMA)₂ ayant servis d’initiateurs de polymérisation. Cette seconde méthode de polymérisation s’est révélée extrêmement efficace pour synthétiser des hybrides pHEMA-TiO₂. Par rapport aux hybrides obtenus par voie classique à pression atmosphérique en utilisant des initiateurs de polymérisation thermique ou photonique, l’approche HP mise au point dans cette thèse permet de multiplier par un facteur trois la concentration de nanoparticules sans détériorer l’état de polymérisation de matériau. La sensibilité photonique des hybrides est ainsi augmentée sans dégradation des propriétés mécaniques. L’étude des propriétés photochromiques des hybrides montre que le rendement quantique de séparation des charges photo-induites et la capacité de stockage des électrons atteignent respectivement 15 % et 50%