Thèse soutenue

Microscopie électronique 3D et environnementale de nanomatériaux carbones et zéolitiques

FR  |  
EN
Auteur / Autrice : Georgian Melinte
Direction : Ovidiu ErsenCuong Pham-Huu
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 18/09/2015
Etablissement(s) : Strasbourg
Ecole(s) doctorale(s) : École doctorale Physique et chimie-physique (Strasbourg ; 1994-....)
Partenaire(s) de recherche : Laboratoire : Institut de physique et chimie des matériaux (Strasbourg)
Jury : Président / Présidente : Christian Ricolleau
Examinateurs / Examinatrices : Thomas W. Ebbesen, Valentin Valtchev, Simona Moldovan
Rapporteurs / Rapporteuses : Gianluigi Botton, Magnus Rønning

Résumé

FR  |  
EN

Dans le cadre de cette thèse, des techniques avancées de Microscopie électronique à transmission (MET)ont été utilisées dans le but de caractériser et de fabriquer de nouveaux nanomatériaux pour des applications dans les domaines de la nanoélectronique et de la catalyse. Trois types de matériaux fonctionnalisés sont étudiés: le graphène multifeuillets (FLG– Few-Layer Graphene) avec des nanomotifs,des nanotubes de carbone (CNTs - Carbon Nanotubes en anglais) et des zéolithes mésoporeux. La formation de nanomotifs de tranchées et de tunnels sur des flocons de FLG à l’aide de nanoparticules(NPs) de fer est étudiée dans une approche qui combine la tomographie électronique et la MET environnementale. Le rôle des facettes de la nanoparticule et des paramètres topographiques de FLG a été déterminé du point de vue quantitatif, ce qui a mené à la mise en évidence du mécanisme de formation des nanomotifs de tranchées et de tunnels. Le transfert de nanoparticules à base de métal entre deux nanostructures de carbone a été également étudié, en temps réel, en employant un porte-échantillon MET couplé avec un dispositif STM (Scanning Tunneling Microscope en anglais). Le protocole de contrôle du transfert des nanoparticules, les transformations chimiques et structurales subies par celles-ci, le mécanisme de croissance de nouvelles nanoparticules et d’autres phénomènes liés à ces effets ont été étudiés avec attention. La dernière partie de la thèse est centrée sur l’étude de la tomographie électronique à faible dose de la porosité induite dans deux classes de zéolithes, ZSM-5 et zéolithe Y, en utilisant un traitement chimique novateur à base de fluor.