Apprentissage d'arbres de convolutions pour la représentation parcimonieuse
Auteur / Autrice : | Olivier Chabiron |
Direction : | Jean-Yves Tourneret, François Malgouyres |
Type : | Thèse de doctorat |
Discipline(s) : | Signal, image, acoustique et optimisation |
Date : | Soutenance le 08/10/2015 |
Etablissement(s) : | Toulouse 3 |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, informatique et télécommunications (Toulouse) |
Mots clés
Résumé
Le domaine de l'apprentissage de dictionnaire est le sujet d'attentions croissantes durant cette dernière décennie. L'apprentissage de dictionnaire est une approche adaptative de la représentation parcimonieuse de données. Les méthodes qui constituent l'état de l'art en DL donnent d'excellentes performances en approximation et débruitage. Cependant, la complexité calculatoire associée à ces méthodes restreint leur utilisation à de toutes petites images ou ''patchs''. Par conséquent, il n'est pas possible d'utiliser l'apprentissage de dictionnaire pour des applications impliquant de grandes images, telles que des images de télédétection. Dans cette thèse, nous proposons et étudions un modèle original d'apprentissage de dictionnaire, combinant une méthode de décomposition des images par convolution et des structures d'arbres de convolution pour les dictionnaires. Ce modèle a pour but de fournir des algorithmes efficaces pour traiter de grandes images, sans les décomposer en patchs. Dans la première partie, nous étudions comment optimiser une composition de convolutions de noyaux parcimonieux, un problème de factorisation matricielle non convexe. Ce modèle est alors utilisé pour construire des atomes de dictionnaire. Dans la seconde partie, nous proposons une structure de dictionnaire basée sur des arbres de convolution, ainsi qu'un algorithme de mise à jour de dictionnaire adapté à cette structure. Enfin, une étape de décomposition parcimonieuse est ajoutée à cet algorithme dans la dernière partie. À chaque étape de développement de la méthode, des expériences numériques donnent un aperçu de ses capacités d'approximation.