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Abstract

This work concerns the use of sparse representation and Dictionary Learning (DL) in order
to get insights about the diseased heart in the context of Cardiovascular Diseases (CVDs).
Specifically, this work focuses on 1) assessment of Left Ventricle (LV) wall motion in patients
with heart failure and 2) fibrosis detection in patients with hypertrophic cardiomyopathy (HCM).

In the context of heart failure (HF) patients, the work focuses on LV wall motion analysis in
cardiac cine-MRI. The first contribution in this topic is a feature extraction method that exploits
the partial information obtained from all temporal cardiac phases and anatomical segments in
a spatio-temporal representation from sequences cine-MRI in short-axis view. These features
correspond to spatio-temporal profiles in different anatomical segments of the LV. The proposed
representations exploit information of the LV wall motion without segmentation needs. Three
representations are proposed : 1) diametrical spatio-temporal profiles where radial motions of
LV’s walls are observed at the same time in opposite anatomical segments 2) radial spatio-
temporal profiles where motion of LV’s walls is observed for each segment of the LV cavity and 3)
quantitative parameters extracted from the radial spatio-temporal profiles. A second contribution
involves the use of these features as input atoms in the training of discriminative dictionaries
to classify normal or abnormal regional LV motion. We propose two levels of evaluation, a first
one where the global status of the subject (normal/pathologic) is used as ground truth to label
the proposed spatio-temporal representations, and a second one where local strain information
obtained from 2D Speckle Tracking Echocardiography (STE), is taken as ground truth to label
the proposed features, where a profile is classified as normal or abnormal (akinetic or hypokinetic
cases).

In the context of Hypertrophic cardiomyopathy (HCM), we address the problem of fibrosis
detection in Late Gadolinium Enhanced LGE-Short axis (SAX) images by using a sparse-based
clustering approach and DL. In this framework, random image patches are taken as input atoms
in order to train a classifier based on the sparse coefficients obtained with a DL approach based
on kernels. For a new test LG-SAX image, the label of each pixel is predicted by using the trained
classifier allowing the detection of fibrosis. A subsequent postprocessing step allows the spatial
localization of fibrosis that is represented according to the American Heart Association (AHA)
17-segment model and a quantification of fibrosis in the LV myocardium.
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Résumé en français

Dans le domaine du traitement du signal, il est souvent utile de pouvoir représenter des
informations contenues dans des signaux de grande dimension dans un autre espace plus approprié
à l’analyse ou à un traitement. Traditionnellement, les signaux sont représentés dans un domaine
spatial où la représentation du signal est unique. La représentation parcimonieuse de signaux a
démontré être un outil extrêmement puissant pour l’acquisition, la représentation, la compression
et la classification des signaux de grande dimension (Aharon et al., 2006 ; Elad et al., 2006 ; Li
et al., 2013 ; Rubinstein et al., 2010 ; Wright et al., 2010).

L’apprentissage de dictionnaires parcimonieux est une approche récente qui vise à utiliser des
techniques d’apprentissage automatique pour déduire un dictionnaire d’un ensemble de signaux
d’entrée. Un signal donné peut être alors bien estimé simplement comme une combinaison
linéaire de quelques atomes du dictionnaire. Les méthodes d’apprentissage de dictionnaires
parcimonieuses sont à l’origine conçues pour apprendre un dictionnaire qui peut fidèlement
représenter des signaux. Dans le contexte du traitement d’images, la représentation d’images
et la reconstruction sont considérées comme les problématiques les plus étudiées à l’aide de ces
techniques. Par ailleurs, des tâches de classification ont commencé à être abordées dans le cadre
d’apprentissage de dictionnaires. En confirmant ce qui a été observé en classification sur des
images naturelles, nous cherchons à étudier les avantages à utiliser des dictionnaires, directement
appris d’un ensemble d’images médicales qui permettent de capturer la distribution des données
et qui puissent être utiles ensuite dans des tâches telles que la classification et la détection.

Dans cette étude, nous abordons l’utilisation de la représentation parcimonieuse et l’appren-
tissage de dictionnaires pour l’aide au diagnostic dans le contexte de Maladies Cardiovasculaires
(CVDs). Spécifiquement, notre travail se concentre : 1) sur l’évaluation du mouvement des parois
du Ventricule Gauche (VG) chez des patients souffrant d’Insuffisance Cardiaque (IC) ; 2) la détec-
tion de fibrose chez des patients présentant une Cardiomyopathie Hypertrophique (CMH). Ces
types de pathologies sont étudiées par ailleurs en Imagerie par Résonance Magnétique Cardiaque
(IRMC). Ces travaux ont été exécutés en collaboration avec le CIC-IT (Centre d’Investigation
Clinique Innovation Technologique) du CHU de Rennes.

En 2010, les CVDs ont causé 223 morts pour 100000 individus en France (environ 27% de
décès totaux), étant la première cause de maladies chez les femmes et la deuxième chez les
hommes. La mortalité par CVDs au niveau mondial est très semblable. 17.3 millions de personnes
sont décédées de CVDs en 2008, représentant 30% de tous les décès, selon l’Organisation Mondiale
de la Santé (WHO, 2014). Les CVDs affectent le cœur, les vaisseaux sanguins ou les deux à
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la fois. Les pathologies les plus fréquentes sont : l’Ischémie, la Maladie d’artère Coronaire, la
Cardiomyopathie et l’Insuffisance Cardiaque.

La première pathologie abordée dans cette étude est l’Insuffisance Cardiaque (IC) qui
est un syndrome clinique complexe qui résulte d’une diminution structurelle ou fonctionnelle du
remplissage ventriculaire ou de l’éjection de sang (Yancy et al., 2013). Le syndrome clinique
d’IC peut résulter de troubles du péricarde, du myocarde, de l’endocarde, des valves du cœur
ou de grands vaisseaux, ou de certaines anomalies métaboliques, mais la plupart des patients
souffrant d’IC ont plusieurs symptômes, en raison d’une fonction myocardique ventriculaire
gauche détériorée.

Cliniquement, l’IC a un pronostic pauvre et son diagnostic de stade précoce peut jouer un rôle
essentiel dans la planification du traitement. Un changement courant de la fonction ventriculaire
gauche normale chez des patients avec IC est l’asynchronisme intra-ventriculaire quand les
segments anatomiques des ventricules se contractent de façon non synchronisée. Les anomalies du
mouvement ventriculaire gauche segmentaire sont en particulier significatives dans de multiples
pathologies cardiaques et leur diagnostic est d’une importance capitale (Garcia-Fernandez
et al., 2003).

L’imagerie par résonance magnétique Cardiaque (IRMC) est actuellement utilisée
en imagerie médicale pour l’évaluation de la fonction ventriculaire gauche (Kirschbaum et al.,
2011). Cette modalité permet d’obtenir des paramètres différents, qui caractérisent la fonction
ventriculaire et qui peuvent être regroupés en deux catégories : les indicateurs globaux et les
indicateurs locaux. Les indicateurs globaux peuvent inclure : des volumes ventriculaires, la
masse ventriculaire, la fraction d’éjection ou le débit cardiaque. Les indicateurs locaux sont
extraits par segment anatomique du ventricule gauche selon le modèle à 17 segments proposé par
l’American Heart Association (AHA)(Cerqueira et al., 2002) et peuvent inclure : la fraction
d’éjection régionale, l’épaississement myocardique, des informations de déplacement, de vitesse et
de déformation locale de mouvement. L’analyse globale de la dynamique cardiaque en cine-IRMC
est concentrée au niveau temporel sur deux phases particulières du cycle cardiaque : la fin de
diastole et la fin de systole.

Un autre type de modalité d’imagerie cardiaque considérée comme la référence pour l’analyse
de la mécanique cardiaque est l’Échocardiographie. L’évaluation de la fonction ventriculaire
gauche peut-être effectuée en utilisant l’analyse des déformations de la paroi ventriculaire gauche
en échocardiographie (Gorcsan et al., 2011). Des méthodes actuellement appliquées pour
l’analyse de la fonction régionale du VG intègrent des mesures d’échographie 2D (Becker
et al., 2006). Notamment l’échographie de speckle tracking (STE) est utilisée comme une
technique d’imagerie pour la quantification de la déformation myocardique dans l’évaluation
globale et segmentaire de la fonction cardiaque et pour l’évaluation de l’asynchronisme ven-
triculaire (Tanabe et al., 2008). Des avancées récentes dans le développement d’imagerie en
échocardiographie permettent l’acquisition des images 3D qui surmontent quelques limitations
de l’imagerie 2D conventionnelle. L’imagerie en échocardiographie 3D (Fenster et al., 2001 ;
Maffessanti et al., 2009) a le potentiel de fournir les visualisations temps réel 3D du cœur.
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Cependant, la résolution temporelle est inférieure à celle de l’imagerie en échocardiographie 2D.
Pour ce qui concerne les travaux de la littérature sur le domaine, les techniques actuelles pour

l’évaluation du mouvement des parois du VG sont le plus souvent composées d’une étape de
prétraitement, suivie de la segmentation des frontières, puis de l’extraction des caractéristiques
et de leur classification. La plupart des approches ont besoin de la segmentation de la cavité
du VG et exigent une interaction importante de l’utilisateur ou une semi / totale délinéation
automatique des frontières du myocarde.

Les enjeux recherchés sont ici de pouvoir trouver une méthode d’extraction de caractéristiques
qui à la fois, ne nécessite pas la segmentation de la cavité du VG, exploite toutes les informa-
tions du cycle cardiaque et qui permettent d’extraire des informations discriminatoires pour la
caractérisation du mouvement. Il est aussi exigé d’employer ou de développer un classifieur ayant
une haute capacité de généralisation.

Une technique de classification récente qui est largement exploitée dans les images naturelles
est la Classification basée sur la représentation parcimonieuse (SRC) (Wright et al., 2009)
qui implique l’utilisation d’algorithmes différents pour, dans un premier temps, apprendre des
dictionnaires à partir de l’ensemble étiqueté de données d’apprentissage, et dans un second temps,
exploiter la décomposition parcimonieuse du signal de test pour sa classification.

Quelques applications ont été proposées en imagerie médicale (IRM, tomographie, échocardio-
graphie et microscopie) et ont été explorées dans les domaines de la représentation parcimonieuse
et de l’apprentissage de dictionnaires. On retrouve dans ces travaux par exemple, les problèmes de
reconstruction d’image, de débruitage, de fusion, de segmentation, de rehaussement par approches
multimodales et de classification. Á notre connaissance, la classification du mouvement des parois
du VG par apprentissage de dictionnaires en IRM cardiaque n’a pas été précédemment rapportée.

Dans le contexte de l’IC notre contribution porte sur l’évaluation de mouvement du
VG dans des séquences cine-IRMC. Nous proposons dans un premier temps, une méthode
d’extraction de caractéristiques qui exploite les informations partielles obtenues à partir de toutes
les phases cardiaques temporelles et des segments anatomiques, dans une représentation spatio-
temporelle en cine-IRM petit axe. Les représentations proposées exploitent les informations du
mouvement des parois du VG sans avoir recours à la segmentation et disposent des informations
discriminatoires qui pourraient contribuer à la détection et à la caractérisation du mouvement.
Deuxièmement, nous proposons l’utilisation de ces caractéristiques comme des atomes d’entrée
dans l’apprentissage de dictionnaires discriminatoires pour classifier le mouvement régional du
VG dans les cas normaux ou anormaux.

La méthode développée est la suivante :
Des séquences cine-IRM cardiaques en vue petit axe sont regroupés en deux populations :

les séquences pathologiques et les séquences de contrôle. Le processus se déroule en trois étapes
principales : Dans une étape de prétraitement, une région d’intérêt (ROI) est définie dans le
premier cadre de chaque séquence pour analyser seulement la structure du VG. La ROI est
projetée dans toute la séquence et est normalisée selon la représentation AHA pour identifier
les segments anatomiques, où les plans basal et médial sont divisés en 6 segments : Antérieur,
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Antéro-Septal, Inféro-Septal, Inférieur, Inféro-Latéral, Antéro-latéral. Le plan apical est divisé en
4 segments : Antérieur, Septal, Inférieur et Latéral. L’extraction d’images spatio-temporelles a
été proposée, permettant la construction de trois nouveaux types de représentations :

Profils spatio-temporels diamétraux Un premier type de représentation a été proposée par
l’extraction de profils spatio-temporels diamétraux qui montrent l’évolution temporelle de
l’epicarde et de l’endocarde, de façon conjointe, dans deux segments anatomiques opposés
du VG, exploitant ainsi, leur comportement à partir des profils radiaux de même orientation.

Profils spatio-temporels radiaux Un deuxième type de représentation a été proposée par
l’extraction de profils spatio-temporels radiaux où le mouvement pariétal est observé pour
chaque segment de la cavité du VG.

Paramètres extraits à partir des courbes de temps-intensité dans des profils radiaux
Une troisième type de représentation a été proposée par l’extraction de courbes de signal
temps-intensité (TSICs) directement des profils spatio-temporels radiaux dans chaque
segment anatomique. Des paramètres différents sont alors définis de ces courbes qui re-
flètent les informations dynamiques de la contraction du VG. Pour chaque TSIC obtenu
dans un profil d’image radiale, nous avons réalisé l’interprétation d’images paramétriques
proposée dans (Kachenoura et al., 2007). Nous nous intéressons aux courbes qui reflètent
la contraction de la cavité ventriculaire et quatre paramètres sont extraits de ces courbes :
un paramètre de partitionnement de courbe (Cl), un paramètre de dissymétrie (Sk) et un
paramètre de corrélation croisée (Co). Nous proposons également d’utiliser le paramètre de
temps de transition moyen (Mt) proposé par (Kachenoura et al., 2007), calculé sur le
partitionnement de courbe.

Chaque profil spatio-temporel est identifié avec son étiquette de classe respective yi ∈ (1, 0),
où 1 correspond aux profils anormaux et 0 correspond aux profils normaux. La discrimination
de mouvement pariétal normal et anormal est réalisée par l’utilisation des caractéristiques
proposées comme des atomes d’entrée dans l’apprentissage de dictionnaires. Pour cela, des
signaux d’entrée Y ∈ Rn×N sont représentés comme une matrice de données où chaque colonne
est un signal n-dimensionnel d’entrée (des représentations spatio-temporelles vectorisées). Les
coefficients parcimonieux X ∈ RK×N des signaux d’entrée Y et le dictionnaire D ∈ Rn×K , avec
K atomes sont appris en adaptant trois algorithmes de classification pour la classification de
mouvement pariétal du VG basés sur l’apprentissage de dictionnaire :

Un premier algorithme d’apprentissage de dictionnaire est retenu, où la discrimination du
dictionnaire appris est respectée en imposant des contraintes structurelles du dictionnaire : "The
Label Consistent K-SVD algorithme (LC-KSVD)" (Jiang et al., 2013). Un deuxième algorithme
est également retenu, où la discrimination est respectée en imposant un terme discriminatoire
sur les vecteurs de décomposition parcimonieuse : "The Fisher discriminant Dictionary learning
(DL) algorithme" (Yang et al., 2014). Ces deux algorithmes prennent comme atomes d’entrée les
profils diamétraux ou les profils radiaux.
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Un autre type d’algorithme d’apprentissage de dictionnaire basé sur des noyaux est adapté à
la classification de mouvement pariétal du VG en utilisant des paramètres extraits des profils
spatio-temporels radiaux : l’algorithme KSRDL (Li et al., 2013). Dans l’approche paramétrique,
Y représente une matrice de données de paramètres où chaque colonne est un vecteur de
paramètres extraits des profils spatiaux-temporels radiaux.

La sparsité de ces techniques est mesurée par des normes différentes. L’algorithme LC-KSVD
utilise une norme `0 qui compte le nombre d’éléments non-zéro de X, tandis que l’algorithme
FD-DL et l’algorithme KSRDL utilise une norme `1- avec un paramètre de régularisation λ1

dont la valeur dirige la sparsité de la solution. On considère la sparsité comme une mesure de
robustesse des techniques de classification d’apprentissage de dictionnaire.

Pour évaluer la capacité de généralisation des techniques d’apprentissage automatique en ce
qui concerne la précision, la sensibilité et la spécificité, et pour leur comparaison postérieure, nous
avons exécuté une validation croisée par sous-échantillonnage aléatoire de la base de données.
Cette méthode divise aléatoirement l’ensemble de données dans des données de validation et
des données d’apprentissage. En outre, en raison du petit nombre de patients actuellement
disponibles pour chaque classe, nos classifieurs sont évalués en utilisant le critère "leave-one-out
cross-validation" (Chapelle et al., 2002).

Pour cette étude, des séquences cine-IRM en vue petit axe sont issues de quatre bases de
données : deux groupes de données de patients qui ont été acquises suivant des protocoles cliniques
dans des projets de recherche nationaux et internationaux : i) le projet ANR «Utility of medical
imaging for the optimization of the implantation of implantable cardiac devices» (IMOP) 1 et
ii) le projet européen « European Community’s Seventh Framework Programme » (euHeart) 2 ;
et deux groupes de sujets sains obtenus de deux défis de MICCAI 3 : iii) "the Cardiac MR Left
Ventricle Segmentation Challenge MICCAI 2009" (Radau et al., 2009) et iv) "the first Cardiac
Motion Analysis Challenge MICCAI 2011" (Tobon-Gomez et al., 2013).

Nous avons proposé un protocole d’évaluation basé sur les informations disponibles sur la
population décrite et le type de caractéristique utilisé pour former les classifieurs qui se décompose
comme suit :

L’évaluation globale multi-coupe non-paramétrique : L’évaluation globale multi-coupe
non-paramétrique a été exécutée en utilisant le statut global du sujet : Normal/Pathologique,
comme l’étiquette de référence des profils spatio-temporels diamétraux extraits dans une
coupe apicale, médiale ou basale en petite axe. Les séquences cine-IRM en petit axe utilisées
dans cette expérience comprennent 20 études regroupées en deux classes : 1) échantillons de
mouvement anormaux du VG correspondant à 14 patients avec asynchronisme cardiaque
et 2) échantillons de mouvement normaux du VG correspondant à 6 sujets sains. Pour
chaque sujet, 18 profils spatio-temporels diamétraux ont été extraits, ce qui fait un total

1. ANR CIC-IT no 04 187-188-189-190. Acronym from the French "utilité de l’Imagerie M’edicale dans
l’Optimisation de la Pose de prothèses cardiaques implantables”, utility of medical imaging in the optimization of
the implantation of implantable cardiac prosthesis.

2. euHeart : Personalised and Integrated Cardiac Care, FP7/2008-2012
3. MICCAI - Medical image computing and computer-assisted intervention
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de 360 profils : 252 considérés comme anormaux (14 patients, 18 profils par patient) et 108
considérés comme normaux (6 sujets de contrôle, 18 profils par sujet). Les expériences ont
été exécutées en utilisant les profils spatio-temporels diamétraux dans le domaine original
(des niveaux de Gris), mais aussi dans le domaine de Fourier, le domaine des Ondelettes et
le domaine des Curvelets.
Après expérimentation, les résultats obtenus montrent que le domaine des Ondelettes résulte
être le meilleur espace où la représentation originale (profils spatio-temporels diamétraux)
rapporte la meilleure précision et la meilleure sensibilité de toutes les techniques de
classification (SVM et techniques d’apprentissage de dictionnaire). Ceci peut être dû au dé-
bruitage implicite qui est impliqué dans la transformée d’ondelette qui rend la classification
plus précise. La représentation en niveaux de Gris et la représentation de Fourier sont
classés deuxième et troisième respectivement. En matière de spécificité, le domaine des
niveaux de Gris fournit de meilleurs résultats que le domaine des Ondelettes dans les
coupes médiale et apicale. La meilleure performance pour la classification de mouvement
pariétal anormal et normal du VG, en utilisant des profils spatio-temporels diamétraux, est
réalisée dans le domaine des Ondelettes avec un classificateur FD-DL qui atteint 96.51% de
précision, 96.48 % de sensibilité et 96.67% de spécificité, obtenues dans la coupe ventriculaire
médiale (Mantilla et al., 2013a,b). Ces résultats sont en accord avec ceux trouvés dans
(Suinesiaputra et al., 2009) et (Punithakumar et al., 2010) en raison du fait que le
mouvement pariétal au niveau médial est bien défini et plus stable comparé aux coupes
basales et apicales.

L’évaluation globale en coupe médiale non-paramétrique : L’évaluation globale en coupe
médiale non-paramétrique a été exécutée en utilisant le statut global du sujet : Nor-
mal/Pathologique, comme l’étiquette de profils spatio-temporels diamétraux ou radiaux
extraits dans une coupe médiale en petit axe. Les séquences cine-IRM en petit axe utilisées
dans cette expérience comprennent 18 cas regroupés en deux classes : 1) des patients avec
un mouvement anormal du VG correspondant à 9 patients avec asynchronisme cardiaque et
pour lesquels nous avons les déformations radiales aux coupes médiales ventriculaires obte-
nues par la modalité échographique (2D-STE) et 2) des patients avec mouvements normaux
du VG qui correspondent à 9 sujets sains. Pour chaque sujet, 36 profils spatio-temporels
radiaux et 18 profils spatio-temporels diamétraux ont été extraits, ainsi, nous avons : i) un
total de 324 profils diamétraux, 162 considérés comme anormaux (9 patients, 18 profils par
patient) et 162 considérés comme normaux (9 contrôles, 18 profils par sujet) et ii) un total
de 648 profils radiaux, 324 considérés comme anormaux (9 patients, 36 profils par patient)
et 324 considérés comme normaux (9 contrôles, 36 profils par sujet). Les expériences ont
été réalisées en utilisant les profils spatio-temporels diamétraux ou radiaux dans le domaine
original (des niveaux de Gris), mais aussi dans le domaine des Ondelettes.
Le domaine des niveaux de Gris est le domaine où la précision de classification est la
plus haute, en utilisant des profils diamétraux et par l’algorithme LC-KSVD. De même,
le domaine des niveaux de Gris est le domaine spatial où des profils radiaux réalisent la
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meilleure précision de classification, dans ce cas par l’algorithme FD-DL. En utilisant des
profils radiaux et une évaluation globale, la précision obtenue est plus haute que celle
obtenue en utilisant des profils diamétraux.

L’évaluation locale en coupe médiale non-paramétrique : L’évaluation locale en coupe
médiale non-paramétrique a été réalisée en utilisant les informations de déformation
locales fournies par l’analyse des images échographiques de référence en clinique (2D-
STE) (Mantilla et al., 2015c). Les séquences cine-IRM en petit axe, utilisées dans cette
expérience comprennent la même population que dans le cas d’évaluation globale au niveau
médial : 18 cas regroupés en deux classes : 1) des patients avec des mouvements anormaux
du VG correspondant à 9 patients avec asynchronisme cardiaque et pour lesquels nous
avons l’information de déformation radiale au niveau de la coupe médiale ventriculaire
mesurée à partir de la 2D-STE et 2) des patients avec des mouvements normaux du VG
correspondant à 9 sujets sains.
Pour chaque sujet, 36 profils radiaux et 18 profils diamétraux ont été extraits. Sur 324
profils diamétraux des 18 sujets dans l’étude : 162 sont considérés comme anormaux (9
patients, 18 profils par patient) et 162 sont considérés comme normaux (9 contrôles, 18
profils par sujet). Nous basons notre analyse après le groupement de deux segments opposés
en considérant un profil normal si tous les deux sont normaux. Sur un total de 648 profils
radiaux, 276 sont considérés anormaux et 372 sont considérés normaux dans la population.
Les résultats montrent que le meilleur taux de classification est obtenu par la technique
de FD-DL dans le domaine original (le domaine des niveaux de Gris) avec une moyenne
de 92.81% de précision. Cette technique offre la spécificité la plus élevée dans le domaine
original et aussi dans le domaine des Ondelettes. En outre, le classifieur obtenu dans la
technique LC-KSVD trouve les codes parcimonieux dans le domaine des Ondelettes le plus
discriminant pour la classification de profils spatio-temporels. En matière de sensibilité, les
résultats le plus élevés sont obtenus avec l’algorithme LC-KSVD et sont meilleurs que ceux
obtenus avec l’algorithme SVM en utilisant un noyau RBF dans le domaine des Ondelettes.
Sur ces résultats, on observe que les techniques d’apprentissage de dictionnaires discri-
minatoires surpassent légèrement la technique de SVM, mais avec un coût informatique
plus élevé. Les techniques d’apprentissage de dictionnaires exigent plus de temps dans
les étapes d’apprentissage et de test que la technique SVM, et plus particulièrement la
technique de FD-DL. En outre, la différence de temps dans l’apprentissage et le test entre
les techniques SVM et les techniques LC-KSVD est très basse (environ 6 secondes pour
l’apprentissage et 0.02 secondes pour le test). L’utilisation de profils radiaux améliore
les résultats de classification donnés par des profils diamétraux dans le plan médial de
la cavité. En outre, avec une évaluation globale, les profils radiaux donnent de meilleurs
résultats de classification que les profils diamétraux. Les résultats montrent que la technique
LC-KSVD représente le meilleur compromis entre la précision, la sensibilité, la spécificité et
la complexité en matière de temps de calcul et de sparsité, dans le domaine des Ondelettes.

L’évaluation locale en coupe médiale paramétrique : L’évaluation locale en coupe mé-
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diale paramétrique a été exécutée en utilisant les paramètres descriptifs extraits des profils
spatiaux-temporels radiaux et en exploitant les informations de déformation locale fournies
par l’étude 2D-STE. Les séquences cine IRM en petite axe utilisées dans cette expérience
correspondent à la même population que celle utilisée dans l’évaluation locale non paramé-
trique de la cavité. A partir des profils radiaux, différents paramètres on été proposés ou
repris de la littérature et ont été combinés. Ils sont décrits ci-dessous.

Paramètre de partitionnement de courbe (Cl) : Chaque segment anatomique du VG est
divisé en 6 sous-régions angulaires comprenant dix profils consécutifs. Un processus
de partitionnement basé sur des ondelettes (Misiti et al., 2007) divise l’ensemble de
signaux de profils radiaux dans chaque sous-région angulaire en deux groupes. La
moyenne des signaux dans le plus grand groupe est alors calculée, représentant le plus
grand groupe de signaux avec un modèle de contraction similaire.

Paramètre de dissymétrie (Sk) : Nous calculons le skewness de courbes moyennes (Cl)
comme une mesure de symétrie. Un skewness négatif indique que la distribution de
données est "gauche-biaisée" reflétant une contraction régionale du VG retardée. Un
skewness positif indique que la distribution de données est "droite-biaisée" reflétant
une contraction régionale du VG normale.

Paramètre de corrélation croisée (Co) : Un paramètre basé sur l’analyse de corrélation
croisée est calculé entre chaque courbe moyenne (Cl) et une référence spécifique de
la population saine. Pour définir cette référence, nous exécutons un processus de
partitionnement basé sur des ondelettes (Misiti et al., 2007) appliqué sur l’ensemble
de signaux des profils qui appartiennent aux sujets de contrôle. La moyenne du
groupe avec la taille maximale est une référence spécifique de la population saine. La
corrélation croisée est alors calculée entre chaque courbe moyenne (Cl) et la référence
dite normale.

Paramètre de temps de transition moyen (Mt) : Le paramètre de temps de transition moyen
Mt=(TON + TOFF)/2 est calculé à partir du paramètre TON(c), qui représente le
temps où la contraction commence et TOFF (c), qui représente le temps de la fin du
mouvement endo-cardiaque sur le pixel c.

La procédure d’extraction de paramètres est appliquée sur tous les profils spatio-temporels
radiaux. Nous construisons des vecteurs différents pour initialiser un dictionnaire basé sur
l’algorithme KSRDL (Li et al., 2013) afin d’obtenir les représentations parcimonieuses du
signal d’entrée et d’utiliser ces représentations pour former un classifieur de type "K plus
proches voisins" (K-NN ). Les résultats montrent que le meilleur taux de classification est
réalisé avec l’algorithme KSRDL en utilisant des vecteurs construits avec le paramètre de
skewness (Sk) et le paramètre de partitionnement de courbe (Cl) avec une précision de
94.49%. La meilleure performance pour l’algorithme SVM en utilisant un noyau RBF et
l’algorithme LC-KSVD est réalisée quand tous les paramètres sont utilisés comme entrées
(Mantilla et al., 2015a,b,e). La précision des classifieurs est significativement réduite
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quand les vecteurs sont construits seulement avec le paramètre de partitionnement de
courbe (Cl) et le paramètre de corrélation-croisée (Co), mettant en évidence l’importance
du paramètre de skewness dans la caractérisation de l’asynchronisme ventriculaire.

Notre méthode est limitée par le nombre de patients et la disponibilité des informations de
déformation, mais les résultats obtenus avec l’évaluation locale peuvent être analysés en prenant
des résultats de référence obtenus par des méthodes de la littérature. Notre méthode possède
deux caractéristiques principales qui peuvent être synthétisées comme : i) en exécutant une
évaluation locale par segments à l’aide des informations de déformation et des informations issues
de toutes les phases temporelles, nous avons pu déterminer une évaluation de mouvement pariétal
comparable avec le mouvement pariétal manuel standard réalisé par un spécialiste, ii) nous
avons montré que l’analyse des profils spatio-temporels radiaux dans des séquences cine-IRM
cardiaques au niveau médial en petit axe, suffisent pour détecter des anomalies de mouvement
pariétal dans l’ensemble des données analysé. Du point de vue méthodologique, l’adaptation de
méthodes d’apprentissage de dictionnaire à la tâche de classification a abouti à une technique
prometteuse pour l’analyse de mouvement du VG, en réalisant un compromis entre précision de
résultats, complexité et simplicité des algorithmes.

La deuxième pathologie considérée dans cette étude est la Cardiomyopathie Hypertro-
phique (CMH), qui appartient à la large classe des Cardiomyopathies qui représentent un
groupe hétérogène de maladies myocardiques. La CMH survient lorsque des cellules du muscle
du cœur grandissent et provoquent l’épaississement des parois des ventricules (généralement
le ventricule gauche). Malgré cet épaississement, la taille du ventricule reste souvent normale.
Cependant, l’épaississement peut bloquer le flux sanguin du ventricule. L’imagerie de résonance
magnétique cardiaque est utilisée pour mesurer l’épaisseur pariétale myocardique et diagnostiquer
la CMH (Members et al., 2011). Aussi, elle est utilisée pour caractériser le tissu myocardique,
permettant de qualifier également la présence de fibrose (Moon et al., 2004) souvent présente
dans ces pathologies. Il est documenté qu’approximativement la moitié de patients avec CMH
ont des séquences IRM de rehaussement tardif (LGE-IRM) avec des zones suggestives de fibrose
(Maron et al., 2008).

Plusieurs études ont montré la pertinence de l’image en rehaussement tardif (LGE)- IRM
cardiaque pour la localisation et l’évaluation de la fibrose myocardique (Ordovas et al., 2011).
L’évaluation précise de ces régions de fibrose est cruciale, la présence de fibrose étant directement
liée au risque de mort subite et à la présence d’arrythmies. Elle est également importante
afin d’évaluer le rétablissement myocardique fonctionnel après thérapie de reperfusion, mais
aussi pour mieux stratifier les cas de CMH et leur pronostic. Aussi, le degré d’amélioration
du mouvement pariétal global et de la fraction d’éjection est significativement lié à la mesure
transmurale de fibrose en LGE (Adabag et al., 2008). Au niveau clinique, la taille d’infarctus
est un facteur pronostique indépendant pour l’insuffisance cardiaque, les arythmies et mortalité
à cause d’événements cardiaque (Mewton et al., 2011).

En routine clinique, l’évaluation de la mesure transmurale des régions hyper-rehaussées est
exécutée de façon visuelle souvent en utilisant les échelles semi-quantitatives de Likert (Kim et al.,
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2000). Dans la littérature, plusieurs méthodes basées sur le réglage de seuils avec interaction
manuelle de l’utilisateur (Amado et al., 2004 ; Gerber et al., 2002 ; Kim et al., 2000 ; Schuijf
et al., 2004) ou avec la définition automatisée des zones infarcies en utilisant des opérateurs
morphologiques (Hsu et al., 2006 ; Kolipaka et al., 2005) ont été développées à cette fin. À
notre connaissance, la détection de zones de fibrose basée sur l’apprentissage de dictionnaires en
imagerie LGE-IRM n’a pas été précédemment rapportée.

Dans le contexte de la CMH, nous abordons le problème de détection de la fibrose en
LGE-IRM en vue petit axe (SAX) en utilisant une approche de partitionnement de données
et d’apprentissage de dictionnaires. Dans ce cadre, les caractéristiques extraites d’images de
LGE-SAX sont prises comme des atomes d’entrée pour former un classifieur basé sur les codes
parcimonieux obtenus avec une approche d’apprentissage de dictionnaires. Une étape de post-
traitement permet la délimitation du myocarde (zone d’Intérêt pour l’analyse de la fibrose) et la
localisation spatiale de la fibrose par segment anatomique.

Une première étape de traitement consiste en : 1) l’extraction aléatoire de patches non-
chevauchés a partir des images LGE-SAX et le calcul d’une matrice de similarité entre les patches.
2) le partitionnement des données en deux groupes, patches labellisés "rehaussés" (LGE) ou
"non-rehaussés" (Non-LGE) à partir de la matrice de similarité et par l’exécution d’un algorithme
de partitionnement hiérarchique (Misiti et al., 2007) basé sur une représentation en Ondelettes
de Haar.

Dans une deuxième étape de traitement, nous construisons un dictionnaire initial avec les
patches extraits et classés en deux catégories (avec rehaussement tardif et sans rehaussement
tardif). Nous appliquons ensuite l’algorithme KSRDL (Li et al., 2013) pour obtenir les codes
parcimonieux des patches d’entré qui sont ensuite utilisés pour former un classifieur K- plus
proches voisins. Notre méthode est testée pour la détection de la fibrose et est appliquée
indépendamment sur chaque coupe de la base d’images LGE-IRM.

Plusieurs expériences ont été menées en modifiant la taille des patches de caractéristiques.
Ainsi, la meilleure précision de détection de pixels hyper-rehaussés est obtenue avec des patches
ayant une dimension de [3×3].

L’approche de détection a été appliquée sur une population de 11 patients avec CMH sur
des séquences LGE-IRM en inversion-récupération (IR) en vue petit axe. Pour chaque patient,
les images traitées comprennent 16 images de coupes couvrant les plans apical, médial et basal.
La méthode proposée a permis la détection de fibrose à l’intérieur du myocarde en utilisant les
frontières endo- et épicardiques tracées manuellement par un expert.

Notre méthode a été évaluée dans un premier temps par une évaluation visuelle confrontée à
l’avis de l’expert, puis en comparant les résultats de la méthode proposée avec une méthode de la
littérature : la méthode de classification du type C-moyenne floue proposée par (Kachenoura
et al., 2008). Les zones de fibrose ont été identifiées dans les deux méthodes, pour ces régions
présentant une haute concentration de pixels avec rehaussement tardif. Notre méthode détecte la
fibrose avec succès dans 9 des 11 patients. En revanche, des zones LGE sont mal classées chez
deux patients en raison du contraste parfois faible entre le myocarde et l’intérieur de la cavité du
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VG (Mantilla et al., 2015d).
Nous proposons la localisation spatiale du myocarde fibrosé selon la représentation à 17

segments proposée par l’AHA. Pour réaliser cette représentation, le centroide du VG est au-
tomatiquement calculé en utilisant le contour de l’endocarde et l’intersection antérieure entre
les ventricules droit et gauche est manuellement placée par l’utilisateur pour une normalisation
spatiale segmentaire selon la représentation AHA. Cette procédure permet l’identification de la
fibrose par segment anatomique.

Les résultats obtenus sont en accord avec les observations dans (Hoey et al., 2014) dans
lesquelles les zones LGE sont souvent identifiées dans le septum inter ventriculaire, et plus
particulièrement dans les segments antéro-septal au niveau des coupes médiale et basale et dans
les points d’intersection entre les ventricules droit et gauche.

Les perspectives de cette étude incluent les aspects suivants :
La performance de classification de mouvement pariétal du VG pourrait être améliorée par

un placement manuel du point de repère anatomique entre le VG et le ventricule droit (VD).
En outre, la précision dans la quantification de la mesure transmurale de fibrose associée à des
segments anatomiques du VG pourrait être améliorée, puisqu’elle dépend de la décomposition
AHA et ainsi de la localisation de l’intersection antérieure du VD et du VG.

Nous avons exécuté une classification binaire entre le mouvement normal/anormal du VG basé
sur les représentations spatio-temporelles extraites des segments anatomiques. Cette classification
pourrait être étendue à une classification plus précise du mouvement dans une des quatre classes
de mouvement pariétal du VG : normale, hypokinetique, akinetique et dyskinetique.

D’autres paramètres discriminants pour l’asynchronisme cardiaque pourraient être également
incorporés comme des atomes d’entrée dans les méthodes de classification basées sur l’apprentis-
sage de dictionnaires. Ces paramètres peuvent inclure des informations d’indices fonctionnels
globaux comme des courbes de temps-volume, la fraction d’éjection, le débit cardiaque, le volume
d’éjection systolique ainsi que des paramètres fonctionnels régionaux, comme l’épaississement du
myocarde et des délais mécaniques.

Les perspectives de ce travail concernent également une validation étendue en utilisant plus
de patients, que ce soit dans le cadre de la caractérisation du mouvement en IC ou de la détection
de fibrose en CMH. Elle pourrait être également étendue pour une classification plus précise selon
des sous-groupes dans les pathologies étudiées, comme la classification de patients répondeurs ou
non-répondeurs dans le contexte de la CRT. Elle pourrait être enfin appliquée à la caractérisation
d’autres pathologies cardiaques et analysées à partir de différentes modalités d’imagerie.
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CHAPTER1
Introduction

Dictionary Learning (DL) is a recent approach that aims at using machine learning techniques
to infer a dictionary from a set of input signals. A given signal can be well approximated only
with a linear combination of a few atoms in the dictionary. DL methods are originally designed
to learn a dictionary which can faithfully represent signals. In the context of image processing,
image representation, denoising and reconstruction are considered as the most popular goals
by this discipline besides classification tasks that are starting to be addressed under the DL
framework. We search the benefits of using dictionaries, directly learned from a set of training
medical images, that better capture the distribution of the data and later, can be useful in tasks
such as classification and detection. In this study, we address the use of sparse representation and
DL in order to get insights about the diseased heart in the context of Cardiovascular Diseases
(CVDs). Specifically, our work focuses on 1) assessment of LV wall motion in patients with heart
failure (HF) and 2) fibrosis detection in patients with hypertrophic cardiomyopathy (HCM);
both pathologies are studied in cardiac magnetic resonance imaging (MRI).

By 2010, CVDs caused 223 deaths per 100 thousand individuals in France (about 27% of
total deceases), being the first cause of decease in the country for women and the second for
men. CVDs mortality in the world is very similar: 17.3 million people died from CVDs in 2008,
representing 30% of all global deaths that year, according to the World Health Organization
(WHO, 2014). CVDs affects the heart, the blood vessels or both. Most frequent pathologies are:
Ischemia, Coronary Artery Disease, Cardiomyopathy and Heart Failure (HF).

The first pathology addressed in this study is HF which is a complex clinical syndrome
that results from any structural or functional impairment of ventricular filling or ejection of
blood (Yancy et al., 2013). The clinical syndrome of HF may result from disorders of the
pericardium, myocardium, endocardium, heart valves, or great vessels or from certain metabolic
abnormalities, but most patients with HF have symptoms due to impaired left ventricular (LV)
myocardial function. Clinically, HF has a poor prognosis and its early stage diagnosis can play
an essential role for physicians in planning the therapy or interventional gesture and the stages
of the treatment. A common alteration of the normal LV function in patients with HF is the

1
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intra-ventricular dyssynchrony which occurs when regions of the ventricle contract at different
times. Abnormal local LV wall motion is an early finding in a lot of cardiac pathologies and its
diagnosis is of critical importance (Garcia-Fernandez et al., 2003).

Cardiac Magnetic Resonance Imaging (MRI) is currently used in medical imaging for the
assessment of LV function (Kirschbaum et al., 2011). This modality allows obtaining different
parameters, that characterize the ventricular function and can be classified in global parameters
and local parameters associated to anatomical segments of the LV, following the American Heart
Association (AHA) 17 model representation (Cerqueira et al., 2002). Global analysis of the
cardiac dynamic in cine-MRI is also most often focused on two particular phases of the cardiac
cycle: end-diastole and end-systole.

Current techniques for the LV wall motion assessment typically include a preprocessing step,
followed by a segmentation of the LV endocardial and epicardial boundaries, a feature extraction
and classification or motion estimation. In the context of classification, some of the approaches
in the literature need the segmentation of the LV cavity and require important user interaction
or semi-/fully automatic delineation to define myocardial boundaries and then extract features
in order to train the respective classifier.

Some successful applications in medical imaging (MRI, Computed Tomography, Echocardiog-
raphy and microscopy images) have been explored for image reconstruction, image denoising,
image fusion, image segmentation, multimodal images enhancement and classification based on
sparse representation and DL approaches. To the best of our knowledge, classification of LV wall
motion based on discriminative DL in cardiac MRI has not been previously reported.

Our contribution in the context of patients with HF is related to the assessment of LV
motion in cardiac cine MRI in short-axis view. Firstly, we propose a feature extraction method
that exploits the partial information obtained from all temporal cardiac phases and anatomical
segments in a spatio-temporal representation which we call spatio-temporal profiles from cine-MRI
sequences. Three novel representations are proposed: i) diametral spatio-temporal profiles, ii)
radial spatio-temporal profiles, and iii) time signal intensity curve parameters extracted from the
radial profiles. The proposed representations exploit information of the LV wall motion without
segmentation needs and inherently dispose discriminatory information that could help in the
detection and characterization of LV cardiac function abnormalities. Secondly, based on these
three new types of representation, three respective approaches based on Dictionary Learning
are proposed for LV wall motion classification. In each case, the proposed representations are
taken as input atoms for the training of DL approaches to provide a classification of local
normal/abnormal LV wall motion. We propose two levels of evaluation, a first one where the
global status of the subject (normal/pathologic) is used as ground truth to label the proposed
spatio-temporal representations, and a second one where local strain information obtained from
2D Speckle Tracking Echocardiography (STE), is taken as ground truth to label the proposed
features, where a profile is classified as normal or abnormal (akinetic or hypokinetic cases)
allowing thus to identify a particular segment of the LV that has a local normal or abnormal
wall motion.
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The second pathology addressed in this study is Hypertrophic Cardiomyopathy (HCM) that
belongs to the broad class of Cardiomyopathies (CM), meaning literally the diseases of cardiac
muscle, which are an heterogeneous group of myocardial diseases. HCM occurs if heart muscle
cells enlarge and cause the walls of the ventricles (usually the left ventricle) to thicken. Despite
this thickening, the ventricle size often remains normal but the thickening may block blood flow
out of the ventricle. Cardiac magnetic resonance is the new gold standard to measure myocardial
wall thickness and to diagnose HCM (Members et al., 2011). Also, it is used to characterize
myocardial tissue enabling to quantify the fibrosis/scar extension (Moon et al., 2004) that is
often present in HCM. It is now documented that approximately half of patients with HCM have
late gadolinium enhancement (LGE) suggestive of areas of fibrosis (Maron et al., 2008).

Several studies have shown the relevance of LGE in cardiac MRI in the location and the
assessment of myocardial fibrosis (Ordovas et al., 2011). The accurate estimation of the
transmural extent of the hyper-enhanced regions is crucial to estimate for example functional
myocardial recovery after reperfusion therapy. Also, the degree of improvement in global wall-
motion and ejection fraction is significantly related to the transmural extent of LGE. At the
clinical level, infarct size is an independent prognostic factor for heart failure, arrhythmic events
and cardiac mortality (Mewton et al., 2011). Patterns of fibrosis may be also used to differentiate
HCM from secondary causes of LV hypertrophy such as aortic stenosis or severe hypertension
(Rudolph et al., 2009).

An automated scoring of infarct extent begins with the detection of the infarct on the images.
Several methods based on the tuning of thresholds with manual interaction of the user (Amado
et al., 2004; Gerber et al., 2002; Kim et al., 2000; Schuijf et al., 2004) or automated definition
of the infarcted zones using morphological operators (Hsu et al., 2006; Kolipaka et al., 2005)
have been developed to this end. To the best of our knowledge, fibrosis detection based on DL in
LGE cardiac MRI has not been previously reported.

In the context of Hypertrophic cardiomyopathy (HCM), we address the problem of fibrosis
detection in Late Gadolinium Enhanced LGE-Short axis (SAX) images by using a sparse-based
clustering approach and DL. In this framework, features extracted from LGE-SAX images are
taken as input atoms in order to train a classifier based on the sparse codes obtained with a DL
approach. Firstly, an initial dictionary is constructed with learning samples from 2 clusters (LGE
and Non-LGE regions). Secondly, the sparse coefficients of the learning data are computed and
then used to train a K -Nearest Neighbor (K-NN ) classifier. Finally, the label (LGE/Non-LGE) of
a test patch is obtained with its respective sparse coefficients obtained over the learned dictionary
and using the trained K-NN classifier. A subsequent post-processing step allows the spatial
localization of fibrosis that is represented according to the American Heart Association (AHA)
17-segment model.

This work was conducted as part of two existing clinical protocols in national and international
research projects where LTSI was either responsible: the French project «Utility of medical
imaging for the optimization of the implantation of implantable cardiac devices» (IMOP) or
participated: the European project « European Community’s Seventh Framework Programme »
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(euHeart). This study was also performed in collaboration with the CIC-IT (Centre d’Investigation
Clinique Innovation Technologique) 804 and approved by the ethics committee of the CHU-
Pontchaillou in Rennes.

This document is composed of three main parts: The first part provides a background for this
study. It is composed on two chapters presenting: a brief state-of-art of different aspects in Sparse
representation of signals in overcomplete dictionaries (Chapter 2) and Sparse representation in
Medical Images (Chapter 3), respectively. The second part represents the main contribution
of this thesis. It covers the assessment of LV wall motion in cardiac cine-Magnetic Resonance
Imaging (MRI) by using DL-based classification approaches and is divided in two Chapters
presenting: 1) the novel feature representation approach for LV wall motion classification based
on dynamic images and the DL-based proposed approaches; (Chapter 4) and 2) the experimental
part and the evaluation by combining the proposed representations with dictionary learning (DL)
techniques to classify local normal/abnormal left ventricle wall motion (Chapter 5). Last part
presents a second contribution of this thesis. It involves the detection of fibrosis in LGE-SAX
MRI using a sparse-based clustering approach and DL (Chapter 6). Finally, Chapter 7 presents
concluding remarks and perspectives.
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CHAPTER2
Sparse representation of signals in

overcomplete dictionaries

2.1 Introduction

It is often useful in the field of signal processing to represent information contained in
high-dimensional signals in another space more suitable to analysis or further manipulations.
Traditionally, signals are mapped to a space domain where the signal representation is unique.
Sparse signal representation has proven to be an extremely powerful tool for acquiring, represent-
ing, compressing and classifying high-dimensional signals (Aharon et al., 2006; Elad et al., 2006;
Li et al., 2013; Rubinstein et al., 2010b; Wright et al., 2010). There are many areas of science
and technology which have greatly benefited from advances involving sparse representation. For
example, image and signal processing have been influenced in numerous ways such as denoising,
image compression, feature extraction and many more. In this chapter, we present the sparse
representation problem which is a parsimonious principle that a sample can be approximated by
a sparse linear combination of basis vectors over a redundant dictionary. We describe three main
aspects dealing with this problem: optimization techniques for solving sparse approximation
problems (an inverse problem that arises in the representation), the choice of a dictionary and
the applications of sparse representations. We further show that sparse representation and
Dictionary Learning can be extended to address specific tasks such as classification when the
learning includes a discrimination criteria in the objective function. We take one step further
towards classification by taking advantage of sparse representation and dictionary learning;
dealing with two specific problems we are interested in this work: classification of LV wall motion
and detection of cardiac fibrosis in cardiac medical images.
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2.2 The sparse representation problem

In linear algebra the term sparse refers to a measurable property of vectors. Sparsity is not
an indicator of the size of the vector, but it concerns the number of non-zero coefficients in the
vector that is measured by the `0 norm denoted as ‖ · ‖0. One of the main advantages of sparsity
is the simplicity of calculation that this property brings in vector calculations, for example a
multiplication of a matrix by a sparse vector takes less computational time compared to a dense
matrix-vector multiplication.

Sparse representations are representations that account for most or all information of a signal
with a linear combination of a small number of elementary signals called basis vectors or atoms.
These basis vectors capture high-level patterns in the input data. The problem solved by the
sparse representation is to search for the most compact representation of a signal in terms of
linear combination of a few atoms in an overcomplete dictionary.

Using an overcomplete dictionary D = [d1,d2,d3, . . . ,dK ] ∈ RN×K that contains K elemen-
tary N-dimensional signals called atoms of the dictionary, with K > N and usually K >> N , a
signal y ∈ RN can be represented as a linear combination of these atoms. An illustrative example
can be seen in Figure 2.1. The problem of sparse representation is to find a coefficient (sparse)
vector x ∈ RK×1, such that:

y = Dx (2.1)

Figure 2.1– Example of a sparse signal y represented by a linear combination of basis (atoms) of an
orthogonal representation matrix (Dictionary). The `0 norm of the sparse coefficients vector x is 4.

In this problem, if a sparse vector x can be found, it is called the sparse representation of
y. This is due to the fact that x is the vector that can be used to reproduce or better to say,
“represent” y. The representation of y may either be exact (Equation 2.1), or approximate
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y ∼= Dx with a prescribed error tolerance ε , satisfying:

‖y −Dx‖p ≤ ε (2.2)

In approximation methods, typical norms used for measuring the deviation are the `p-norms for
p = 1, 2 and ∞. The `1 and `2 norms denoted as ‖ · ‖1 and ‖ · ‖2 respectively, are also indicators
of sparsity. The `1 norm is the sum of the absolute value of the coefficients in a vector defined as:

n∑
i=1
|xi| (2.3)

and the `2 norm is the Euclidean length of a vector defined as:
√√√√ n∑
i=1
|xi|2 (2.4)

In a more general context, the `p norm is defined as
[ n∑
i=1
|xi|p

] 1
p

.

(Tropp et al., 2010) present four basic sparse representation problems, which manage
different compromises between the error ε in approximation and the cost of representing the
approximation:

— The Sparsest Representation of a Signal y: The solution with the fewest number of non-zero
coefficients is the most basic problem:

arg min
x

‖x‖0 s.t. y = Dx (2.5)

— Error-Constrained Approximation: Given a target signal y, find the sparsest coefficient
vector x that represents an approximation with a prescribed error tolerance:

arg min
x

‖x‖0 s.t. ‖y −Dx‖2 ≤ ε (2.6)

It is most common to measure the prediction–observation discrepancy with the Euclidean
norm (‖ · ‖2), but other metrics may also be appropriate.

— Sparsity-Constrained Approximation: From all coefficient vectors with a predefined level of
sparsity T ≥ 1, find the one that yields the best approximation to the target signal y:

arg min
x

‖y −Dx‖2 s.t. ‖x‖0 ≤ T (2.7)

— Subset selection problem: Given a target signal y, find a coefficient vector that balances
the sparsity and approximation error by solving an `0-regularized least square optimization
problem, where λ > 0 is the regularization parameter whose value governs the sparsity of
the solution.

arg min
x

1
2‖y −Dx‖

2
2 + λ‖x‖0 (2.8)
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If the dictionary D is orthonormal, it is possible to solve the sparsest representation of a
signal y by choosing the atoms whose absolute inner products with the target signal take the
largest values. Otherwise, the extraction of the sparsest representation is a Non-deterministic
Polynomial-time hard (NP-hard) problem (Donoho et al., 2012). Algorithms for finding approx-
imating solutions have been extensively investigated and, indeed, several effective decomposition
algorithms are available.

In the next sections we address two main concepts in the Sparse signal representation problem:

— Given a new signal y and a dictionary D, finding the sparse coefficient x is called Sparse
Coding.

— Given training data Y , learning the dictionary D, the coefficient vectors X, and the
number of dictionary atoms K is called Dictionary Learning (DL).

First, we address three main aspects dealing with the sparse coding problem: optimization
techniques for solving sparse approximation problems, the choice of Dictionary and the applica-
tions of the sparse representation. Then, we address the problem of dictionary learning adapted
for classification.

2.3 Optimization techniques for solving sparse approximation
problems

The goal in solving sparse approximation problems is to achieve some compromise between
the error in approximation and the computational cost in doing such approximation, which is
measured as the number of elementary signals that participate in the approximation. In this
section, numerical algorithms and approaches for solving the problem of sparse approximation
will be presented in details. A classification of these techniques is presented by (Tropp et al.,
2010) based on a computational point of view:

2.3.1 Greedy pursuit methods

A pursuit method for sparse approximation is a greedy based approach that iteratively refines
the current estimate for the coefficient vector x by modifying one or several coefficients chosen
to yield a substantial improvement in approximating the signal (Tropp et al., 2010). Matching
Pursuit (MP), the clearest example of such algorithm, was introduced by (Mallat et al., 1993)
where a signal is decomposed into a linear expansion of waveforms that belong to a redundant
dictionary of functions. It is presented in Algorithm 1. Each iteration of the algorithm consists of
two steps: an atom selection step and a residual update step. The atom selection step finds the
atom in the dictionary which has the highest absolute correlation |〈dj , r(k)〉| (where 〈·〉 denotes
the inner-product operation defined as 〈u,v〉 = uTv) with the current residual error, where the
correlation is measured as the length of the orthogonal projection. The update step, updates
the residual error by subtracting a scaled version of the atom just found in the previous step.
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The algorithm terminates if the norm of the residual falls below the desired approximation error
bound, or if the number of distinct atoms found in the approximation equals the desired limit.

Algorithm 1 Matching Pursuit (MP)
1: Input: Signal: y, dictionary D, stopping rule: threshold value or number of different atoms
2: Let dj , 1 ≤ j ≤ N , denote the j-th column (atom) of the dictionary matrix D
3: Initialization: Set k=0, the number of iterations
4: Initial solution: x̂(0) = 0
5: Initial residual: r(0) = y
6: Repeat (k = k + 1) and perform:
7: Atom selection:
8: Compute the current correlation: c(k)

j = 〈dj , r(k)〉;
9: Identify the index ĵ such that: ĵ = max

j
|c(k)
j |;

10: Residual update step:
11: Update x̂(k)

ĵ
= x̂

(k−1)
ĵ

+ c(k)
ĵ

;

12: Update r(k) = r(k−1) − c(k)
ĵ
dĵ ;

13: Stopping rule (|rj | < thresholdvalue )

Note that MP may select the same index many times over when the dictionary is not orthogonal.
In non-orthogonal (or basic) MP, the dictionary atoms are not mutually orthogonal vectors.
Therefore, subtracting subsequent residuals from the previous one can introduce components
that are not orthogonal to the span of previously included atoms. The Orthogonal Matching
Pursuit (OMP) algorithm (Tropp et al., 2007) was developed to remove this drawback as will be
seen it shortly. The greedy selection in the MP algorithm nominally involves computing all the
inner products between the residual and the dictionary, which generally requires a complexity of
O(NK) (Tropp, 2004b). If the loop is executed T times, then the cost of the algorithm is at
most O(NTK).

2.3.1.1 Orthogonal Matching Pursuit (OMP) algorithm

The Orthogonal Matching pursuit algorithm (OMP) (Pati et al., 1993; Tropp et al., 2007) is
based on a variation of Matching Pursuit. MP simply removes the selected column vector (atom)
from the residual vector at each iteration. OMP uses a least-squares step at each iteration to
update the residual vector in order to improve the approximation. It is presented in Algorithm
2. Similar to MP, in OMP each iteration of the algorithm consists of two steps: an atom
selection step and a residual update step. At each step, the OMP algorithm picks the dictionary
atom that has the maximal projection onto the residual signal; it should be note that the
dictionary elements are normalized in this process. Following the selection of atoms, the sparse
representation coefficients are found by means of least-squares with respect to the atoms that
are chosen so far.

In the OMP algorithm, S(k) is the support 1 of x̂ at the iteration k and DS(k) is the matrix

1. The support of a vector a is the set of indices containing non-zero entries.
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Algorithm 2 Orthogonal Matching Pursuit (OMP)
1: Input: Signal: y, dictionary D, stopping rule threshold
2: Let dj , 1 ≤ j ≤ N , denote the j-th column (atom) of the dictionary matrix D
3: Initialization: Set k=0, the number of iterations
4: Initial solution: x̂(0) = 0
5: Initial Solution Support S(0) = support{x̂(0)} = 0
6: Initial residual: r(0) = y
7: Repeat (k = k + 1) and perform:
8: Atom selection:
9: Compute the current correlation: c(k)

j = 〈dj , r(k)〉;
10: Identify the index ĵ such that: ĵ = max

j
|c(k)
j |

11: Update the support S(k) = S(k−1) ∪ ĵ
12: Update the matrix DS(k) = [0, ..., di, ..., 0, ..., dj , ..., 0]
13: Update the solution x̂(k) = (DT

S(k)DS(k))
−1
DT
S(k)y

14: Residual update step:
15: Update r(k) = y −DS(k)x̂(k);
16: Stopping rule (|rj | < threshold value)

that contains the columns from D that belong to this support. The updated solution gives
the x̂(k) that solves the minimization problem ‖y −DS(k)x‖22. The algorithm can be stopped
after a predetermined number of steps, hence after having selected a fixed number of atoms.
Alternatively, the stopping rule can be based on the norm of the residual, or on the maximal
inner product computed in the next atom selection stage. The complexity of the OMP algorithm
is of order O(NT (T +K)) where T is the total number of iterations (Tropp, 2004b).

As a representative method in the greedy algorithm family, the OMP has been widely used
due to its simplicity and competitive performance. There have been some studies to improve the
computational efficiency and recovery performance on the OMP algorithm. Some enhancements
to the basic greedy framework are: 1) selecting multiple columns per iteration 2) pruning the set
of active columns at each step 3) solving the least squares problems iteratively, and 4) theoretical
analysis using the Restricted Isometry Property 2 (RIP)(Candès et al., 2005) bound.

Examples of OMP algorithm extensions are, among others, the Regularized Orthogonal
Matching Pursuit (ROMP) (Needell et al., 2009b), subspace pursuit (SP) algorithm (Dai
et al., 2009), Compressive Sampling Matched Pursuit (CoSaMP) (Needell et al., 2009a) and
Stagewise Orthogonal Matching Pursuit (StOMP) (Donoho et al., 2012).

Modern pursuit methods are closely related to iterative thresholding algorithms. Among
thresholding approaches, iterative hard thresholding (IHT) (Blumensath et al., 2009) is the
simplest. This algorithm is not based on OMP. In IHT, a non-linear operator Hn() is used to
reduce the value of the `0 norm at each iteration by changing all but the largest n entries to 0.
A property of the IHT algorithm is the robustness to observation noise.

2. The restricted isometry property (RIP) characterizes matrices which are nearly orthonormal, at least when
operating on sparse vectors. It is a concept widely used to prove many theorems in the field of compressed sensing.
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2.3.2 Convex relaxation methods

The idea in convex relaxation problems is to replace the `0-norm by the `1-norm resulting in
a convex optimization in the optimization problem solved by (2.8). This is commonly known
in the literature as Basis Pursuit (BP) methods (Chen et al., 1998). Hence solutions to the
Sparsest Representation problem reduces to solving:

arg min
x

‖x‖1 s.t. y −Dx (2.9)

and the subset selection problem:

arg min
x

1
2‖y −Dx‖

2
2 + λ‖x‖1 (2.10)

lead to the BP representations. Equation (2.10) is typically called `1-regularized least-squares
(`1-LS) sparse coding model (Li et al., 2013) and coincides with the well-known LASSO model
(Tibshirani, 1994), where λ ≥ 0 is a regularization parameter whose value governs the sparsity
of the solution: large values typically produce sparser results (Tropp et al., 2010), while small
values lead to a solution approaching to the LS solution, i.e. a dense solution. The use of `1

solvers (BP method) is more stable and accurate compared to greedy algorithms, however, there
are cases where the convergence is not reached in a reasonable amount of time (Chen et al.,
1998). Thus, approximating the solution of `0 minimization problems by greedy algorithms are
still considered to be more practical than the `1 solvers. The computational cost for solving BP
is of order O(N2K3/2) (Salman et al., 2009).

2.3.3 Bayesian methods

The Bayesian approach assumes that the signal’s coefficients in the alternative space are
random variables with a sparse promoting prior distribution (Li et al., 2013; Schniter et al.,
2009; Wipf et al., 2004). Sparse coding is statistically formulated as:

y = Dx+ ε (2.11)

where ε is an error term. The Sparse coding problem has the following constraints:

— The error term is Gaussian distributed with mean zero and isotropic covariance, that is
ε ∼ N(0,Φ) where Φ = ϕI, where ϕ is a positive scalar.

— The dictionary atoms are usually Gaussian distributed, that is di ∼ N(0,∆), where ∆ = I.
The coefficient vector should follows a sparsity-inducing distribution.

— x is independent of ε.

Bayesian approaches to the sparse approximation problem have typically been divided into
two categories (Wipf et al., 2004): (i) maximum a posteriori MAP estimation using a fixed
family of prior and (ii) empirical Bayesian approaches (Sparse Bayesian Learning).
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The MAP problem statement is defined as:

x̂ = arg max
x

P (x|y) = arg max
x

P (y|x)P (x)

= arg min
x

[
− log[P (y|x)]− log[P (x)]

]
, (2.12)

where P (x) represent the probability distribution function assumed as a priori distribution for
the coefficients of x. For example, assuming a Laplacian prior with zero mean and isotropic
variance on the coefficient vector:

P (x|γ) = 1
(2γ)k e

−
‖x‖1
γ (2.13)

the MAP estimation is equivalent to the standard `1 norm regularized problem in equation 2.10.
Assuming a moderately sparse prior such as the Laplacian, the resultant posterior is simplified
but not sufficiently sparse.

The Sparse Bayesian Learning Model (SBL) employs a flexible, parameterized prior that
is learned from the data. It assumes an independent zero-mean Gaussian noise model, with
variance σ2, giving a multivariate Gaussian likelihood of the target vector y:

P (y|x;σ2) = (2πσ2)
−
N

2 e
−

1
2σ2 ‖y−Dx‖

2

(2.14)

The prior over the coefficients x is mean-zero Gaussian:

P (x|α) = (2π)−M/2
M∏
m=1

α1/2
m e

αmx
2
m

2 (2.15)

where the key to the model sparsity is the use of M independent hyperparameters α =
(α1, · · · , αm)T , one per coefficient vector, which moderate the strength of the prior.

The use of SBL framework shows good promise to achieve the global minimum as the
maximally sparse solution (Wipf, 2006). However, the SBL model fall behind in terms of solid
theoretical justification and rigorous analysis in the context of sparse estimation problems. The
connections between various families of Bayesian algorithms remain a problem addressed in the
literature. In a later section, we will see how the use of different prior (gaussian or uniform)
on the sparse coefficient vector can be applied also over the dictionary atoms (Li et al., 2013),
which leads to various sparse representation models.

2.3.4 Non-convex optimization methods

A weaker notion of sparsity can be built on the notion of approximately representing a vector
using a small number of non-zeros; this can be quantified by the `p norms (p<2), which measure
the trade-off between the number of non-zeros and the `2 error of reconstruction (Bruckstein
et al., 2009). In the set of `p norms, the choice p = 1 gives a convex functional, while every
choice 0 < p < 1 yields non-convex functional. In (Chartrand, 2007; Saab et al., 2008) is
demonstrated that by replacing the `1 norm with the `p norm with p<1, exact reconstruction is
possible with substantially fewer measurements.
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2.3.5 Other methods

Other methods known as "brute force" methods explore through all potential approximations
to find the global optimum. Exhaustive searches quickly become computationally intractable as
the problem size becomes large, and more sophisticated techniques, such as branch-and bound,
do not accelerate the pursuit to be considered a practical method (Miller, 2002).

2.4 Design of the dictionary

As we have seen, a good compromise between the error in approximation and the computa-
tional cost in approximation of sparse representation of signals, depends on the algorithm used
to solve the sparse approximation problem. It is also connected to the dictionary in which the
decomposition is realized. The definition of dictionaries thus establishes an important step and
is the main object of a large number of contributions (Aharon et al., 2006; Engan et al., 1999,
2007; Kreutz-Delgado et al., 2003; Lewicki et al., 2000; Olshausen et al., 1997).

We have introduced the concept of an overcomplete dictionary D = [d1,d2,d3, . . . ,dK ] ∈
RN×K that contains K elementary signals or atoms for columns, with K > N and usually
K >> N . If the dictionary spans the signal space, the dictionary is complete or total (Tropp,
2004b). In this case, every signal can be approximated with zero error using a linear combination
of atoms. If the atoms form a linearly dependent set, then the dictionary is redundant. In this
case, every signal has an infinite number of best approximations. For a dictionary to be complete,
it is necessary that K ≥ N . For a dictionary to be redundant, it is sufficient that K > N . In
many modern applications, the dictionary is both complete and redundant.

The limits that may be assumed on sparsity (Barchiesi et al., 2013; Tropp, 2004a) depends
on the properties of the dictionary D. We can mention two basic measures of quality in the
dictionary:

— The Mutual Coherence of a dictionary D , denoted by µ(D), is defined as the maximal
absolute scalar product between two different normalized atoms of D,

µ(D) = arg max
i 6=j

|dTi dj | (2.16)

For an orthogonal matrix D, µ(D) = 0. In an overcomplete matrix (K > N), µ(D) > 0.

— The Spark of a dictionary D, denoted by σ(D), is the smallest number of columns that
form a linearly dependent set.

Also, we can mention two properties related to the previous measures:

— A necessary and sufficient condition for every linear combination of m atoms to have a
unique m-term representation (Tropp, 2004a) is:

m <
σ(D)

2 (2.17)
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— If D is a coherent dictionary consisting of L orthonormal bases, the relation between µ(D)
and σ(D) is (Gribonval et al., 2003):

σ(D) ≥ [1 + 1
L− 1]µ(D)−1 (2.18)

The main goal in sparse signal representation, is to find an overcomplete basis or dictionaryD
that is good for representing a given set of vectors as sparsely as possible. Two major approaches
have been followed to answer this issue. The first is to use some standard overcomplete basis, such
as Wavelets, Curvelets, Contourlets, steerable Wavelet filters, short-time-Fourier and the DCT
basis. The success of such dictionaries in applications depends on how suitable they are to sparsely
describe the signals to analyze. The second approach is to obtain an overcomplete basis from a
given set of vectors through training. These approaches are relevant for Dictionary Learning
techniques. While choosing a prespecified standard basis is appealing due to its simplicity, the
training based approach intuitively appears to be a better option as it generates dictionaries
that are well suited to the class of signals in the training set and, therefore, more suitable to the
problem at hand. The next subsections develop these two problems.

2.4.1 Standard overcomplete basis

Earlier works made use of traditional dictionaries, such as the Fourier and Wavelet dictionaries,
but they are not well equipped for representing more complex natural and high-dimensional
signal data. To overcome this apparent limitation, dictionaries constructed from a mathematical
model of the data, commonly called analytic dictionaries emerged. An exhaustive pursuit of
a set of basis functions can become an inconvenience if these atoms have a weak correlation
with the signal. The choice of atoms depends on the application for which we intend the use of
the sparse representation. It has proved useful, even essential, to have atoms having the same
characteristics as the signal source for which we try to model. In the case of image analysis, the
modeling of boundaries will be obvious if atoms present themselves a structure visually close to
a boundary.

To better encircle the decisive character of the choice of atoms, we briefly present the most
basic characteristic atoms, as well as their advantages and inconveniences. An extensive study
can be found in (Rubinstein et al., 2010a):

2.4.1.1 The Fast Fourier Transform (FFT)

The Fourier transform presents a number of properties that make it suitable for invariant
feature extraction for pattern recognition. The Fourier basis describes a signal in terms of its
global frequency content, as a combination of orthogonal waveforms:

F = {φn(x) = einx}n∈Z (2.19)

where Z denotes the set of integer values. A signal is approximated in this basis by projecting
it onto the K lowest frequency atoms, which has a strong smoothing and noise-reducing effect.
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However, the lack of time localization makes it difficult to represent discontinuities. Digital signal
processing has become the mainstream in signal processing, and only discrete transforms can
be implemented in the digital domain, the discrete version of the Fourier transform (DFT) is
frequently used as an intermediate step in more elaborated signal processing techniques. The
classic example of this is the Fast Fourier Transform (FFT) popularized in 1965 by (Cooley
et al., 1965).

In details, a dictionary of FFT is a collection of sinusoidal waveforms indexed by r = (ω, ν),
where ω ∈ [0, 2π) is an angular frequency variable and ν = {0, 1} indicates phase type, sine or
cosine:

g(ω, 0) = cos(ωt)

g(ω, 1) = sin(ωt) (2.20)

For the standard Fourier dictionary, r varies through the set of all cosines with Fourier frequencies
ωk = 2πk/N , k = 0, · · · , N/2, and all sines with Fourier frequencies ωk, k = 1, · · · , N/2 − 1,
meaning that the dictionary consists ofN atoms conforming an orthogonal basis. If the frequencies
are divided into more than N components, generating a dictionary with more than N atoms,
the higher frequency resolution can be also obtained. For example, for cosines with frequencies
ωk = πk/N , k = 0, · · · , N and sines frequencies ωk, k = 1, · · · , N − 1, the dictionary will
contain 2N atoms with higher frequency resolution, meaning that the dictionary is overcomplete.
Meanwhile, the decomposition algorithm will not be FFT. Instead, optimization techniques based
on sparse representation should be employed (cf. subsection 2.3).

2.4.1.2 Wavelets

Wavelets are time-located functions that cup up data into different frequency components,
and then study each component with a resolution matched to its scale. The idea is similar
to the Fourier Transform where the approximation of functions is based on the superposition
of sines and cosines functions. Generally, Wavelets have properties that make them useful for
signal processing. Wavelets are more useful for describing signals with discontinuities because of
their time-localized behavior (both Fourier and Wavelet transforms are frequency-localized, but
Wavelets have an additional time-localization property). For this reason, many types of signals
in practice may be non-sparse in the Fourier domain, but very sparse in the Wavelet domain.

In many practical applications a sampled version of the continuous Wavelets is used: the
discrete Wavelet transform (DWT). The DWT is an implementation of the Wavelet transform
using a discrete set of the Wavelet scales and translations obeying some defined rules. For
instance a 2D discrete Wavelet transform for image processing can be constructed from Wavelet
orthonormal bases of one-dimensional signals. Three mother Wavelets denoted as ψ1(x), ψ2(x) and
ψ3(x), related to horizontal, vertical and diagonal directions respectively (ψ3(x)=ψ1(x) ∗ ψ2(x)),
with x = (x1, x2) ∈ R2, are dilated and translated by dyadic scales (or level j) 2j and 2jn
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respectively, with n = (n1, n2) ∈ Z2. This yields an orthonormal basis of the space L2(R2) of
finite energy functions f(x) = f(x1, x2):

{
ψkj,n(x) = 1

2j ψ
k
(
x− 2jn

2j
)}

j∈Z,n∈Z2,1≤k≤3
(2.21)

When j, n can take values in R, the set of Wavelets represents an overcomplete frame and is
called undecimated Wavelet basis. For example, in Figure 2.2, a set of Wavelet Haar atoms in an
overcomplete dictionary is shown. The set of Haar Wavelet includes separable basis functions,
having steps of various sizes and in all locations. The support of a Wavelet ψkj,n is a square
of width proportional to the scale 2j . 2D Wavelet bases are discretized to define orthonormal
bases of images including N pixels. Figure 2.3, shows an image (Lena) with its third level of
decomposition using the Haar Wavelet transform.

Figure 2.2– Wavelet Haar atoms in an overcomplete dictionary.

Figure 2.3– Image lena and its third level Wavelet decomposition using Haar Wavelet transform.
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2.4.1.3 Curvelets

The Curvelet transform is a multiscale directional transform that allows near optimal non-
adaptive sparse representation of objects with curved singularities. Unlike 2D Wavelets, which are
tensor product of 1D Wavelets, Curvelets are intrinsically defined in 2D and are highly anisotropic.
Each Curvelet atom is associated with a triplet index j, l, k representing scale, direction and
location. Each Curvelet atom is a well-localized needle-shaped function, oscillating along one
direction and smoothed in the direction orthogonal to the first. The continuous Curvelet in 2D
with scale j, angle index l, and location k = (k1, k2) (also called translation parameter) is defined
as:

φj,l,k = 2j/2φj

(
MjRθj,l

x− k
)

(2.22)

where Mj is the dilation matrix and Rθj,l
is the rotation matrix:

Mj =
(

22j 0
0 22j

)
, Rθj,l

=
(

cos θj,l sin θj,l
−sin θj,l cos θj,l

)
(2.23)

and θj,l is the lth angle at scale j:
θj,l = 2π2−jl (2.24)

The mother function of scale j, φj , is rotated, dilated and shifted to generate the other Curvelets
at the same scale.

2.4.2 Dictionary Learning (DL)

Dictionary learning is a recent approach to dictionary design that has been strongly influenced
by the latest advances in sparse representation theory and algorithms. This approach suggests
the use of machine learning based techniques to infer the dictionary from a set of examples. In
this case, the dictionary is typically represented as an explicit matrix, and a training algorithm
is employed to adapt the matrix coefficients to the examples. The most recent training methods
are focusing on `0 and `1 sparsity measures, which lead to simple formulations and enable the use
of recently developed efficient sparse coding techniques (cf. 2.3). Main algorithms of this type
include the method of optimal directions (MOD) (Engan et al., 1999), the K-SVD algorithm
(Aharon et al., 2006), and others algorithms based on parametric approaches that will be
summarized in this section. An illustration of the Dictionary Learning problem is shown in
Figure 2.4.

Next, we briefly introduce the basic framework for DL. Let Y = [y1,y2, . . . ,yN ] ∈ Rn×N be
a data matrix (a finite training set of signals) where each column is a n-dimensional input signal.
Learning a reconstructive dictionary D with K items for sparse signal representation of Y can
be accomplished by solving (Aharon et al., 2006):

〈D,X〉 = arg min
D,X

‖Y −DX‖2F s.t. ∀i, ‖xi‖0 ≤ T, (2.25)

where: D = [d1,d2,d3, . . . ,dK ] ∈ Rn×K (K > n, making the dictionary over-complete) is the
dictionary to be learned from the data samples Y . The N -column vector X = [x1,x2, . . . ,xN ] ∈
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Figure 2.4– An illustration of the Dictionary Learning (DL) process.

RK×N are the sparse codes coefficients of input signals Y . T is a sparsity constraint parameter
(each signal has fewer than T items in its decomposition). ‖Y −DX‖F denotes the reconstruction
error and ‖x‖0 denotes the `0-norm that counts the number of non-zero elements of X. The
Frobenius norm ‖ · ‖F defined as ‖A‖F =

√∑
ij

A2
ij is an indication of the reconstruction

error. The construction of D is achieved by minimizing the reconstruction error and satisfying
simultaneously the sparsity constraint.

In the next subsections, we present a brief description of the most commonly used DL
algorithms found in the literature. In (Tosic et al., 2011) a classification of dictionary learning
algorithms is presented in three main directions: i) probabilistic learning methods; ii) learning
methods based on clustering or vector quantization; and iii) methods for learning dictionaries
with a particular construction.

2.4.2.1 Probabilistic methods

Probabilistic and non-probabilistic approaches have been adopted for the derivation of
DL algorithms. Maximum likelihood (ML) dictionary learning method for natural images was
introduced in (Olshausen et al., 1997) under the sparse approximation assumption. In (Lewicki
et al., 2000) another ML algorithm is presented, which uses the Laplacian prior to enforce sparsity.
Given the training examples Y ∈ Rn×N , to obtain the likelihood function P (Y |D) and seek
the dictionary D that maximizes it, two assumptions are necessary: the first one is that the
measurements are drawn independently, therefore:

P (Y |D) =
N∏
i=1

P (yi|D) (2.26)
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The second one is critical and refers to the coefficient vector x which is considered as a
random vector with prior distribution P (x). The components of the likelihood function are
computed using the relation:

P (yi|D) =
ˆ
P (yi,x|D)dx =

ˆ
P (yi|x,D) · P (x)dx (2.27)

Formally, the goal of ML learning method is to maximize the likelihood that signals have
efficient sparse representations in a redundant dictionary given by the matrix D. This can be
accomplished by finding the overcomplete dictionary D̂ such that

D̂ = arg max
D

[
log

ˆ
X
P (Y |X,D) · P (X)dX

]
(2.28)

Here, all the examples yi are concatenated as columns to construct the data matrix Y . Likewise,
the representations coefficient vectors xi are gathered together to build the matrix X. The
optimization problem in 2.28 can be reduced to an energy minimization problem where it is
possible to compute an estimation X̂:

(D̂, X̂) = arg min
D,X

[
− log[P (Y |X,D) · P (X)]

]
(2.29)

= arg min
D,X

[
‖Y −DX‖22 + λ‖X‖1

]
(2.30)

This problem can be solved by iterating between two steps. In the first step (sparse
approximation step), D is kept constant and the energy function is minimized with respect to a
set of coefficient vectors xi. It can be solved, for example, by convex optimization for each vector
yi. The second step (dictionary update step), keeps the sparse codes coefficients xi constant,
while performing, for example, the gradient descent on D to minimize the average energy.

The probabilistic inference approach in overcomplete dictionary learning has subsequently
been adopted by other researchers. For simplicity, the two-step optimization structure has been
preserved in most of these works, and the modifications usually appeared in either the sparse
approximation step, or the dictionary update step, or in both, for example, the method of
optimal directions (MOD)(Engan et al., 1999). It uses the OMP or FOCUSS 3 optimization
(Gorodnitsky et al., 1997) algorithm in the sparse coding stage and introduces an analytic
solution of the quadratic problem in the dictionary update step given by D = Y X+, with X+

denoting the Moore-Penrose pseudo-inverse.
The same researchers that conceived the MOD method also suggested a maximum a-posteriori

probability (MAP) setting for the training of dictionaries. Instead of maximizing the likelihood
P (Y |D), the MAP method maximizes the posterior probability P (D|Y ).

3. FOCUSS stands for FOcal Underdetermined System Solver: an algorithm designed to obtain sub-optimally
sparse solutions to the m × n, underdetermined linear inverse problem: Ax = y
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2.4.2.2 Clustering-based methods

A slightly different family of dictionary learning techniques is based on Vector Quantization
(VQ) 4 achieved by K-means clustering (Tosic et al., 2011). In clustering, a set of descriptive
vectors {dk}Kk=1 of the searched dictionary is learned, and each sample is represented by one and
only one of those vectors (the one closest to it, based on the `2 distance measure). In contrast,
in sparse representations, each example is represented as a linear combination of several vectors
{dk}Kk=1. A generalization of the K-means algorithm for dictionary learning, called the K-SVD
algorithm, has been proposed by (Aharon et al., 2006).

K-SVD

The K-SVD algorithm takes its name from the Singular-Value-Decomposition (SVD) process
that forms the core of the atom update step, and which is repeated K times, as the number of
atoms.

Suppose M is a real or complex m× n matrix. Then there exists a factorization of the form
M = U∆V∗ where U is a real or complex m×m unitary matrix, ∆ is a m× n diagonal matrix
with non-negative real numbers on the diagonal, and the n× n unitary matrix V∗ denotes the
conjugate transpose of the n×n unitary matrix V. Such a factorization is called a singular value
decomposition of M. The diagonal entries δii of ∆ are known as the singular values of M. A
common convention is to list the singular values in descending order. In this case, the diagonal
matrix ∆ is uniquely determined by M.

Similar to the MOD algorithm, in the K-SVD algorithm, the objective function in (2.25)
is iteratively solved in two stages. The main contribution of the K-SVD is that the dictionary
update, rather than using a matrix inversion, is performed atom-by-atom in a simple and efficient
process. Further acceleration is provided by updating both the current atom and its associated
sparse coefficients simultaneously. The result is a fast and efficient algorithm which is less
demanding than the MOD method.

As shown in Algorithm 3, the approximation is based on the singular value decomposition
(SVD) described before. A more detailed description can be found in (Aharon et al., 2006).

Dictionaries learned with K-SVD have been initially used in synthetic signals to test whether
the algorithm recovers the original dictionary that generate the data. Then the K-SVD algorithm
has been applied on natural image data with two different main goals: filling in missing pixels
(inpainting) and compression. K-SVD has been widely used in other signal processing tasks like
denoising (Elad et al., 2006), image restoration (Mairal et al., 2008a) and signal separation
(Abolghasemi et al., 2011). Some extensions of the K-SVD algorithm are: the Shift-Invariant
K-SVD algorithm (Mailhé et al., 2008), useful to represent long signals where the same pattern
can appear several times at different positions, and the Non-negative K-SVD algorithm (Aharon
et al., 2005), that suits signals generated under an additive model with positive atoms.

4. Vector quantization (VQ) is a classical quantization technique from signal processing which allows the
modelling of probability density functions by the distribution of prototype vectors. It was originally used for data
compression.
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Algorithm 3 K-SVD
1: Input: Random normalized dictionary matrix D ∈ Rn×K , Input Signals: Y ∈ Rn×N ,
2: Initialization:
3: J=1
4: Repeat until convergence:
5: Sparse Coding Stage:
6: Use any pursuit based algorithm to compute the coefficient vectors xi, for each
7: example yi, by approximating the solution of
8: i = 1, 2, . . . , N, arg min

xi

‖yi −Dxi‖22 s.t. ‖xi‖0 ≤ T

9: Codebook Update Stage:
10: For each column k = 1, 2, . . . ,K ∈D(J−1), update it by
11: - Define the group of examples (indices) that use the atom dk,
12: ωk = {i|1 ≤ i ≤ N,xkT (i) 6= 0}.
13: - Compute the overall representation error matrix, Ek, by
14: Ek = Y −

∑
j 6=k

djx
j
T

15: - Restrict Ek by choosing only the columns index in ωk corresponding to those
16: elements that initially used dk in their representation, and obtain ER

k

17: - Apply SVD decomposition ER
k = U∆V T . Choose the update dictionary

18: column d̂k to be the first column of U . Update the coefficient
19: vector xkR to be the first column of V multiplied by δ(1, 1)
20: Set J = J + 1

In later sections, we will see that the K-SVD algorithm is also used in the construction of
discriminative dictionaries for classification tasks (Jiang et al., 2013b).

2.4.2.3 Parametric training methods

A parametric dictionary is constructed typically driven by prior on the structure of the data or
to the target usage of the learned dictionary. The advantages of parametric dictionaries reside in
the short description of the atoms. Parametric dictionary learning tries to find better parameters
for atoms based on some criteria yielding to better and more adaptive representations of signals.
It also gains the benefits of dictionary design approaches which are the simplicity and better
matching to the structure of a special class of signals. An important advantage of parametric
dictionary learning is that only the parameters of an atom (which is as few as 5 parameters in
typical applications) should be stored instead of all the samples of the atom. So, it is very well
suited to the applications with large matrix dimensions (Ataee et al., 2010). Some examples of
parametric dictionary structures are related to: Translation-Invariant Dictionaries, Multiscale
Dictionaries and Sparse Dictionaries. A widely description can be found in (Rubinstein et al.,
2010a).

As we have seen, most important methods for DL include the maximum likelihood method,
the method of optimal direction MOD and the K-SVD algorithm. Among these, the K-SVD
algorithm has been the most popularly used technique for dictionary learning. It provides a good
trade-off between sparsity and convergence (Ribhu et al., 2012).
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2.5 Applications of the sparse representation

Recent advances in information technologies have produced massive high-dimensional data
that demands efficient processing and analysis. The new theory of sparse representation and Com-
pressive Sensing (CS) (Baraniuk, 2007; Candès et al., 2006; Donoho, 2006) provides a rigorous
mathematical framework for studying high dimensional data, and also provides computationally
feasible ways to uncover the structures of the data. The field of sparse representations and the
use of redundant dictionaries has been drawing a considerable attention lately. Applications of
this theory range from conventional audio/image/video processing tasks (denoising, deblurring,
inpainting, compression, and super-resolution) to speech and object recognition (source separation
and classification); from multimedia data mining to bioinformatic data decoding; from correcting
error for corrupted data (face recognition despite occlusion) to detecting activities and events
through a large network of sensors and computers. In (Baraniuk et al., 2010), a special issue
called Applications of Sparse Representation and Compressive sensing resumes important topics
from 15 papers grouped into three categories: The first one surveys theory and algorithms of
Compressive Sensing (CS) and Sparse representation. The second one, highlights some of the
conventional applications of compressive sensing in signal processing, including images audio,
music, radar, and astronomical data. The final category shows how the sparsity promoting and
compressive sensing techniques have started to create tremendous impact on a much broader
range of engineering fields, including but not limited to pattern recognition, machine learning,
communications, sensor networks, and imaging sensors.

This section aims at providing a few representative examples of the application of this theory
in the field of image processing. Furthermore, in the next Chapter we present a state-of-the-art
of the application of this theory in Medical Imaging. Figure 2.5 illustrates some applications of
Sparse representation in this domain.

2.5.1 Image super-resolution

Image resolution describes the details contained in an image; the higher the resolution, the
more details can be captured. High resolution image offers a high pixel density per area and
thereby more details about the original scene. The need for high resolution is common in
computer vision applications for better performance in pattern recognition and analysis of images.
Enhancing the resolution of an image can be addressed by using signal processing or machine
learning techniques to post-process the captured images. These techniques are specifically referred
as super-resolution (SR) reconstruction and it is specially helpful in many practical applications
such as medical imaging, remote sensing, video surveillance and video standard conversion. Image
super-resolution is arguably one of the most classical inverse problems in image processing and is,
by nature, intrinsically under-determined (Elad et al., 2010). The problem can be simply stated
as that of recovering a high-resolution image x ∈ Rn from its low-resolution version y ∈ Rq (with
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Figure 2.5– Applications of Sparse representation in image processing.

q < n). A relation between these two versions can be modeled by:

y = SHx = Lx, (2.31)

where H is a linear filter that models certain low-pass filtering operation (blurring, e.g., with
a Gaussian kernel), S is a down-sampling operator, and L = SH. The dimension of y is
significantly smaller than that of x, thus there are infinitely many possible vectors x that satisfy
the above equation.

With respect to such a dictionary of high-resolution patches, denoted as Dh, we may assume
that any high-resolution image patch has a sparse representation,

x = Dhα, (2.32)

for some α with ‖α‖0 ≤ k. Thus, the super-resolution problem becomes that of recovering α
from low-dimensional measurements

y = Lx = LDhα (2.33)

Notice that Dl = LDh can be seen as a dictionary of corresponding low-resolution image
patches. We may thus attempt to recover α by solving an error constrained approximation
problem (Equation 2.6) or a subset selection problem (Equation 2.8). Some contributions in this
topic can be found in (J. Yang et al., 2008; J. Zhang et al., 2012; Zhu et al., 2014)
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2.5.2 Image inpainting

Image inpainting refers to the desire to fill-in missing values in an image, based on their
surrounding neighbors. (Shen et al., 2009) consider the problem of image inpainting from the
view point of sequential incomplete signal recovery under the assumption that every image
patch admits a sparse representation over a redundant dictionary. As for the identity of D, a
prespecified dictionary could be used, such as a redundant DCT, or gather many patch examples
and learn a dictionary that sparsifies them. In the sparse representation modeling the core
inpainting problem can be formulated as the optimization problem:

arg min
α

1
2‖y −MDα‖22 + λ‖α‖0, (2.34)

where M is a diagonal mask matrix of size n× n, with 1-s for existing pixels, and 0-es elsewhere.
It is further assumed that in the missing pixels, the image y is set to zero. Some contributions in
this topic can be found in (Elad et al., 2005; Fadili et al., 2009; Ogawa et al., 2013; Shen
et al., 2009)

2.5.3 Image Denoising

The problem to estimate x from an observed noisy version under the sparsity prior has two
essential issues: firstly, to find a dictionary which permits a sparse representation regarding the
fact that the samples are noisy; secondly, to find the coefficients of this sparse representation. Let
y be an observed image, a noisy version of an unknown underlying clean image x, i.e., y = x+ ν,
where ν is an additive white Gaussian noise with known variance σ2

ν . The main aims of an image
denoising algorithm is to achieve both noise reduction and feature preservation. In this context,
Wavelet-based methods are of particular interest. In the Wavelet domain, the noise is uniformly
spread throughout coefficients while most of the image information is concentrated in a few large
ones. The denoising problem in the sparse representation of signals can be addressed by using,
for instance, the Discrete Wavelet Transform (DWT). In this case the denoising problem can be
formulated as:

α̂ = arg min
α

λ‖α‖pp + 1
2‖α− β‖

2
2, (2.35)

where β = Ty is the DWT of the noisy image, T is an orthogonal matrix containing the Wavelet
bases, i.e., x = T Tα. The final image estimate is obtained as x̂ = T T α̂.

A second approach for image denoising is using dictionaries suitably adapted to the data.
Rather than working on the image as a whole, the sparse and redundant representation model
can be adopted on small image patches of size

√
N ×

√
N . Every patch in a given image (with

overlaps) is expected to have a sparse representation with respect to a dictionary D. The core of
denoising using learned dictionaries can be formulated as:

arg min
x,{α}i∈Ω

1
2‖x− y‖

2
2 +

∑
i∈Ω
‖αi‖00 s.t. ‖Rix−Dαi‖2 ≤ δ, ∀i ∈ Ω. (2.36)
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In this formulation, the domain of the image is defined as Ω, and the index locations are
represented by i. The operator Ri extracts a patch of size

√
n×
√
n from location i. For each

patch a representation αi is construct that should be both sparse and represent Rix within a
pre-specified error.

To obtain a clean image estimate x̂, first the set of representations {α}i∈Ω must be obtained.
Then, x̂ can be computed by fixing these representation and solving

arg min
x

1
2‖x− y‖

2
2 + λ‖Rix−Dαi‖2 (2.37)

More details of this problem can be found in (Elad et al., 2010). Related works in image
denoising are reported in (Elad et al., 2006; Suchithra et al., 2013; Valiollahzadeh et al.,
2009).

2.5.4 Signal Separation

Source separation problems in digital signal processing are those in which several signals
have been mixed together into a combined signal and the objective is to recover the original
component signals from the combined signal. The problem of signal separation consists in the
observation y = x1 + x2 + ν that is composed of two signals, x1 and x2, to be separated, along
with additive noise ν. x1 and x2 have sparse representations with respect to two known and
different dictionaries D1 and D2, respectively. Separation can be achieved by finding the two
sparsest representations α̂1 and α̂2 that can explain y.

{α̂1, α̂2} = arg min
α1,α2

‖α1‖0 + ‖α2‖0 s.t. ‖D1α1 +D2α2 − y‖22 ≤ nσ2
ν (2.38)

The error bound nσ2
ν is a direct consequence of the knowledge of the noise power.

Solution to the above problem can be addressed in different ways. One option is an iterated
path by considering an alternated denoising problem, where α̂1 is estimated as the denoising of
the signal y + x2, while α̂2 is obtained when denoising y + x1. Other methods can be found
in (Shoham et al., 2008) where a review of algorithms for signal separation exploiting sparse
representations is presented, with application to texture image separation. This work is based on
greedy Morphological Component Analysis (MCA) algorithms (Elad et al., 2005).

2.5.5 Clustering and Image classification

Classification based on sparse representation involves the use of different algorithms to
learn dictionaries from the labeled training dataset and then use the features of the sparse
decomposition of the testing signal for classification. We devote a complete description of this
topic in the next section. Regarding to clustering, some authors (Ramirez et al., 2010) present
the basis framework for clustering datasets that are well represented in the sparse modeling
framework with a set of learned dictionaries. Given K clusters, the method learns K dictionaries
for representing the data, and then associates each signal to the dictionary for which the “best”
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sparse decomposition is obtained. The basis clustering framework can be defined as:

arg min
Di,Ci

K∑
i=1

∑
yj∈Ci

R(yj ,Di) (2.39)

where Di = [d1|d2| · · · |dki
] ∈ Rn×ki is a dictionary of ki atoms associated with the class

Ci, yj ∈ Rn are the data vectors, and R is a function that measures the goodness of the
sparse decomposition for the signal yj under the dictionary Di. A cost function R(y,D) =
arg min

x
‖y−Dx‖22 +λ‖x‖1, can be considered as a measure of performance. It takes into account

both the reconstruction error and the complexity of the sparse decomposition. Other measures
include a term that promotes incoherence between dictionaries that, with an initialization
procedure that combines sparse coding, dictionary learning and spectral clustering is used for
unsupervised clustering (Ramirez et al., 2010).

As we have seen, sparse representation becomes an important topic of pattern recognition and
computer vision. Notice that sparse coefficients could also be interpreted as features, therefore it
is natural to explore the benefits of using sparse representation and DL for classification.

We aim to show how this technique is useful dealing with two specific problems we are
interested in this work: classification of LV wall motion and detection of cardiac fibrosis in
cardiac medical images. In the next section we describe some DL-based classification methods
with emphasis in two representative models: discriminative dictionary learning methods and
dictionary learning based on kernels for classification.

2.6 DL-based classification methods

The primary goal of pattern recognition is supervised or unsupervised classification (Jain
et al., 2000). Classifier design is one of the most popular technologies. The goal of supervised
learning is to build a concise model of the distribution of class labels in terms of predictor features
(Kotsiantis, 2007). Sparse representations are originally trained to contain sufficient information
for reconstruction, however, from the point of view of signal classification, sparse representation
is a reconstructive approach. In (Wright et al., 2009) sparse representation is applied to
classification by exploiting the sparse representation based classification (SRC) algorithm. For
SRC, a test sample is represented as a sparse combination of training samples, and its sparse
representation coefficient is obtained by solving the sparse representation problem. The test
sample is assigned to the class that minimizes the residual between itself and the reconstruction
signal represented by training samples of this class. The SRC algorithm is presented in Table
2.1, where for each class i, δi : Rn −→ Rn is a characteristic function that selects the coefficients
associated with the i-th class, thus, for x ∈ Rn, δi(x) ∈ Rn, is a new vector whose only non-zero
entries are the entries in x that are associated with class i.
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Table 2.1– Sparse Representation Classification SRC algorithm

Input: A matrix of training samples A = [A1 99
9A2 99
9 . . . 99
9Ak] ∈ Rm×n for k classes

A test sample y ∈ Rm, and an optimal error tolerance ε > 0
Normalize the columns of A to have unit `2-norm.
Solve the `1-minimization problem:

x̂1 = arg min
x

‖x‖1 s.t. y = Ax

or alternative solve
x̂1 = arg min

x
‖x‖1 s.t. ‖y −Ax‖2 ≤ ε

Compute the residuals ri(y) = ‖y −Aδi(x̂1)‖2, for i = 1, . . . , k.
Output: identity(y) = arg min

i
ri(y)

Later several algorithms (Ramirez et al., 2010; M. Yang et al., 2010) have emerged from the
same framework. A particular extension of the SRC framework is the Kernel Sparse representation
based classification KSRC (Yin et al., 2012) for high dimensional signals. In KSRC, samples are
mapped into a high dimensional feature space firstly and then SRC is performed in this new
feature space by utilizing a kernel based classification approach. The discrimination criteria in
KSRC algorithm is incorporated with the assumption that sparse representation coefficient in the
high dimensional feature space contains more effective discriminating information than sparse
representation coefficient in the original feature space.

Another work related to Sparse representation with kernels is presented in (Gao et al., 2013),
(KSR) which consists in a sparse coding technique in a high dimensional feature space mapped
by an implicit mapping function. They incorporates KSR into spatial pyramid matching (SPM),
achieving a good performance for image classification.

The SRC algorithm has achieved competitive performance on face recognition. However the
performance of classification of SRC has been improved by using discriminative dictionaries
based on Dictionary Learning (DL) (Cai et al., 2014). Recent works in DL (Rodriguez
et al., 2008), (Mairal et al., 2008b), make the sparse signal decomposition discriminative.
Discrimination criteria was introduced in the framework of sparse representation of signals by
(Huang et al., 2007) and into the framework of Dictionary Learning by (Rodriguez et al.,
2008). Major contribution of these works in DL is the introduction of a metric which includes
both reconstruction and discrimination terms in the dictionary learning process, benefiting from
the best of both discriminative and reconstructive worlds.

Formally, a DL-based classification approach consists of two steps: a training step based
on a DL model and a prediction step based on the sparse codes coefficients X obtained in the
training step. In the general framework of DL for classification, the set of signals Y is mapped
to its high dimensional feature (sparse coefficient) using a learned dictionary D, which could
make the hidden patterns more prominent and easier to capture. A classifier W is then used to
predict the label vector l of the test data. The key in this problem is to design D and X with
discriminative properties (discriminative dictionary learning) by adding extra constraints fX(�)
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(over the sparse coefficients) and/or fD(�) (over the dictionary atoms). Now the optimization
problem in 2.25 becomes:

〈D,X〉 = arg min
D,X

‖Y −DX‖2F + λ1fX(X) + λ2fD(D) s.t. ∀i, ‖xi‖0 ≤ T, (2.40)

The parameters λ1 and λ2 balances the contribution of each term. The function fX(�) could be a
logistic function (Mairal et al., 2012), a linear classifier (Rodriguez et al., 2008), (Q. Zhang
et al., 2010), a label consistency term (Jiang et al., 2013a), a low rank constraint (Y. Zhang
et al., 2013) or Fisher discrimination criterion (M. Yang et al., 2014). An example of fD(�) is
to force the sub-dictionaries for different classes to be as incoherent as possible (Ramirez et al.,
2010). Most of these methods correspond to discriminative dictionary learning approaches that
are described later.

In the next subsection we describe two specific DL approaches extensively used in natural
images. We search the benefits of using dictionaries, directly learned from a set of training medical
images, that better capture the distribution of the data and later, can be used in statistical
inference tasks such as classification and detection. Specifically, we addressed two specific DL
approaches in the scope of this thesis: the first one corresponds to discriminative dictionary
learning approaches and the second one corresponds to a dictionary learning algorithm based on
kernel in which a simple classifier is trained over the sparse code coefficients of the input data.
These approaches will be adapted for the classification of LV wall motion in cardiac cine MRI.
The DL algorithm based on kernel in combination with clustering, will be used for detection of
cardiac fibrosis in late gadolinium enhanced MRI. To the best of our knowledge these approaches
have not been used in cardiac medical images for the proposed applications.

2.6.1 Discriminative DL

The classification task based on dictionary learning framework consists in learn a classification-
oriented dictionary in a supervised learning fashion by exploring the label information of the
training data. In (Wang et al., 2014), a classification-oriented dictionary learning model is
presented in three scenarios:

— First scenario uses the labeling information to learn class-specific sub-dictionaries, by which
way, the discrimination power of the overall dictionary concatenated by the sub-dictionaries
is improved. Most of the algorithms in this scenario originates from SRC method which
uses the original training images as a predefined dictionary. In this group we can found the
Metaface learning method (M. Yang et al., 2010) that learns a class-specific dictionary for
each class, thus the dictionary becomes more compact and more discriminative than the
originated by the SRC algorithm which is not effective to represent query images when
the dictionary is too large and also due to the noisy information in the training data.
Another method in this scenario is the dictionary learning with structure incoherence (DLSI)
(Ramirez et al., 2010) which promotes learning class-specific sub-dictionaries for each class
with a structural incoherence penalty term to make the sub-dictionaries as independent
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as possible. These approaches usually exploit reconstruction-based classifier for the final
classification, i.e. reconstructing the novel signal by each class-specific dictionary and
identifying the signal to the class whose sub-dictionary produces the smallest reconstruction
error.

— Methods from the second scenario apply the labeling information to a criterion on the
coefficients and thus propagate the discrimination power to the dictionary. Methods
in the second scenario drive the sparse coefficients more discriminative to enhance the
discrimination power of the overall dictionary. In this group we have the Supervised DL
method proposed by (Mairal et al., 2009) which adds a logistic loss function on the
sparse coefficients to the DL framework, achieving good performances in hand-written digit
recognition and texture classification. Other method in this scenario is the discriminative
K-SVD algorithm (D-KSVD) (Q. Zhang et al., 2010) which embeds a linear classifier on the
sparse coefficients into the DL framework achieving good performance in face recognition.
However, the performance of this algorithm is further improved by the Label Consistent
K-SVD algorithm (LC-KSVD) (Jiang et al., 2013b) which adds a label consistence term on
D-KSVD thus driving the sparse coefficients more discriminative. This algorithm achieves
impressive results on face recognition and object classification.

— The third scenario inherits the advantages of the above scenarios by using the label
information on the updating of both the dictionary and the coefficients. Methods in this
scenario simultaneously learn class-specific sub-dictionaries and make the coefficients more
discriminative. They concern for instance, the Fisher Discriminant DL algorithm (FDDL)
(M. Yang et al., 2014) which makes the coefficients more discriminative based on Fisher
criterion achieving good performance on face recognition, digit recognition and gender
classification. More recent in (Wang et al., 2014), a DL approach is proposed to explicitly
learn a class-specific dictionary (called particularity) for each category that captures
the most discriminative features of this category, and simultaneously learns a common
pattern pool (called commonality), whose atoms are shared by all the categories and only
contribute to representation of the data rather than discrimination. This method achieves
very competitive performances on various classification tasks, such as face recognition,
hand-written digit recognition, scene classification and object categorization.

In the next subsection, we describe two specific discriminative dictionary learning algorithms:
the first one, from the second scenario where the discrimination of the learned dictionary is
enforced by imposing structural constraints on the dictionary: the Label Consistent K-SVD
algorithm (LC-KSVD) (Jiang et al., 2013a), and the second one, a technique in the third
scenario where the discrimination is enforced by imposing a discrimination term on the sparse
decomposition vectors: the Fisher discriminant DL algorithm (M. Yang et al., 2014). In this
thesis, both algorithms are adapted for the specific task of classification of LV wall motion in
cardiac MRI.
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2.6.1.1 Label consistent K-SVD (LC-KSVD)

The Label Consistent K-SVD (LC-KSVD) algorithm (Jiang et al., 2013a) learns a discrimina-
tive dictionary for sparse coding. Let Y ∈ Rn×N be a data matrix (a finite training set of signals)
where each column is a n-dimensional input signal, H = [h1, . . . ,hN ]T ∈ Rm×N are the class
labels of the input signals Y with hi = [0, 0 . . . 1 . . . 0, 0] ∈ Rm is a label vector corresponding
to an input signal yi, where the non-zero position indicates the class of yi. m represents the
number of classes. To obtain a discriminative dictionary D = [d1,d2,d3, . . . ,dK ] ∈ Rn×K with
K atoms and the coefficient matrix X = [x1,x2, . . . ,xN ] ∈ RK×N of input signals Y , the LC-
KSVD algorithm, in addition to using class labels of training data, introduces a label consistent
constraint called discriminative sparse-code error, and combine it with the reconstruction error
‖Y −DX‖ and the classification error to form a unified objective function as follows:

〈D,W,A,X〉 = arg min
D,W,A,X

‖Y −DX‖22 +

α‖Q−AX‖22 + β‖H −WX‖22
s.t. ∀i, ‖xi‖0 ≤ T, (2.41)

where, ‖Q−AX‖ represent the discriminative sparse-code error, and ‖H −WX‖ represents
the classification error.

Q = [q1, . . . , qN ] ∈ RK×N are the discriminative sparse codes of input signals Y for classifi-
cation and A = [a1,a2, . . . ,aK ] ∈ RK×K is a linear transformation matrix. A column qi has
non-zero values only where the corresponding dictionary elements are from the same class as
the i-th signal yi. The linear transformation, g(x;A) = Ax, maps the original sparse codes
coefficients x to be most discriminative in the sparse feature space RK . W ∈ Rm×K denotes
the classifier parameters to be learned. α and β are scalar parameters controlling the relative
contribution of the corresponding terms. The discriminative sparse-code error term can make the
sparse codes discriminative between classes while the classification error term supports learning
an optimal classifier.

Intuitively, the final classification mechanism is very fast due to the obtained classifier
parameter matrix Ŵ . An advantage of this approach is that a test sample is classified just by
evaluating the expression:

ĵ = arg max
j

(l = Ŵxi), (2.42)

where xi is the sparse representation of the tested signal yi, ĵ is the respective estimated label
and l ∈ Rm is the class label vector.

The LC-KSVD approach is summarized in Algorithm 4. Further implementation details can
be found in the original paper (Jiang et al., 2013b).
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Algorithm 4 Label Consistent K-SVD algorithm (LC-KSVD)
1: Input: A matrix of input signals Y
2: The discriminative sparse codes Q
3: The class labels of input signals H
4: Parameters: α, β, T , K
5: Compute D(0) by combining class-specific dictionary items for each class using
6: the original K-SVD algorithm
7: Compute Sparse codes X(0) for Y using:
8: arg min

x
‖yi −Dx‖22 s.t. ‖x‖0 ≤ T

9: Compute A(0) and W (0) by using the solution to a multivariate regression model:
10: A = QXT (XXT + λ2I)−1

11: W = HXT (XXT + λ1I)−1

12: Initialize:

13: Ynew =
(

Y√
αQ

√
βH

)
Dnew =

 D(0)
√
αA(0)√
βW (0)


14: Update Dnew by solving
15: <Dnew,X >= arg min

Dnew,X
‖Ynew −DnewX‖22 s.t. ‖xi‖0 ≤ T

16: Obtain D̂, Â, Ŵ from Dnew by:

17: D̂ =
{
d1
‖d1‖2

· · · dK
‖dK‖2

}
, Â =

{
a1
‖a1‖2

· · · aK
‖aK‖2

}
, Ŵ =

{
w1
‖w1‖2

· · · wK

‖wK‖2

}
18: Output: For a test signal yi first compute its sparse representation x̂i
19: Estimate the label with the linear predictive classifier
20: j = arg max

j
(l = Ŵ x̂i)

2.6.1.2 Fisher Discriminant DL (FD-DL)

Instead of learning a shared dictionary to all classes, the FD-DL algorithm (M. Yang
et al., 2014), proposes to learn a structured dictionary D =

[
D1 99

9D2 99
9 . . . 99
9Dm

]
, where Di is the

class-specified sub-dictionary associated with class i, and m is the total number of classes.
Denoting by Y =

[
Y1 99

9Y2 99
9 . . . 99
9Ym

]
the set of training samples, where Yi is the sub-set of the

training samples from the i− th class. Furthermore, let X be the coding coefficient matrix of Y
over D i.e., X =

[
X1 99

9X2 99
9 . . . 99
9Xm

]
, where Xi is the sub-matrix containing the sparse coding

coefficients of Yi over D. They proposed to obtain the dictionary D and the coding coefficient
matrix X by solving:

(D,X) = arg min
D,X

{r(Y ,D,X) + λ1‖X‖1 + λ2‖f(X)‖1} , (2.43)

where r(Y ,D,X) is the discriminative fidelity term, ‖X‖1 is the sparsity constraint, f(X) is a
discrimination constraint imposed on the coefficient matrix X, and λ1 and λ2 are regularization
parameters. As mentioned in (M. Yang et al., 2014), the discrimination ability of FD-DL is
two-folds.

Firstly, each sub-dictionary of the trained full dictionary has good representation power to
the samples from the corresponding class, and it is expected that it has poor representation
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power to the samples from other classes. This is achieved by the discriminative fidelity term that
is defined as:

r(Yi,D,Xi) = ‖Yi −DXi‖2F + ‖Yi −DiX
i
i‖2F +

m∑
j=1,j 6=i

‖DjX
j
i ‖

2
F (2.44)

where the representation coefficients Xi of Yi over Di are written as Xi
i and over Dj are written

as Xj
i .

The dictionary D should represent well Yi which is assured by the first term. Then, since Di

is associated with the i-th class, it is expected that Yi could be well represented by Di but not by
Dj , j 6= i. This implies thatXi

i should have some significant coefficients such that ‖Yi−DiX
i
i‖2F

is small, while Xj
i should have very small coefficients such that ‖DjX

j
i ‖

2
F is small.

Secondly, based on the Fisher discrimination criterion, FD-DL will result in discriminative
coefficients by minimizing the within-class scatter of X denoted by SW (X) and maximizing the
between-class scatter of X denoted by SB(X). The Fisher discrimination criterion is introduced
by the discriminative coefficient term f(X) defined as:

f(X) = tr(SW (X))− tr(SB(X)) + η‖X‖2F (2.45)

The FD-DL is presented in Algorithm 5. It is divided into two sub-problems: updating X by
fixing D; and updating D by fixing X. An Iterative Projection Method (IPM) (Rosasco et al.,
2009) is used to solve the first problem, while the second problem (step 3) is solved by employing
the algorithm for meta-face learning proposed by the same authors of the FD-DL algorithm in
(M. Yang et al., 2010). Further implementation details can be found in the original paper in
(M. Yang et al., 2014).

Once the discriminative dictionary D is learned, a testing sample y can be classified by
coding it over D. In this case, the sparse coding coefficients α̂ can be obtained by solving:

α̂ = arg min
α

{‖y −Dα‖22 + γ‖α‖1}, (2.46)

where γ is a constant. Let α̂ = [α̂T1 , α̂T2 , . . . , α̂Tm]T , be the sparse representation of the testing
sample in D, where α̂i is the coefficient vector associated with sub-dictionary Di. The metric
for final classification is defined as:

ei = ‖y −Diα̂i‖22 + w · ‖α̂−mi‖22, (2.47)

where the first term is the reconstruction error by class i, the second term is the distance between
the coefficient vector α̂ and the learned mean vector mi of class i, and w is a weight to balance
the contribution of both terms. The testing sample is classified to the class that outputs the
smallest error ei. The metric for final classification in Equation (2.47) is used when the number
of training samples of each class is relatively small. It is known as Global classifier. When the
number of training samples of each class is relatively large, the algorithm uses a Local classifier.
In this case the learned dictionary Di is able to well span the sample space of class i, and thus
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Algorithm 5 Fisher Discrimination Dictionary Learning (FD-DL)
1: Input: A matrix of input signals Y , m = number of classes
2: Initialization of D.
3: Initialize all the pi atoms of each Di as random vectors with unit `2-norm.
4: Update the sparse coding coefficients X.
5: Fix D and solve Xi, i = 1, 2, · · · ,m, one by one by solving

6: J(Xi) = arg min
(Xi)

{
r(Yi,D,Xi) + λ1‖Xi‖1 + λ2fi(Xi)

}
, with

7: r(Yi,D,Xi) = ‖Yi −DXi‖2F + ‖Yi −DiX
i
i‖2F +

m∑
j=1,j 6=i

‖DjX
j
i ‖

2
F , and

8: fi(Xi) = ‖Xi −Mi‖2F −
m∑
k=1
‖Mk −M‖2F + η‖Xi‖2F ,

9: where Mk and M are the mean vector matrices of class k and all classes, respectively.
10: Updating dictionary D.
11: Fix X and update each Di, i = 1, 2, · · ·m, by solving:

12: J(Di) = arg min
(Di)

{
‖Y −DiX

i−
m∑

j=1,j 6=i
DjX

j‖2F +‖Yi−DiX
i
i‖2F +

m∑
j=1,j 6=i

‖DiX
i
j‖2F

}
13: Output. Return to step 2 until the values of J(D,X) in adjacent iterations are close
14: enough or the maximum number of iterations is reached. Output D and X.

directly code the testing sample y by Di to reduce the computational cost and the interference
of other dictionaries. The sparse coding coefficients can be obtained by solving:

α̂ = arg min
α

{
‖y −Diα‖22 + γ1‖α‖1 + γ2‖α−mi

i‖22
}
, (2.48)

where γ1 and γ2 are constants. The metric for final classification is defined as:

ei = ‖y −Diα̂‖22 + γ1‖α̂‖1 + γ2‖α̂−mi
i‖22, (2.49)

2.6.2 Kernel-based DL for classification

The DL-based classification approach consists of two steps: a training step based on a DL
model and a prediction step based on the sparse codes coefficientsX obtained in the training step.
The sparse coding problem for sparse representation can be obtained by solving a `1-regularized
`1 least squares (`1-LS) sparse coding model:

x = min
x

1
2‖y −Dx‖

2
2 + λ‖x‖1 (2.50)

Where y ∈ Rn is a new signal and D = [d1,d2,d3, . . . ,dK ] ∈ Rn×K with K atoms, is a given
dictionary.

Let Y ∈ Rn×N be a data matrix (a finite training set of signals) where each column is a
n-dimensional input signal. A dictionary D = [d1,d2,d3, . . . ,dK ] ∈ Rn×K with K atoms and
the coefficient matrix X = [x1,x2, . . . ,xN ] ∈ RK×N of input signals Y , can be obtained with
a generalized DL model where sparse representation is introduced from a Bayesian viewpoint
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assuming Gaussian prior or Uniform prior over the dictionary atoms. The models proposed by
(Li et al., 2013) using both priors: Gaussian and Uniform are presented in Equations (6.2) and
(2.52) respectively:

min
D,X

1
2‖Y −DX‖

2
F + α

2 trace
(
DTD

)
+ λ

N∑
i=1
‖xi‖1, (2.51)

min
D,X

1
2‖Y −DX‖

2
F + λ

N∑
i=1
‖xi‖1 s.t. dTi di = 1,

i = 1, ..., k, (2.52)

Classification based on DL can be performed by training a classifier over the sparse training
coefficients matrix X. Several methods can be applied: Nearest Neighbor (NN ) rule, weighted
K-NN rule or the nearest subspace (NS) rule. The class label of new p test instances can be
predicted using the classifier obtained in the training step and the learned dictionary D. As
the selected classifier is trained based on the sparse coefficients of the input data, the test data
need to be represented in the same space of representation (sparse coefficients) over the learned
dictionary. To this end, the sparse coefficients matrix X for the new test instances can be
obtained by solving a l1-regularized least squares problem reformulated to the following smooth
constrained quadratic problem (QP):

min
X,U

p∑
i=1

1
2x

T
i Hxi + gTi xi + λTui s.t. −U ≤X ≤ U , (2.53)

where Hk×k = DTD, g = −DTY and ui is an auxiliary vector variable to squeeze xi towards
to zero. The sparse coefficients matrix X for the new test instances, can be also obtained by
solving the Non negative Quadratic Problem (NNQP):

min
X

p∑
i=1

1
2x

T
i Hxi + gTi xi s.t. X ≥ 0 (2.54)

As the optimizations of the above problems only require inner products between the instances
instead of the original data, the sparse coding problem can be solved by replacing inner products
to kernel functions.

We refer this algorithm as KSRDL (Kernel Sparse Representation DL) (Li et al., 2013) and
is presented in Algorithm 7, it uses the generic framework for DL based on kernels presented in
Algorithm 6.

2.7 Support Vector Machines (SVM)-based classification

The idea behind SVMs is to map the original data points from the input space to a high-
dimensional, or even infinite–dimensional, feature space such that the classification problem
becomes simpler in the feature space. In SVM, original data is shown as vectors xi ∈ Rd with
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Algorithm 6 The generic dictionary learning framework algorithm based on kernels
1: Input: K = Y TY , dictionary size K, λ
2: Initialize X and R = DTD randomly;
3: Update X by solving Equation (2.53), or (6.3)
4: For Gaussian prior over D:
5: Update R = X†Y TY X∗; wher † denotes the hermitian operator
6: For Uniform prior over D:
7: Update R = X†Y TY X∗;
8: Normalize R by R = R./

√
diag(R)diag(R)T ;

9: Update the residual of the DL model
10: Return to step 2 until residual ≤ ε or the maximum number of iterations is reached
11: Output: R = DTD, X

Algorithm 7 Dictionary-learning-based classification KSRDL
1: Input: Y ∈ Rn×N : N training instances, c the class labels, B ∈ Rn×p: p new instances,
2: k: dictionary size
3: Training step:
4: 1: Normalize each training instance to have unit `2 norm
5: 2: Learn dictionary inner product DTD and sparse coefficient matrix X
6: of training instances by Algorithm 6.
7: 3: Train a classifier f(θ) using X (in the feature space spanned by columns of D).
8: Prediction step:
9: 1: Normalize each new instance to have unit `2 norm.

10: 2: Obtain the sparse coefficient matrix X of the new instances by solving
11: Equation (2.53), or (6.3).
12: 3: Predict the class labels of X using the classifier f(θ) learned in the training phase.
13: Output: the predicted class labels of the p new instances

its respective class label yi ∈ (−1,+1). The d–dimensional input vector from the input/original
space is mapped to the dh–dimensional feature space using a linear or non linear function
Φ(·) : Rd −→ Rdh , with dh � d.

The separating hyperplane in the feature space is defined as wTΦ(x) + b = 0 where w is an
unknown hyperplane with the same dimension as Φ(x) and b ∈ R is the bias. A test data point
x is assigned to the first class if f(x) = sign(wTΦ(x) + b) equals +1 or to the second class if
f(x) equals −1. SVMs are based on the maximum margin principle, and aim at constructing a
hyperplane with maximal distance between the two classes (Luts et al., 2010). The optimization
problem for SVMs is written as:

min
w,ξ,b

ζ1(w, ξ) = 1
2w

Tw + C
N∑
i=1

ξi , s.t. (2.55)

yi(wTΦ(xi) + b) ≥ 1− ξi , ξi ≥ 0, i = 1, . . . , N , (2.56)

where C is a positive regularization constant and yi ∈ {−1,+1} is the class label related to
th i-th training sample. The regularization constant in the cost function defines the trade-off
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between a large margin and misclassification error. The value of ξi indicates the distance of xi
with respect to the decision boundary.

Figure 2.6– Separating hyperplanes in a SVM classification problem with two classes. a) the data can
be separated by many linear hyperplanes. b) Optimal separating hyperplane.

The optimization problem for SVMs can be written in the dual space using Lagrange
multipliers αni > 0. The solution for the Lagrange multipliers is obtained by solving a quadratic
programming problem (Luts et al., 2010). Finally, the SVM classifier is reduced to:

f(x) = sign
(

N∑
i=1
αniyniK(x,xni) + b

)
, (2.57)

where N represents the number of training samples and xni are referred to as the support vectors
(Figure 2.6). These data points are located close to the decision boundary and contribute to the
construction of the separating hyperplane. K(x,xni) is the kernel function that can be, among
others,

K(x, z) = xTz, linear kernel,

K(x, z) = exp(−‖x− z‖22/σ
2),RBF kernel,

where K(·, ·) is positive definite for all σ values in the RBF (radial basis function) kernel case.
We use traditional SVM in order to evaluate the sparseness of the model where a large number
of the resulting Lagrange multipliers are equal to zero. Thus, the sum in (2.57) only takes a few
non-zero αni values, i.e., the Support Values (SV), that are the data points that are closest to
the optimal separating hyperplane.

2.8 Conclusion

We have reviewed sparse representations as a new model that harnesses the local low-
dimensional structure of natural images. While image representation and reconstruction have
been the most popular goal of sparse modeling and dictionary learning, other important image
science applications are starting to be addressed by this framework, in particular, classification.
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In medical imaging, the use of sparse representation is verified with the success of the Com-
pressive Sensing theory in the field of reconstruction. Other applications of Sparse representations
and Dictionary Learning in medical imaging cover, among others, denoising, segmentation and
fusion. As we have mentioned, we are interested in taking advantage of sparse representation
and dictionary learning; dealing with two specific problems we are interested in this work:
classification of LV wall motion and detection of cardiac fibrosis in cardiac medical images.

We have seen that by incorporating discriminative terms on the DL objective function or
by mapping the sparse representation of samples in new feature spaces, the classification task
can be addressed; therefore the proposed applications in the field of medical imaging could be
addressed.

In the next chapter, we will review the state-of-the-art of sparse representations and Dictionary
learning in medical imaging. We will note that classification in cardiac cine MRI for the assessment
of LV wall motion and fibrosis detection in LGE-MRI, are tasks that has not yet been addressed
by the framework of Dictionary learning.
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CHAPTER3
Sparse representation in Medical

Imaging: State-of-the-art

3.1 Introduction

Confirming what has been observed for natural images, we would like to show how in medical
imaging, sparse representation and dictionaries, directly learned from a set of training images, can
better capture the distribution of the data and later, can be used in statistical inference tasks such
as classification. Sparse representation and dictionary learning are closely related to each other in
the framework of compress sensing theory. Some successful applications in medical imaging have
been recently explored for sparse representation and DL approaches. They concerned, among
others, image reconstruction, image denoising, image fusion, image segmentation, multimodal
images analysis and classification. A brief overview of recent works is given in this chapter.

3.2 Related work

3.2.1 Image reconstruction

The field of sparse reconstruction has seen hugely development over the pass decade. A
multitude of reconstruction formulations exploiting sparsity in many different ways have been
proposed. One of the greatest areas of success for Compressed Sensing (CS) has been medical
imaging, particularly Magnetic Resonance Imaging (MRI). CS has important applications also
in Computed Tomography (Kudo et al., 2013), PET (S. Chen et al., 2015), SPECT (Zhao
et al., 2012), ultrasound (Quinsac et al., 2010) and optical imaging. A special issue reports
cutting-edge results on CS for biomedical imaging can be found in (G. Wang et al., 2011).

The sparsity of Magnetic Resonance (MR) images in some transform domain (Wavelets, Finite
Differences, Contourlets, etc.), or equivalently, MR images admitting a sparse representation
in some dictionaries, are the key to accurate CS reconstruction. In (Ravishankar et al.,
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2011), a novel framework for adaptively learning the dictionary and reconstructing the image
simultaneously from highly undersampled k-space data was proposed. The reconstruction
algorithm learns the sparsifying dictionary, and uses it to remove aliasing and noise in one
step, and subsequently restores and fills-in the k-space data in the other step. Numerical
experiments were conducted on MR images for several anatomical regions with a variety of
sampling schemes. Recently, in (Song et al., 2014), reconstruction of MR images is performed by
3D dual-dictionary learning. They proposed a DL scheme at two different resolution levels, using
a high-resolution dictionary trained with a full-data reconstructed series and a low-resolution
dictionary co-trained with corresponding undersampled reconstructed volumes. Thus, the inherent
correspondence between the two resolution levels is fully exploited to improve the reconstruction
quality. Experiments were performed in dynamic cardiac imaging and abdominal imaging. A
comprehensive review of CS in cardiac MRI can be found in (Gamper et al., 2008; Lustig et al.,
2007).

In Computed Tomography, the sparse CT, inspired by compressed sensing, means to introduce
a prior information of image sparsity into CT reconstruction to reduce the input projections
so as to reduce the potential menace of incremental X-ray dose to patients’ health. Relevant
works are reported in (LaRoque et al., 2008; M. Li et al., 2002; Xu et al., 2012). A review of
reconstruction techniques in CT can be found in (Kudo et al., 2013).

3.2.2 Image denoising

The noise in medical images makes interpretation of images more difficult. Denoising is often
necessary before analyzing (Segmentation, Classification and Detection of diseases or injury)
medical images. Denoising methods can be used for reducing multiplicative or additive noise.
Some works have been reported by employing sparse representation and dictionary learning in
this task:

In (Bao et al., 2009) a sparse representation-based method for denoising cardiac diffusion
tensor(DT)-MRI images has been developed. The proposed method, firstly generates a dictionary
of multiple bases (Haar Wavelet and cosine transform) according to the features of the observed
image. A segmentation algorithm based on non-stationary degree detector is then introduced to
make the selection of atoms in the dictionary adapted to the image features. The denoising is
achieved by gradually approximating the underlying image using the atoms selected from the
generated dictionary.

The experiments in (Rubinstein et al., 2010), are focused on the specific task of image
denoising in 3D computed tomography (CT) imagery provided by the NIH Visible Human Project
- Head CT volume. They extract the training blocks from a noisy version of the CT volume and
compare the generalization performance of K-SVD versus Sparse K-SVD. The initial dictionary
for both methods is the overcomplete Discrete Cosine Transform (DCT) dictionary. The sparse
dictionary is trained using either 8, 16, or 24 coefficients per atom. Experiments were also
performed with CT Ankle volumes.



3.2. Related work 47

Also in the denoising task (Staglianò et al., 2011) performed the tests on MR images
of three different anatomical regions: wrist, brain and kidneys. All experiments were made
comparing the performances of K-SVD dictionary, l1-DL dictionary (both learned from data)
and a data-independent DCT dictionary.

In (S. Li et al., 2012a), the authors perform denoising experiments on a) synthetic data, b)
data corrupted by Gaussian Noise: two 3-D CT images: Male-Head and Female-Ankle, and two
3-D MR images: Brain and Heart, c) 3-D CT Images from male pelvis corrupted by Poisson Noise
and d) Real Noisy 3-D Ultrasound Images from liver. An algorithm named multiple clusters
pursuit (MCP) is proposed in the sparse coding step and then, the dictionary updating stage is
performed using SVD. Instead of using traditional 3-D medical image denoising method where
each slice is independently processed with different learned dictionaries, they propose the joint
3-D operation to sufficiently utilize both the intraslice and interslice correlations in the slices, by
processing patches from the same slice and nearby slices jointly.

In (S. Li et al., 2012b) a Dictionary Learning with Group Sparsity and Graph Regularization
(DL-GSGR) is applied into 3-D medical image denoising. Denoising on experiments on synthetic
MR images from the simulated database BrainWeb (Kwan et al., 1999) contaminated by Gaussian
and Rician noise are performed. The denoising results show that their proposed approach is
superior to several popular 2-D denoising methods (K-SVD, Non-local means (NLM), and Block-
matching and 3D filtering (BM3D)) and 3-D denoising methods (3-D K-SVD and Video block
matching 3-D filtering (VBM3D)) in high noise level.

In (Yang et al., 2013), a method based on dictionary learning is proposed in order to improve
abdomen tumor low-dose CT (LDCT) image quality. The objective is two-fold, this is, to suppress
the mottled noise and streak artifacts while enhancing the structure edges especially on tumors
or lesions. The method makes use of a patch based DL processing by using a pre-computed
general dictionary that was preliminary trained from a high quality standard-dose CT (SDCT)
abdomen reference image. Then, a contrast restoration unsharp filtering is applied.

In (Y. Chen et al., 2014), Low-dose computed tomography (LDCT) images are processed in
order to suppress artifacts and reduce noise. Orientation and scale information on artifacts is
exploited to train artifact atoms, which are then combined with tissue feature atoms to build
three discriminative dictionaries. Then, a general dictionary learning processing is applied to
further reduce the noise and residual artifacts. Experiments were performed on a large set of
abdominal and mediastinum CT images.

3.2.3 Image Fusion

Medical image fusion is the process of registering and combining multiple images from single
or multiple imaging modalities to improve the imaging quality and reduce randomness and
redundancy in order to increase the clinical applicability of medical images for diagnosis and
assessment of medical problems. A survey of the state of the art in medical fusion can be found
in (James et al., 2014). In this area few works related to sparse representation and dictionary
learning have been recently reported:



48 Chapter 3. Sparse representation in Medical Imaging: State-of-the-art

In (S. Li et al., 2012b), a medical image fusion method called group sparse representation
with learned dictionary-based image fusion method (GSLDF) is proposed. The method learns
the dictionary using the Dictionary Learning with Group Sparsity and Graph Regularization
(DL-GSGR) proposed by the same authors for denoising. Such dictionary contains abundant
features, such as points, lines, and corners, which can extract effectively the salient features
of the different modalities. The proposed fusion method was applied over CT image, proton-
density PD-MR image, and T2-MR image of the brain. The experimental results on fusion
demonstrate that their method surpasses the multiresolution analysis based methods (Discrete
Wavelet Transform DWT, Stationary Wavelet Transform SWT, and Non-subsampled Contourlet
Transform NSCT) and the Simultaneous orthogonal matching pursuit (SOMP) method.

3.2.4 Image Segmentation

Segmentation is a fundamental problem in image processing, medical image analysis and
computer vision. The aims of segmentation in case of medical images are, among others: to
study anatomical structures (for instance, cardiac structures), identify Region of Interest (i.e.,
locate tumor, lesion and other abnormalities), measure tissue volume to determine growth up
of tumor (also decreased in size of tumor with treatment), help in treatment planning prior to
radiation therapy (i.e. radiation dose calculation). Although a number of algorithms have been
proposed in the field of medical image segmentation, it continues to be a complex and challenging
problem. Several state of the art surveys exist for segmentation (Erdt et al., 2012; Lee et al.,
2015; Sharma et al., 2010). In the field of sparse representation and dictionary learning some
works have been reported:

In (Zhang et al., 2012a), a Deformable segmentation via sparse representation and dictionary
learning was proposed. The method is based on the sparse shape composition (SSC) model
proposed in (Zhang et al., 2011). K-SVD is used to learn a compact but still informative shape
dictionary. An affinity propagation method is used to partition the surface into small sub-regions,
on which the sparse shape composition is performed locally. The method is applied on a diverse
set of biomedical image analysis problems: 2D lung localization in X-ray, 3D liver segmentation
in PET-CT, and 3D Rat Cerebellum Segmentation in Magnetic Resonance Microscopy.

Based on the (SSC) model proposed in (Zhang et al., 2011), the K-SVD algorithm was
also used to construct an initial shape dictionary for lung localization in X-Ray and for cardiac
segmentation in dynamic MRI (Zhang et al., 2012b). When new training shapes are considered,
instead of re-constructing the initial dictionary, they update the existing one using a block-
coordinates descent approach. Using the updated dictionary, sparse shape composition can
be gracefully scaled up to model shape priors from a large number of training shapes without
sacrificing run-time efficiency.

In (Gao et al., 2012), a supervised sparse representation based classification method for
segmentation of prostate in CT images was proposed. Feature selection is combined with
dictionary learning technique to train two discriminant sub-dictionaries which overcome the
limitation of the traditional Sparse representation classification (SRC) that works well when



3.2. Related work 49

there are no similar elements between sub-dictionaries. Context features are further incorporated
into SRC to refine the classification results (especially the prostate boundary) in an iterative
scheme. A residue-based linear regression model is finally learned to increase the classification
performance and extend the traditional SRC from hard classification to soft classification. The
method has been evaluated on a CT dataset consisting of 15 patients and 230 CT images.

In (Julazadeh et al., 2012), an approach for segmenting lateral ventricle in MR images of
the brain utilizing sparse representation solutions is presented. The method takes advantage
of K-SVD dictionary learning algorithm to create two distinct over complete dictionaries for
each class (the cerebral cortex class using a DCT initial dictionary and the lateral ventricle class
using the training data images patches) and it uses sparse representation classification (SRC)
algorithm to sparsely represent the image as well as discriminating the two different classes in
the image.

(Khalilzadeh et al., 2013) proposed a method of fully automatic detection and segmentation
of the brain tissues in MR images. Using K-SVD they obtained two dictionaries for target and
non-target classes. They suggested to define a sparse factor for segmentation. At first, the
average value of intensity level is computed for each class according to the reconstruction error
method. Then, it is segmented by using sparse and distance factors.

In (L. Wang et al., 2013), a subject-specific atlas from a library of aligned, manually
segmented images by using sparse representation in a patch-based fashion was constructed.
Then, the spatial consistency in the subject-specific atlas is further enforced by considering
the similarities of a patch with its neighboring patches. Finally, this subject-specific atlas is
integrated into a coupled level set framework for surface-based neonatal brain segmentation.

In (Tong et al., 2013), a segmentation strategy based on image reconstruction has been
proposed. They proposed a Fixed Discriminative Dictionary Learning for Segmentation (F-DDLS)
strategy, which can learn dictionaries offline and perform segmentations online. The proposed
approach belongs to supervised learning methods by exploiting the discriminative information
in the patch library extracted from atlases. The proposed method has been evaluated for the
hippocampus segmentation of 80 healthy subjects from the International Consortium for Brain
Mapping (ICBM) database and 202 images obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database.

In (Huang et al., 2014), a dynamical appearance model based on sparse representation and
dictionary learning for tracking both endocardial and epicardial contours of the left ventricle
in echocardiographic sequences is presented. The contour tracker is initialized with a manual
tracing of the first frame. The approach is validated on twenty-six 4D canine echocardiographic
images acquired from both healthy and post-infarct canines.

In (Ozan Oktay et al., 2014), a new spectral representation for echocardiograhy images
based on sparse reconstruction of dictionary atom spectral embeddings is presented. Echo images
are first sparsely reconstructed with dictionary atoms for speckle reduction learned with the
K-SVD algorithm. Secondly, a spectral representation is extracted from the processed images
by mapping image patches to the manifold space of the dictionary atoms. Then, atlas labels
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are propagated to the target image by deformable registration using the spectral representation.
The proposed spectral representation is used in image registration to perform multi-atlas LV
segmentation on a set of 3D echo cardiac image sequences acquired from 30 subjects.

In (X. Wang et al., 2014), an online discriminative multi-atlas learning method for isointense
infant brain tissue segmentation is presented. A multi-kernel learning is used to map image
patches into discriminative kernel spaces for producing corresponding probability maps to model
a label of each sample in these spaces. Then, an online DL is proposed to build the atlas that
handles the intra-class compactness and inter-class separability simultaneously. Finally sparse
coding is used to select only a small number of candidate patches that best represent the target
patch.

In (Rosas-Romero et al., 2014), the segmentation of endocardium in ultrasound images
from rats is performed with sparse representation over learned redundant dictionaries. Experi-
ments show that the performance of dictionaries directly built with manually extracted atoms
outperforms that of trained dictionaries (reconstructive and discriminative) with K-SVD methods.
The total number of entries per atom is N=23 which includes gray level information, spatial
coordinates, statistical information and contour information. Endocardium segmentation is done
with a patch-by-patch classification process and a patch size of 3×3.

3.2.5 Multimodal images analysis

Multimodal signal analysis has received an increased interest in the last years. Multi-modal
signals are sets of heterogeneous signals originating from the same phenomenon but captured
using different sensors. Multimodal dictionaries (Monaci et al., 2007) is a novel model of multi-
modal signals based on their sparse decomposition over a dictionary of recurrent multi-modal
structures. In medical images, this model can be applied to super resolution (Y.-H. Wang et al.,
2012), multi-modal image registration (Cao et al., 2014) and tissue synthesis (Roy et al., 2011).

In (Roy et al., 2011) a method to synthesize missing MR tissue contrasts from available
acquired images using an atlas containing the desired contrast and a patch-based compressed
sensing strategy is described. The proposed method is called MIMECS: MR image example-based
contrast synthesis. This method addresses the problem of intensity standardization over pulse
sequences or scanners and synthesizes different MR contrast images for a given subject from two
different MR contrasts.

In (Y.-H. Wang et al., 2012) sparse representation is used to generate high resolution in
MR images of the brain. MRI image super-resolution is divided into two steps: 1) based on
the sparsity prior, they find the sparse representation for each local patch, respecting spatial
compatibility between neighbors; 2) use the result from this local sparse representation to further
regularize and refine the entire image using the reconstruction constraint. Results of sparse
representation in one MR image is compared with popular Bicubic interpolation method.

A robust multimodal dictionary learning method for multimodal images was proposed in
(Cao et al., 2013) with a probabilistic model for dictionary learning which discriminates between
corresponding and non-corresponding patches. The problem of learning a dictionary in presence
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of problematic image patches is casted as a likelihood maximization problem and it is solved
with a variant of the EM algorithm. The method was tested on synthetic images and also in
correlative microscope images with the application in multimodal registration.

(Ma et al., 2013) proposed a new model to recover images suffering from blur and Poisson
noise. It is based on the mixture of two priors: a patch-based sparse representation prior over
a learned dictionary inspired by the K-SVD algorithm for Gaussian noise removal, and the
pixel-based Total Variation (TV) regularization. Experiments were performed over MR images
coming from: Ankle, Brain, Mouse intestine and Neck.

(Cao et al., 2014) propose an image registration method for correlative microscopy. They use
a sparse representation model to obtain image analogies. The method makes use of corresponding
image training patches of two different imaging modalities to learn a dictionary capturing
appearance relations. The approach was tested in backscattered electron (BSE) scanning electron
microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images.

3.2.6 Classification

Clinicians are often interested in early diagnosis of pathologies (classification) and in learning
the progression of a disease (regression). Classification of objects such as lesions into certain
categories (e.g., abnormal or normal, lesions or non-lesions) is one of the most popular uses
of machine learning in medical image analysis. From a methodological point of view, current
techniques for classification varies from applying standard machine learning algorithms to medical
imaging datasets (e.g. support vector machines). Some works using dictionary learning and
sparse representation for classification in medical images have been reported:

(Zheng et al., 2011) presents a Metasample-Based sparse representation method for tumor
classification using gene expression data. A set of metasamples are extracted from the training
samples, and then an input testing sample is represented as the linear combination of these
metasamples by l1-regularized least square method. Classification is achieved by using a discrim-
inating function defined on the representation coefficients. This approach can be seen as the
combination of SRC and metasample-based clustering. Experiments were performed over Acute
leukemia data, Colon cancer data, Prostate cancer data and Diffuse large B-cell lymphomas data.

In (Deshpande et al., 2014; Weiss et al., 2013) the detection of Multiple sclerosis (MS)
lesions using dictionary learning is performed. Experiments were performed in FLAIR MR
images, T1 (T1-wMPRAGE) and T2-weighted, (T2-w) and Proton Density (PD) sequences.
The manual segmented images obtained from neurological experts are referred to as ground
truth lesion masks. Three approaches of classification were proposed: a) using Single Dictionary
learned from healthy and lesion class patches: For a given test patch, they calculate the sparse
coefficients and reconstruction error, and assign the patch to the lesion class if this error is
greater than a chosen threshold. The threshold is selected by observing the histogram of the
error map. b) using class specific dictionaries for healthy and lesion classes, respectively where
classification is based on the error minimization. c) using class specific dictionaries of different
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lengths: they allow dictionaries with high length for healthy class data and study its effect on
MS lesion classification.

In (Shi et al., 2013) a multimodal sparse representation-based classification (mSRC), is
proposed for classifying lung needle biopsy images. Features of three modalities (shape, color,
and texture) are extracted from segmented cell nuclei. In a training phase, three discriminative
subdictionaries corresponding to the three feature modalities are jointly learned by a genetic
algorithm guided by multimodal dictionary learning approach. The dictionary learning aims to
select the topmost discriminative samples and encourage large disagreement among different
subdictionaries. In the testing phase, when a new image is analyzed, a hierarchical fusion strategy
is applied, which first predicts the labels of the cell nuclei by fusing three modalities, then predicts
the label of the image by majority voting. The method is evaluated on a real image set of 4372
cell nuclei regions segmented from 271 images.

In (Varol et al., 2014) a novel approach for Computational Anatomy (CA) is proposed. CA
is an emerging discipline focused on the quantitative analysis of variability of biological shape.
This is achieved by solving a supervised dictionary learning problem for block-sparse signals.
Structured sparsity allows the grouping of instances across different independent samples, while
label supervision allows for discriminative dictionaries. The block structure of dictionaries allows
constructing multiple classifiers that treat each dictionary block as a basis of a subspace that
spans a separate band of information.

In (M. Srinivas et al., 2014) a method for classification of medical images captured by
different modalities is proposed, "Content Based Medical Image Retrieval (CBMIR)", based on
multi-scale wavelet representation using Online Dictionary Learning (ODL). Wavelet features
extracted from an image provide discrimination useful for classification of medical images,
namely, diffusion tensor imaging (DTI), magnetic resonance imaging (MRI), magnetic resonance
angiography (MRA) and functional magnetic resonance imaging (FRMI). An experimental
analysis performed on a set of images from the International Consortium for Brain Mapping
(ICBM) medical database. Each class (modality) consists of 5587 training and 1482 testing
images. Other classifiers, namely, SVM, NN and Bayes were also examined.

(U. Srinivas et al., 2014) proposed a simultaneous sparsity model for histopathological
image representation and classification. Classification is performed by solving a newly formulated
simultaneous sparsity-based optimization problem extended from the SRC algorithm by designing
three color dictionaries, corresponding to the RGB channels. Experiments were performed on
two image data sets: 1) mammalian tissue images and 2) human intraductal breast lesions.

More recently in (Guo et al., 2015), a fully automatic classification method based on the sparse
representation is proposed to distinguish intracardiac tumor and thrombi in echocardiography.
A globally denoising method is employed to remove the speckle and preserve the anatomical
structure in the mass area. Subsequently, the contour of the mass and its connected atrial
wall are described by the K-singular value decomposition and a modified active contour model.
Finally, the motion, the boundary as well as the texture features are processed by a sparse
representation classifier using the SRC algorithm to distinguish two masses. The method was
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applied in ninety-seven clinical echocardiogram sequences with an accuracy of 96.91% on the
classification of intracardiac tumors and thrombi.

3.2.7 Other applications

Change detection in medical images was proposed in (Nika et al., 2014) based on adaptive
dictionary learning techniques. The proposed AEDL, Adaptive EigenBlock Dictionary Learning,
algorithm captures local spatial difference between the reference and test images via detecting
the significant changes between the test and the reference image linearly modeled by a local
dictionary trained from the reference and the test images and reconstructed by local sparse
minimization processes. Experiments were performed in synthetic images and two real T2
weighted MR images of the brain taken in 2010 and 2012 taken from brainWeb: (simulated brain
database). AEDL algorithm finds the significant changes related to the new MS lesion formation
and ignores changes shown from the absolute difference.

In (S. Li et al., 2014) a dictionary based sinogram inpainting method is proposed to
compensate the artifact problem in CT sparse reconstruction. The patch-based dictionary
is first learned by applying K-SVD algorithm with database composed by the patches from
simulated CT sinogram. The learned dictionary is then used to inpaint the missing sinogram
data which is then used in final image reconstruction via the classical analytic Filtered Back
Projection (FBP) reconstruction.

3.3 Conclusions

We have presented a survey of the sparsity techniques used in medical imaging. Most of the
applications for denoising, involves the use of dictionaries trained with known basis as DCT or
dictionaries learned using K-SVD algorithm. In the case of supervised sparse representation for
segmentation and classification most of the methods are based on the framework of the SRC
algorithm. Image modalities involves MRI, CT, Ultrasound and microscopy images. In cardiac
medical images works are focused on segmentation on epicardial and endocardial contours of
LV in echocardiography images. In cardiac MRI, to our knowledge, there is not works based on
sparse representation and Dictionary learning for classification tasks, so the work presented in this
research is the first in proposing the use of dictionary learning for LV wall motion classification in
cardiac medical images. As we have mentioned, the choice of atoms depends on the application
for which we intend the use of the sparse representation. For example, for face recognition
features usually are patches from the images, we have also constated that DCT basis are well
adapted for denoising tasks. In the case of assessment of LV wall motion, features must represent
the spatial and temporal variation of the LV cavity providing discriminative information that
could help in the characterization of LV cardiac function abnormalities. In the next chapter,
we briefly describe the problem of assessment LV wall motion in cardiac cine MRI that usually
involves the segmentation of the epicardial and endocardial boundaries. The first contribution
of this research is also presented in the next chapter with a feature extraction method from
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sequences cine-MRI in short-axis view for the assessment of LV function. Later, we will see
how these features will used as input atoms in the training of discriminative dictionaries to
classify normal or abnormal regional LV movement. A second contribution is also depicted for
the detection of cardiac fibrosis in MRI.
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CHAPTER4
Feature extraction and Dictionary
Learning for the Assessment of LV

wall motion in cardiac MRI

4.1 Introduction

Cardiovascular disease (CVD) is in general the leading cause of death worldwide (Members
et al., 2012). 17.3 million people died from CVDs in 2008, representing 30% of all global deaths
that year, according to the World Health Organization (WHO, 2014). By 2010, CVDs caused
223 deaths per 100 thousand individuals in France (about 27% of total deceases) 1, being the first
cause of decease in the country for women and the second for men. CVDs affects the heart, the
blood vessels or both. In this work, we address two specific problems in the context of CVDs,
specifically: 1) the assessment of Left Ventricle (LV) wall motion in patients with heart failure
(HF) and 2) the cardiac fibrosis detection in patients with hypertrophic cardiomyopathy (HCM).
Both pathologies are studied in cardiac magnetic resonance imaging (MRI). We propose to use
sparse representation and Dictionary learning (DL) methods in medical imaging to address those
specific issues. In the previous chapters we have reviewed these techniques and we have seen that
they have not been applied in the context of the problems of interest. For a better understanding
of the remainder of this study, a brief review of the anatomy, electrical and mechanical function
of the human cardiovascular system is first given in section 4.2. The principal issue of this study
is depicted in section 4.3: the assessment of LV wall motion in patients with HF. Furthermore, a
description of the cardiac imaging modalities used here is presented in section 4.4. A brief state-
of-the-art for the assessment of cardiac left ventricular function in cardiac cine-MRI is presented
in section 4.5. In section 4.6, we present our proposed approach, that represents a novel approach
based on dynamic images combined with DL techniques to classify local normal/abnormal wall

1. Source INSEE "L’Institut national de la statistique et des études économiques", sheet “Causes de décès
2010”.
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motion in LV function in cardiac cine-MRI. The results of this approach will be presented in
Chapter 5.

4.2 The Cardiovascular system

The cardiovascular system is one of the most vital systems in the body. Its prime responsibility
is the circulation of blood to cells throughout the body. The blood provides oxygen from the lungs
to the cells and transfers carbon dioxide from the cells to the lungs. The circulation of the blood
is achieved by the heart which forces the blood through the blood vessels. The circulation of the
blood can be divided into two stages: the pulmonary circulation and the systemic circulation.
During the pulmonary circulation the blood is carried out from the heart to the lungs. In the
lungs, oxygen is absorbed and carbon dioxide is removed from the blood. During the systemic
circulation the blood is pumped by the heart to the cells in the body (Simon, 2005).

4.2.1 Heart anatomy

The heart (Figure 4.1) is located into the thoracic cavity in a zone called mediastinum,
between the lungs and the diaphragm. An average adult human heart weights between 300 g
and 350 g. The heart is a hollow organ with four chambers separated by valves and surrounded
by muscles which squeeze and relax to pump the blood around the body. The four chambers are:
the right atrium (RA), the right ventricle (RV), the left atrium (LA) and the left ventricle (LV).
Although a single organ, the heart functions as two separate pumps namely the right heart (RA
and RV) and the left heart (LA and LV). The left heart is responsible for the systemic circulation
and the right heart is responsible for the pulmonary circulation (Filipoiu, 2013).

Figure 4.1– A schematic illustration of the heart. Modified From: (Simon, 2005)
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The atrium receives blood from the veins and aids its flow into the ventricle which forces it
into the arteries. Therefore, the blood coming from the body enters the right atrium, flows to
the right ventricle (RV) and exits towards the lungs. After absorbing the necessary oxygen, the
blood returns to the heart through the left atrium and then it is propelled to the body by the
left ventricle (LV). The atria can also contract like the ventricles but their main function is to
act as reservoirs which are filled with blood flowing back through the veins to the heart. The
contraction in the RV and LV is longer and stronger than in atria in a healthy heart.

LV geometry can be roughly depicted with a truncated ellipsoid with the base plane intersecting
the mitral and aortic valves (cf. Figure 4.1 and 4.2). The vertex of this ellipsoid will correspond
to the apex. The axis perpendicular to the base and containing the apex is called the long axis.
In cardiac imaging, planar images lying in planes parallel to this axis are called long-axis-view
(LAX) images and those perpendicular to the long axis are called short-axis-view (SAX) images.
The basal, mid-cavity (middle) and apical terms indicate the location of the SAX planes on the
long axis of the left ventricle.

Long axis

Long axis

Apex

Basal plane

Mid-cavity plane

Apical plane

Long axis plane Short axis planes

Figure 4.2– Left ventricular long axis, apex and illustration of the long-axis (LAX) and the short-axis
(SAX). Modified from (Betancur, 2014).

RV and LV are bounded by a thick muscle called myocardium (10 mm for a healthy LV), an
interventricular septum, two atrioventricular valves (mitral and tricuspid valves, respectively),
and two semilunar valves (pulmonary and aortic valves, respectively) (cf. Figure 4.1). The inner
surface of the myocardium is the endocardium, while the outer surface is the epicardium.

The pumping action of the heart is achieved by the contraction and relaxation of the
cardiac muscle. The coordinated pumping action of the atria and the ventricles is controlled
by an electrical system that is contained in the heart muscle. The myocardium is made up of
cardiomyocytes (cells) that arrange into fibers. Cardiomyocytes are unique in the human body
due to their characteristics. They are contractile yet cannot remain in contraction, independent
and good conductors (i.e. cell excitation is transmitted to neighbors). Cardiomyocytes are
irrigated by micro arteries and excited by the autonomic nervous system. Myocardial fibers
are arranged into spiral and circular bundles. Fiber disposition locally determines the favored
direction to transmit cells excitation to neighbors.
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4.2.2 Electrical function

The cardiac muscle has the ability to contract without nervous input. The action potential
for each heart beat is generated by a pacemaker node in the right atrium and is transmitted
through the heart along specialized pathways (i.e., Purkinje fibers, which are divided into the
left and right branches). Figure 4.3, shows an illustrative example of the electrical function of
the heart. The pacemaker is a small area in the wall of the right atrium, near the entrance
of the superior vena cava, known as sinoatrial node (SA) or Keith-Flack node. The electrical
impulse originated by the SA node spreads radially across both atria, and then reaches the
atrio-ventricular (AV) node and the specialized conduction bundles in the ventricle. From the
terminal buttons of the Purkinje fibers, the electrical impulse spreads to the cardiomyocytes,
leading to a coordinated depolarization (and further contraction) of right and left ventricles from
the apex towards the base. Each cardiac cell is characterized by a transmembrane voltage due to
an unbalanced ionic concentration of sodium Na+, potassium K+ and calcium Ca++ in the
intra- and extracellular space, respectively; this leads to values of -80mV inside the cell and
+20mV outside the cell membrane.

Figure 4.3– Electrical function of the heart. (Top-middle) Electrical conduction system: impulses
originating at sinus node travels to atria and then convey at the AV-node to then propagate towards the
right and left ventricles through the bundle of His, its left and right branches, and the Purkinje fibers.
(Bottom-middle) Schematic representation of an electrocardiogram (ECG) for a healthy heart in sinus
rhythm. The ECG depicts the global electrical function of the heart. (Left) Ventricular cardiomyocite
action potential: phase 0 = rapid inward Na+ conductance, phase 1= Initial repolarization, K+ moving
out, phase 2 = Inward Ca++ current (main); plateau phase, phase 3 = repolarization; outward K+
currrent (main), phase 4 = Inward & outward K+ current equal. Modified from (Betancur, 2014).
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During stimulation, the polarity of transmembrane voltage changes, generating an action
potential, that is a reflection of each cell’s electrical activity. It has certain phases (Figure
4.3-left)):

Rapid depolarization An electrical excitation of the cell above a given activation threshold
causes a rapid inversion of its polarization or depolarization (phase 0).

Beginning of repolarization Characterized by a fast and acute return to equilibrium (phase 1).
Plateau The repolarization slows down into a “plateau” phase where the voltage does not

change significantly (phase 2).
Rapid repolarization Fast decrease of cardiomyocyte’s voltage until equilibrium is reached

(phase 3).
Resting membrane potential The action potential intracellular and extracellular concentra-

tions of ions are restored (phase 4).

The electrocardiogram (ECG) depicts the electrical activity of the heart. Figure 4.3 bottom-
middle provides a schematic illustration of a standard ECG record at resting heart rate. The ECG
can be decomposed into the P-wave representing atria depolarization (contraction), the QRS-
complex corresponding to ventricular depolarization (contraction), and the T-wave corresponding
to ventricular repolarization (relaxation). Atria repolarization is masked by the QRS complex.

4.2.3 Mechanical function

In normal conditions the human heart beats between 65 to 75 times per minute, which means
that each heart beat lasts around 0.85 sec. Each heart beat is considered as a cardiac cycle which
is separated into a contraction phase (systole) and a relaxation phase (diastole) of the atria and
ventricles.

To analyze systole and diastole in more detail, the cardiac cycle is usually divided into seven
phases. Figure 4.4 provides an example of the volume of the left ventricle during each phase of
the cardiac cycle. In addition, it shows the relationship between the ECG signal, the ventricular
volume and the cardiac pressure during the cardiac cycle. The seven phases of the cardiac cycle
are (Klabunde, 2011):

Atrial contraction The atrial contraction is initiated by the electrical depolarization of the
atria (P wave). As the atria contract, the pressure within the atrial chambers increases.
The pressure gradient which is generated across the open AV valves causes a rapid flow of
blood into the ventricles.

Isovolumetric contraction The isovolumetric contraction is initiated by the ventricular depo-
larization (QRS complex). During the isovolumetric contraction all the valves are closed
and the volume of the ventricles remains the same. However, there is a rapid increase in
the intraventricular pressure due to depolarization of the ventricle.

Rapid ejection In the rapid ejection phase, the intraventricular pressures exceed the pressures
within the aorta and pulmonary artery. This causes the aortic and pulmonic valves to open
and blood is ejected out of the ventricles.
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Figure 4.4– An example of the pressure and volume of the heart during the cardiac cycle (LVEDV= left
ventricular end-diastolic volume, LVESV= left ventricular end-sistolic volume, LAP= left atrial pressure,
LVP= left ventricular pressure, AP= aortic pressure). From: (Klabunde, 2011)

Reduced ejection After the rapid ejection phase, ventricular repolarisation occurs (T wave)
causing the ventricular tension to fall and the rate of ventricular emptying to be reduced.
This is called the reduced ejection phase. In this phase the ventricular pressure falls below
the blood pressure in the outflow tracts. However, the blood continues to flow due to its
kinetic energy.

Isovolumetric relaxation When the total energy of the blood within the ventricles is less
than the energy of the blood in the outflow tracts, the aortic and pulmonic valves close
(isovolumetric relaxation phase). During this phase, the ventricular pressures decrease.
However, the atrial pressures continue to rise due to venous return. The volumes of
the ventricles remain constant since all the valves are closed. The volume of the blood
which remains in the ventricle is called the end-systolic volume. In the left ventricle the
end-systolic volume is about 50ml.

Rapid ventricular filling The rapid ventricular filling occurs when the ventricular pressures
fall bellow the atrial pressures. Then, the AV valves open and the ventricular filling begins.
The ventricles continue to relax, despite blood inflow, which causes intraventricular pressure
to continue falling by a few additional mmHg. The opening of the AV valves and the rapid
flow of blood cause a rapid fall in the atrial pressure.

Reduced ventricular filling In reduced ventricular filling phase, the ventricular pressure rises
as the ventricles fill with blood. This reduces the pressure gradient across the AV valves
so that the rate of the filling falls. The aortic pressure (and pulmonary arterial pressure)
continue to fall.
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Figure 4.4 also shows the phases when the four basic heart sounds can be heard during a
cardiac auscultation. The most fundamental heart sounds are the first and second sounds: S1 and
S2. S1 is caused by closure of the mitral and tricuspid valves at the beginning of isovolumetric
ventricular contraction. S2 is caused by closure of the aortic and pulmonic valves at the beginning
of isovolumetric ventricular relaxation. The third heart sound (S3), when audible, occurs early
in ventricular filling. The fourth heart sound (S4), when audible, is caused by vibration of the
ventricular wall during atrial contraction.

The performance of the heart can be studied by examining the relationship between the
cardiac volume and the cardiac pressure. A number of global measurements are important in
clinical practice. For instance, the stroke volume (SV) is the amount of blood ejected by the
left ventricle in one contraction, it is calculated by the difference of the ventricular volumes
at the end-diastole (LVEDV) and end-systole (LVESV). The stroke volume multiplied by the
heart rate is the cardiac output, which represents the amount of blood pumped by the heart per
minute. The ratio of the stroke volume to the end diastolic volume is the Ejection Fraction (EF).
Another global measure is the Left ventricular mass that is generally calculated as the difference
between the epicardium delimited volume and the left ventricular chamber volume multiplied by
an estimate of myocardial density. The volume of the left ventricle, the ejection fraction and the
Left ventricular mass are considered as relevant measures of cardiac performance (O’Dell et al.,
2000). The performance of the heart is not only assessed by global indicators. Local indicators
can also be studied to describe regional myocardial function.

The regional myocardial function is commonly scored following a standard issued by the
American Heart Association (Cerqueira et al., 2002), which suggests selecting representative
2D cardiac slices (planes) in the short axis (SAX) view (cf. 4.2) to generate 17 standardized LV
segments. The segmented model of the LV suggested by the AHA was developed for improving
communication between imaging modalities for research and clinical purposes. The segment
model is applicable for MRI, CT, positron emission tomography (PET), coronary angiography,
and echocardiography (cf. Chapter 5). The AHA segment model is a polar plot where data from
each slice is represented as a concentric ring with apical slices located at the center of the plot
while the most-basal slice is on the outside. As can be seen in Figure 4.5, basal and mid-cavity
planes are divided into 6 segments each one, whereas the apical slice has 4 segments, and the
17th segment is the apex.
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Figure 4.5– AHA 17 segment representation



66 Chapter 4. Feature extraction and DL for the Assessment of LV motion

Local parameters that describe the regional myocardial function can include: Regional
Ejection Fraction, Myocardial thickening, Local speed of movement, Spatio-temporal evolution
and Strain.

Both, global and local clinical parameters, can be obtained from diverse cardiac imaging
modalities, which include echocardiography, CT (Computed Tomography), coronary angiography,
nuclear imaging (SPECT/PET) and cardiac Magnetic Resonance Imaging (MRI). The diagnosis,
treatment and follow-up of cardiac pathologies can rely on these image modalities (cf. Chapter 5).

In the next subsection we introduce the most common pathologies that affect the cardiovascular
system. In this chapter, we focus on abnormal cardiac LV wall motion that is an early finding in
multiple cardiac pathologies and its diagnosis is of critical importance (Garcia-Fernandez
et al., 2003).

The left ventricle motion during the systolic phase is considered as the combination of five
types of movements: 1) translation, 2) rotation, 3) torsion, 4) longitudinal shortening, and 5)
radial contraction (Gonzalez et al., 2010). These components are not uniform throughout the
left ventricular cavity. For instance, the longitudinal shortening movement with respect to the
anatomical axis (aortic valve-apex) is significantly asymmetric. During systole, the plane of the
mitral valve descends 1 to 2 centimeters towards the apex in adults with normal cardiac function,
but the apex barely moves towards the base of the heart. In normal cases, the longitudinal
shortening and radial contraction are the most important in both ventricles, followed by the
torsion (cf. Figure 4.6). In pathological cases, these movements can be affected differently
accordingly to the pathology.

a) b) c)

Figure 4.6– Components to describe LV wall motion: a) Radial contraction, b) Circumferential strain
and c) Longitudinal contraction.
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4.3 Cardiac Pathologies: Heart Failure

Cardiovascular diseases (CVDs) are a group of disorders of the heart and blood vessels and
they mainly include: Ischaemic heart disease or coronary artery disease (e.g. heart attack), Cere-
brovascular disease (e.g. stroke), Diseases of the aorta and arteries, including hypertension and
peripheral vascular disease, Congenital heart disease, Reumatic heart disease, Cardiomyopathies
and Cardiac arrhythmias (WHO, 2011).

An estimated 17.5 million people died from CVDs in 2012, representing 31% of all global
deaths. Of these deaths, an estimated 7.4 million were due to coronary heart disease and 6.7
million were due to stroke (WHO, 2014).

Cardiomyopathy, or heart muscle disease, is a type of progressive heart disease in which the
heart is abnormally enlarged, thickened, and/or stiffened. As a result, the heart muscle’s ability
to pump blood is weakened, often causing Heart Failure (HF) and the backup of blood into the
lungs or rest of the body. The disease can also cause abnormal heart rhythms.

Heart failure (HF) is the end stage of CVD and is the most expensive CVD-related condition
with respect to health care costs of which the largest component is related to repeated hospi-
talizations. HF may be associated with a wide spectrum of LV functional abnormalities, which
may range from patients with normal LV size and preserved Ejection fraction (EF) to those with
severe dilatation and/or markedly reduced EF (Yancy et al., 2013).

Heart failure symptoms include changes to ventricular size and function due to both chemical
and mechanical factors (Jessup et al., 2003). Remodeling occurs in response to myocardial
infarction, cardiomyopathy, hypertension, or valvular heart disease. If a patient had a myocardial
infarction, where a major vessel supplying blood the myocardium is blocked; the downstream
myocardium supplied by the blocked vessel undergoes necrosis and is replaced over time by
fibrotic tissue in an attempt to heal the infarct. The fibrous tissue has different mechanical
and contractile properties than healthy myocardium, so an myocardial infarction, often leads to
abnormal loading conditions throughout the ventricle resulting in dilatation and hypertrophy
(cf. Chapter 7); increasing end diastolic volumes and limiting the ability of the heart to pump
effectively (Sutton et al., 2000).

As the heart’s pumping becomes less effective, blood may back up in other areas of the body.
Fluid may build up in the lungs, liver, gastrointestinal tract, and the arms and legs. This is
called Congestive Heart Failure (CHF). The New York Heart Association (NYHA) functional
classification is widely used and accepted. It is based on exercise capacity and symptoms of the
disease and places patients in one of four categories based on how much they are limited during
physical activity. Table 4.1 shows a functional classification according the presence and severity
of HF provided by the New York Heart Association (NYHA), and also by the American College
of Cardiology Foundation (ACCF)/ American Heart Association (AHA).

Changes to the ventricular wall as a result of remodeling can also disrupt the electrical
activation network within the heart. These disruptions can result in atrial fibrillation or irregular
ventricular activation and contraction. Underlying electrical conduction issues manifest themselves
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Table 4.1– Comparison of ACCF/AHA Stages of HF and NYHA Functional Classifications. From
(Yancy et al., 2013)

ACCF/AHA Stages of HF NYHA Functional classification

A
At high risk for HF but
without structural heart
disease or symptoms of HF

None

B
Structural heart disease but
without signs or symptoms of
HF

I No limitation of physical activity. Ordinary phys-
ical activity does not cause symptoms of HF.

C
Structural heart disease with
prior or current symptoms of
HF

I No limitation of physical activity. Ordinary phys-
ical activity does not cause symptoms of HF.

II Slight limitation of physical activity. Comfort-
able at rest, but ordinary physical activity results
in symptoms of HF.

III Marked limitation of physical activity. Com-
fortable at rest, but less than ordinary activity
causes symptoms of HF.

IV Unable to carry on any physical activity without
symptoms of HF, or symptoms of HF at rest.

D Refractory HF requiring
specialized interventions IV Unable to carry on any physical activity without

symptoms of HF, or symptoms of HF at rest.

as changes in the contraction timing of the heart, which decreases the ejection fraction (EF) and
further diminishes the pumping efficiency of the heart.

Although heart failure can manifest itself in a variety of ways, cardiac dyssynchrony affects
30 to 50% of heart failure patients (De Sutter et al., 2005). Dyssynchrony is indicative of a
disruption in the conduction pathway of the heart caused by ischemia, inflammation, fibrosis,
and aging. These disruptions cause different parts of the heart to be activated at different times.
Because mechanical contraction requires electrical activation, irregular electrical activation leads
to discoordinate mechanical contraction of the heart.

Mechanical dyssynchrony is when regions of the heart contract at different times. There are
several general types of mechanical dyssynchrony. Inter-ventricular dyssynchrony is a difference in
contraction times between the left and right ventricles. Atrio-ventricular mechanical dyssynchrony
is characterized by an abnormal delay between atrial and ventricular activation, which can result in
a shortened diastolic filling period and a decreased stroke volume. Intra-ventricular dyssynchrony
is of particular interest in heart failure patients, it is the discoordinate mechanical contraction of
different regions within the same ventricle (Hawkins et al., 2006).

It is estimated that up to 40% of patients with cardiomyopathy and congestive heart failure
(CHF) have an uncoordinated ventricular contraction caused by electrical delay, most often
in the left bundle branch (Trupp, 2006). This is known as left bundle branch block (LBBB).
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Because the electrical signal to the left ventricle is delayed by LBBB, the right ventricle begins
to contract a fraction of a second before the left ventricle instead of simultaneously. The result
is an asynchronous contraction of the ventricles. This uncoordinated ventricular contraction
further reduces the pumping efficiency of an already weakened heart muscle in HF patients. The
electrical delay is visible on an electrocardiogram (ECG) (cf. Figure 4.3) as widening of the QRS
complex and helps to identify patients who might benefit from cardiac resynchronization therapy
(CRT).

Cardiac resynchronization therapy (CRT) is a treatment option for heart failure patients with
cardiac dyssynchrony. From HF population, it is estimated that between 30% and 40% suffer
from cardiac dyssynchrony which is associated with a decrease in ejection fraction and worsened
prognosis. CRT utilizes a biventricular pacemaker to electrically stimulate the myocardium in
an effort to restore synchronous electrical activation and improve cardiac output.

Currently, there are four major criteria that must be met for a patient to qualify for CRT
implantation:

— QRS Duration > 120 ms: QRS duration is a measure of the electrical dyssynchrony of the
heart. Without electrical dyssynchrony, the simultaneous stimulation of the septal and
lateral walls of the LV will have no effect.

— Ejection Fraction < 35%: A healthy ejection fraction is greater than 50%. A low EF is
indicative of inefficient cardiac function.

— NYHA HF Functional Class III-IV: The New York Heart Association (NYHA) functional
classification (cf. Table 4.1) serves to determine the effect that heart failure has on patient
activity and comfort. Patients classified as Class III-IV are considered to have moderate to
severe heart failure.

— Optimal Medical Therapy for at least 3 Months: Before resorting to an implantable device,
it is necessary to ensure that the patient cannot benefit from guided pharmacological
treatments.

There have been a large number of randomized clinical trials that demonstrate the efficacy
of CRT; however, at least 30% of patients undergoing CRT do not benefit from the treatment.
Currently, there are a widely used definitions of response to CRT (Fornwalt et al., 2010). The
major two categories of response criteria are clinical response and quantitative response. Clinical
response criteria to CRT is focused on detecting improvement of symptoms in heart failure
patients. Most commonly ways to assess clinical response criteria are: i) the New York Heart
Association Functional Classification, in which a responder to CRT is a patient who improves by
at least one heart failure class six months after device implantation, ii) The Minnesota Living
with Heart Failure Questionnaire, which consists of 21 questions covering a wide range of daily
activities to determine the effect of heart failure symptoms on the patient’s daily routine, and iii)
The Six-minute Hall Walk Distance, that measure of how heart failure affects an individual’s
susceptibility to fatigue due to physical activity.
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In addition to clinical criteria, there are a variety of quantitative measures that have been
used in the literature to classify patients as responders or non-responders to CRT. Quantitative
measures typically identify signs of reverse remodelling including improved cardiac output and
decreased cardiac volumes. Some quantitative criteria to assess CRT response are: i) LV Ejection
Fraction (LVEF) increased by at least 5% (absolute) or 15%, ii) LV End Systolic Volume (LVESV)
decreased by at least 10% - 15%, iii) LV End Diastolic Volume (LVEDV) decreased by 15% or
more, and iv) Stroke Volume (SV) increased by at least 15%.

There must be additional factors that contribute to an individual’s response to CRT. It is
thought that the presence of mechanical dyssynchrony, the amount and location of myocardial
scar, and coronary vein anatomy play a role in a patient’s response to CRT.

Clinically, Echography/Ultrasound (US) is the most common modality used to assess me-
chanical dyssynchrony of the heart. Another technique that can assess mechanical dyssynchrony,
determines the presence and distribution of myocardial scar tissue, and discerns the proximal
parts of coronary vein anatomy is Magnetic Resonance Imaging. Hence, MRI is a potentially
powerful tool for CRT patient selection.

In the next section we briefly describe two cardiac modalities techniques addressed in this
thesis: cardiac MRI, that is currently used in medical imaging for the assessment of LV function,
and Echocardiography, that is considered as the standard of reference for cardiac mechanical
analysis.

4.4 Imaging of the Cardiovascular System

The main imaging modalities of the cardiovascular system are: X-Ray, Ultrasound (US),
Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT),
Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Each imaging modality
provides a different type of information and is used for specific purposes. This work focuses
on cardiovascular magnetic resonance images (CMRI) and echocardiography (US, ultrasound
imaging) which are widely used in clinical routine to characterize cardiac motion abnormalities
taking advantage of their high temporal resolution. They provide complementary information
about cardiac anatomy, myocardial structure and mechanical function. Several MRI-based
techniques or specific sequences can be employed to detect mechanical dyssynchrony and assess
cardiac LV motion including myocardial tagging, phase contrast tissue velocity mapping and
cardiac cine-MRI. Late Gadolinium Enhanced (LGE) cardiac magnetic resonance imaging is
used to determine the presence and distribution of myocardial scar/fibrosis tissue. As this work
is also focused on the detection of cardiac fibrosis, this cardiac MRI sequence will be described
in Chapter 7. Cardiac cine-MRI mode is used in this study for the assessment of LV wall motion
and is described below.
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4.4.1 Cardiac Magnetic Resonance Imaging (cMRI)

Cardiac Magnetic Resonance Imaging (MRI) is currently used in medical imaging for the
assessment of LV function (Kirschbaum et al., 2011). It is also used to evaluate cardiac
morphology and myocardial substrate. One of the main advantages of cardiac MRI is the lack of
ionizing radiation, which is substantial with SPECT and computed tomography (CT) scanning.
High-quality imaging can be achieved in most patients in all orientations, for all cardiac chambers
and wall segments including the left and right ventricles.

Cardiac MR images are commonly acquired at a magnetic field strength of 1.5T and 3T
(tesla); commercial systems are available between 0.2T–7T. This strong constant magnetic field is
applied to align the magnetization of hydrogen atoms of the organ being scanned. The hydrogen
nuclei are then excited by applying another magnetic field at a certain frequency (RF field)
that deflects their magnetization from this alignment. The signal emitted from these excited
nuclei, when they realign to their initial configuration, is measured by RF sensors and used to
form an image. In MR imaging, signals received from a particular tissue (e.g., heart muscle,
fat, etc) are determined by the density of hydrogen atoms (proton density), and by two distinct
MR relaxation parameters, longitudinal relaxation time (T1) and transverse relaxation time
(T2). Proton density, T1, and T2 are significantly varied for different tissue types, and are used
to generate contrast in MR images. Also, image contrast can be modified by modulating the
way the radiofrequency signals are applied (the MR sequence). An MR imaging sequence refers
to a specific combination of radiofrequency pulses, magnetic gradient field switches, and data
acquisitions with temporal synchronization, all used to generate the MRI image.

The most recent standard protocol for cardiac MR employs the Steady-State Free Precession
(SSFP) sequence. This sequence provides the best contrast between myocardium (dark) and
the blood in the chamber (white) for imaging cardiac function. For a better visualization, fat
suppression sequences may be applied to allow signal from fat to be specifically suppressed with
special pre-pulses. To assess heart function, a full cardiac cycle is divided into 20-30 frames, each
consisting of 10-12 slices corresponding to a specific plane of the heart.

In a cardiac-cine MRI study, 3 main cardiac imaging planes are identified: the short axis
(SAX), the horizontal long axis also known as a 4-chamber view (LAX-4CH), and the vertical
long axis also known as a 2-chamber view (LAX-2CH). The standard imaging plane SAX used
for LV assessments is perpendicular to the long axis of the heart (apex-base). Figure 4.7 shows
an example of the three main image planes of acquisition in cardiac MRI. Spin echo sequences
acquire a static anatomic image with black blood, providing information about heart morphology
(cardiac cavities and vessels appear black contrasting with myocardial and vessel walls in gray).
On the other hand, gradient echo sequences enable to acquire dynamic images (called cine) with
white blood and gray myocardium, allowing to analyse heart dynamics.

Cardiac cine-MRI is particularly appropriate to study global and regional ventricular function
(Garot, 2005; Kirschbaum et al., 2011; Sarwar et al., 2008). The strength of cardiac MRI,
as compared with CT scanning, is its superior temporal and contrast resolution. However, the
spatial resolution of CT scanning is superior (Lin, 2008). A typical cardiac cine-MRI will have a
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RV LV

Figure 4.7– Cardiac Imaging plane in MRI: (left) Short-axis plane SAX; (middle) Vertical long axis
plane (2-chamber view) LAX-2CH; (right) Horizontal long axis (4-chamber view) LAX-4CH.

temporal resolution of 30 ms, a spatial resolution of 1.5 mm (in-plane) and a slice thickness of
8 to 10 mm. Capturing an image of the heart that is unaffected by motion requires the image
to be acquired in just a few tens of milliseconds. However, to achieve acceptable image quality,
the image acquisition time becomes too long to “freeze” heart motion. Therefore, cMRI signals
are acquired over multiple heartbeats, synchronizing the signal acquisition to a particular time
point in the cardiac cycle using the ECG. There are two main techniques for synchronising the
measurement of MR data with the cardiac cycle.

Prospective gating techniques wait for the trigger signal to start acquisition of data. The data
are acquired using excitations at a fixed time points in the cardiac cycle. The data collection is
paused at the end of the cardiac cycle and the sequence waits for the next trigger signal. The R
wave of the ECG signal corresponds to the beginning of the contraction phase of the heart (cf.
Figure 4.8). After a small time interval, tdelay, the first frame of the image sequence is acquired.
After the acquisition of the first frame, frames are acquired every toffset msec. In retrospective
gating, data collection is done continuously throughout the entire cardiac cycle. Then, the
recorded trigger signal is used to retrospectively assign the data to the different positions in the
cardiac cycle.

A cardiac cine-MRI study is performed in different slices routinely divided in three spatial
planes: basal, mid-cavity and apical (cf. 4.2.1). Figure 4.9 shows different cardiac cine MRI
acquisitions in a short axis view at different planes for one patient.
4.4.2 Echocardiography (US)

Ultrasound (US) employs pulsed, high frequency sound waves. When an ultrasound wave
meets an interface of differing echogenicity, the wave is reflected, refracted and absorbed. The
reflected sound waves are sensed by the transducer (which also emits the sound waves) and then,
processed to produce the image. The ultrasound beam can be aimed at specific directions and
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ECG leads

Figure 4.8– ECG synchronization of imaging pulse sequences. Adapted from: (Perperidis, 2005)

Figure 4.9– Different spatial acquisitions in short axis view, from apical plane (top left) to basal
planes (bottom right)

obeys the laws of optics with regards to refraction, reflection and transmission. The intensity of
the ultrasound beam decreases as it travels away from the ultrasound source due to divergence,
absorption, scatter and reflection of the wave energy at tissue interfaces. Stronger reflections
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are returned when the ultrasound beam is perpendicular to the imaged structure. Ultrasound is
frequently used for the imaging of the heart (echocardiography).

Echocardiography is more frequently used to evaluate cardiac chamber size, wall thickness,
wall motion, valve configuration, global and regional motion and the proximal great vessels.
Ultrasound has a high temporal resolution and is widely used in clinical routine. It is also more
portable and less expensive than other modalities. However, the signal to noise ratio of the US
images is low. Figure 4.10, shows an example of three Transthoracic echocardiographic (TTE-US)
images at end-diastole.

Figure 4.10– Transthoracic echocardiographic (TTE-US) images at end-diastole. From left to right:
apical four chambers view (4CH), apical two chambers view (2CH), and apical three chambers view
(3CH). Acronyms – AAo: ascending aorta, LA: left atrium, LV: left ventricle, RA: right atrium, RV: right
ventricle. From: (Betancur, 2014)

There are three types of echocardiography: M-mode US, B-mode (brightness) US and Doppler
mode US. The M-mode provides one dimensional view (depth) into the heart. The B-mode
US uses an array of transducers which allows a plane of tissue to be imaged, thus making
the anatomical relationships between different structures easier to appreciate than with the
M-mode imaging. Doppler imaging allows the evaluation of blood flow patterns (direction and
velocity) by detecting frequency changes occurring when ultrasound waves reflect off individual
blood cells moving towards or away from the transducer. Tissue Doppler imaging (TDI) is an
echocardiographic technique that uses Doppler principles to measure the velocity of myocardial
motion (Ho et al., 2006). TDI can be performed in pulsed-wave and color modes. Pulsed-
wave TDI is used to measure peak myocardial velocities and is particularly well suited to the
measurement of long-axis ventricular motion because the longitudinally oriented endocardial
fibers are most parallel to the ultrasound beam in the apical views. Similar to TDI, Two
Dimensional (2D) speckle tracking echocardiography (STE) (Blessberger et al., 2010), permits
offline calculation of myocardial velocities and deformation parameters such as strain and strain
rate (SR), with a regional analysis by anatomical segments.

In Speckle tracking echocardiography (STE), echoes are locally modified by an interference
pattern and natural acoustic reflections called as a whole speckle noise. This speckle is particular
for a given portion of a tissue being a sort of local acoustic signature of a particular subregion.
A technique called speckle tracking tracks this speckle frame to frame and ultimately resolves it
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into angle-independent two-dimensional strain-based sequences. STE provides both quantitative
and qualitative information about tissue deformation and motion (Blessberger et al., 2010).
Displacement, velocity, deformation (strain), tissue kinetics (tissue velocity imaging or tissue
synchronization imaging) are examples of what can be analyzed with STE. Moreover, today
it is possible to have their extension to 3D echocardiography (e.g. to compute surface strain)
(Maffessanti et al., 2009). The strain is calculated for each segment of the LV as the relative
average of deformation between two points along the predetermined directions of the coordinate
system of the heart. These deformation and strain measures are computed in circumferential,
longitudinal and radial directions.

Radial deformation represents myocardial deformation towards the center of the LV cavity, and
therefore indicates the LV thickening and thinning motion during the cardiac cycle. Longitudinal
deformation represents motion from the base to the apex. Circumferential deformation is
defined as the change of the radius in the short axis, perpendicular to the radial and long
axes. Longitudinal deformation is assessed from the apical views while circumferential and
radial deformation are assessed from short axis views of the left ventricle. Longitudinal and
circumferential strain, are expressed as a negative value and occur, simultaneously, to the
deformation in the radial direction. The radial strain is represented as a positive value.

The assessment of 2D strains by STE is a semiautomatic method that requires the cardiologist
to define a few points along the endocardial border. Furthermore, the sampling region of interest
(ROI), that is automatically defined by the echo system from the endocardial delineation, needs
to be adjusted to ensure that most of the wall thickness is incorporated in the analysis and to
avoid the pericardium, as depicted in Figure 4.11-top left panel.

Then, strains are computed by tracking the local speckle from the defined regions. Regional
strain is defined as the fractional or percentage change in a myocardial region in comparison
to its original dimension, along a direction. From this, it can be obtained both a 2D mapping
of the region’s deformation during a heartbeat and local strain curves (2D plot of myocardial
deformation over time), as depicted in Figure 4.11.

The recent advances in the development of Ultrasound imaging enable the acquisition of
3D images which overcome some limitations of the conventional 2D Ultrasound imaging. 3D
Ultrasound imaging (Fenster et al., 2001; Maffessanti et al., 2009) has the potential to
provide real time 3D visualizations of the heart and a regional measure of strain. However, the
temporal resolution is lower than those of 2D ultrasound imaging. According to current clinical
literature on 2D-STE technology, single plane acquisition must be performed with a temporal
resolution ranging from 50 up to 80-90 frames/sec. 2D STE temporal resolution is two to three
times higher than 3D-STE resolution.
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Figure 4.11– Speckle tracking echocardiography from a pathologic patient in the short axis view.
Top-Left panel: A region of interest is indicated in a two-dimensional grey-scale image. The colours of the
region of interest correspond with the colours of the time–strain curves in the right panel. Bottom-left
panel: Bidimensional map of the myocardial deformation during a cardiac cycle. In abscissa: time in ms;
in ordinate: radial strain along STE trace from anteroseptal (bottom) to anterior (top) regions. Right
panel: Time–radial strain curves of the different segments of the left ventricle. Acronyms – VA ferm:
aortic valve closure, SR: radial strain

4.5 The assessment of cardiac Left Ventricular (LV) function
in cardiac cine-MRI: a brief state-of-the-art

In clinical practice, assessment of the LV in cardiac cine-MRI relies mainly on manual
segmentations as well as visual analysis and interpretations of wall motion. Several clinical
studies have shown that visual assessments are inaccurate and subject-dependent (Lu et al.,
2009). Manual segmentation of the LV is prone to intra- and inter-observer variability, therefore,
automatic assessment methods have become a major area of research (Petitjean et al., 2011).
Assessment of the LV includes two main steps:

Global assessment of the LV: Cardiac magnetic resonance (CMR) evaluation of global left
ventricular (LV) function is routinely performed based on measurements of LV volumes, ejec-
tion fraction and mass (cf. 4.2.3). These parameters are calculated from semi-automatically
traced endocardial and epicardial boundaries using commercial software. Cardiac Magnetic
Resonance (CMR) imaging provides accurate and reproducible methods to perform physio-
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logical studies such as left ventricular ejection fraction (LVEF) estimation considered as an
important prognostic marker and used to evaluate the cardiac function globally.

Regional assessment of the LV: CMR diagnosis of regional LV dysfunction is based on the
interpretation of regional wall motion. This interpretation relies on integrating spatial and
temporal information, which is subjective and requires extensive training and experience
and is realized in clinical practice by radiologists or cardiologists. The parameters used
to study regional function (cf. 4.2.3) are ventricular wall thickness, systolic thickening,
and longitudinal and circumferential motion or wall shortening (San Román et al.,
2009; Sarwar et al., 2008). These assessments can be performed either qualitatively or
quantitatively. While a quantitative evaluation of ventricular volumes and EF is commonly
utilized in the clinical setting, regional LVEF is typically evaluated on a qualitative basis
only by visually assessing segmental LV thickening and motion of the 17 LV segments.
Typically, segments will be scored as normal, hypokinetic, akinetic, or dyskinetic. Some
clinicians employ a semi-quantitative scale whereby the regional wall motion of individual
segments is graded as follows: normal = 0; hypokinesia = 1; akinesia = 2; and dyskinesia
= 3. Hypokinesia is defined as impaired thickening and motion; akinesia is defined by
absent thickening and motion; and dyskinesia is defined as paradoxical outward motion of
the segment during systole.

Automatic diagnosis of LV regional dysfunction has attracted significant research. Below, we
present some representative methods that have been proposed to the automatic assessment of
LV wall motion in cardiac MRI. They are grouped in three categories:

4.5.1 Methods based on shape statistics

These methods are based on Landmark-based statistical shape analysis. Landmarks (anatomi-
cal points) are homologous points with point-to-point correspondences between shapes, which can
be defined either mathematically, anatomically or manually. These methods provide a statistical
shape modeling of cardiac contraction:

In (Ordas et al., 2005), a 3D statistical model-based algorithm (3D-ASM) is used to segment
the left ventricle in short- and long-axis cine-MRI. The segmentation process uses an optimized
fuzzy inference strategy to provide the appearance (grey-level) model necessary to deform
the shape model, and conduct the segmentation. Subsequent functional analysis includes the
assessment of LV global functional indexes like e.g. time-volume curves, ejection fraction, stroke
volume and cardiac output, as well as regional function parameters, like segmental wall motion,
thickening and dyssynchrony delays. Experiments in the three planes, were performed in a group
of 18 MRI studies, 10 healthy subjects and 8 patients candidate to Cardiac Resynchronization
Therapy.

In (Huang et al., 2006), cardiac magnetic resonance imaging data from 20 patients are
analysed, in which half have heart failure. Two spatio-temporal ventricular motion models are
proposed to analyze the mechanical dyssynchrony: radial motion series and wall motion series.
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The radial motion series model is constructed based on the distances calculated from the LV
center to points located in the endocardial border obtained using a surface tracking technique.
The wall motion series model is constructed from wall thickness changes obtained using spherical
harmonic (SPHARM) description combined with surface alignment method. This algorithm is
applied in the context of CRT and a hierarchical agglomerative clustering technique is applied to
the motion series to find candidate pacing sites based on the determination of the most delayed
contraction sites of the LV.

In (Boyer et al., 2006), an approach for the spatio-temporal shape analysis of ventricular wall
motion is presented, by demonstrating the feasibility of detecting intra-ventricular dyssynchrony
in the left ventricle (LV) from short-axis MRI data using only one midventricular sequence.
Using a statistical pattern recognition approach, based on Principal Component Analysis and
Linear Discriminant Analysis, they have designed a classifier for intra-ventricular dyssynchrony
detection from the shape descriptors extracted using a deformable model method with a complex
Fourier series parametrization. The shape descriptors correspond to the spatial frequency
components of the contour points from the combination of N ellipses obtained following a
snake-like approach. The short-axis, cine MRI database used in this experiments comprises 33
studies: dyssynchronous samples correspond to 14 patients with intra-ventricular dyssynchrony
in the LV; non-dyssynchronous samples correspond to 10 healthy subjects and 9 patients with
dysfunctions other than intra-ventricular dyssynchrony.

In (Suinesiaputra et al., 2009), a statistical model-based method to automatically detect
regional wall motion abnormalities is proposed. The model uses as input parameters myocardial
contractility patterns from a framework where all shapes contract from a reference shape
constructed with the endocardial and epicardial contours at end-diastole (ED) and end-systole
(ES). 44 short-axis magnetic resonance images were selected from healthy volunteers to train a
statistical model of normal myocardial contraction using independent component analysis (ICA).
A classification algorithm was constructed from the ICA components to automatically detect
and localize abnormal contracting regions of the myocardium. The algorithm was validated on
45 patients suffering from ischemic heart disease. Two validations were performed; one with
visual wall motion scores (VWMS) and the other with wall thickening (WT) used as references.
WT was calculated by using dedicated quantitative MR measurement software (MR Analytical
Software System MASS v. 5.0, Medis, Leiden, the Netherlands). Best accuracy of the ICA-based
method was obtained in the mid-cavity plane with almost 90% in WT benchmarking and 67% in
VWMS benchmarking.

In (Sliman et al., 2010), the myocardial function is assessed by estimating the left ventricle
(LV) wall thickening based on a 4D tracking approach that tracks the LV wall during the cardiac
cycle. Initially, the proposed 4D approach tracks the surface points on the LV wall by solving
a 3D Laplace equation between each two subsequent LV surfaces. The initial locations of the
tracked LV surface points are iteratively adjusted through an energy minimization cost function
using a generalized Gauss-Markov random field image model. Using the iteratively adjusted
solution of the 3D Laplace equation, the myocardial wall thickening is estimated by co-allocation
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of the corresponding points, or by matching between the endocardium and epicardium surfaces
of the LV wall.

In (Lekadir et al., 2011) the myocardial assessment in MRI is focused on statistical modeling
based on spatio-temporal interlandmark relationships. Experiments were performed for the
interpretation of 4-D cardiac MRI data in a set of 28 subjects identified as normal, 11 datasets
mildly abnormal and 11 identified as severely diseased. For each subject, eight uniformly
distributed cine frames were delineated by an expert observer using 136 landmarks for each
surface. The upper and lower LV/RV junction points were manually defined in all short-axis
images and time frames. Inter-landmark constraints are first introduced based on a statistical
generalization of barycentric coordinates. A combinatorial sequential search is then developed for
optimal tracking of the dynamic boundaries based on the A∗ algorithm (a graph search algorithm
based on a best-first and heuristic approach, which can find efficiently solutions to least-cost
path problems). The multivariate variables are used to encode existing patterns between varying
regions of the dynamic shape by using a Boolean consistency measure. Trained tolerance regions
that are resistant to the selected set of training examples are constructed to describe normal
motion properties. They are subsequently used within an iterative algorithm to accurately
identify the abnormal landmarks and derive a dysfunction surface map for highlighting regional
dysfunctions.

4.5.2 Methods based on image features extraction

These methods are based with the hypothesis that motion patterns of normal LV segments
should be deviated away from motion patterns of the abnormal LV segments. Patterns correspond
to features extracted directly from the cardiac MRI sequences.

In (Lu et al., 2009), a pattern recognition technique built upon intra-segment correlation using
a normalization scheme that maps each LV slice to polar coordinates with fixed size, intensity
level, and position is proposed. Following the normalization, an intra-segment correlation based
classifier was used for recognition of segments with abnormal regional LV wall motion. The
features used in this experiment correspond to rectangle images obtained in the end diastolic
frame in which the left edge represents the line from the LV center to a reference point located
in the epicardial border previously delineated, the row represents the radial distance (normalized
by the distance to the epicardium for that radial line) and the column is the counterclockwise
polar angle. Experiments were performed on cardiac studies from 17 subjects, 12 with abnormal
wall motion and 5 control subjects, only in the basal plane.

In (Punithakumar et al., 2010b), LV contours previously delineated were processed using a
Kalman filter, given a cyclic dynamic model. Then, wall motion was quantitatively analyzed by
constructing distributions of the radial distance estimates of the LV cavity. Three information
theoretic abnormality detection criteria are proposed: the first one is based on the Shannon’s
differential entropy (SDE), a second one is based on Rényi entropy and a third one is based
on Fisher information. Experiments were performed on segmented LV cavities of short-axis
MRI obtained from 30 subjects. Later in (Punithakumar et al., 2010a, 2013), the work was
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extended to other features: normalized radial distance, radial velocity, segment arc length,
segment area and wall thickness. A naive Bayes classifier algorithm is constructed from the
Shannon’s differential entropy of the features to automatically detect abnormal functional regions
of the myocardium. Using 174 segmented short-axis magnetic resonance cine images obtained
from 58 subjects (21 normal and 37 abnormal), the proposed approach is quantitatively evaluated
by comparison with ground truth classifications by radiologists over 928 myocardial segments.
The overall classification accuracy was 87.1%

In (Xavier et al., 2012), myocardial motion was estimated by using a modified phase-based
optical flow technique. Myocardial velocity is measured in centimeter per second in each studied
pixel and visualized as coloured vectors superimposed on MRI images. The vector field represents
the local velocity measurements of the various structures within the images. Tracking of points of
interest then allows a quantitative analysis of the myocardial displacement through time–radial
velocity curves, providing clinicians metrics for the assessment of myocardial wall abnormalities.
Eleven normal hearts and one heart presenting a severe parietal dyssynchrony were used to
evaluate the method leading to a regional measurement of the time–velocity course of myocardial
displacement in different segments of the heart wall.

In (Afshin et al., 2014), a set of statistical MRI features, based on the Bhattacharyya
measure of similarity between distributions, is constructed for all the regional segments and all
the frames in the cardiac study. The statistical features, over a cardiac cycle, are related to the
proportion of blood within each segment, characterizing the segmental contraction. Starting
with the manual segmentation of endo- and epi-cardial boundaries in the first frame, the method
searches the optimal direction along which the proposed image features are most descriptive via a
linear discriminant analysis. Then, using the results as inputs to a linear support vector machine
classifier, they obtain an abnormality assessment of each of the standard cardiac segments.
Experiments, in the three planes, were performed over 58 subjects, 21 normal and 37 abnormal
hearts, obtaining an overall classification accuracy about 86.09%.

4.5.3 Methods based on parametric imaging-based quantification

This methodology relies on the reader’s ability to integrate spatial and temporal information
on LV wall motion by creating parametric images from which motion abnormalities can be easily
identified.

(Caiani et al., 2006, 2004) used parametric images of the dynamic loops of cardiac MR
images to improve the accuracy and reduces the interobserver variability of the detection of
regional wall motion abnormalities by non-cardiologists. Parametric analysis of main LV motion
was also presented in (Kachenoura et al., 2007) in cine MR images for the evaluation of regional
myocardial function. The parametric analysis of main motion (PAMM) in echocardiography
(Ruiz et al., 2005) was adapted to short-axis MR images and a new quantitative process was
proposed to extract the segmental mean contraction times and the mean radial velocities from
the parametric images. This cardiac assessment approach was applied to short-axis slices in
22 subjects: 8 controls, 13 myocardial infarctions, and one left bundle branch block (LBBB).
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Later in (El Berbari et al., 2009) the method was applied to 36 healthy subjects. This type of
approaches have as a preliminary step, the segmentation of the cardiac cavity.

Recently, in (Suever et al., 2014) radial displacement curves (RDCs) are generated throughout
the LV that represent the distance from the LV centroid to different points in the endocardial
border previously delineated. A parameter based on cross-correlation was used to determine the
delay time between each RDC and a patient-specific reference. Maps of regional dyssynchrony
are constructed to identify the latest-contracting segment in the LV. The method was tested in
10 normal individuals and 10 patients candidate for CRT.

Despite this impressive research effort that has been devoted to automatic detection, localiza-
tion and quantification of regional LV abnormality, the problem is still challenging. Methods
based on shape statistics are sensitive to the quality of the myocardial contours, as they have the
myocardial contours as input. In these models myocardial shapes are subsampled into a number
of landmark points from which the statistical models are estimated. Some of these methods
exploit all the cardiac sequence while others base their analysis only on two phases (ES and ED)
(Ordas et al., 2005; Sliman et al., 2010; Suinesiaputra et al., 2009). The method proposed in
(Afshin et al., 2014) exploits all the sequence, however it needs the segmentation of epicardial
and endocardial boundaries at the first frame of the cardiac cycle. Others methods use only the
epicardial boundaries (Lu et al., 2009).

All of the informative features proposed in the previous techniques contribute to the dis-
crimination of LV wall motion abnormality. Different pattern recognition techniques have been
employed: in (Afshin et al., 2014), Linear Discriminant Analysis (LDA) is combined with linear
SVM. In (Punithakumar et al., 2010a), Shannon’s Differential Entropy (SDE) is used with a
Naive Bayes classifier. In (Suinesiaputra et al., 2009), wall thickening and visual wall motion
scoring are used for Independent Component Analysis (ICA). A classifier based on intra-segment
correlation measure is proposed in (Lu et al., 2009) and finally, Principal Component Analysis
(PCA) combined with a classifier based on the Mahalanobis distance is used in (Garcia-Barnes
et al., 2010).

In the next section, we introduce our proposed approach that is based on dynamic images
and machine learning techniques to obtain a binary classification between normal and abnormal
LV wall motion in cine-MRI. Furthermore, we propose to use a classification approach based on
discriminative dictionary learning techniques that, to the best of our knowledge, has never been
used for the classification of LV wall motion in cardiac cine-MRI.

4.6 The proposed method

We propose a novel approach based on dynamic images combined with discriminative
dictionary learning (DL) techniques to classify local normal/abnormal wall motion in Left
Ventricle (LV) function in cardiac cine-Magnetic Resonance Imaging (MRI). The proposed
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method exploits the partial information obtained from all temporal cardiac phases and anatomical
segments in a spatio-temporal representation without the need of LV boundaries segmentation.

4.6.1 Overall scheme

An overview of the proposed method can be seen in Figure 4.12. Firstly, cardiac cine-MRI
sequences in short axis view are collected from two populations: pathologic and control subjects.
Secondly, the subsequent process can be explained in three main stages:

Pre-processing stage: A region of interest (ROI) is defined at the first frame of each sequence
in order to keep only the LV cavity. Then, the ROI is projected in all the sequence and is
spatially normalized according to the AHA representation to identify different anatomical
segments.

Feature extraction stage: An automated spatio-temporal image extraction procedure is
performed with the construction of three novel representations: i) diametral spatio-temporal
profiles, ii) radial spatio-temporal profiles, and iii) time signal intensity curve parameters
extracted from the radial profiles. Based on these three new types of representation, three
respective approaches have been proposed in this work. They are all based on Dictionary
Learning-based classification.

Dictionary Learning-based classification stage: In each case, the proposed representation
is taken as input atoms for the training of DL approaches to provide a classification of
local LV wall motion. The results are presented in parametric images known as bull-eyes.

Our global proposed approach deals with four main problems that limit the application of
pattern recognition techniques to the problem of detecting abnormal LV wall motion (Lu et al.,
2009):

— Normalization of the LV’s size, shape, intensity level and position: A subject’s LV changes
size, shape, intensity level and position throughout the cardiac cycle and implies intra-
subject variation. Furthermore, there is an additional inter-subject variation to consider.

— Temporal normalization between datasets: the number of phases in the datasets in study
can be different. The LV wall motion features can be extracted only after defining a
temporal normalization among the phases and subjects.

— Feature extraction that is sensitive to wall motion but not sensitive to the thickness
variation of the myocardium across subjects.

— Discrimination of normal and abnormal wall motion and selection of a classification criterion.

The first problem is handled in the preprocessing step. The second is handled in the feature
extraction stage that concerns LV wall motion features. In this stage, we based our method on
the hypothesis that the construction of spatio-temporal profiles allows the analysis of the radial
motions of LV’s walls during all the cardiac cycle. In short-axis cine-MRI, a radial motion profile
represents relative contraction between endocardium and epicardium and reflects an important
part of the wall’s mechanical activation (Huang et al., 2006). Because the heart contracts and
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Figure 4.12– Overall scheme of the adaptation of DL approaches for local LV wall motion classification
in cardiac cine-MRI: 1) Data acquisition stage corresponds to acquisitions of cardiac cine-MRI sequences
in short-axis view from two populations: pathologic and control subjects. 2) Pre-processing stage, involves
the ROI extraction of the LV cavity and spatial normalization procedures. 3) Feature extraction stage,
corresponds to the three proposed spatio-temporal representations: Diametral profiles, radial profiles and
parameters extracted from time-signal intensity curves in the radial profiles. 4) The classification based on
Dictionary Learning, with three different approaches according the spatio-temporal representation used as
input signals: First approach compares two discriminative DL classification algorithms: LC-KSVD with
FD-DL using diametral spatio-temporal profiles as inputs in one of the following representations: a) gray
level (original domain), b) Fourier domain, c) Wavelet domain or d) Curvelet domain. Second approach
also compares the LC-KSVD with the FD-DL algorithm using radial spatio-temporal profiles in one of the
following representations: e) gray level (original domain) or f) wavelet domain. Third approach compares
the LC-KSVD algorithm with the KSRDL algorithm using g) combinations of parameters extracted from
the radial spatio-temporal profiles. The three approaches search for the LV wall motion classification and
the regional labeling of normal/abnormal LV anatomical segments.
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dilates also along both the long and short axes of the image stack, the radial motion series can
approximately describe the spatio-temporal wall motion from two-dimensional view (Huang
et al., 2006). For a normal heart, all the radial motions are approximately similar to one another
because the different LV anatomical segments tend to contract synchronously. However, for a
failing heart, different LV segments may have different contraction behaviors.

The interpretation of regional wall motion relies on integrating spatial and temporal in-
formation, which is subjective and requires extensive training and experience (Caiani et al.,
2006). The proposed representations exploit the spatio-temporal information in a familiar, easily
understandable, visual format. Three type of features are proposed and used in this work:

The first proposed feature used corresponds to diametral spatio temporal profiles
that show the temporal evolution of epicardium and endocardium at the same time in opposite
LV anatomical segments, exploiting thus, the spatial relation exhibited by radial motion profiles
at the same orientation. The study of contraction in opposite segments has been exploited in
echocardiography for dyssynchrony analysis. Radial dyssynchrony is defined as the differences in
peak strain between the anterior septum and posterior wall (Suffoletto et al., 2006). The
parasternal short-axis views in ehocardiography at the mid-cavity LV level is used for radial
dyssynchrony analysis. Several works have shown septal wall–to–free wall mechanical activation as
a major feature of dyssynchrony (Dohi et al., 2005; Sade et al., 2004; Suffoletto et al., 2006).
Several studies have demonstrated the value of speckle tracking strain imaging in predicting
response to CRT, for example, in (Delgado et al., 2008), a total of 161 patients undergoing CRT
implantation were studied. A time difference between peak radial strain of the anteroseptal and
posterior segments upper than 130 ms predicted CRT response with a sensitivity and specificity
of 83% and 80%, respectively.

Dyssynchrony analysis, that is performed in opposite segments in echocardiography has
been exploited again in cine MRI by (Xavier, 2010). In this work, the parasternal short-axis
view in M-mode echocardiography was considered equivalent to the short axis view in cardiac
MRI. Preliminary results of dyssynchrony were obtained by measuring different parameters in
6 points located between the inferoseptal and lateral segment, between the inferoseptal and
anterior segment and finally between anteroseptal and posterior segments. The method is based
on optical flow and allowed the definition of a Septal-Posterior Wall Motion Delay parameter
with a correlation of 0.9 between the value obtained by echocardiography and the one obtained
by the MRI study. The method was applied in a set of 9 normal subjects and 15 patients, 5 with
long QRS and 10 with small QRS.

Following this target in mind and taking advantage that 2D speckle tracking echocardiography
studies were available for a subset of patients in this work, a second proposed feature is
based on the construction of radial spatio-temporal profiles where motion of LV’s walls is
observed for each segment of the LV cavity. Furthermore, we propose the assessment of these
profiles with the analysis of radial strain curves obtained from the 2D-STE studies, where a
profile is classified as normal or abnormal (akinetic or hypokinetic cases). By incorporating
the radial strain information we can detect more accurately, LV wall motion abnormalities in
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independent anatomical segments of the LV.
A third feature for LV wall motion classification is based on the idea that information of

contraction is given by specific information extracted from the radial spatio-temporal profiles
that can be described as quantitative parameters. By using these parameters to represent each
profile, we can reduce the data size and the training and testing times in the classification process.
From the cine-MRI sequence, Time-signal intensity curves (TSICs) are extracted from the
radial spatio-temporal profiles in each anatomical segment. Different parameters are then defined
from these curves that reflect dynamic information of the LV contraction.

The proposed methods to discriminate normal and abnormal wall motion are defined according
to the type of previous proposed features that are given as input atoms in the training of dictionary
learning algorithms for classification. By this way, the Label Consistent K-SVD DL algorithm
and the Fisher Discriminative DL algorithm described in sections 2.6.1.1 and 2.6.1.2 respectively,
are adapted for the classification of LV wall motion using diametral and radial profiles. A
kernel based DL algorithm (KSRDL), described in section 2.6.2, is used with the third type
of features or parameters that are extracted from the radial spatio-temporal profiles. We have
shown in previous chapters that these algorithms provide good classification performance and
generalization when they are used with natural images. Furthermore, they have not yet been
applied in medical imaging. For comparison purposes, our methods will be compared with
support vector machines using linear and radial basis function (RBF) kernels.

In the next sections we describe the steps of the proposed method in detail.

4.6.2 Pre-processing stage

This stage comprises the extraction of a region of interest to extract the LV cavity and a
spatial normalization of the LV’s size and position with the objective to analyze inter-subjects
variations.

4.6.2.1 ROI extraction

A cardiac cine-MRI sequence contains S temporal frames usually between 25 and 40, each
frame comprising R slices routinely divided in three spatial levels: basal, mid-cavity and apical.
The short axis view of any of these slices shows a cross-section of the left and right ventricle. For
each patient, and for each slice, the center of the LV and the anterior intersection between the
two ventricles are determined with the placement of 5 points selected manually by the user in a
reference frame at the end-diastolic phase in each slice: basal, mid-cavity and apical . As shown
in Figure 4.13, the first 4 points (labeled as A, B, C, D) located outside the epicardial border
respectively in the anterior, lateral, inferior and septal wall at the end-diastolic phase, are used
to calculate the LV centroid, and the fifth point (E) is placed in the anterior intersection of the
left ventricle and the right ventricle. It should be pointed out that the selection of these points
is the only user assistance required by the proposed approach.
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Figure 4.13– Region of interest for normal/abnormal wall motion classification. The 4 points (A,B,C,D)
that enclose the LV cardiac cavity and the intersection point (E) between the two ventricles in a short
axis plane.

4.6.2.2 Spatial normalization according to American Heart Association
17-Segment Model (AHA)

Because of the diversity of the body positions of patients in the scanner and different heart
positions in the thorax, we have to normalize different heart positions. This normalization is
based on the AHA 17 segment model (Cerqueira et al., 2002) (cf. 4.2.3). Figure 4.14 shows
the location of the point E at the three short axis planes used for the spatial normalization of
the LV according to the AHA representation. By this way, a reference axis crossing points E
and the LV centroid is used as reference in order to spatially normalize different heart positions
to the same reference. Following the procedure described in (Lu et al., 2009), we can identify
different segments in the short axis slices: basal, mid-cavity and apical (cf. Figure 4.14-right).

For basal and mid-cavity planes, 6 anatomical segments (cf. Figure 4.14-middle and left) are
identified: anterior (n◦ 1 and 7), antero septal (n◦ 2 and 8), infero septal (n◦ 3 and 9), inferior
(n◦ 4 and 10), posterior/infero-lateral (n◦ 5 and 11), and lateral/antero-lateral segments (n◦ 6
and 12). For apical plane 4 segments are identified: anterior (n◦ 13), septal (n◦ 14), inferior (n◦

15) and lateral (n◦ 16).

4.6.3 Feature extraction stage

In this stage, the three proposed representations are described. They are constructed without
the need of segmentation of the LV cavity. Furthermore, they exploit all the information of
the cardiac cycle and inherently dispose discriminatory information for cardiac LV wall motion
characterization.
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Figure 4.14– Spatial normalization according to AHA model. The figure shows the anterior intersection
between RV and LV (point E) in three short axis planes. For basal and mid-cavity planes: 1-7. Anterior,
2-8. Antero-Septal, 3-9. infero-Septal, 4-10. Inferior, 5-11. Infero-Lateral, 6-12. Antero-Lateral. For
apical plane: 13. Anterior, 14. Septal, 15. Inferior, 16. Lateral

4.6.3.1 Extraction of Diametral Spatio-temporal profiles

Diametrical lines are traced passing by the LV centroid from a point outside the epicardial
border in a segment to its opposite side, e.g. from antero-lateral to infero-septal, from anterior to
inferior or from antero-septal to infero-lateral segments. The spatio-temporal image extraction
is applied for different angular positions. As it can be seen in Figure 4.15, it begins from a
horizontal diametrical line taken as reference at 0◦, then with an angular step ∆θ, we repeat
the process setting θi=θi−1+∆θ, i = 1, · · · , 360), with θ0 = 0◦ by rotating the diametrical line
along the counterclockwise direction with the center of the line coinciding with the LV centroid,
leading thus to a 360◦ spatio-temporal scan of the heart.

reference line    = 0°

°=    +

Figure 4.15– Rotation of the diametrical line for the extraction of diametral spatio-temporal profiles.

Each line is mapped into the next temporal frame or phase of the heartbeat in the same
orientation (Figure 4.16). The image’s gray levels along each diametrical line are concatenated for
all the cardiac sequence to obtain a temporal image I ∈ RP×col, where P denotes the length of
the diametrical line (the number of crossed pixels) and col represents the number of phases in the
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cardiac cycle. This image is called a spatio-temporal profile and shows the temporal evolution of
the contraction in opposite segments in AHA model (Cerqueira et al., 2002), going through the
entire cardiac cycle. Thus, for the i-th row, Ii,j , j = 1, 2, . . . , col, shows the temporal evolution
on a single pixel along the sequence (the phases), while for a fix column j, Ii,j , i = 1, 2, . . . , P ,
shows the set of pixels that lies on a diametrical line for a fixed phase (Mantilla et al., 2013b).
Figure 4.16 shows an illustrative example of the construction of the spatio-temporal image for
the Antero-lateral to Infero-septal segment in the LV.

Figure 4.16– Example of the construction of the spatio-temporal image from a diametrical profile
across opposite segments for a control patient. The diametrical line crosses Anterolateral and inferoseptal
segments. The spatio-temporal profile is obtained from end-diastolic phase to the end of the cardiac
cycle going through the end-systolic phase. In the same figure, Spatial normalization according to the
AHA 17 myocardial Segments (Cerqueira et al., 2002): basal and mid-cavity planes: 1 and 7, Anterior;
2 and 8, Antero-Septal; 3 and 9, Infero-Septal; 4 and 10, Inferior; 5 and 11, Infero-Lateral; 6 and 12,
Antero-Lateral. For apical plane: 13, Anterior; 14, Septal; 15, Inferior and 16, Lateral. 17 is the apex.

Spatio-temporal normalization: For the normalization of the LV’s size among patients,
we have observed the length of the diametrical lines at the end-diastolic phase in the basal short
axis plane in all the patients. We select this reference plane because at the basal plane the LV
ventricle presents the bigger size. The diametral line holds between 80 and 112 points for all
the patients, then we select a reference average of 90 points. Thus, every spatio-temporal image
is linearly interpolated along the y direction to 90 points, leading to the same length of the
diametrical line, thus we have interpolated images I ′ ∈ R90×col.

Since the number of phases in the acquisition stage differs for each patient group, we perform
an interpolation along the x direction to 20 points using bicubic interpolation method, leading
to a spatio-temporal image I ′′ ∈ R90×20. This procedure is applied independently for each image
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profile and allows to normalize the images spatially for both intra- and inter-subject comparisons
(Garcia-Barnes et al., 2010; Lu et al., 2009).

Intensity normalization: In order to normalize the intensity differences across slices,
phases, subjects and data sets, each spatio-temporal image is normalized. For that purpose, each
pixel in each spatio-temporal image is set to (I ′′i,j − µ) /σ, where, I ′′i,j is the interpolated pixel
intensity value (after spatio-temporal normalization), µ and σ are, respectively, the mean and
the standard deviation of the spatio-temporal image I ′′ ∈ R90×20(Lu et al., 2009).

For each patient we obtain a set of IRM ∈ R90×20, diametral normalized spatio-temporal
profiles, where R ∈ {1, 2, 3} each associated with a short axis slice level (apical, medial and basal)
and M ∈ {1, . . . , 360}, ∆θ = 1◦, each associated with a profile orientation in the 360◦ scans of
the LV. Although we only take profiles between 0◦ and 180◦ since a diametral profile covers two
opposite segments in the LV cavity.

Once spatio-temporal profiles are extracted, the objective is to detect changes between healthy
and pathological patients. Figure 4.17, shows an example of three spatio temporal profiles from
two patients (Figure 4.17-a) and b)) and one healthy subject (Figure 4.17-c)). We handle the
hypothesis that in healthy subjects, contraction is synchronous in opposite segments. As can
be seen in the spatio-temporal profile shown in Figure 4.17-(c), the arrows move uniformly in
opposite segments showing the contraction and then relaxation of the ventricular walls.

Figure 4.17– Spatio-temporal image profiles examples from patients (a) and (b), and healthy subject
(c) data. In (a) and (b) asynchronous motion contraction is observed with the arrows (inside the spatio-
temporal profile) that follow a non uniform movement, while in (c) synchronous contraction wall motion
is observed in the opposite segments. The arrows moves uniformly in opposite segments showing the
contraction and then relaxation of the ventricular walls.

Furthermore, in pathological patients normal contraction can be observed only in one segment,
while in its opposite segment, contraction can occurs i) with a relative delay (late contraction
or early contraction), ii) synchronous but with low amplitude or iii) maybe there is absence
of contraction. For instance, for the spatio-temporal profiles shown in Figure 4.17-(a) and
(b), asynchronous motion contraction is observed with the arrows that follow a non uniform
movement. In one segment it seems that contraction of epi-and endocardium follows a normal
motion while in its opposite segment the same behavior can not be appreciated.
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Figure 4.18– Graphical User Interface (GUI) for profiles extraction in CMR databases. Panel (A)
shows a short-axis MR view at slice 40 (middle) of a patient. Panel (B) shows the extracted-normalized
region-of-interest (ROI) and 4 highlighted diametrical lines in blue. Panel (C) shows the spatio-temporal
image from the horizontal diametrical line in the ROI. Panel (D) shows gray level intensity curves of the
highlighted row and column in the spatio-temporal image and the corresponding Fourier representation
along the columns (1D FFT-y), rows(1D FFT-t) and 2D-FFT. Panel (E) shows an intensity curve of
the highlighted column and its correspondent continuous Wavelet representation. The button “Other
transform" (F) allows the visualization of Discrete Wavelet transform or Curvelet transform of the
spatio-temporal image.

To facilitate the study of the cardiac cine-MRI sequences and the spatio-temporal profile
extraction, we developed a Graphical User Interface (GUI) in Matlab R© that is shown in
Figure 4.18 (Mantilla et al., 2013a). The application allows us to select a patient and a slice
of interest (base, middle, or apex), then, the region of interest (ROI) can be defined by the
user. The GUI shows different panels, where the representation of the spatio-temporal profiles in
different domains is observed.

In this stage, relevant features are extracted from the whole spatio-temporal image. We
apply four modes of information representation on the given image. Considering that Dictionary
learning will be applied in next steps, we apply the most basic characteristic atoms (cf. 2.4.1):
Fourier, Wavelet and Curvelet, with the assumption that in those domains the data may be
sparse and more suitable for classification purposes.

In the first mode of representation, information of the gray level (original image domain) is
taken.
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The second mode of representation is performed in the Fourier domain: i) 1-Dimensional
Fast Fourier Transform along the rows of the spatio-temporal profile (FFT-x), ii) 1-Dimensional
Fast Fourier Transform along the columns of the spatio-temporal profile (FFT-y), and iii) 2-
Dimensional Fast Fourier Transform (FFT-2D). The respective representations are shown in
Figure 4.18-panel D.

In the third mode of representation, a three-level db4 2-Dimensional discrete Wavelet Trans-
form is applied, following the sparsifying transform used in the thresholding experiment described
in (Lustig et al., 2007). The sparsifying transform is an operator mapping a vector of image data
to a sparse vector. In (Lustig et al., 2007) the Wavelet transform has obtained slight advantage
in performance compared to the Discrete Cosine Transform (DCT) and finite-differences on two
representative MR images at reconstructions involving 5-10% of the coefficients.

Finally 2D Curvelet transform (Candès et al., 2005) with 3 levels of decomposition is also
applied.

Figure 4.19 shows an example of a spatio-temporal profile and its respective representation
in other domains.
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Figure 4.19– (a) Spatio-Temporal profile and its respective representation on other bases: (b)
1-Dimensional FFT-y, (c) Wavelet and (d) Curvelet domains.

4.6.3.2 Extraction of Radial Spatio-temporal profiles

Similar to the diametral profile extraction procedure described above, radial lines are traced
from the LV centroid to a point outside of the epicardial border. This line is mapped into the
next frame of the heartbeat in the same orientation. The image’s gray levels along the radial line
are concatenated to obtain a temporal image I ∈ RP×S , where P denotes the length of the radial
line and S represents the number of temporal frames in a cardiac cycle. Figure 4.20, shows an
illustrative example of the construction of a radial spatio-temporal image from the LV centroid
to a point in the Infero-septal segment in the LV.

The spatio-temporal image extraction begins with a horizontal radial line taken as reference
at 0◦, then with an angular step ∆θ, we repeat the process setting θi=θi−1+∆θ, with θ0 = 0◦ by
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Figure 4.20– Example of construction of the spatio-temporal image from a radial profile in the
inferoseptal segment for a control patient. Each radial profile is obtained from end-diastole phase during
one cardiac cycle going through the end-systole phase. In the same figure, Spatial normalization according
to the AHA 17 myocardial Segments (Cerqueira et al., 2002): basal and mid-cavity planes: 1 and 7,
Anterior; 2 and 8, Antero-Septal; 3 and 9, Infero-Septal; 4 and 10, Inferior; 5 and 11, Infero-Lateral; 6 and
12, Antero-Lateral. For apical plane: 13, Anterior; 14, Septal; 15, Inferior and 16, Lateral. 17 is the apex.

rotating the radial line along the counterclockwise direction fixing the LV centroid, leading thus
to a 360◦ spatio-temporal scan of the LV.

For spatio-temporal normalization, the same procedure used for diametral profiles is applied
for radial profiles. Every spatio-temporal image is linearly interpolated along the y direction to
40 points (by evaluating the average length of the radial lines at the mid-cavity plane for all the
patients at the end-diastolic phase), leading to the same length of the radial line, thus we obtained
interpolated images I ′ ∈ R40×S . Furthermore, since the number of phases in the acquisition stage
differs from each patient group, we perform an interpolation along the x direction to 20 points
using bicubic interpolation method leading to a spatio-temporal image I ′′ ∈ R40×20.

Then, we follow the same normalization procedure for diametral spatio-temporal profiles
in order to normalize the intensity differences across slices, phases and subjects. Each pixel in
each radial spatio-temporal image is set to (I ′′i,j − µ) /σ, where, I ′′i,j is the interpolated pixel
intensity value, µ and σ are, respectively, the mean and the standard deviation of the radial
spatio-temporal image.

For each patient we obtain a set of IRM ∈ R40×20, radial normalized spatio-temporal profiles,
where R ∈ {1, 2, 3} each associated with a SAX slice (apical, medial and basal) and M ∈
{1, . . . , 360}, ∆θ = 1◦, each associated with a profile orientation in the 360◦ scans of the LV.

Similarly to diametral profiles, after several experiments, we have chosen to apply two mode of
information representation on the given image IRM ∈ R40×20. In the first mode of representation,
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features are extracted directly on the gray level domain (original image domain). In the second
mode of representation, feature extraction is performed with a three-level db4 2-Dimensional
discrete Wavelet Transform obtaining a new representation ΨR

M ∈ R64×64.
Unlike diametral profiles for which we have chosen three standard overcomplete basis: Fourier,

Wavelet and Curvelet domains, after several experiments we have found that Fourier and Curvelet
domains were not be able to give a competitive performance for classification compared to Wavelet.
This is due to the characteristics of the profiles that must retain not only frequency-localized
information, but also time-localization information given by Wavelet coefficients and not by
Fourier coefficients. As Curvelets well represent objects with curved singularities, in the case of
spatio-temporal profiles, they lack of this particularity.

Figure 4.21, shows an example of a spatio-temporal profile and its respective representation
in the Wavelet domain.
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Figure 4.21– (a) Radial Spatio-Temporal profile and its respective representation on the (b) Wavelet
domain.

4.6.3.3 Extraction of parameters from radial Spatio-temporal profiles

Initially, from a radial image profile IM ∈ R40×20, where M ∈ {1, . . . , 360}, ∆θ = 1◦, each
associated with a radial profile orientation in the 360◦ scans of the LV, we extract the set of pixels
that lies on a radial line for a fixed row, i.e., for the i− th row, Ii,j , j = 1, 2, . . . 20 represents a
time-signal intensity curve. It shows the temporal evolution on a single pixel during the cardiac
cycle. This type of curve has been extracted directly from the cardiac cine-MRI sequence in
(Kachenoura et al., 2007). Figure 4.22, shows an illustrative example based on the method
proposed in (Kachenoura et al., 2007), where four patterns of time-signal intensity curves
corresponding to four pixels located near the endocardial wall are shown. Their evolution from
the end-diastolic image to the end of the cardiac cycle passing through the end systolic phase
are also illustrated in the same figure.

These type of curves are also identified in the proposed radial spatio-temporal profiles. They
are called Time-Signal Intensity Curves (TSICs). For each TSIC obtained in a single radial
image profile, we performed the interpretation of parametric images proposed in (Kachenoura
et al., 2007). Figure 4.23-right shows 4 TSICs extracted from the image profile shown on the left.
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Figure 4.22– Four patterns of time-signal intensity curves (top) are shown according to the distance of
the corresponding pixels to the endocardial wall and its evolution from the the end-diastole image to the
end of the cardiac cycle passing through the end systolic phase (bottom). Adapted from (Kachenoura
et al., 2007).
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Figure 4.23– A spatio-temporal profile (left) and 4 patterns of TSICs (right). The green color line at
the top of the graphic, corresponds to a pixel located inside the cavity. The red color line corresponds to
a pixel located near the endocardial border. The blue color line corresponds to a pixel located outside
the epicardial border. The green color line at the bottom of the graphic, corresponds to a pixel located
between endocardium and epicardium.
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A total of three types of TSICs C(x, y, t) associated with the pixel c(x, y) are observed
(Kachenoura et al., 2007) and different colors are assigned to label each one:

Green color is assigned to the pixel points that remain within the myocardium during the
whole cardiac cycle and to the pixels that remain inside the cavity. Red color labels the pixels
from curves that present a decreasing then increasing shape, reflecting the contraction of the
LV cavity while blue color is assigned to the pixels from curves that present an increasing then
decreasing shape with low amplitude.

Following a threshold operator based on the amplitude of the TSICs, we select only the
curves that reflect the contraction of the ventricular cavity, i.e., red curves. After constructing
the histogram of these curves, we find out that the form of the distribution follows a Gaussian
probability density function (p.d.f.). By this way, a Gaussian p.d.f. is fitted to each inverted
TSIC labeled in red. Gaussian p.d.f. is given by:

f(t) = 1
σ(c)
√

2π
e
−

(t− µ(c))2

2σ(c)2 (4.1)

where, µ(c) and σ(c) are the mean and the standard deviation of the distribution with the
corresponding variance σ(c)2.

We obtain the optimal values σ(c) and µ(c) for the new function f(t) using an iterative
Least-Mean-Square (LMS) algorithm for the c-th red curve that is of interest. The new curves
constructed with the optimal values of σ(c) and µ(c) are called FTSICs (Fitted Time-Signal
Intensity curves). An example of a FTSIC is shown in Figure 4.24 where two representative
transition time values TON and TOFF are shown. TON represents the time when the contraction
begins and TOFF represents the time of the end of the endocardial movement.
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Figure 4.24– A Gaussian p.d.f. function fitted to a selected TSIC. TON represents the time when the
contraction begins and TOFF represents the time of the end of the endocardial movement. TM is the
time of the maximum peak in the curve. Lmc is the mid-height width value.
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These parameters were firstly identified in TSICs from cine MRI in (Kachenoura et al.,
2007) by adapting the parametric analysis of main motion proposed in echocardiography in
(Ruiz et al., 2005). This analysis is based on a nonlinear transition model defined by an adaptive
window function and allowed the estimation of the time parameters TON and TOFF values and
two amplitude parameters.

Following this target in mind, we calculate the parameters TON(c) and TOFF (c) from the
FTSICs using the parameters σ(c), µ(c) and the time characteristics Lmc and TM, which are
the mid-height width and the maximum time on the FTSIC (cf. Figure 4.24).

The mid-height width is calculated as:

Lmc = 2
√

2ln2σ ≈ 2.355σ (4.2)

Formally, for a pixel c initially inside the cavity, close to the endocardial border, the transition
times TON(c) and TOFF (c) are defined as:

TON(c) = TM − µ− σ · Lmc
2 , (4.3)

TOFF (c) = TM − µ+ σ · Lmc
2 , (4.4)

where, TON(c) represents the time when the contraction begins and TOFF (c) represents the
time of the end of the endocardial movement over the pixel c.

From a clinical point of view, the mean transition time Mt=(TON + TOFF)/2 was considered
more informative with regard to characterizing the wall motion (Ruiz et al., 2005).

We follow the hypothesis that by using this type of parameters like the mean transition time
parameter proposed by (Kachenoura et al., 2007), we can perform the task of LV wall motion
classification more accurately than using all the information contained in the spatio-temporal
profiles.

Thus, in this step, four parameters are then proposed is this work: An average clustered
curve parameter, a skewness parameter and a Cross correlation parameter. Furthermore, we
propose to use the Mean transition time parameter proposed by (Kachenoura et al., 2007),
calculated over the clustered curve. The extraction of these parameters are described below
(Mantilla et al., 2015):

Average clustered curve (Cl): Each anatomical segment of the left ventricle is divided into
6 angular subregions of ten consecutive profiles as shown in Figure 4.25. A multisignal 1-D
clustering process based on Wavelets (Misiti et al., 2007), splits the set of all the FTSICs
from radial profiles in each angular subregion into two clusters, then the average of the
signals in the largest cluster is computed representing the largest group of signals with a
similar contraction pattern. Thus, each image profile in an angular subregion is represented
by a reference clustered signal of length 20, ClM ∈ R20, where M ∈ {1, . . . , 360}, ∆θ = 1◦,
each associated with a radial profile orientation in the 360◦ scans of the LV.
In Figure 4.25, FTSICs from profiles in a selected sub-region in the anterolateral segment,
are clustered into two groups shown in red and blue. In the same figure the average signal
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of the cluster with maximum size is shown in black and is chosen to represent the behavior
of the anatomical segment.
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Figure 4.25– Example of an angular subregion of 10◦ (left) in the anterolateral segment where 10
radial spatio-temporal profiles can be extracted (middle). Time-signal intensity curves from the radial
spatio-temporal profiles in the selected sub-region are shown in the right. The 2 clusters in red and blue
after multisignal 1-D clustering and its respective reference signal in black (right).

The Skewness parameter (Sk): In (Ruiz et al., 2005), the boundaries of the transition
times were analyzed in accordance with physiological criteria. For the cardiac cycle
beginning at the end-diastolic point, the transition corresponding to the time TON occurs
during the systolic phase. The duration of the systolic phase is considered not larger than
half the duration of the cardiac cycle. We propose to analyze the position of the TON
parameter in terms of symmetry of the FTSICs.
Figure 4.26, shows the histogram of the maximum peak in FTSICs for abnormal and normal
profiles. For normal profiles mostly of the maximum peak in the curves appears slightly
leftward and nonsymmetrical which means that the TON parameter is located at the first
half of the cardiac cycle. In the case of abnormal profiles, the maximum peak in the curves
appears slightly to the right and more balanced which means that the TON parameter is
located at the end of the first half of the cardiac cycle or at the beginning of the second
half of the cardiac cycle. These observations are in accordance to the physiological criteria
described before for the healthy population.
From the profiles in a subregion in a particular segment, after experimentation, 5 random
FTSICs are selected. In this case every FTSIC is represented by a single value, thus each
image profile is represented by 5 values of Skewness, SkM ∈ R5, where M ∈ {1, . . . , 360},
∆θ = 1◦, each associated with a radial profile orientation in the 360◦ scans of the LV.
For univariate data x1, x2, · · · , xN , the formula for skewness is:

Sk =
N∑
i=1

(xi − x)3

s3 (4.5)

where x is the mean, s is the standard deviation, and N is the number of data points.
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Figure 4.26– Histogram of maximum peak time in time-signal intensity curves from abnormal profiles
(left) and normal profiles (right)

The Cross Correlation parameter (Co): A parameter based on cross-correlation analysis
is calculated between each average clustered curve (Cl) and a patient-specific reference.
To define this reference we have performed a global multisignal 1-D clustering based on
Wavelets (Misiti et al., 2007) overall the FTSICs from all the image profiles that belong
to the control subjects. The average of the cluster with maximum size is a patient-specific
reference from the healthy population. Cross-correlation is then computed between each
average clustered curve (Cl) and the normal reference. Thus, every spatio-temporal image
profile is represented by a single value of correlation. CoM ∈ R1, where M ∈ {1, . . . , 360},
∆θ = 1◦, each associated with a radial profile orientation in the 360◦ scans of the LV.

The Mean transition time parameter (Mt) As we have mentioned before, we propose to
use the Mean transition time parameter proposed by (Kachenoura et al., 2007), calculated
over the clustered curve (Cl). Thus, every spatio-temporal image profile depicted by a
clustered curve, is represented by a single value of Mean transition time MtM ∈ R1, where
M ∈ {1, . . . , 360}, ∆θ = 1◦, each associated with a radial profile orientation in the 360◦

scans of the LV.

4.6.4 Dictionary Learning-based classification

We aim at classifying whether a LV anatomical segment presents wall motion abnormality or
not using the proposed spatio-temporal profiles. These profiles are taken as input vectors in the
SVM models and are also taken as initial atoms of the dictionaries in the LC-KSVD, FD-DL
and KSRDL algorithms, all of them previously described in Chapter 2 (cf. Section 2.6).

To recall (cf. 2.4.2), Figure 4.27 shows an illustrative example of the proposed method of
classification using the basic framework of DL. In this figure, input signals Y = [y1,y2, . . . ,yN ] ∈
Rn×N are represented as a data matrix where each column is a n-dimensional input signal
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(vectorized spatio-temporal representations) and N is the number of profiles.
Note that in the parametric approach, Y represents a data matrix of parameters where each

column is a vector of concatenated parameters extracted from the radial spatio-temporal profiles.
The Sparse coefficients X = [x1,x2, . . . ,xN ] ∈ RK×N represent the sparse codes coefficients

of input signals Y , i.e, xi ∈ RK , i = 1, · · · , N , is the sparse representation of size K of the
vectorized spatio-temporal profile Yi ∈ Rn.

The dictionaryD = [d1,d2,d3, . . . ,dK ] ∈ Rn×K , withK items for sparse signal representation
of Y constrained by a sparsity parameter T (‖xi‖0 ≤ T ), is the dictionary to be learned from
the data samples.

Figure 4.27– Illustrative scheme for DL based framework for LV wall motion classification. Top
panel: the DL framework using radial spatio-temporal profiles as input signals. Left bottom panel: The
different possible representations of the input signals yi: a diametral spatio-temporal profile and its
representation in a) gray level domain, b) Fourier domain, c) Wavelet domain, d) Curvelet domain, a radial
spatio-temporal profile and its representation in e) gray level domain, f) Wavelet domain, g) parameters
extracted from the radial profiles. Bottom right panel: the three DL classification techniques.

The Sparse coefficients X and the dictionary D, are learned by adapting the following three
specific DL-based classification algorithms for LV wall motion classification:
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Label Consistent LC-KSVD algorithm: The first discriminative DL technique adapted for
LV wall motion classification is the Label Consistent DL (LC-KSVD) algorithm (Jiang
et al., 2013), which presents two variants (cf. 2.6.1.1): the first one, denoted here as
LC-KSVD1 (Equation 4.6) takes only one structural constraint on the dictionary, that is
represented by ‖Q −AX‖22, the discriminative sparse-code error term; the second one,
named LC-KSVD2 (Equation 4.7), takes two structural constraints on the dictionary: the
discriminative sparse-code error term and the classification error that is represented by
‖H −WX‖22. Their respective optimization problems are:

〈D,A,X〉 = arg min
D,W,A,X

‖Y −DX‖22 + α‖Q−AX‖22

s.t. ∀i, ‖xi‖0 ≤ T, (4.6)

〈D,W,A,X〉 = arg min
D,W,A,X

‖Y −DX‖22 +

α‖Q−AX‖22 + β‖H −WX‖22
s.t. ∀i, ‖xi‖0 ≤ T, (4.7)

where, Q = [q1 . . . qN ] ∈ RK×N are the discriminative sparse codes of the input data Y (vec-
torized spatio-temporal representations) for classification and A is a linear transformation
matrix to be obtained as part of the solution of the optimization problem.

The linear transformation, g(x;A) = Ax, transforms the original sparse codes coefficients
X to be most discriminative in the sparse feature space RK .

W ∈ Rm×K denotes the classifier parameters, where m is the number of classes (m = 2,
normal/abnormal spatio-temporal representations).

H = [h1, . . . ,hN ] ∈ Rm×N are the class labels of input profiles Y . α is the weight for label
constraint term and β is the weight for classification error term.

The K-SVD algorithm (Aharon et al., 2006) is used to find the optimal solution for all
parameters D, W , A and X simultaneously, whereas Q and H matrices are initialized in
a supervised manner based on the original labels for each class. To recall (cf. 2.6.1.1), the
dictionary D is initialized by computing several iterations of the K-SVD algorithm within
each class and then combine all the outputs (i.e. dictionary items learning from each class)
of each K-SVD. W and A are initialized by computing ridge regression models. Finally,
given the initialized D, the original K-SVD algorithm is applied to compute the sparse
codes X of training signals Y .

An illustrative example of the matrices Q andH for the binary classification of 8 diametral
spatio-temporal profiles (4 from the abnormal class and 4 from the normal class) is shown
in Figure 4.28-left, where each column of Q corresponds to a discriminative sparse code
for an input profile. In the same figure (top-right), an illustrative example of the initial
dictionary for LC-KSVD algorithm is shown.
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h1 h2 h3 h4 h5 h6 h7 h8

1 1 1 1 0 0 0 0  

1 1 1 1 0 0 0 0  

1 1 1 1 0 0 0 0  

1 1 1 1 0 0 0 0  

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

Q = 

 Y =

Class2

Normal pro les

Class1

Abnormal pro les

1       1       1       1                     0      0       0       0    

0       0       0       0                     1      1       1       1H= 

discriminative 

sparse codes

D =

D =

D1
D2

LC-KSVD

 initial dictionary

FD-DL 

initial dictionary

Figure 4.28– Left: An illustrative example of the “discriminative” sparse codes matrix Q for an
initial dictionary of size 8 in the LC-KSVD algorithm. Each column qi is a “discriminative” sparse
code corresponding to an input profile yi if the non-zero values of qi occur at those indices where the
input profile yi and the dictionary item dk share the same label. The input signals Y correspond to 8
diametral spatio-temporal profiles with their respective class labels H: class 1 corresponds to abnormal
spatio-temporal profiles with hi = [1, 0]T , while class 2 corresponds to normal spatio-temporal profiles with
hi = [0, 1]T . Top right: the initial dictionary of the LC-KSVD algorithm D = [d1,d2,d3, . . . ,d8] ∈ Rn×8.
Bottom right: The initial structured dictionary for the FD-DL algorithm: D =

[
D1 99

9D2

]
.

Fisher discriminant FD-DL algorithm: The second discriminative DL technique which has
been adapted for the classification of radial spatio-temporal profiles is the Fisher Discrim-
inative DL (FD-DL) algorithm (Yang et al., 2014) (cf. 2.6.1.2). It proposes to learn
a structured dictionary D =

[
D1 99
9D2

]
, where D1 is the class-specified sub-dictionary

associated with class of abnormal profiles, and D2 is the class-specified sub-dictionary asso-
ciated with class of normal profiles. In the Figure 4.28-bottom right, an initial structured
dictionary for the FD-DL algorithm with 8 diametral spatio-temporal profiles (4 from the
abnormal class and 4 from the normal class) is shown.

Denoting by Y =
[
Y1 99

9Y2
]
the set of training profiles (abnormal/normal respectively).

Furthermore, let X be the coding coefficient matrix of Y over D i.e., X =
[
X1 99

9X2
]
,

where X1 and X2 are the sub-matrix containing the sparse coding coefficients of Y1 and Y2

over D respectively. They propose to obtain the dictionary D and the coding coefficient
matrix X by solving:

(D,X) = arg min
D,X

{r(Y ,D,X) + λ1‖X‖1 + λ2‖f(X)‖1} , (4.8)
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where r(Y ,D,X) is the discriminative fidelity term, ‖X‖1 is the sparsity constraint, f(X)
is a discrimination constraint imposed on the coefficient matrix X, and λ1 and λ2 are
regularization parameters.
In the FD-DL algorithm, the Fisher discrimination criterion is imposed on the coding
coefficients X to make them discriminative. To this end, the DL process grants that the
sparse coding coefficients keeps small intra-class scatter but big inter-class scatter. At
the same time it grants that each class-specific sub-dictionary in the whole structured
dictionary keeps good representation ability to the training samples from the associated
class but poor representation ability for other classes.

Kernel-based KSRDL algorithm: The third algorithm for LV wall motion classification is
adapted by using the parametric inputs. It correspond to the Kernel Sparse Representation
DL algorithm (Li et al., 2013) (cf. 2.6.2). Here, the input signals Y represent a data
matrix of parameters where each column is a vector of concatenated parameters extracted
from the radial spatio-temporal profiles.
Classification is performed by training a K-Nearest Neighbor classifier over the sparse
training coefficients matrix X learned by the kernel-based DL algorithm with Gaussian
prior over the atoms of the Dictionary D:

min
D,X

1
2‖Y −DX‖

2
F + α

2 trace
(
DTD

)
+ λ

N∑
i=1
‖xi‖1, (4.9)

In this case the KSRDL algorithm is applied using a radial basis RBF mapping function
with σ = 1 that replaces the inner products in the DL model. The sparse coefficients
matrix X are obtained by solving the Non negative Quadratic Problem (NNQP):

min
X

p∑
i=1

1
2x

T
i Hxi + gTi xi s.t. X ≥ 0 (4.10)

whereHk×k = DTD and g = −DTY . The class label of the new test instances is predicted
using the classifier obtained in the training step and the learned dictionary D.

4.7 Conclusion

This chapter described the clinical context of this work, the main components of the cardiac
function and the principal issue that is focused on LV wall motion abnormalities characterization
in cardiac cine-MRI for heart failure patients. A brief description of the imaging modalities that
are used in this work for the assessment of left ventricular function was presented, including:
Echocardiography and cardiac MRI. Different works of the literature to assess LV wall motion in
cardiac MRI have been reported. Finally the proposed method has been presented. This method
differs from those methods reported in the literature in two points: firstly, it differs in the feature
extraction procedure which exploits all the information contained in the cardiac cycle without
the need of segmentation of the epicardial and endocardial boundaries. The proposed features
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are: i) diametral spatio-temporal profiles, ii) radial spatio-temporal profiles, and iii) time signal
intensity curve parameters extracted from the radial profiles. This kind of representation has
not been previously reported for the classification of LV wall motion in cardiac MRI. It differs
secondly, by the use of DL techniques for classification of LV wall motion in cardiac MRI. The
application of the DL algorithms and the results are presented in the next chapter.
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CHAPTER5
Dictionary Learning for LV wall
motion classification based on

Spatio-temporal profiles:
Experiments and Results

5.1 Introduction

In this Chapter we present the experimental part and the results of the proposed method
for LV wall motion classification, based on Spatio-temporal profiles and DL approaches. The
description of the study population and the used protocol of evaluation are first described.
Then, experimental results using the proposed features with discriminative dictionary learning
DL algorithms for LV wall motion classification are presented. Furthermore, these results are
compared with the results obtained using classical classification methods based on Support Vector
Machines (SVMs) using two different kernels. The classification techniques are quantitatively
evaluated in terms of accuracy, sensitivity, specificity, complexity (sparseness in SVMs and
sparsity constraint in DL techniques) and computing times (training and testing). The end of
this chapter presents a conclusion, elements of discussion of the proposed approach, limitations
and perspectives of this study.

5.2 Study population

For this study, cardiac short-axis MR images were collected from four databases: two groups
of data patients that were acquired from clinical protocols in national and international research
projects; and two groups of healthy subjects obtained from two challenges of MICCAI 1 the

1. MICCAI - Medical image computing and computer-assisted intervention
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Cardiac MR Left Ventricle Segmentation Challenge MICCAI 2009 (Radau et al., 2009) and the
first Cardiac Motion Analysis Challenge MICCAI 2011 (Tobon-Gomez et al., 2013). Next, we
describe in details these datasets.

5.2.1 Patient data

This study included 14 patients who met accepted clinical criteria for CRT: NYHA Class III
or IV heart failure, LV Ejection Fraction (LVEF) < 35%, and optimal medical therapy for at
least one month. All patients used in this study had a QRS duration ≥ 120 ms and present LV
wall motion abnormalities. From these patients, 6 belong to the IMOP 2 project and 8 belong to
the EuHeart 3 project, that are two research projects in the context of CRT optimization for
which the Laboratory of Signal and Image Processing (LTSI 4, INSERM-U1099 5) participated.

IMOP (2005–2008) was a project funded by the French Ministry of Research. The goal of this
project was to analyze different approaches to improve the exploitation of multisensor acquisitions
from CRT candidate patients (anatomical, electrical, hemodynamical and mechanical), in order
to optimize Biventricular (BIV) device implantation, by following up these candidates at pre-,
per- and post-operative stages (Tavard et al., 2014).

The European project euHeart (Weese et al., 2013), lead by Philips Research and Philips
Healthcare, combined sixteen industrial, clinical and academic partners, including INSERM-U1099
(i.e. the LTSI) in cooperation with the CHU-Pontchaillou. The specific objective of euHeart
was to improve diagnosis, treatment planning and delivery, and optimization of implantable
devices by making patient-specific cardiac models using clinical measurements. euHeart partners
were organized into different work-packages (WPs). Each WP in the application group of the
project focused on a particular cardiovascular disease and in the optimization of cardiovascular
therapies into the clinical environment. LTSI-INSERM U1099 was involved in one WP focused
on CRT. The goal of this WP was the same as those defined in the context of IMOP project
(Marchesseau et al., 2013).

These database patients have been chosen initially for two objectives: 1) to show the capability
of classification of normal and abnormal LV motion; 2) to see the possibilities to classify responder
and non-responder patients. This second goal is more difficult to reach, because it needs a
sufficient number of cases with information of response in each class. This study is limited to the
first goal.

2. ANR CIC-IT no 04 187-188-189-190. Acronym from the French "utilité de l’Imagerie M’edicale dans
l’Optimisation de la Pose de prothèses cardiaques implantables”, utility of medical imaging in the optimization of
the implantation of implantable cardiac prosthesis.

3. euHeart: Personalised and Integrated Cardiac Care, FP7/2008-2012
4. Acronym from the French “Laboratoire Traitement du Signal et de l’Image” from the University of Rennes 1.
5. LTSI is the research unit number 1099 into the French Institute of Health and Medical Research (INSERM,

acronym from the French “Institut national de la santé et de la recherche médicale”).
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5.2.1.1 Image Data

Cardiac magnetic resonance: CMR images included cine-SAX and cine-LAX (4CH,
2CH). CMR images were acquired with a Philips Achieva 3T machine using cardiac SENSE
Coil (multicoil). Cine-CMR images were acquired in: Restrospective ECG-gated (RR-interval)
mode, with breath-hold and multiplanar SAX, 4CH and 2CH views. Typical parameters for this
acquisition were:

— Acquisition: Gradient echo (bTFE sequence), repetition time TR=3.69 ms, echo time
TE=1.85 ms, flip angle FA=45o,

— Resolution: 30 cardiac phases in IMOP, 40 and 60 cardiac phases for SAX and LAX views
in euHeart, respectively. 256× 256 pixels (in-plane) with 10 slices for SAX and 2 slices for
LAX views. In-plane pixel size=1.25 × 1.25 mm2, slice thickness=7 mm, spacing between
slices = 9 mm,

For this study only the cine-SAX images have been used.
Echocardiography: Trans-thoracic echocardiography TTE US acquisitions included paraster-

nal apical LAX (4CH, 2CH, 3CH) and SAX images. A cardiologist, expert in echocardiography,
performed TTE acquisitions pre/post-implantation (3 and/or 6 months). The end-systolic phase
was annotated in US acquisitions. STE traces and regional strain curves have been computed
and exported using an echoPAC clinical workstation software (GE). Only SAX images have been
used in this work.

Among the 14 patients, radial strain tracings from 2D-STE were available only for 3 patients
in the IMOP database and for 6 patients in the euHeart database and only at mid-cavity slice.

5.2.2 Control Subjects

Two groups of data have been chosen from MICCAI challenges: For the first group, data
provided in the Cardiac MR Left Ventricle Segmentation Challenge MICCAI 2009 (Radau et al.,
2009) comprise 45 cardiac cine-MR datasets from a mixed of patients and pathologies: healthy,
hypertrophy, heart failure with infarction and heart failure without infarction. The subset of the
data were first used for automated myocardium segmentation challenge from short-axis MRI,
held by a MICCAI workshop in 2009. Cine steady state free precession (SSFP) MR short axis
(SAX) images were obtained with a 1.5T GE Signa MRI. All the images were obtained during
10-15 second breath-holds with a temporal resolution of 20 cardiac phases over the heart cycle. 6
to 12 SAX images were obtained from the atrioventricular ring to the apex (slice thickness=8mm,
spacing between slices=8mm, spatial resolution= 256×256). For this study we have selected 6
patient studies corresponding to one of the group of healthy subjects.

For the second group, the control data in the Cardiac Motion Analysis Challenge that was
held at the 2011 MICCAI workshop entitled “Statistical Atlases and Computational Models of
the Heart: Imaging and Modelling Challenges" (STACOM’11) (Tobon-Gomez et al., 2013),
consisted of fifteen healthy volunteers without clinical history of cardiac disease. This challenge
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has been organized by the Cardiac Atlas Project (CAP) 6. The data were acquired at the Division
of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom. The
MR datasets were acquired using a 3T Philips Achieva System (Philips Healthcare, Best, The
Netherlands). The MR sequences were cine Steady State Free Precession (SSFP). SSFP datasets
were scanned in multiple views (TR/TE = 2.9/1.5 ms, flip angle = 40◦). All images were acquired
during breath-holds of approximately 15 s with a temporal resolution of 30 cardiac phases over
the heart cycle and were gated to the signal ECG. Eleven to 16 SAX images were obtained from
the atrioventricular ring to the apex (slice thickness=8mm, spacing between slices=8mm, in-plane
pixel size=1.25 × 1.25 mm2, matrix= 256×256). For this study we have chosen randomly a set
of 9 studies from this database.

In summary, for this work we had at our disposal 14 patients with cardiac dyssynchrony
and 15 control subjects. Cardiac cine MR images in short axis view are available for all the
population, while 2D-STE in short axis are available only for 9 patients.

In the next section, we present the protocol that has been defined for the evaluation of our
methods for the LV wall motion assessment.

5.3 Evaluation protocol

As we mentioned in Chapter 4, the discrimination of normal and abnormal wall motion is
performed with the use of the proposed features (radial/diametral spatio-temporal profiles or
parameters extracted from the radial profiles) as input atoms in the training of discriminative
dictionary learning algorithms. To this end, we propose an evaluation protocol based on the
information available from the population described before and the kind of feature used for
training the classifiers. Figure 5.1, shows an overview of the proposed protocol that is defined
according four criteria:

Global or Local evaluation: The first aspect is related to the level of the label associated
to the proposed feature for LV motion assessment. A global and simple criterium can
be established: i) by considering all the features extracted from pathological subjects, as
features with abnormal motion without considering regional analysis, and ii) by considering
all the features extracted from control subjects, as features with normal motion. This
criterium could be biased by the fact that in pathological subjects, some regions or
anatomical segments of the LV could present normal motion whereas others are abnormal.
A more accurate criterium consists to be local in labeling the features by anatomical regions,
as it is realized in clinical analysis, by incorporating visual assessment of cardiologists or
other measures like strain measures that can be extracted in STE images. In this work, we

6. The Cardiac Atlas Project (CAP) was funded by the National Heart, Lung and Blood Institute, USA,
part of the National Institutes of Health. (R01HL087773). The Cardiac Atlas Project (CAP) has established a
large-scale database of cardiac imaging examinations and associated clinical data in order to develop a shareable,
web-accessible, structural and functional atlas of the normal and pathological heart for clinical, research and
educational purposes.
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Figure 5.1– Overview of the proposed evaluation protocol at two levels: Global and Local evaluation.
In Global evaluation, patient global status (Normal/Pathologic) is taken as ground truth to label the
spatio-temporal profiles for each patient. In Local evaluation, local strain information from 2D-STE
(normal/abnormal) is taken as ground truth to label the spatio-temporal profiles per anatomical LV
segment in each patient. Non-parametric inputs, correspond to spatio-temporal representations: diametral
profiles or radial profiles in the Gray level domain (original domain), as well as, in Fourier, Wavelet
or Curvelet domains, while parametric input corresponds to the parameters extracted from the radial
spatio-temporal profiles (Curve Skewness (Sk), Curve clustering (Cl), Mean transition time (Mt), and
Cross Correlation parameter (Co)). Multislice evaluation, is performed in a population of 20 subjects (14
pathologic and 6 control) at three anatomical planes: basal, mid-cavity and apical. Mid-cavity evaluation
is performed in a population of 18 subjects: 9 patients with 2D-STE studies and 9 control subjects.
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take advantage of the radial strain traces available for 9 patients at the mid-cavity slice,
provided by the 2D-STE study.
We propose two levels of evaluation at Global and Local. In a Global evaluation level,
patient global status (Normal/Pathologic) is taken as ground truth to label the spatio-
temporal profiles for each patient. In a Local evaluation level that is more realistic, extracted
local strain information from 2D-STE (normal/abnormal) per anatomical segment in each
patient, is taken as ground truth to label the spatio-temporal profiles.

Non-parametric or parametric inputs: Non-parametric inputs correspond to diametral or
radial spatio-temporal profiles, while Parametric input, corresponds to the parameters
extracted from the radial spatio-temporal profiles (Curve Skewness (Sk), Curve clustering
(Cl), Mean transition time (Mt), and Cross Correlation parameter (Co)).
Non-parametric diametral spatio-temporal inputs are represented in the Gray level (original)
domain as well as, in Fourier, Wavelet and Curvelet domains, in the case of global evaluation.
For local evaluation, they are represented in the original and Wavelet domains.
In the case of radial spatio-temporal inputs and local evaluation, they are represented in
the Gray level/original and Wavelet domains.

Multi-slice/mid-cavity evaluation: Multi-slice evaluation is performed at three anatomical
planes: basal, mid-cavity and apical. Global evaluation with Non-parametric diametral
spatio-temporal inputs is considered to evaluate the LV motion in these three planes.
Single mid-cavity evaluation is performed in accordance with available information of local
strain provided by 2D-STE only at the mid-cavity plane for some patients in the study. In
this case, non parametric and parametric inputs are considered.

SVM and DL classifiers: Non-parametric or parametric features are taken as input atoms
in the training of different machine learning techniques. Firstly, as we mentioned in the
previous chapter, two discriminative dictionary learning algorithms are adapted for LV wall
motion classification: the first one, the Label Consistent K-SVD algorithm (LC-KSVD)
(Jiang et al., 2013), and a second one, the Fisher discriminant DL algorithm (FD-DL)
(Yang et al., 2014). These two algorithms take as input atoms the diametral or the radial
spatio-temporal profiles.
Secondly, another type of DL algorithm based on kernels, the KSRDL algorithm (Li et al.,
2013), is adapted for LV wall motion classification using parameters extracted from the
radial spatio-temporal profiles. For comparison, LC-KSVD is also used with the parametric
inputs.
Classical classification based on Support Vector Machines (SVMs) with two different kernels,
linear and RBF kernels, is performed for comparison purposes.

To summarize, we propose the following levels of evaluation:

Global non-parametric multi-slice evaluation using diametral profiles with the global sta-
tus of the patient (Normal/Pathologic) as ground truth.
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Global non-parametric mid-cavity evaluation comparing diametral with radial spatio-temporal
profiles with the global status of the patient (Normal/Pathologic) as ground truth.

Local non-parametric mid-cavity evaluation comparing diametral with radial spatio-temporal
profiles with the local radial strain information from 2D-STE as ground truth.

Local parametric mid-cavity evaluation using parameters extracted from spatio-temporal
radial profiles with the local radial strain information from 2D-STE as ground truth.

This scheme of evaluation allows to measure the benefit of parametric compared to the non-
parametric local approaches, the benefit of local compared to global analysis and the difference
between multi-slice and mid-cavity evaluation, by using SVM and DL approaches.

We have described in the previous chapter the Non-parametric and parametric feature
extraction and the adaptation of the DL algorithms for the task of LV wall motion classification
using the proposed spatio-temporal representations. In the next subsections, global and local
aspects of evaluation are firstly described by the local 2D-STE Radial strain assessment. Secondly,
the selection of the correct number of profiles and different measures of performance are presented.
Finally, we present the obtained results and the evaluation of the mentioned classifiers before to
conclude.

5.3.1 2D-STE Radial strain assessment for local evaluation

The definition of normal values of local LV motion is of critical importance to the clinical
application. Based on Echocardiography modality and specifically in Speckle Tracking mode
(STE), various studies have been focused on defining these ranges. In (Fine et al., 2013), 2D
echocardiography is performed in 186 healthy adults free of cardiovascular disease or risk factors,
followed by a comprehensive ventricular myocardial strain analysis. Mean segmental peak systolic
LV radial strain values and their corresponding standard deviation reported in this study are
shown in Table 5.1.

Table 5.1– Normal Mean segmental peak systolic LV radial strain values reported in (Fine et al., 2013)

Radial Strain(%)
All segments 44.8 ± 21.7
Anterior 40.2 ± 30.0
Anteroseptal 52.2 ± 63.4
Inferior 42.0 ± 22.5
Lateral 42.5 ± 33.5
Posterior 47.4 ± 23.6
Septal 44.8 ± 32.6
p-value 0.078

In (Yingchoncharoen et al., 2013), a review analysis of 24 articles, 12 articles with a total
of 568 patients were eligible for global radial strain analysis, the results of normal values of
strain are ranged from 35.1% to 59.0% (mean, 47.3%, confidence interval of 95%, from 43.6% to



116 Chapter 5. DL for LV wall motion classification: Results

51.0%). In (Becker et al., 2006), an analysis of myocardial deformation was performed in 64
patients of which, 54 patients suffer from ischaemic heart disease with a myocardial infarction
and 10 participants with normal LV motion confirmed by cardiac cine-MRI. Tracking of acoustic
markers was used to calculate radial and circumferential strain, and strain rate within 2D
echocardiographic images for each LV segment in a 16 segment model. Then, cardiac MRI was
performed to define segmental LV function as normokinetic, hypokinetic or akinetic. Table 5.2
shows the results of radial strain obtained in this analysis reported for the overall set of LV
segments.

Table 5.2– Radial strain related to regional LV function defined by cardiac magnetic resonance imaging
reported in (Becker et al., 2006)

Radial Strain(%)
Normal kinesis (n=399 segments) 36.8 ± 10.5
Hypokinesis (n=392 segments) 24.1 ± 7.5
Akinesis (n=110 segments) 13.4 ± 4.8
p Value <0.01

In this work, we have at our disposal both the cardiac cine-MRI study and the 2D-STE
study for a total of 9 patients. Based on the reference values shown in Table 5.2, with a relative
variability of 8.7 ± 7.1% for peak systolic radial strain between 2D-STE and cardiac cine-MRI
(Becker et al., 2006), we catalogue a particular segment in a cardiac cine-MRI study as normal
if the peak systolic radial strain curve of this segment in the STE data presents normal kinesis,
or abnormal if the peak systolic radial strain curve presents hypokinesis or akinesis.

First, a correspondence between cine-MRI and 2D-STE studies is needed. A visual inspection
supported by the medical reports of the 9 patients was performed in order to find a correspondence
between the SAX plane used in the 2D-STE study and the SAX plane selected in the cine-MRI
study. This inspection is in particular, based on the visualization of the papillary muscles
observed in both images.

Note that, due to the standard deviation into the ranges, a peak radial strain value can falls
in two overlapping zones i.e. normal kinesis or hypokinesis, thus, the range with the mean value
closest to the peak value in study is selected. These observations have been established with
the help supervision of a cardiologist and have been confirmed with information obtained in the
cine-MRI studies assessed by physicians in the medical reports.

Figure 5.2 shows the 2D-STE study for one example of data corresponding to the EuHeart5
patient. Radial strain curves from this patient are shown in Figure 5.3 with the respective range
zones of normal kinesis, hypokinesis and akinesis. To illustrate the result of this assessment, a
set of 6 radial spatio-temporal profiles per anatomical segment of this patient is presented in
Figure 5.4. The graphical user interface (GUI) that has been developed allows us the labeling
of a profile based on the strain given by the 2D-STE study (normal/abnormal) (Mantilla
et al., 2015c). For example, radial profiles in the anteroseptal (AS), septal (S) and inferior (I)
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Figure 5.2– Radial strain tracings for one cardiac cycle obtained from the short axis view in the EuHeart5
patient. There are six tracings for the six evaluated anatomical segments within the circumference.
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Figure 5.3– Radial strain tracings for the EuHeart5 patient.
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anatomical segments shown in the GUI, are identified as profiles with normal segment contraction
according to the information of local strain given by the 2D-STE study.

Figure 5.4– Radial spatio-temporal profiles obtained from the short axis view in a pathologic
patient. Labels of the profiles are performed with the assessment of the radial strain tracings for the
six evaluated segments in the 2D-STE study (L=Lateral, A=Anterior, AS=AnteroSeptal, S=Septal,
I=Inferior, P=Posterior). Profiles of the anterior, anteropseptal and inferoseptal segments are labeled as
normal segment contraction while the others are labeled as abnormal.

We assume that all the segments from subjects of the healthy group have normal contraction,
consequently all the segments of the control subjects are cataloged as normal kinesis. With the
procedure described before, we can precise the mode of Local evaluation of radial and diametral
spatio-temporal profiles of the pathologic population.

Local radial spatio-temporal evaluation: In this case, anatomical segments can be directly
matched with the corresponding radial profiles. Table 5.3, shows the group of 9 patients
with the respective anatomical regions cataloged accordingly the assessment of radial
strain. As we can see, 5 of the 9 pathological patients present hypokinesis or akinesis in all
segments, while the other 4 patients present segments with normal kinesis, hypokinesis
or akinesis. In the same Table, EF denotes Ejection Fraction. To better illustrate this
assessment, in Figure 5.5 parametric images at mid-cavity SAX plane known as bull-eyes
are shown for the 9 patients in study (cf. 4.2.3). These images represent the ground truth
in the assessment of LV anatomical segments provided by the 2D-STE study.

Local diametral spatio-temporal evaluation: Local evaluation using diametral spatio-temporal
profiles needs the definition of a criterium to label each pair of opposite LV anatomical
segments.
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Table 5.3– LV anatomical segments assessed by 2D-STE in the pathological group in the mid-cavity
SAX plane.

Segments
Patient AS A L P I S EF
IMOP0 Akin Akin Akin Akin Akin Akin 8%
IMOP4 Akin Akin Hypo Akin Akin Akin 10%
IMOP5 Akin Hypo Hypo Normo Normo Hypo 30%
EuHeart1 Akin Akin Hypo Hypo Akin Akin 26%
EuHeart2 Akin Akin Akin Akin Akin Akin 24%
EuHeart3 Akin Akin Akin Akin Akin Akin 50%
EuHeart4 Akin Akin Hypo Normo Hypo Akin 27%
EuHeart5 Normo Hypo Hypo Hypo Normo Normo 38%
EuHeart6 Akin Akin Akin Normo Normo Akin 25%

(AS=AnteroSeptal, A=Anterior, L=Lateral, P=Posterior, I=Inferior, S=Septal)
(Akin=Akinetic, Hypo=Hypokinetic, Normo=Normal kinesis, EF=Ejection Fraction)

Figure 5.5– Ground truth for Local LV wall motion with the assessment of STE in the pathological
group.

We define the following criterium to label each diametral spatio-temporal profile: if two
opposite segments are normal (this is, the combination Normo-Normo), then the diametral
profiles of that region are considered as profiles with LV normal motion. If one of the
segment is normal and the other is akinetic or hypokinetic, then, the diametral profiles of
that region are considered as profiles with LV abnormal motion (this is the combination
normo-akin, normo-hypo, akin-normo or hypo-normo). Finally, if both segments of a
specific region are akinetic or hypokinetic, then the diametral profiles of that region are
considered as profiles with LV abnormal motion.

As observed in Table 5.4, neither combination of opposite segments is normo-normo.
Then, the ground truth used for local evaluation using diametral spatio-temporal profiles
corresponds for these data, to the ground truth used for global evaluation (assuming the
global status of the patient as label of all the anatomical segments).

Once these different criteria of evaluation have been defined, we proceed to use the proposed
spatio-temporal representations as input data and to parametrize the SVM and the dictionary
learning algorithms. This is presented in next section.
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Table 5.4– Opposite LV anatomical segments assessed by 2D-STE in the pathological group in the
mid-cavity SAX plane.

Segments
Patient AS-P A-I L-S EF
IMOP0 Akin-Akin Akin-Akin Akin-Akin 8%
IMOP4 Akin-Akin Hypo-Akin Akin-Akin 10%
IMOP5 Akin-Normo Hypo-Normo Hypo-Hypo 30%
EuHeart1 Akin-Hypo Akin-Akin Hypo-Akin 26%
EuHeart2 Akin-Akin Akin-Akin Akin-Akin 24%
EuHeart3 Akin-Akin Akin-Akin Akin-Akin 50%
EuHeart4 Akin-Normo Akin-Hypo Hypo-Akin 27%
EuHeart5 Normo-Hypo Hypo-Normo Hypo-Normo 38%
EuHeart6 Akin-Normo Akin-Normo Akin-Akin 25%
(AS-P = AnteroSeptal to Posterior, A-I = Anterior to Inferior, L-S = Lateral to Septal)

5.3.2 Selection of correct number of profiles

We perform several experiments varying the number of profiles and found out that selecting
diametrical profiles every 10◦ achieves a good trade-off between complexity and classification
performance. Thus, every sample (subject) takes only 18 profiles per slice, 6 diametral spatio-
temporal profiles per anatomical opposite segments at basal and mid-cavity SAX plane, and 9
diametral profiles per segment at apical SAX plane.

In the case of radial profiles, every sample takes only 36 profiles at the mid-cavity SAX plane,
6 spatio-temporal profiles per anatomical segment. Figure 5.6 shows an illustrative example
of 36 points located outside the LV epicardial border spatially distributed every 10◦ and the
orientation of two spatio-temporal profiles: a diametral profile from the anteroseptal to posterior
wall and a radial profile in the lateral segment.

5.3.3 Performance measures

We evaluated the classifiers performance by computing the accuracy, specificity and sensitivity
over all the datasets. Sensitivity measures the proportion of positives which are correctly identified,
e.g., the percentage of the abnormal spatio-temporal profiles who are correctly identified as
having abnormal LV wall motion. Specificity measures the proportion of negatives which are
correctly identified as such e.g., the percentage of the normal spatio-temporal profiles who are
correctly identified as having normal LV wall motion. Accuracy measures the proportion of
abnormal or normal profiles those are selected correctly to the total number of profiles with
abnormal or normal LV motion. These performance measures are defined as:

Accuracy = TP + TN
P +N

, Sensitivity = TP
P
, Specificity = TN

N

where TP denotes true positives (number of profiles correctly classified as abnormal motion), and
TN true negatives (number of profiles correctly classified as normal motion). The total number
of abnormal motion and normal motion profiles are P and N , respectively.
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Figure 5.6– An illustrative example of 36 points located outside the epicardial border every 10◦ to
construct 36 radial spatio-temporal profiles, 6 per LV anatomical segment, or to construct 18 diametral
spatio-temporal profiles, 6 per opposite LV anatomical segments. An orientation of a diametral spatio-
temporal profile is shown from the anteroseptal region to its opposite in the posterior segment. An
orientation of radial profile is shown from the LV centroid to a point located in the lateral segment.

To evaluate the generalization capability of the machine learning techniques with respect to
accuracy, sensitivity, and specificity, and for posterior comparison among them, we perform a
random sub-sampling cross validation. This method randomly splits the dataset into training
and validation data. For each such split, the model is fitted to the training data, and predictive
accuracy is assessed using the validation data. The results are then averaged over the total of
splits.

Furthermore, due to the small number of patients currently available for each class, our
classifiers are evaluated using the leave-one-out (LOO) patient cross-validation performance
criterium (Chapelle et al., 2002). In this case the training is performed with the profiles of
all excepted one patient that is left out to test the classifier. The process is repeated until all
patients are taken for testing the classifier. LOO-patient cross validation results are presented in
parametric images known as bull-eyes.

A study of robustness of the classifiers is performed in Global non-parametric multi-slice
evaluation and Local parametric/non-parametric mid-cavity evaluation with the following criteria:

— The classification accuracy of the DL algorithms is evaluated by reducing the number of
atoms in the initial dictionary.

— The complexity of the classification methods is evaluated in terms of sparsity for the DL
models and sparseness for the SVM models:

1. The sparseness in SVMs is measured by the number of support vectors (SV) found by
the trained model. The Support Vectors (SV), are the data points that are closest to
the optimal separating hyperplane (cf. section 2.7)).

2. The FD-DL algorithm and the KSRDL algorithm are evaluated in terms of `1-norm
varying λ1 that is the regularization parameter whose value governs the sparsity of
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the solution.

3. Since LC-KSVD algorithms use a `0-norm that counts the number of non-zero elements
of X, the sparsity constraint T is selected as a measure of complexity in this case.

— Computing times for training and testing are also calculated for each algorithm running on
a PC with a 2.50 GHz Intel(R) Xeon(R) processor and 32 GB RAM.

5.3.4 Parameter selection of the machine learning techniques

The regularization parameters for the machine learning techniques are tuned by heuristic
search, specifically:

— For the linear SVM, the regularization constant (C) was varied in [10−4, 10−3, 10−2, 10−1,
100, 101, 102, 103, 104] and for the SVM RBF (σ) was varied in [0.001 0.01, 0.1, 1, 10, 100].

— For the LC-KSVD algorithms, according to equations (4.6) and (4.7), the weight for label
constraint term (α) and the weight for classification error term (β) were tuned by heuristic
search in a mesh grid from 1 to 100 with a step of 1.

— For FD-DL, according to equation (4.8), the regularization parameters (λ1) and (λ2) were
tuned by searching in a mesh grid from 0.01 to 10 with a step of 0.01.

— Finally for KSRDL, according to equation (4.9), the regularization parameter (λ) was
tuned by searching in a mesh grid from 10−5 to 100 with a step of 10−2.

In the next sections, we present different experiments based on the evaluation protocol with
their respective results. Firstly, for each level of evaluation we recall the specific goal, the
population, input data and space domain of representation. Secondly, we present quantitative
results of experiments using SVM and DL techniques. Finally a subsection of comparisons
between algorithms is presented in which results are analyzed depending on the specific goal.

5.4 Global non-parametric multi-slice evaluation

The global non-parametric multi-slice evaluation was performed using the global status of
the subject: Normal/Pathologic, as the label of diametral spatio-temporal profiles extracted in
one slice at the apical, mid-cavity and basal short axis planes:

Specific goal: To compare results of LV wall motion classification among different short axis
planes: basal, mid-cavity and apical planes, using diametral spatio-temporal profiles.

Population: The short-axis, cine MRI database used in this experiment comprises 20 studies
identified in two classes: 1) abnormal LV motion samples corresponding to 14 patients
with cardiac dyssynchrony (6 from the IMOP database and 8 from the euHeart database)
and 2) normal LV motion samples that correspond to 6 healthy subjects from the Cardiac
MR Left Ventricle Segmentation Challenge MICCAI 2009.
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Input data: In summary, for each subject 18 diametral spatio-temporal profiles were extracted,
thus, we have a total of 360 profiles: 252 considered as abnormal (14 patients, 18 profiles
per patient) and 108 considered as normal (6 control subjects, 18 profiles per subject).

Space domain representation: Experiments were performed using the diametral spatio-
temporal profiles in the original domain (Gray levels), as well as, Fourier, Wavelet and
Curvelet domains.

5.4.1 Experiments with SVM

Experiments are performed independently at each short-axis slice level (basal, mid-cavity,
and apical) with a SVM based classifier constructed using two kinds of kernel functions: Linear
and Gaussian Radial Basis Function (RBF).

Leave-one-out LOO cross validation

In this particular case, we train with the spatio-temporal profiles of 19 subjects and test with
the profiles of the single subject left out, the process is repeated until each of the subjects passed
through the testing phase.

Figures 5.7 and 5.8, show the accuracy of classification in the different domains at different
opposite LV anatomical segments using SVM with a linear and a RBF kernel respectively. As we
can see in these graphics, accuracy results using a RBF SVM are under 95% in all the domains.
In contrast some results using linear SVM are over 95%. The higher accuracy is achieved in
the mid-cavity plane using linear SVM. Fourier and Curvelet domains do not show competitive
results compared with Gray level and Wavelet domain that show higher results in medial planes.

The Wavelet coefficients of the spatio-temporal profiles at the Inferior-Anterior anatom-
ical segments in the mid-cavity plane show the higher accuracy followed by the Gray level
representation.

Details of the best results are presented in Table 5.5 in terms of accuracy, sensitivity and
specificity using linear SVM classifier and Wavelet coefficients. As can be seen in this Table
using a diametral line crossing the inferior-anterior segments at mid-cavity slice yields the best
performance under the LOO criteria.

For the visualization of the different regional data that have been generated, we use parametric
images known as bull’s eye plots, Figure 5.9 shows the results for the subjects in our study
using the linear SVM in the Wavelet domain. In these parametric images, segment colors are
determined using the majority voting rule over the set of 6 diametral profiles selected per segment.
Specifically, if more than one half of the 6 profiles examined in one anatomical segment is classified
as normal, then, orange color is assigned to that segment. Red color is assigned to one segment
if more than one half of the profiles is classified as abnormal. If exactly one half of the profiles is
classified as normal and the other half as abnormal then, a decision can not be taken and black
color is assigned to that region.
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Figure 5.7– Comparative mean results of LOO cross validation in opposite segments using linear
SVM in terms of accuracy. (IS-AL= From InferoSeptal to AnteroLateral, I-A= From Anterior to Inferior,
IL-AS= From InferoLateral to AnteroSeptal, L-S= From Lateral to Septal).

Figure 5.8– Comparative mean results of LOO cross validation in opposite segments using RBF SVM
in terms of accuracy. (IS-AL= From InferoSeptal to AnteroLateral, I-A= From Anterior to Inferior,
IL-AS= From InferoLateral to AnteroSeptal, L-S= From Lateral to Septal).

Results presented in the bull-eyes plots show that the classifier can not take a decision in some
segments at the apical plane in patients: IMOP3, IMOP5, EuHeart3 (also in mid-cavity slice),
EuHeart5, MICCAI1, MICCAI4 and MICCAI5. This is because one half of the profiles that
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Table 5.5– Global multi-slice evaluation: Mean results of LOO cross validation in opposites segments
with Linear SVM and Wavelets coefficients.

Plane Segment Accuracy Sensitivity Specificity
InferoLateral-AnteroSeptal 93.33% 94.05% 91.67%

Basal Inferior-Anterior 93.33% 95.24% 88.89%
InferoSeptal-AnteroLateral 90.83% 100.00% 69.44%
InferoLateral-AnteroSeptal 90.83% 94.05% 83.33%

Medial Inferior-Anterior 100.00% 100.00% 100.00%
InferoSeptal-AnteroLateral 99.17% 98.81% 100.00%

Apical Lateral-Septal 78.00% 82.86% 66.67%
Inferior-Anterior 75.00% 88.10% 44.44%

EuHeart1 EuHeart2 EuHeart3 EuHeart4

EuHeart5 EuHeart6 EuHeart7 EuHeart8 MICCAI1

Abnormal Normal Undecided

IMOP0 IMOP1 IMOP2 IMOP3 IMOP4

IMOP5

MICCAI2 MICCAI3 MICCAI4 MICCAI5 MICCAI6

Figure 5.9– Bull-eyes showing accuracy of classification for the 6 patients in the IMOP database, 8
patients of euHeart database and the control group (MICCAI).

belong to those segments was classified as normal and the other half as abnormal by the SVM
procedure. In the case of control subjects MICCAI1 and MICCAI4, the classifier fails when some
segments were assigned to the class of abnormal profiles. These results can be quantitatively
observed in Table 5.5 where specificity values are relatively small compared with sensitivity
values, specially in the basal and apical plane.
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Random sub-sampling cross validation

To evaluate the generalization capability of the proposed approach with respect to accuracy,
sensitivity, and specificity, and for comparisons with the Dictionary Learning algorithms, several
subsets of samples are constructed from the original database (14 patients and 8 control subjects)
applying random sub-sampling cross validation: Each subset is composed of training and test
groups. To be more precise, we use a training subset of 4 pathological patients and 4 healthy
patients randomly from the database.

For each patient in the training subset, 18 spatio-temporal profiles are selected to obtain 144
profiles (8 subjects, 18 profiles per subject) where 72 present abnormal motion and the other 72
present normal wall motion. Profiles of the rest of the patients not included in the training stage
(10 patients and 2 controls), are selected to test the method. Tables 5.6-5.9 show the overall
average performance accuracy over 50 randomly configurations for training and testing subsets
for SVM with linear and RBF kernel function in different basis (Gray level, Wavelet, Curvelet
and Fourier domains) and in the three anatomical planes (Basal, medial and apical).

Table 5.6– Global multi-slice evaluation: Classification results using diametral profiles in Gray level
domain by the SVM models.

SVM Linear SVM RBF
Acc Sens Spec Acc Sens Spec

Basal 92.94± 4.71 93.62± 4.39 89.52±11.86 86.75± 5.89 89.81± 8.10 71.43±29.01
Medial 91.59± 5.21 91.52± 7.06 91.90± 8.00 83.73± 5.55 85.52±10.14 74.76±17.46
Apical 75.71± 6.16 74.10± 8.74 83.81±11.83 75.95± 5.05 75.71± 4.10 77.14±16.20

Table 5.7– Global multi-slice evaluation: Classification results using diametral profiles in Wavelet
domain by the SVM models.

SVM Linear SVM RBF
Acc Sens Spec Acc Sens Spec

Basal 93.65± 4.05 93.05± 5.35 96.67± 3.98 80.63±23.34 85.24±32.22 57.62±38.41
Medial 95.48± 1.96 97.14± 1.39 87.14±13.53 81.35±13.77 85.90±20.68 58.57±53.49
Apical 87.14± 3.35 90.10± 7.72 72.38±24.61 84.52± 2.66 97.43± 5.75 70.00±44.72

Wavelet domain turns out to be the best space where the original feature yields the highest
classification rate followed, in order, by Gray level domain, Curvelet and Fourier domains. As
we can see, the best classification results is achieved where Linear Kernel SVM is used in the
Wavelet domain with an accuracy of 95.48%, a sensitivity of 97.14% and a specificity of 87.14%
in the mid-cavity plane.
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Table 5.8– Global multislice evaluation: Classification results using diametral profiles in Curvelet
domain by the SVM models.

SVM Linear SVM RBF
Acc Sens Spec Acc Sens Spec

Basal 90.71± 5.25 91.71± 5.41 85.71±15.79 89.05± 6.35 94.95± 7.28 59.52±38.80
Medial 90.95± 5.35 91.14± 6.72 90.00± 9.58 82.30±10.71 84.00±13.89 73.81±19.56
Apical 77.78± 5.39 78.10±11.46 76.19±40.44 75.79± 6.27 76.29± 8.19 73.33±12.53

Table 5.9– Global multi-slice evaluation: Classification results using diametral profiles in Fourier
domain by the SVM models.

SVM Linear SVM RBF
Acc Sens Spec Acc Sens Spec

Basal 72.38± 8.96 73.52±13.36 66.67±36.54 83.41± 5.99 86.95± 8.46 65.71±16.97
Medial 71.51± 9.92 69.71±14.29 80.48±18.85 81.27± 6.07 83.52± 6.39 70.00± 9.00
Apical 73.57± 3.44 73.14± 4.84 75.71± 5.43 65.16± 8.28 66.57±13.57 58.10±22.94

Sparseness of the SVM models

We are also interesting in finding how many profiles and which are the most relevant for
classification purposes, that is, using SVM classifier which data sample are used to define the
class separately hyperplane. We found that models obtained with SVM shown a sparseness of
25% in the Linear SVM using Wavelet coefficients, that means that only 25% of the feature
vectors are taken as support vectors and are used as relevant vectors for classification according
to Equation 2.57. 26%, 52% and 93%, are the sparseness in Gray level, Fourier and Curvelet
domain, respectively. When RBF kernel is used, the sparseness of the model are 29%, 90%,
98% and 97% for Wavelet, Gray level, Curvelet and Fourier domain, respectively. Quantitative
results show that sparseness of the linear SVM in the Wavelet and Gray level domains are smaller
compared to those achieved in the Fourier and Curvelet domain on those achieved with RBF
kernel. Upon closer examination of the segments to which belong the profiles selected as support
vectors, we can determine the importance of the choice of a particular segment in the task of
classification (Mantilla et al., 2013b). Table 5.10 shows the contribution of each segment using
the Linear SVM with Wavelet coefficients.

Figure 5.10 shows in green color, the regions where the linear SVM model takes into account
the maximum number of profiles: for basal and mid-cavity plane: InferoLateral to AnteroSeptal
segments, and for apical plane: Lateral-Septal segments. The same finding is provided for radial
dyssynchrony analysis at the mid-ventricular slice level (Dohi et al., 2005; Sade et al., 2004;
Suffoletto et al., 2006), where septal to lateral wall mechanical activation is considered as a
major feature of cardiac dyssynchrony.
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Table 5.10– Global multi-slice evaluation: Percentage of contribution of spatio-temporal profiles in the
classification task by the SVM models.

Plane Segment Contribution of Support Vectors
InferoLateral – AnteroSeptal 47.12%

Basal Inferior - Anterior 22.60%
InferoSeptal - AnteroLateral 30.28%
InferoLateral – AnteroSeptal 41.04%

Medial Inferior - Anterior 22.64%
InferoSeptal - AnteroLateral 36.32%

Apical Lateral-Septal 71.55%
Inferior - Anterior 28.45%

Figure 5.10– Relevant regions in the LV where SVM model finds optimal support vectors for
classification.

5.4.2 Experiments with discriminative Dictionary Learning methods

We applied the LC-KSVD and the FD-DL classification algorithms with diametral spatio-
temporal profiles in the image domain (original domain) as well as the Fourier and Wavelet
domains that have been selected from the previous experiments. The DL techniques use an
initial dictionary with many atoms as input spatio-temporal profiles. In this case the initial set
of input atoms corresponds to the training subset composed of 4 pathological patients and 4
healthy patients randomly selected from the database.

As for the previous experiments, for each patient in the training subset, 18 spatio-temporal
profiles are selected to obtain 144 profiles (8 subjects, 18 profiles per subject) where 72 present
abnormal motion and the other 72 present normal wall motion. Profiles of the rest of the patients
not included in the training stage (10 patients and 2 controls), are selected to test the method.
The experiment is performed 50 iterations varying the configuration of training and testing
subsets and the average results in terms of accuracy, sensitivity and specificity are calculated.

5.4.2.1 Results with LC-KSVD algorithms

Tables 5.11, 5.12 and 5.13 show the results for the LC-KSVD algorithms (two versions
LC-KSVD1 and LC-KSVD2) at the three anatomical planes in Gray level, Wavelet and Fourier
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domains respectively.

Table 5.11– Global multi-slice evaluation: Classification results using diametral profiles in Gray Level
domain by the LC-KSVD algorithms

LC-KSVD1 LC-KSVD2
Acc Sens Spec Acc Sens Spec

Basal 87.30 ± 8.17 88.69 ± 9.94 80.33 ± 29.46 87.50 ± 8.10 88.69 ± 9.81 81.56 ± 27.05
Medial 92.43 ± 4.14 91.27 ± 4.94 98.22 ± 2.52 91.69 ± 4.30 90.42 ± 5.17 98.00 ± 2.47
Apical 74.96 ± 7.28 73.51 ± 8.31 82.22 ± 21.11 74.28 ± 6.33 72.51 ± 7.61 83.11 ± 21.52

Table 5.12– Global multi-slice evaluation: Classification results using diametral profiles in Wavelet
domain by the LC-KSVD algorithms

LC-KSVD1 LC-KSVD2
Acc Sens Spec Acc Sens Spec

Basal 95.24 ± 4.00 95.33 ± 3.30 94.76 ± 10.28 95.40 ± 3.84 95.05 ± 3.52 97.14 ± 8.00
Medial 94.37 ± 4.00 95.62 ± 3.30 88.10 ± 10.28 94.44 ± 3.84 95.64 ± 3.52 88.57 ± 8.00
Apical 86.19 ± 4.10 89.81 ± 6.79 68.10 ± 18.90 85.24 ± 5.12 88.48 ± 7.96 69.05 ± 16.13

Table 5.13– Global multislice evaluation: Classification results using diametral profiles in Fourier
domain by the LC-KSVD algorithms

LC-KSVD1 LC-KSVD2
Acc Sens Spec Acc Sens Spec

Basal 51.54 ± 9.45 51.89 ± 11.37 49.78 ± 16.08 88.07 ± 4.98 90.91 ± 6.24 73.89 ± 26.63
Medial 50.13 ± 8.12 49.29 ± 9.43 54.33 ± 15.30 81.17 ± 7.30 80.62 ± 9.44 83.89 ± 17.05
Apical 48.50 ± 9.71 48.84 ± 11.18 46.78 ± 17.36 69.11 ± 8.45 71.27 ± 10.17 58.33 ± 19.53

As we can see, the best performance of classification of the LC-KSVD algorithms is achieved
in the Wavelet domain in the three planes. Gray level domain achieves good performance in the
mid-cavity plane by the LC-KSVD1 algorithm. The best classification rate is achieved by the
LC-KSVD2 algorithm with an accuracy of 95.40% in the basal plane. Fourier domain does not
show competitive results of classification (Mantilla et al., 2013a).

We have evaluated the classification accuracy of the LC-KSVD algorithms by reducing the
number of atoms in the dictionary. Figure 5.11 shows the effect in accuracy varying the dictionary
size for K = 36, 72, 122, 137 and 144. For this experiment we have chosen the domain where the
best accuracy of classification was achieved. In this case we have used the Wavelet domain in
the basal plane. However, as we can see in table 5.11, the original domain also yields a good
compromise in accuracy, sensitivity, and specificity in medial plane.
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Figure 5.11– Accuracy of classification of LC-KSVD algorithms varying the number of dictionary
atoms in the Wavelet domain at the basal plane.

Figure 5.11 shows that LC-KSVD2 maintains higher classification accuracy compared to
LC-KSVD1 as the dictionary size decreases, highlighting the importance of the classification
error in the objective function of DL model.

Sparsity in the LC-KSVD algorithms

Another experiment, and in order to compare the sparseness of the SVM models with the
sparsity in the DL models, consists in evaluating the accuracy of classification by reducing the
sparsity constraint T . In Figure 5.12 we can see the effect in accuracy varying the sparsity
constraint T using spatio-temporal profiles in the Wavelet domain at basal plane, fixing the
dictionary size to 144 atoms.

Figure 5.12– Accuracy of classification of LC-KSVD algorithms varying the sparsity constraint T in
the Wavelet domain at the basal plane.
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The Sparsity constraint T in DL models, means that each profile has a sparse representation
with no more than T atoms in the Dictionary. We have evaluated the LC-KSVD algorithms
using different sparsity constraint values T = 2, 7, 15, 30, 72 and 144, that correspond to 1%,
5%, 10%, 25%, 50% and 100%, respectively, of the number of atoms. Figure 5.12 shows that
both, LC-KSVD1 and LC-KSVD2 algorithms maintain a high classification accuracy when T is
reduced almost to a value of 30 equivalent to 25% of the number of atoms. This result is similar
to the sparseness obtained by the linear SVM using Wavelet coefficients where approximately
25% of the features vectors are taken as support vectors.

5.4.2.2 Results with the FD-DL algorithm

The FD-DL classification algorithm is also applied in the Gray level (image domain) as well
as the Fourier and Wavelet domains. Results in terms of accuracy, sensitivity and specificity
are shown in Tables 5.14-5.16 obtained with the same configuration of training and testing data
employed by the LC-KSVD algorithms and the SVM with random sub-sampling cross validation.

Table 5.14– Global multi-slice evaluation: Classification results using diametral profiles in Gray level
domain by the FD-DL algorithm

Acc Sens Spec
Basal 83.61± 10.44 81.78 ± 12.24 92.78± 17.23
Medial 91.44± 4.19 89.94 ± 4.93 98.89± 2.68
Apical 71.34± 11.62 70.61 ± 15.48 75.00± 27.56

Table 5.15– Global multi-slice evaluation: Classification results using diametral profiles in Wavelet
domain by the FD-DL algorithm

Acc Sens Spec
Basal 94.21 ± 4.54 97.81 ± 5.12 76.19 ± 3.93
Medial 96.51 ± 2.59 96.48 ± 2.92 96.67 ± 2.48
Apical 74.10 ± 3.61 77.81 ± 4.80 55.24 ± 21.15

Table 5.16– Global multi-slice evaluation: Classification results using diametral profiles in Fourier
domain by the FD-DL algorithm

Acc Sens Spec
Basal 89.72 ± 3.33 95.89 ± 5.51 58.89 ± 26.38
Medial 80.60 ± 7.73 81.94 ± 13.38 73.89 ± 34.13
Apical 70.51 ± 16.41 72.61 ± 23.17 60.00 ± 22.46
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Results show that, as well as the LC-KSVD algorithm, the best classification rate is achieved
also in the Wavelet domain with an accuracy of 96.51%, in this case at the mid-cavity plane. We
have evaluated the FD-DL algorithm using different dictionary sizes K = 14, 22, 36, 72, 122,
137 and 144. Figure 5.13 shows that FD-DL algorithm is sensible to the number of atoms in
the dictionary, decreasing in accuracy when the dictionary size reduces its number of atoms.
However, the FD-DL algorithm yields decent results for a small dictionary.

Figure 5.13– Accuracy of classification of the FD-DL algorithm varying the Dictionary size in the
Wavelet domain at the mid-cavity plane.

Sparsity in the FD-DL algorithm

We have also evaluated the accuracy of classification by reducing the sparsity constraint λ1.
The sparsity constraint λ1 in the FD-DL model, is the regularization parameter whose value
governs the sparsity of the solution. In Figure 5.14, we can see the effect in accuracy varying
the sparsity constraint for λ1 = 0.001, 0.001, 0.01, 0.1, 1, 10 and 100 in the Wavelet domain
at the mid-cavity plane. Results show that FD-DL algorithm maintains a high classification
accuracy when the sparsity constraint takes small values i.e λ1 ≤ 1, which reinforces the fact of
the sparseness assumption on spatio-temporal profiles in the wavelet domain.

5.4.3 Comparison of algorithms

For comparison purposes, Figure 5.15 shows bar plots of the overall average performance
of accuracy obtained at each slice level for the proposed machine learning techniques over 50
randomly configurations for training and testing subsets. All the techniques uses the same
training and testing inputs.

Wavelet domain turns out to be the best space where the original feature yields the highest
accuracy and sensitivity of classification in all the techniques. This can be due to the implicit
denoising that is involved during the Wavelet transform that make the classification more accurate.
The Gray level and Fourier representation are classified second and third respectively. In terms
of specificity, Gray level domain overcomes the Wavelet domain in mid-cavity and apical planes.
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Figure 5.14– Accuracy of classification of the FD-DL algorithm varying the sparsity constraint λ1 in
the Wavelet domain at the mid-cavity plane.

The best performance for classification of abnormal and normal LV wall motion using
diametral spatio-temporal profiles, is achieved in the Wavelet domain with a FD-DL classifier
that reach 96.51% for accuracy, 96.48% for sensitivity and 96.67% for specificity, obtained at the
mid-ventricular slice level. At the same level, SVM is placed as the second classifier with high
classification rate: 95.48% of accuracy, followed by the LC-KSVD technique with an accuracy of
94.37%: both classifiers using the representation of diametral profiles in the wavelet domain.

These results are consistent with those found in (Suinesiaputra et al., 2009) and (Punithaku-
mar et al., 2010) due to the fact that wall motion in the mid-ventricular level is well defined
and more stable compared to basal and apical levels. LC-KSVD2 shows the highest rate of
classification at basal slice, 1% over the other classification methods tested in this slice these
experiments with an accuracy of 95.40%.

According to the specific goal of the Global non-parametric multi-slice evaluation, we can
conclude that among the short axis planes, it is in the mid-cavity slice that the best performance
of classification of LV wall motion is achieved by most of the machine learning techniques. The
next evaluation stage performs the classification of LV wall motion in this short-axis plane
by considering radial profiles with more control subjects. However, to allow an analysis of
comparable results in the next stage of evaluation, we have chosen to select a reduced number of
patients. The selected patients correspond to those with radial strain information provided by
the 2D-STE study. The next experiments are performed, firstly, by not taking into account this
information and secondly, by taking into account the local strain information. Experiments are
performed only in Gray level (original) and Wavelet domains that are the space domains where
classification is more accurate according to the previous experiments.

5.5 Global non-parametric LV mid-cavity evaluation

The global non-parametric mid-cavity evaluation was performed using the global status of
the subject: Normal/Pathologic, as the label of diametral and radial spatio-temporal profiles
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Figure 5.15– From top to bottom: Accuracy, Sensitivity and Specificity of the machine learning
techniques using diametral profiles in Wavelet, Gray level and Fourier domains at the three LV anatomical
planes. Comparisons among SVM, LC-KSVD and FD-DL approaches.

extracted in the mid-cavity short axis plane:

Specific goal: To compare performance of LV wall motion classification between diametral
and radial spatio-temporal profiles at the mid-cavity short axis plane without taking into
account strain information provided by the 2D-STE.

Population: The short-axis cine-MRI database used in these experiments comprises 18 cases
identified in two classes: 1) patients with abnormal LV motion corresponding to 9 patients
with cardiac dyssynchrony and for which we have the radial strain tracings at the mid-
ventricular slice level obtained by 2D-STE and 2) patients with normal LV motion samples
that correspond to 9 healthy subjects from the Cardiac Atlas Project (CAP) database.

Here, the global status of the subject is used to label the profiles. We select this population
for further comparisons between taking or not the information of strain provided by the
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2D-STE study. The goal is to evaluate the impact that the information of the radial strain
has over the final classification of LV wall motion.

Input data: In summary, for each subject 36 radial spatio-temporal profiles and 18 diametral
spatio-temporal profiles were extracted, thus, we have: i) a total of 324 diametral profiles,
162 considered as abnormal (9 patients, 18 profiles per patient) and 162 considered as normal
(9 control, 18 profiles per subject), and ii) a total of 648 radial profiles, 324 considered as
abnormal (9 patients, 36 profiles per patient) and 324 considered as normal (9 control, 36
profiles per subject).

Space domain representation: Experiments were performed using both the diametral and
radio spatio-temporal profiles in the original domain (Gray level), as well as, the Wavelet
domain.

5.5.1 Results using diametral Spatio-temporal profiles

5.5.1.1 Experiments with SVM: Leave-one-out LOO cross validation

Experiments are performed at short-axis mid-cavity slice with a SVM based classifier con-
structed using two kinds of kernel functions: Linear and Gaussian Radial Basis Function (RBF).
Average results of LOO cross validation are shown in Table 5.17.

Table 5.17– Global mid-cavity evaluation: LOO results of classification using diametral profiles in
Gray level and Wavelet domain by the SVM models

Gray level Wavelet
Classifier Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
SVM linear 92.59 ± 15.82 91.97 ± 16.22 93.20 ± 16.38 93.82 ± 10.92 93.82 ± 10.91 93.82 ± 11.60
SVM RBF 92.90 ± 10.40 90.12 ± 13.25 95.67 ± 6.07 91.97 ± 12.81 90.12 ± 15.15 93.82 ± 10.55

Results show that Wavelet domain is still the space domain where classification is more
accurate, more precisely, by using a linear SVM the obtained accuracy is of 93.82%. In the
Gray level domain, both kernels (linear and RBF) achieves similar performance. Results of the
best performance are presented in the partial bull’s eye plots (only mid-cavity plane) shown in
Fig. 5.16 for the 9 pathological patients and the 9 control subjects (CAP1 to CAP9). Segment
colors are determined using the majority voting rule over the set of 6 diametral profiles selected
per segment.

Comparing the bull-eye’s plots with the ground truth in Table 5.4, we can see that the linear
SVM classifier can not take a decision only in two opposite segments in two patients: IMOP0
and CAP2 since three profiles yielded abnormal and three yielded normal behavior. The rest of
anatomical segments are accurately classified following the criterium of global status (patient
status) of the subjects as the label of the diametral spatio-temporal profiles (all normal from
control subjects and all abnormal form patients). However, comparing these results with the
reference truth show in the bull-eyes in Figure 5.5, the use of diametral profiles is limited to
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Figure 5.16– Global evaluation: Bull’s eyes results with LOO cross validation using Linear kernel with
diametral profiles in Wavelet domain

detect local regions of normal motion in patients. In fact, the SVM classifier has not well detected
any of the segments with normal motion in patients.

5.5.1.2 Experiments with SVM and DL: Random sub-sampling cross validation

To evaluate the generalization capability of the proposed approach with respect to accuracy,
sensitivity, and specificity, we take several subsets of samples from the original database. Each
subset is composed of training and testing groups. Most specifically, we take randomly 75% of
the diametral spatio-temporal profiles cataloged as abnormal to conform one half of the training
group. The other half has the same number taken randomly from the group of normal profiles.
In summary, the training group has 240 profiles (120 abnormal and 120 normal). The rest of
profiles (84 profiles, 42 normal and 42 abnormal) that are not taken in the training stage are
selected to test the methods. We repeat this procedure during 50 iterations. Then, we calculate
the average of classification in terms of accuracy, sensitivity and specificity. We apply the SVM
techniques and the LC-KSVD and FD-DL classification algorithms in the image domain as well
as the Wavelet domain with the same input training and testing data. Results are shown in
Table 5.18.

Table 5.18– Global evaluation: Results of classification using diametral profiles in Gray level and
Wavelet domain by the SVM models and DL algorithms

Gray level Wavelet
Classifier Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
SVM linear 91.19 ± 6.46 91.06 ± 11.81 91.33 ± 9.94 91.22 ± 6.95 90.44 ± 11.22 92.00 ± 8.36
SVM RBF 89.03 ± 5.62 88.83 ± 7.96 89.22 ± 8.77 90.28 ± 5.53 86.06 ± 9.25 94.50 ± 6.56
LC-KSVD 1 93.94 ± 4.56 93.39 ± 6.37 94.50 ± 6.10 92.14 ± 6.06 90.06 ± 8.45 94.22 ± 6.86
LC-KSVD 2 93.78 ± 4.63 92.44 ± 7.32 95.11 ± 5.23 91.22 ± 6.17 87.94 ± 9.58 94.50 ± 6.40
FD-DL 92.36 ± 5.65 91.39 ± 7.54 93.33 ± 7.21 90.58 ± 7.74 91.17 ± 11.01 90.00 ± 9.81

Results show that both versions of the LC-KSVD algorithm achieve the higher performance
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in the Gray level domain, with an accuracy about 94%, approximately 2% over the performance
achieved by the FD-DL algorithm. The accuracy obtained by the SVM models in the Gray level
domain is always below than the one achieved by the DL techniques. In the Wavelet domain, the
LC-KSVD1 algorithm achieves the highest performance, approximately 1% over the performance
obtained by the other techniques.

Even when results obtained with a global evaluation are competitive, the use of diametral
profiles by the classifiers is still limited to detect local regions of normal motion in patients. Next,
we perform the same level of evaluation by using radial profiles.

5.5.2 Results using radial spatio-temporal profiles

5.5.2.1 Experiments with SVM: Leave-one-out LOO cross validation

As with diametral profiles, we train with the spatio-temporal profiles of 17 patients and test
with the profiles of the single patient left out, the process is repeated until each patient passed
through the testing phase. Experiments are performed with a SVM based classifier constructed
using two kinds of kernel functions: Linear and in Radial Basis Function (RBF) with radial
profiles in the image domain (original) as well as the Wavelet domain. Average results of LOO
cross validation are shown in Table 5.19.

Table 5.19– Global mid-cavity evaluation: LOO results of classification using radial profiles in Gray
level and Wavelet domain by the SVM models

Gray level Wavelet
Classifier Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
SVM linear 80.40 ± 20.33 78.06 ± 25.13 82.71 ± 15.32 85.49 ± 12.11 82.71 ± 15.01 88.27 ± 8.30
SVM RBF 76.23 ± 16.17 70.98 ± 16.78 81.48 ± 14.56 73.91 ± 18.64 67.58 ± 21.14 80.55 ± 13.88

Like diametral profiles LOO results, the Wavelet domain remains the space domain where
classification is more accurate achieving an accuracy of 85.49% with linear SVM. However, these
results are low compared to previous results obtained with diametral profiles. In the Gray level
domain, linear kernel overcomes RBF kernel. Results of the best performance (linear kernel with
Wavelet domain) are presented in the partial bull’s eye plots (only mid-cavity plane) shown in
Fig. 5.17.

As we can see in the bull-eye’s plots, the linear SVM classifier can not take a decision in 12
anatomical segments in all the population. Furthermore, 4 of the anatomical segments in the
healthy population are cataloged as abnormal. The classifier failed in the identification of several
anatomical segments in the pathological group. Comparing these results with the reference truth
shown in the bull-eyes in Figure 5.5, we can see that the classifier has well identified only two
normal anatomical segments in the patient IMOP5 and one in the patient EuHeart5. However
it has failed in more segments of patients assigning a normal label when the original region is
abnormal, specifically a total of six segments.
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Figure 5.17– Global evaluation: Bull’s eyes results with LOO cross validation using Linear kernel with
radial profiles in Wavelet domain

5.5.2.2 Experiments with SVM and DL: Random sub-sampling cross validation

Similar with the experiments using diametral profiles, we take randomly 75% of the radial
spatio-temporal profiles cataloged as abnormal to conform one half of the training group. The
other half has the same number taken randomly from the group of normal profiles. In summary,
the training group has 480 profiles (240 abnormal and 240 normal). The rest of profiles (168
profiles, 84 normal and 84 abnormal) that are not taken in the training stage are selected to test
the methods.

We repeat this procedure during 50 iterations. We then calculate the average of classification
in terms of accuracy, sensitivity and specificity. Results are shown in table 5.20 for the linear an
RBF kernels and the DL algorithms using profiles in Gray level and Wavelet domains.

Table 5.20– Global evaluation: Results of classification using radial profiles in Gray level and Wavelet
domain by the SVM and DL models

Gray level Wavelet
Classifier Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
linear 94.36 ± 1.56 93.25 ± 2.03 95.47 ± 2.28 96.37 ± 0.81 95.73 ± 2.28 97.01 ± 1.98
RBF 87.74 ± 11.91 75.98 ± 24.18 99.49 ± 1.08 96.45 ± 1.48 93.68 ± 2.85 99.23 ± 0.63
LC-KSVD 1 96.20 ± 0.84 95.04 ± 1.75 97.35 ± 1.82 96.24 ± 1.17 95.73 ± 2.21 96.75 ± 1.44
LC-KSVD 2 95.98 ± 0.81 94.79 ± 1.73 97.18 ± 1.89 96.32 ± 1.29 95.64 ± 2.40 97.01 ± 1.16
FD-DL 97.05 ± 1.25 95.21 ± 2.36 98.89 ± 1.07 95.77 ± 1.20 93.16 ± 2.28 98.38 ± 1.10

As we can see, the accuracy of the SVM methods and the LC-KSVD algorithms is higher
than with diametral profiles using the representation of the radial profiles in the Wavelet domain
with an accuracy about 96%. Results show that FD-DL algorithm improves the performance
of classification compared to the the other techniques in the Gray level domain. The highest
accuracy achieved by the FD-DL technique is 97.05% using radial spatio-temporal profiles in the
Gray level domain.



5.6. Local non-parametric LV mid-cavity evaluation 139

5.5.3 Comparison of algorithms

For comparison purposes, Figure 5.18 shows bar plots of the overall average performance of
accuracy, sensitivity and specificity obtained at the mid-cavity short axis slice for the proposed
machine learning techniques.

Results are obtained over 50 randomly configurations for training and testing subsets using
diametral and radial spatio-temporal profiles with the global status of the subject as label of the
spatio-temporal profiles. The same training and testing input data is taken by all the techniques
according the non-parametric representation: radial or diametral.

As can be seen, in Gray level domain the higher classification accuracy is achieved with
diametral profiles, i.e., by the LC-KSVD1 algorithm. In a similar way, in Gray level domain
with radial profiles the best accuracy of classification is achieved by the FD-DL algorithm with
97.05% of accuracy, 95.21% of sensitivity and 98.89% of specificity.

Overall classification accuracy using radial profiles is higher than the classification accuracy
obtained using diametral profiles.

According to the specific goal of the Global non-parametric mid-cavity evaluation, we can
conclude that the use of radial profiles overcomes the classification performance given by diametral
profiles in the mid-cavity short axis plane. Moreover, dictionary learning techniques are more
homogeneous in terms of accuracy, sensitivity and specificity than the SVM models. For instance
low values of sensitivity in the Gray level domain are observed with a RBF kernel.

These results have to be used with prudence, considering that a global evaluation can bias
the results. They will be compared to the results obtained with a local evaluation in the next
sections.

5.6 Local non-parametric LV mid-cavity evaluation

The Local non-parametric mid-cavity evaluation was performed using the information of
local strain provided by the 2D-STE study, as the label of diametral and radial spatio-temporal
profiles extracted in the mid-cavity short axis plane:

Specific goal: To compare results of LV wall motion classification between diametral and radial
spatio-temporal profiles taking account strain information provided by the 2D-STE and to
compare the previous results obtained using global evaluation.

Population: The short-axis, cine-MRI database used in these experiments comprises the same
population used in in the Global non-parametric mid-cavity evaluation: 18 cases identified
in two classes: 1) patients with abnormal LV motion samples corresponding to 9 patients
with cardiac dyssynchrony and for which we have the radial strain tracings at the mid-
ventricular slice level obtained by 2D-STE and 2) patients with normal LV motion samples
that correspond to 9 healthy subjects. In the group of pathological patients in some cases,
only certain segments present abnormal movement which is in accordance with the 2D-STE
study.
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Diametral profiles Radial profiles

Figure 5.18– From top to bottom: Accuracy, Sensitivity and Specificity of the machine learning
techniques (diametral profiles vs. radial profiles) in Wavelet and Gray level domains at the mid-cavity
short axis plane. Comparisons between SVM, LC-KSVD and FD-DL approaches.

Input data: In summary, for each subject 36 radial spatio-temporal profiles and 18 diametral
spatio-temporal profiles were extracted, thus, we have:
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A total of 324 diametral profiles from the 18 subjects in study: 162 considered as abnormal
(9 patients, 18 profiles per patient) and 162 considered as normal (9 control, 18 profiles
per subject). We base our analysis after grouping two opposite segments and evaluate if
both or them are normal to be considered as a normal diametral profile, or if almost one of
them is abnormal to be considered as abnormal diametral profile.

This assessment is based on the information given in Table 5.4. This criteria shows that
for this database, the local assessment given by 2D-STE over diametral profiles coincides
with the global evaluation taking the global status of the subject as ground truth to label
the diametral profiles.

Based on the information given in Table 5.3, a total of 648 radial profiles, 276 considered
as abnormal and 372 considered as normal, are identified in the population. Table 5.21
resumes the number of radial spatio-temporal profiles assessed by 2D-STE.

Table 5.21– Total number of Radial Spatio-temporal profiles in the database

Assessment by 2D-STE
Abnormal Normal

Pathological patients 276 48
Control Group 0 324
Total 276 372

Space domain representation: Experiments were performed using the radial spatio-temporal
profiles in the original domain (Gray levels), as well as, the Wavelet domain. As the local
assessment given by 2D-STE over diametral profiles coincides with the global evaluation
taking the global status of the subject as ground truth to label the diametral profiles, then,
results in local evaluation using diametral profiles are the same to those obtained in the
global evaluation presented in section 5.5.1 (Tables 5.17 and 5.18).

Thus, experiments in this section are based only in radial spatio-temporal profiles and will
be compared to those presented in section 5.5.2. The goal is to find the technique that
achieves the best compromise in accuracy, sensitivity and specificity and at the same time
has low complexity and reduced computing times.

5.6.1 Experiments with SVM: Leave One Out LOO cross validation

Experiments are performed at short-axis mid-cavity slice level with a SVM based classifier
constructed using two kinds of kernel functions: Linear and RBF. Similar to diametral profiles,
we perform the LOO patient cross validation using radial profiles. In this particular case, we
train with the profiles of 17 patients and test with the profiles of the single patient left out, the
process is repeated until each of the patients passed through the testing phase. Experiments
are performed with radial profiles in the image domain (original) as well as the Wavelet domain.
Average results of LOO cross validation are shown in Table 5.22.
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Table 5.22– Local mid-cavity evaluation: LOO results of classification using radial profiles in Gray
level and Wavelet domain by the SVM models

Gray level Wavelet
Classifier Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
SVM linear 67.63 ± 27.05 86.11 ± 11.19 59.78 ± 32.71 74.32 ± 20.86 71.54 ± 33.10 66.54 ± 24.70
SVM RBF 72.38 ± 25.45 88.88 ± 13.24 69.59 ± 33.78 69.52 ± 23.72 76.08 ± 27.44 68.20 ± 23.77

The Wavelet domain is the space domain where classification is more accurate i.e., using a
linear SVM with an accuracy of 74.32%. In the Gray level domain, RBF kernel overcomes linear
kernel in accuracy. Results of the best performance (linear kernel with Wavelet domain) are
presented in the partial bull’s eye plots (only mid-cavity plane) shown in Figure 5.19.

Figure 5.19– Local evaluation: Bull’s eyes results with LOO cross validation using Linear kernel with
radial profiles in Wavelet domain

As we can see in the bull-eye’s plots, the linear SVM classifier can not take a decision in 3
anatomical segments in patients EuHeart2, EuHeart5 and EuHeart6. Comparing these results
with the reference truth shown in the bull-eyes in Figure 5.5, we can see that the classifier has
well identified normal segments in patients IMOP6, EuHeart 4 and EuHeart 5; partially in patient
EuHeart6, but has not well identified 3 of the anatomical segments in the healthy population
that were cataloged as abnormal (Mantilla et al., 2015c).

5.6.2 Experiments with SVM and DL: Random sub-sampling cross
validation

In order to evaluate the generalization capability of the classifier, we apply approximatively
the same process than in 5.5.2.2: we take several subsets of samples from the original database.
Each subset is composed of training and test groups, specifically we take randomly 75% of
the radial spatio-temporal profiles cataloged as abnormal to conform one half of the training
group. The other half has the same number taken randomly from the group of normal profiles.
In summary, the training group has 414 profiles (207 abnormal and 207 normal). The rest
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of profiles not taken in the training stage are selected to test the methods. We repeat this
procedure during 50 iterations, after that, we calculate the average of classification in terms
of accuracy, sensitivity and specificity. We apply the SVM techniques, the LC-KSVD and the
FD-DL algorithms using radial spatio-temporal profiles in both the original and the Wavelet
domains. Results are presented in table 5.23.

Table 5.23– Local mid-cavity evaluation: Results of classification using radial profiles in Gray level
and Wavelet domain by the SVM and DL models

Gray level Wavelet
Classifier Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
linear 88.46 ± 1.54 86.96 ± 5.02 89.09 ± 2.76 88.78 ± 2.27 88.62 ± 4.37 88.85 ± 3.39
RBF 91.88 ± 1.99 92.75 ± 3.01 91.52 ± 2.96 91.20 ± 1.45 92.10 ± 3.03 90.82 ± 2.31
LC-KSVD 1 90.24 ± 2.07 90.22 ± 4.84 90.24 ± 2.22 92.61 ± 2.15 93.48 ± 2.76 92.24 ± 2.58
LC-KSVD 2 91.94 ± 1.35 91.88 ± 3.74 91.97 ± 1.75 92.31 ± 1.93 93.12 ± 2.70 91.97 ± 2.45
FD-DL 92.81 ± 1.67 88.33 ± 5.10 94.68 ± 2.29 91.41 ± 2.44 83.44 ± 11.69 94.74 ± 3.31

Results show that best classification is achieved by the FD-DL algorithm in the original
domain with an accuracy of 92.81%, a sensitivity of 88.33% and a specificity of 94.68%. The
best classification rate by the LC-KSVD algorithm with an accuracy about 92.61% is achieved in
the Wavelet domain, very close to the results obtained by the FD-DL algorithm in the original
domain. Concerning SVM models, the RBF kernel achieves high rate of classification, 91.88% of
accuracy in the gray level domain. The highest specificity is yielded in the Wavelet domain by
the FD-DL algorithm.

We have evaluated the classification accuracy of the LC-KSVD and FD-DL algorithms by
reducing the number of atoms in the dictionary. For these experiments we choose the Wavelet
domain.

We have evaluated the LC-KSVD algorithms using different dictionary sizes K = 4, 21,
42, 104, 207, 312, 373 and 414. Figure 5.20 shows that LC-KSVD2 maintains again higher
classification accuracy compared to LC-KSVD1, highlighting the importance of the classification
error term (‖H −WX‖22) in the objective function of the discriminative DL model.

We evaluate the FD-DL algorithm using different dictionary sizes K = 4, 21, 42, 104, 207,
312, 373 and 414. Figure 5.21 shows that FD-DL algorithm maintains high accuracy when the
number of atoms in the dictionary is decreased almost to one half of the initial dictionary size.

Sparseness in the SVM models and Sparsity in DL algorithms

Table 5.24 shows the number of support vectors (SV) founded by each model.
We have evaluated the LC-KSVD algorithms using different sparsity constraint values T =

2, 4, 8, 15, 24, 30, 50, 105, 207, and 414 in the Wavelet domain. Figure 5.22 shows that both,
LC-KSVD1 and LC-KSVD2 algorithms achieve a high classification accuracy when T is reduced
almost to a value of 15.
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Figure 5.20– Accuracy of classification of LC-KSVD algorithms varying the number of dictionary
atoms using radial profiles.

Figure 5.21– Accuracy of classification of FD-DL algorithm varying the number of dictionary atoms
using radial profiles.

Table 5.24– Local mid-cavity evaluation: Number of Support vectors obtained using radial profiles in
Gray level and Wavelet domain by the SVM models

Classifier Gray level Wavelet
Linear SVM 243 248
RBF SVM 301 286

We have evaluated the FD-DL algorithm using different sparsity constraint values λ1 =
0.001, 0.001, 0.01, 0.1, 1, 10 and 100 in the Gray level domain. Figure 5.23 shows that this
technique achieves a high classification accuracy when the sparsity constraint takes small values
i.e λ1 ≤ 0.05.

Comparing the sparseness in SVM models with sparsity in DL techniques, we can conclude
that the complexity is higher in SVM models since they need enough support vectors, about
more than 50% of the initial input vectors to construct the hyperplane of separation between
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Figure 5.22– Accuracy of classification of LC-KSVD algorithms varying the sparsity constraint T
using radial profiles.

Figure 5.23– Accuracy of classification of the FD-DL algorithm varying the sparsity constraint λ1
using radial profiles

normal and abnormal profiles. Opposite, the LC-KSVD algorithms employ approximately 10%
of the dictionary atoms to discriminate between the two classes. This performance is maintained
even when the number of atoms is reduced in the initial dictionary e.g., by the LC-KSVD2
algorithm. These results proof that sparsity in DL techniques, gives a good compromise between
complexity and accuracy for LV wall motion classification.

5.6.3 Comparison of algorithms

Comparing SVM and DL techniques using radial profiles, Figure 5.24 uses bar plots to
summarize the overall average performance in the original and Wavelet domains respectively, for
the classification methods over 50 randomly configurations for training and testing subsets.

Results show that the best rate of classification is achieved by the FD-DL technique in the
original domain (Gray level domain) with an average of 92.81% of accuracy. This technique
carries out the higher specificity in both, original and Wavelet domains. Furthermore, the



146 Chapter 5. DL for LV wall motion classification: Results

Accuracy Sensitivity Specificity

Figure 5.24– Local mid-cavity evaluation: Accuracy, Sensitivity and Specificity of the machine learning
techniques in Wavelet and Gray level representation using radial spatio-temporal profiles.

obtained classifier in the LC-KSVD technique finds the sparse codes in the Wavelet domain more
discriminant for cardiac spatio-temporal profile classification. In terms of sensitivity the higher
results are the obtained with LC-KSVD in wavelet domain followed by SVM with a RBF kernel
in the gray level domain.

As results, the parameters of the machine learning techniques found as the optimal ones
using 5 fold cross-validation were: for Linear SVM, C = 100; for RBF SVM, C = 100 and σ = 1.
For LC-KSVD1: α = 16, for LC-KSVD2 α = 16 and β = 4, and finally for FD-DL: λ1 = 0.05
and λ2 = 0.5.

To compare local results in bull eyes plots obtained by the SVM techniques using LOO cross
validation, the classifier performance of the discriminative DL techniques was also evaluated with
a LOO-patient cross validation. Average results of LOO cross validation are shown in Table 5.25
for the LC-KSVD algorithms in the Wavelet and Gray level domains.

Table 5.25– Local mid-cavity evaluation: LOO results of classification using radial profiles in Gray
level and Wavelet domain by the LC-KSVD algorithms

Gray level Wavelet
Classifier Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
LC-KSVD1 70.06 ± 16.54 65.83 ± 23.84 77.46 ± 9.25 82.53 ± 15.53 80.77 ± 23.88 87.16 ± 10.18
LC-KSVD2 69.44 ± 17.25 65.83 ± 23.84 76.54 ± 9.32 84.07 ± 15.99 80.77 ± 23.88 89.62 ± 8.21

As can be seen, the best LOO results in terms of accuracy are achieved by the LC-KSVD2
algorithm in the Wavelet domain. Bull-eyes results of LOO-patient cross validation are shown in
Figure 5.25 and are the same for the three algorithms: LC-KSVD1, LC-KSVD2 and FD-DL. As
we can see in Fig. 5.25, the discriminative DL algorithms are able to detect the normal regions
in patients IMOP6, EuHeart4 and EuHeart6 and fail in the identification of normal/abnormal
wall motion in one segment in patients IMOP5 and EuHeart5.

It should be noted that the SVM models report low values of specificity with high standard
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deviation values resulting in the misclassification of several segments in normal patients. Opposite
to SVM, the discriminative DL models achieve high values of specificity with relative small values
of standard deviation leading to an accurate classification for all segments in the normal patients.

Figure 5.25– Local LV wall motion in the study population obtained by the three adapted discriminative
DL techniques for LV wall motion classification: LC-KSVD1, LC-KSVD2 and FD-DL.

About computing times, Tables 5.26 and 5.27 shows the time in seconds (mean ± standard
deviation) employed by SVMs and the DL techniques using Gray level and Wavelet coefficients
respectively at training and testing stages. Times are calculated using the optimal parameters
for each algorithm. DL techniques demand more computational time in training and testing
stages than SVM, particularly the FD-DL technique. Furthermore, the difference in training and
testing time between SVM and the LC-KSVD techniques is very low (approximately 6 secs for
training and 0.02 for testing).

Table 5.26– Time employed by the classification techniques in the Original domain

Learning Time (sec) Testing time (sec)
SVM linear 6.127 ± 0.757 0.008 ± 0.016
SVM RBF 0.542 ± 0.040 0.034 ± 0.005
LC-KSVD 1 8.355 ± 0.315 0.059 ± 0.003
LC-KSVD 2 8.275 ± 0.333 0.048 ± 0.003
FD-DL 56.034 ± 5.183 1.218 ± 0.114

Table 5.27– Time employed by the classification techniques in the Wavelet domain

Learning Time (sec) Testing time (sec)
SVM linear 1.090 ± 0.155 0.004 ± 0.001
SVM RBF 1.041 ± 0.182 0.030 ± 0.004
LC-KSVD 1 7.360 ± 0.110 0.051 ± 0.034
LC-KSVD 2 7.340 ± 0.100 0.049 ± 0.001
FD-DL 51.170 ± 2.610 1.170 ± 4.202
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Discriminative DL techniques outperforms SVM slightly but with higher computational cost.
The three discriminative DL techniques demand more computational time in training and testing
stages than SVM, particularly the FD-DL technique. Furthermore, the difference in training and
testing time between SVM and the LC-KSVD techniques is very low.

Figure 5.26, illustrates the representation coefficient matrix X of a subset of the training
dataset by the LC-KSVD2 and the FD-DL algorithms in the Wavelet domain. Please note that
by FD-DL the coefficient matrix X of the training dataset is nearly block diagonal, whereas
each block is built by samples from the class corresponding to that sub-dictionary exploiting
the discrimination given by the Fisher criterion that minimize the intra-class scatter of X, and
maximize the inter-class scatter of X. In the case of LC-KSVD2 the coefficient matrix of the
training dataset has many big non-block diagonal entries since the discrimination is imposed
by structural constraints on the dictionary and not in the coefficients. The coefficient matrix
by FD-DL is more regular than that by LC-KSVD2, validating the effectiveness of FD-DL in
enhancing the discrimination of representation coefficients.
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Figure 5.26– The representation of the coefficient matrixX on the training datasets by the LC-KSVD2
(top) and by FD-DL (bottom) algorithms.

According to the specific goal of the Local non-parametric mid-cavity evaluation, we can
conclude that the use of radial profiles overcomes the classification performance given by diametral
profiles in the mid-cavity short axis plane. The results provide the LC-KSVD2 technique as
the best compromise, both in accuracy, sensitivity, and specificity, and complexity in terms of
computing time and sparsity i.e., in the Wavelet domain.

5.7 Local parametric LV mid-cavity evaluation

The Local parametric mid-cavity evaluation was performed using the descriptor parameters
extracted from the radial spatio-temporal profiles assessed with the information of local strain
provided by the 2D-STE study:

Specific goal: To find the parameter or combination of parameters that better contribute to
LV wall motion classification.

Population: The short-axis, cine-MRI database used in these experiments comprises the same
population used in in the Local non-parametric mid-cavity evaluation: 18 cases identified
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in two classes: 1) patients with abnormal LV motion samples corresponding to 9 patients
with cardiac dyssynchrony and for which we have the radial strain tracings at the mid-
ventricular slice level obtained by 2D-STE and 2) patients with normal LV motion samples
that correspond to 9 healthy subjects.

Input data: In summary, for each subject 36 radial spatio-temporal profiles were extracted,
thus, we have: a total of 648 radial profiles, 276 considered as abnormal and 372 considered
as normal. From these radial profiles the skewness (Sk), Clustering (Cl), Correlation (Co)
and Mean transition time (Mt) parameters were extracted.

Space domain representation: Experiments were performed using different combinations of
the extracted parameters: the skewness (Sk), Clustering (Cl), Correlation (Co) and Mean
transition time (Mt). Specifically, the tested combinations are:

1. Skewness and Clustering: Sk - Cl.
2. Skewness, Clustering and Correlation: Sk - Cl - Co.
3. Skewness and Mean transition time: Sk - Mt.
4. Skewness, Mean transition time and Correlation: Sk - Mt - Co.
5. Skewness, Mean transition time and Clustering: Sk - Mt - Cl.
6. Clustering and Correlation: Cl - Co.
7. Clustering, Correlation and Mean transition time: Cl - Co - Mt.
8. Skewness, Mean transition time, Clustering and Correlation: Sk - Mt - Cl - Co

5.7.1 Parameter analysis

The parameter extraction procedure (cf. section 4.6.3.3) is applied over all the 648 radial
profiles described in the input data. Below we present an analysis of the extracted parameters.

5.7.1.1 Average clustered curve (Cl)

Figure 5.27 shows the reference clustered signals per segment in 4 subjects. As we can see, in
the case of healthy subjects CAP1 and CAP8, all the maximum peak of signals seem to focus on
a single phase in time with a relative small variation, reflecting a synchronous contraction of all
segments. At the other hand, for patients, maximum peak of signals appears in different phases
or instants reflecting a dyssynchronous contraction among segments. For example in patient
IMOP5 septal segments contract lately compared with the other segments.

The same behavior was observed in (Kachenoura et al., 2007) where the septal wall
highlighted an important delay in wall contraction in a patient with left bundle branch block
(LBBB).

5.7.1.2 Mean transition time (Mt)

Mean values for the related parameter are calculated from the 108 segments of the database
(18 subjects, 6 segments per subject) according the spatial location in the myocardial wall for both
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Figure 5.27– Clustered reference signal by segments in 4 subjects. Left: Patients IMOP6 and EuHeart3.
Right: Control CAP1 and CAP8.

groups and are presented in Table 5.28. Note that the Mean transition time in the septal segments
of healthy subjects take highest values, the same observation was noticed in (El Berbari et al.,
2009). In general Mt values in the pathological group are higher than the ones obtained in the
healthy population.

5.7.1.3 Skewness parameter (Sk)

Curve skewness values are shown in Figure 5.28 for both populations in different anatomical
segments. Note that inferior values of skewness observed in some segments in the pathological
group compared to the control group indicates that the data distribution is left-skewed reflecting
late regional LV contraction. Positive skewness would indicate that the data distribution is
right-skewed reflecting early and normal regional LV contraction what is observed for the healthy
population. As can be seen in Fig.5.28, a noticeable difference among the values of skewness is
most remarkable in the inferior anatomical segment between the two populations.
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Table 5.28– Mean transition time (msec) obtained from TSICs

Mean transition Time
Segment Pathological Healthy
AnteroLateral 0,548 ± 0,014 0,378 ± 0,009
Anterior 0,594 ± 0,013 0,396 ± 0,010
AnteroSeptal 0,566 ± 0,035 0,454 ± 0,011
InferoSeptal 0,625 ± 0,025 0,465 ± 0,014
Inferior 0,672 ± 0,009 0,404 ± 0,006
InferoLateral 0,604 ± 0,021 0,398 ± 0,011
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Figure 5.28– Average of curve Skewness for both populations in the different anatomical segments.

5.7.1.4 Cross Correlation parameter (Co)

Resulting parameters for cross correlation between each average clustered curve (Cl) and the
normal reference are computed and presented in Table 5.29. Average values for cross-correlation
were 0.76 ± 0.11 for patients and 0.92 ± 0.02 for control subjects, reflecting a noticeable contrast
between the two populations.

5.7.2 Experiments with SVM, LC-KSVD and KSRDL

Different experiments have been performed using several configurations of the proposed
parameters. The different combinations of parameters are used to train the kernel-based KSRDL
approach.

Significant results of these experiments are presented in Table 5.30 and are compared
with classification based on SVM with a linear (SVM1) and RBF (SVM2) kernel, and also
with discriminative dictionaries based on LC-KSVD2 algorithm. Experiments have also been
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Table 5.29– Delay time based Cross Correlation obtained from the time-signal intensity curves and the
patient-specific reference

Segment Pathological Healthy
AnteroLateral 0.827 ± 0.137 0.937 ± 0.066
Anterior 0.817 ± 0.131 0.810 ± 0.326
AnteroSeptal 0.756 ± 0.126 0.927 ± 0.071
InferoSeptal 0.758 ± 0.128 0.816 ± 0.319
Inferior 0.810 ± 0.134 0.901 ± 0.191
InferoLateral 0.827 ± 0.128 0.874 ± 0.242

performed with the FD-DL algorithm, but in this case this technique has not converged due to
the small size of the input atoms.

Table 5.30– Accuracy obtained by different techniques

Test/Technique SVM1 SVM2 LC-KSVD KSRDL
Sk - Cl 72.31 ± 3.38 93.50 ± 2.35 92.22 ± 2.19 94.49 ± 1.59

Sk - Cl - Co 78.46 ± 2.11 94.34 ± 1.42 93.40 ± 1.60 94.06 ± 2.38
Sk - Mt 75.26 ± 4.60 90.50 ± 1.35 90.29 ± 2.26 94.20 ± 2.79

Sk - Mt - Cl 72.74 ± 2.56 94.25 ± 1.38 93.62 ± 1.20 93.81 ± 2.06
Cl - Co 69.06 ± 3.00 81.45 ± 3.48 58.72 ± 2.59 57.97 ± 8.39

Sk - Mt - Cl - Co 77.52 ± 2.25 94.32 ± 1.49 94.17 ± 1.46 93.99 ± 2.19

Results show that the best rate of classification is achieved using KSRDL algorithm when
training vectors include the skewness (Sk) and the average curve (Cl) parameter with an accuracy
of 94.49%, a sensitivity of 93.67% and a specificity of 95.13% (Mantilla et al., 2015a,b).

Best performance for the SVM by using a RBF kernel and the LC-KSVD algorithm is
achieved when all the parameters are used as input. The accuracy of the classifiers is significantly
reduced when the input is constructed only with the average curve (Cl) and the Cross correlation
parameter (Co), highlighting the importance of the skewness parameter in the characterization
of LV wall motion.

We evaluated the classification accuracy of the KSRDL algorithm by reducing the number of
atoms in the dictionary. Figure 5.29 shows the effect varying the dictionary size for K = 2, 5, 15,
25, 35, 75 and 135.

Results show that KRSDL maintains a high classification accuracy while the number of
dictionary atoms is reduced almost to a value of 15 atoms.

About computing times, Table 5.31 shows the time in seconds (mean ± standard deviation)
employed by the classifiers that present the best results. Results show that the training time
employed by the KRSDL algorithm is significantly smaller than the one of the computing time
employed by the other DL techniques (Mantilla et al., 2015d).
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Figure 5.29– Accuracy of classification of KSRDL algorithm varying the number of dictionary atoms

Table 5.31– Computing times employed by the different techniques

Test/Technique SVM1 SVM2 LCKSVD KSRDL
Sk - Cl 0.887 ± 0.184 6.383 ± 1.307 6.228 ± 0.512 2.702e-04 ± 3.273e-04

0.754e-03 ± 0.609 0.004 ± 0.001 0.021 ± 0.002 0.007 ± 0.001
Sk - Cl - Co 0.808 ± 0.631e-03 0.159 ± 0.696e-04 4.953 ± 0.347 2.059e-04 ± 3.244e-04

6.121 ± 0.005 1.430 ± 0.961e-03 0.020 ± 0.003 0.015 ± 0.041
Sk - Mt 0.936 ± 0.232 4.281± 1.059 5.593 ± 0.323 3.507e-04 ± 3.781e-04

0.579e-03 ± 0.961e-04 0.003 ± 0.564e-03 0.019 ± 0.001 0.007 ± 0.002
Sk - Mt - Co 1.201 ± 0.421 4.930 ± 0.804 0.331 ± 0.008 3.010e-04 ± 1.932e-04

0.721e-03 ± 0.595e-03 0.003 ± 0.758e-03 0.333 ± 0.002 0.008 ± 0.001
Sk - Mt - Cl 0.971 ± 0.149 5.808 ± 0.908 0.483 ± 0.007 2.809e-04 ± 7.972e-05

0.605e-03 ± 0.251e-03 0.004 ± 0.001 0.472 ± 0.003 0.008 ± 0.002
Cl - Co - Mt 0.374 ± 0.0875 0.823 ± 0.249 0.635 ± 0.006 2.047e-04 ± 7.596e-05

0.615e-03 ± 0.126e-03 0.005 ± 0.001 0.388 ± 0.003 0.007 ± 0.002
Sk - Mt - Cl - Co 0.881 ± 0.206 5.877 ± 0.785 0.317 ± 0.001 2.073e-04 ± 6.683e-05

0.635e-03 ± 0.131e-03 0.003 ± 0.749e-03 0.501 ± 0.001 0.0079 ± 0.001

Sparsity in the KSRDL algorithm

We have also evaluated the accuracy of classification of the KSRDL algorithm varying the
sparsity constraint. Figure 5.23 shows the accuracy of he KSRDL algorithm for λ1= 0.0001,
0.001, 0.001, 0.01 and 0.1.

As can be seen, the KSRDL technique achieves a high classification accuracy when the
sparsity constraint takes small values i.e λ1 ≤ 0.01.

According to the specific goal of the Local parametric mid-cavity evaluation, we can conclude
that the best rate of classification by using the KSRDL approach is achieved when training
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Figure 5.30– Accuracy of classification of the KSRDL algorithm varying the sparsity constraint λ1

vectors include the skewness (Sk) and the average curve (Cl) parameters. However, we can
observe that results obtained are close to those obtained with LC-KSVD and SVM2 approaches
by using more parameters. The use of sparse classifiers based on kernel DL seems to be a
promising technique for classification of LV wall motion that deserves more extensive validation.

5.8 Discussion

In section 4.5, we have presented some works in the literature related to the assessment of LV
motion in cardiac MRI. Some of these works based on classification techniques are summarized
in Table 5.32. All the methods analyse apical, mid-cavity and basal slices in short-axis cine MRI,
excepted the method proposed in (Lu et al., 2009) that shows results only for basal slices.

Table 5.32– Classification techniques in recent existing methods of regional LV motion classification

Method Technique
Afshim (Afshin, 2012) Linear Discriminant Analysis+

Linear Support Vector Machine
Punithakumar et.al. (Punithakumar et al., 2010) Shannon’s Differential Entropy (SDE) +

Naive Bayes classifier
Suinesiaputra et.al. (Suinesiaputra et al., 2009) Wall thickening and Visual Wall Motion Scoring+

Independent Component Analysis (ICA)
Lu et.al. (Lu et al., 2009) Intra-segment correlation measure

In these methods, the evaluation was performed by expert visual assessment. For instance,
in (Lu et al., 2009) 12 of 17 patients where identified with regional abnormal wall motion for
the basal slice by expert visual assessment. In (Afshin et al., 2014), each myocardial segment
was marked following a binary score, either normal or abnormal. The local ground truth (per
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segment) was built by three experienced radiologists, each of whom annotated a different portion
of the data set. Among the 928 segments identified in this study, 579 segments were marked
as normal and 349 as abnormal. In (Punithakumar et al., 2010), among the 480 myocardial
segments identified in the study population, 389 segments were marked as normal and 91 as
abnormal by expert visual assessment. Visual wall motion scoring for the patient group in
(Suinesiaputra et al., 2009) was performed for each segment by an experienced cardiologist on
a five-point scale: normokinetic, mid-hypokinetic, severe-hypokinetic, akinetic, and dyskinetic.

In our proposed methods, a quantitative evaluation has been performed in two levels: Global
evaluation taken the global status of the patient to label each LV anatomical segment and
Local evaluation taken information of local radial strain provided by 2D-Speckle tracking
Echocardiography to label each LV anatomical segment.

The better results using global evaluation has been obtained with the FD-DL classifier that
reached 96.51% for accuracy, 96.48% for sensitivity and 96.67% for specificity, using diametral
spatio-temporal profiles in the Wavelet domain obtained at the mid-ventricular slice level. This
performance was slightly improved by using radial profiles at the same anatomical plane by the
same classification technique with an accuracy of 97.05%, a sensitivity of 95.21% and a specificity
of 98.89%, in this case in Gray level (original domain).

It should be noted that higher values in accuracy using a global evaluation are biased. In
fact there is an error introduced since the beginning of the training stage of all classifiers. Some
of the anatomical segments in the pathologic population are labeled as abnormal LV motion
even when some segments present normal LV motion. It is for this reason that results using local
evaluation are more realistic than those obtained by using global evaluation.

Regarding local evaluation, the best performance in the mid-cavity plane was achieved by
the FD-DL technique using radial profiles with the assessment of 2D-STE in the Gray level
domain with an accuracy of 92.81%, a sensitivity of 88.33% and a specificity of 94.68%. This
performance was improved by using the Skewness and Clustering parameters extracted from
the radial profiles at the same anatomical plane by the KSRDL technique with an accuracy of
94.49%, a sensitivity of 93.67% and a specificity of 95.13%.

Table 5.33 shows the results of the proposed approaches using local evaluation compared
to the reported methods in terms of accuracy at each slice level and for a specific number of
patients.

As we can see in this table, the best rate of classification in methods found in the literature for
the LV wall motion classification is achieved by (Punithakumar et al., 2010) with an accuracy
of 93.30%. On the one hand, this performance is better than our proposed method when the
radial spatio-temporal profiles in both, gray levels (92.81% with FD-DL) and Wavelet domains
(92.61% with LC-KSVD1) are used to train the respective classifiers. On the other hand, our
method using the parametric features, SK and Cl, achieves the highest rate of classification
(94.49% with KSRDL and 93.50% with SVM RBF). However, it has been applied in a reduced
number of patients comparing to those used in (Punithakumar et al., 2010) and these results
have to be confirmed on more data patients.
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Table 5.33– Comparisons of accuracy of the proposed methods using local evaluation with existing
methods of regional LV motion classification

Method Apical Mid-cavity Basal Patients
(FD-DL) - 92.81 - 18

Radial (LC-KSVD1) - 90.24 - 18
non-parametric (LC-KSVD2) - 91.94 - 18
Gray level (SVM Linear) - 88.46 - 18

(SVM RBF) - 91.88 - 18
(FD-DL) - 91.11 - 18

Radial (LC-KSVD1) - 92.61 - 18
non-parametric (LC-KSVD2) - 92.31 - 18
Wavelet (SVM Linear) - 88.78 - 18

(SVM RBF) - 91.20 - 18
(KSRDL) - 94.49 - 18

Radial (LC-KSVD2) - 92.22 - 18
parametric: Sk- Cl (SVM Linear) - 72.31 - 18

(SVM RBF) - 93.50 - 18
(Afshin et al., 2014) 89.75 85.72 84.02 58
(Punithakumar et al., 2010) 92.50 93.30 87.20 30
(Suinesiaputra et al., 2009) (WT) 72.78 89.63 69.93 89
(Suinesiaputra et al., 2009) (VWMS) 66.67 67.41 63.70 89
(Lu et al., 2009) - - 86.30 17

About user interaction, in our method, 5 manual mouse clicks, are used in the first frame of
the cardiac study, while other approaches seem to demand more user assistance to delineate endo
and/or epicardial boundaries in all the frames. Only the methods in (Afshin et al., 2014) and
(Punithakumar et al., 2010) report computational times with 0.15 and 62 secs respectively.
Comparative results in Table 5.33 show that the proposed method can yield a competitive
performance while reducing the complexity and user interaction.

Comparing with the previous work on regional LV wall motion analysis presented in Table
5.32, our proposed method has main advantages that can be summarized as:

— The segmentation of the endocardium and epicardium is not required.

— The KSRDL and LC-KSVD methods have found an appropriate balance between accuracy,
computing time, complexity and simplicity.

— The discriminative dictionary learning methods have been applied for LV motion analysis
for the first time.

The results have been shown that analyzing the LV radial spatio-temporal profiles in the
cardiac cine-MRI sequences at the mid-cavity short axis plane seems to be sufficient for detecting
wall motion abnormalities in this patient study data set.
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5.9 Limitations

In this study we have presented a novel methodology, based on DL approaches for LV wall
motion classification in cardiac cine MRI. In this methodology, 5 points are located in the first
frame of the cardiac study. One critical point could be the choice of the anterior intersection
between LV and RV, necessary to determine the LV anatomical segments. An accurate location
of this reference point in the cardiac cycle is difficult. We have assumed a stationary point of
reference (anatomical landmark) located in the anterior intersection between the two ventricles at
one reference frame in the end-diastole phase that is repeated on the next frames of the cardiac
cycle. Therefore, this unique reference point location was used even it probably lead to slight
segment location errors due to the LV twisting and ventricular torsion. Thus, we are interested
in measuring the impact of the manually location of the reference point at each frame of the
cardiac cycle.

Firstly, a reference anatomical landmark in the anterior intersection between RV and LV is
manually positioned at the first frame of the cardiac cycle (end-diastole frame). A reference line
from the LV centroid to this point in traced in order to get the angular position of the reference
point. For the next frames of the cardiac cycle, a new anatomical landmark is manually located,
then, the angular variation of this point is computed with respect to the reference point located
in the end-diastole frame of the cardiac cycle. An illustrative example is shown in Figure 5.31.
Table 5.34 shows the mean and standard deviation values of the angular variation (in degrees)
that have been measured in both groups, pathological and control subjects.

E1 E1

E1'

End-diastolic frame

. . . . . . . . .

Figure 5.31– Angular variation of reference point E1 from end diastole to a posterior frame E1’

Average values of angular variation for the population in study, including healthy and
pathologic patients, are -5.404 ± 8.329. Results show that the higher average variation is 9.87◦

± 4.07◦ observed in the patient EuHeart1.
To provide a first quantification of these errors on LV wall motion classification, we are

interested in evaluating our method in the two situations: 1) by fixing the anatomical landmark
at the first frame of the cardiac cycle and 2) by the manual tracking of it in all the frames of the
cardiac cycle. We want to determine if the angular variations observed in Table 5.34, has some
impact in the classification performance of the proposed machine learning techniques.
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Table 5.34– Angular variation in degrees of the anterior intersection point between RV and LV

Subject Angular variation Subject Angular variation
IMOP0 -3.86 ± 3.20 CAP1 3.82 ± 3.77
IMOP1 -7.50 ± 4.96 CAP2 -1.79 ± 5.08
IMOP4 -1.98 ± 5.89 CAP3 2.35 ± 3.81
EuHeart1 9.87 ± 4.07 CAP4 1.98 ± 3.62
EuHeart2 -0.14 ± 3.25 CAP5 -1.17 ± 3.67
EuHeart3 2.69 ± 6.04 CAP6 -2.50 ± 7.16
EuHeart4 -9.56 ± 4.62 CAP7 -4.02 ± 4.28
EuHeart5 2.31 ± 4.19 CAP8 5.29 ± 5.51
EuHeart6 -0.59 ± 3.80 CAP9 5.15 ± 4.32

Figure 5.32 shows a comparison of the radial spatio-temporal profiles extracted every 10◦ in
both cases. We can see that profiles in the second case present some variation in the Gray level
intensity making the epicardial and endocardial borders more notorious. More homogeneity is
observed in profiles for the first case.

A B

Figure 5.32– Radial profiles with A) simple location of the anterior intersection between RV and LV
at the first frame of the cardiac cycle and B) manual location of the anterior intersection between RV and
LV in all the frames of the cardiac cycle.

Once the new radial profile extraction has been performed with the manual location of the
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reference point in all the frames of the cardiac cycle, we have repeated the experiments of local
evaluation using radial profiles both in the Gray level domain and the Wavelet domain. The
configuration of training and testing inputs are the same that those used in previous experiments
with the location of the reference point only in the first frame of the cardiac cycle. Table 5.35
shows the results with the different classifiers after the average of 50 iterations by combining
training and testing groups.

Table 5.35– Results of classification by local evaluation and by using radial profiles with the manual
location of the anterior intersection between RV and LV in each frame of the cardiac cycle by the different
techniques in Gray level and Wavelet domain

Gray level Wavelet
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

SVM linear 90.68±1.19 87.25±5.36 92.12±2.14 91.28±2.02 91.59±3.75 91.15±2.04
SVM RBF 92.39±2.15 77.39±6.53 98.67±0.79 96.23±1.74 97.68±1.94 95.63±1.98
LCKSVD 1 95.04±1.19 93.91±3.75 95.52±1.26 94.87±1.51 94.78±3.18 94.91±1.80
LCKSVD 2 94.87±1.17 93.62±3.34 95.39±1.40 95.13±1.64 95.07±2.63 95.15±1.77
FD-DL 93.59±1.86 91.79±6.54 94.34±5.30 90.28±2.22 81.52±8.23 93.94±2.47

Results show that the classification performance is generally improved using the different
classifiers with the manual tracking of the anterior intersection between the two ventricles.
Specifically, the best classification performance is obtained in the Wavelet domain by the SVM
using a RBF kernel with an accuracy improved from 91.20% to 96.23%. The LC-KSVD2
algorithm has improved its performance from 92.31% to 95.13% also in the Wavelet domain (cf.
Table 5.23).

Comparing these results with those obtained in the previous experiments shown in Table
5.23, we can conclude that the accuracy of classification is improved in almost 4% with respect
to the best performance obtained by the FD-DL technique in the gray level domain: 92.81%
with the anterior intersection between RV and LV fixed in all the frames.

This experiment confirmed that a manual location of the anatomical landmark between LV
and RV is needed to improve the results of classification of LV wall motion. An automatic
location of this point could be addressed in future works.

5.10 Conclusion

We have presented new solutions for regional LV wall motion classification using two machine
learning techniques. Experiments are performed, independently, in apical, mid-cavity and basal
slices using different spatio-temporal representations identified in LV anatomical segments. These
spatio-temporal representations are related to diametral profiles, radial profiles and parameters
extracted from radial profiles.
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SVM and discriminative dictionary learning methods have been trained and validated with
information from the spatio-temporal profiles.

In the case of diametral profiles, the experiments have been realized in apical, mid-cavity
and basal SAX planes using 360 profiles extracted from a set of 20 subjects (14 patients and 6
controls, 18 profiles per subject) at each short axis plane.

In the case of radial profiles, the experiments have been realized on 108 anatomical segments
in a set of 18 subjects (9 patients with cardiac dyssynchrony and 9 healthy subjects) from which
648 spatio-temporal profiles were extracted.

The complexity of the classification techniques has been compared in term of sparseness for
the SVMs and sparsity constraint for the DL models.

Two levels of evaluation have been presented: 1) global evaluation, where the global status of
the patient is used to label each LV anatomical segment; 2) local evaluation, where information
of local radial strain provided by 2D-Speckle tracking Echocardiography is used to label each LV
anatomical segment. This second configuration is more realistic according to the clinical practice.

In local evaluation, parametric inputs (Skewness and Clustering) have overcome the classifi-
cation accuracy using non-parametric inputs (radial profiles in Wavelet or Gray level domains).

Machine learning techniques based on DL have demonstrated the best compromise between
classification accuracy and complexity for the classification of radial spatio-temporal profiles.
They concern the LC-KSVD algorithm with the non-parametric representation of inputs and the
KSRDL algorithm with the parametric representation.

The original approach of this work is two-folds. First we have proposed an approach for
classification of regional wall motion abnormalities in cardiac MRI without the need of LV
boundaries segmentation. Secondly, we have introduced a first attempt to use dictionary
learning based on sparse coding for classification in cardiac medical image analysis that provides
competitive results compared to the literature.
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CHAPTER6
Dictionary Learning-based

Classification for Fibrosis detection
in cardiac MRI

6.1 Introduction

In this chapter we address the problem of fibrosis detection in patients with Hypertrophic
cardiomyopathy (HCM) by using a sparse-based clustering approach and Dictionary Learning.
HCM, as a genetic cardiovascular disease, is characterized by the abnormal thickening of left
ventricular myocardium. Myocardial fibrosis commonly presented in HCM can be detected in
Late Gadolinium Enhanced (LGE) cardiac magnetic resonance imaging (MRI). In this chapter,
we present the use of a Dictionary Learning (DL)-based clustering technique for the detection of
fibrosis in LGE-MRI. The addressed issue in this part that concerns Hypertrophic cardiomyopathy
and Fibrosis is depicted in section 6.2. Furthermore, a description of the LGE-MRI cardiac
imaging modality is presented in section 6.3. A brief state-of-the-art for the assessment of
myocardial fibrosis in LGE-MRI is presented in section 6.4. Next, in section 6.5, we present
our proposed approach that represents a novel approach based on clustering and dictionary
learning (DL) techniques for the detection of fibrosis in cardiac LGE-SAX MRI. The results of
this approach are presented in section 6.6.

6.2 Hypertrophic cardiomyopathy and Fibrosis

Cardiomyopathy is a type of progressive heart muscle disease in which the heart is abnormally
enlarged, thickened, and/or stiffened. As a result, the heart muscle’s ability to pump blood is
weakened, often causing Heart Failure (HF). The disease can also cause abnormal heart rhythms.
The World Health Organization/International Society and Federation of Cardiology (WHO/ISFC)
classification of 1996 associated the term cardiomyopathies to all heart muscle diseases that lead to
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functional disturbances of the heart. A classification is described with 4 main phenotypes, which
can be assessed by invasive and noninvasive imaging methods: dilated cardiomyopathy (DCM),
hypertrophic cardiomyopathy (HCM), restrictive cardiomyopathy (RCM), and unclassified forms.
The right ventricular cardiomyopathy, previously right ventricular dysplasia (ARVCM), was
then added to this classification (Maisch et al., 2012). Figure 6.1 illustrates different types of
cardiomyopathies.

Figure 6.1– Different types of cardiomyopathies: a) The normal heart. b) Dilated cardiomyopathy. c)
Two examples of hypertrophic cardiomyopathy: classic asymmetric septal hypertrophy, most often limited
to the basal portion (not shown), and apical part. d)Arrhythmogenic right ventricular cardiomyopathy,
with right-sided involvement only. From: (Wilde et al., 2013)

This work aims at characterizing the hypertrophic cardiomyopathy. HCM is the most common
genetic cardiovascular disease (Hoey et al., 2014). The estimated prevalence in the general
adult population with phenotypic evidence of HCM is 1 per 500 (B. Maron et al., 1995). Men
are more often affected than women and black patients more so than white patients. In young
adults, HCM is the most common cause of sudden cardiac death (Hughes, 2004; Members
et al., 2011).
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Cardiac muscles hypertrophy in HCM is described as "concentric" or "eccentric". Concentric
heart hypertrophy means increased heart muscle bulk and wall thickness, and it is best assessed
on cardiac MRI by looking the heart thickness in the short axis view. Eccentric heart hypertrophy
means general increase in the heart muscles with preservation of the normal cardiac wall thickness
(isometric) (Al-Tubaikh, 2010).

Sometimes, the thickened heart muscle doesn’t block blood flow out of the left ventricle. This
is called non-obstructive hypertrophic cardiomyopathy. The entire ventricle may thicken, or the
thickening may happen only at the basal part of the heart. Hypertrophic nonobstructive car-
diomyopathy may be found as an apical, a midventricular isolated septal form, or as hypertrophy
of the papillary muscles (Maisch et al., 2012; Members et al., 2011).

In both types of HCM (obstructive and non-obstructive), the thickened muscle makes the
left ventricle cavity smaller, so it holds less blood. The walls of the ventricle also may stiffen. As
a result, the ventricle is less able to relax and fill with blood.

HCM is a disease with an extremely variable prognosis. Some patients will die from sudden
death (M. Maron et al., 2008), others will develop atrial fibrillation (Olivotto et al., 2001) with
accidents due to arterial embolism, others will suffer from heart failure in most cases with a
preserved left ventricular ejection fraction, and some will be life-long asymptomatic.

Some people who have HCM have no signs or symptoms. The disease doesn’t affect their
live. Others have severe symptoms and complications. For example, they may have shortness of
breath, serious arrhythmias, or an inability to exercise (Betancur, 2014).

6.2.1 Myocardial Fibrosis in HCM

Myocardial fibrosis is a condition that involves the impairment of the heart’s muscle cells
called cardiomyocytes. When fibrosis occurs in response to injury, the term “scarring” is used. It
belongs to a class of diseases collectively known as fibrosis, which denotes hardening or scarring
of tissue. This is a condition that not only affects the heart, but also other organs such as the
lungs and the liver. Myocardial fibrosis is also referred to by the more general term of cardiac
fibrosis.

Cardiomyocytes, which come from originating cells called myoblasts, are instrumental in
controlling the heart rate by producing electrical impulses (cf. 4.2.1). Each cardiomyocyte cell is
organized as a collection of cylindrical filaments called myofibrils. These are the cell units that
enable the heart to contract. Normally, cardiomyocytes form lines of cells in the heart (Baum
et al., 2011).

In myocardial fibrosis, cardiomyocytes are replaced by tissue that is unable to contract. This
happens when fibroblasts, which produce collagen to enable wound healing, provide excessive
amounts of the protein. This results in a case of abnormal scarring, or fibrosis.

Myocardial fibrosis leads to both systolic and diastolic dysfunction. On the one hand, fibrotic
segments will deform less than normal ones (in systolic phases). On the other hand, fibrosis
will lead to a decrease in compliance thus to difficulties to fill the left cardiac chambers (in
diastolic phases). Other studies proved that the extent of regions with LGE observed in MRI
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was also correlated with adverse cardiac events such as sudden cardiac death, fatal arrhythmia
or worsening heart failure in patients with HCM (Betancur, 2014).

Fibrosis manifests in three forms, that are, reactive interstitial fibrosis, replacement fibrosis
and infiltrative interstitial fibrosis (Figure 6.2). Replacement fibrosis occurs in response to an
injury causing cardiomyocyte death, as in the case of myocardial infarction; a reparative response
is activated in the heart, causing replacement of dead cells and formation of a collagen-based
scar. In reactive interstitial fibrosis, the cardiac interstitial space expands without significant
cardiomyocyte loss (Krenning et al., 2010). Infiltrative interstitial fibrosis is a subtype of fibrosis
induced by the progressive deposit of insoluble proteins (amyloidosis) or glycosphingolipids
(Anderson Fabry’s disease) in the cardiac interstitium.

1) Reactive interstitial brosis
hypertension, valvular disorders, 

diabetes, genetic, aging

2) Replacement/scarring brosis
in amatory diseases, infarction, 

chronic renal insu ciency, myocarditis, 

sarcoidosis, genetic, toxic

3) In ltrative interstitial brosis
amyloidodis, Anderson-Fabry

Figure 6.2– Different types of myocardial fibrosis according to the cardiomyopathic process. 1) reactive
interstitial fibrosis, 2) replacement fibrosis and 3) infiltrative interstitial fibrosis. From: (Krenning et al.,
2010)

Being a very heterogeneous disease with variable outcome, a better characterization of HCM
is needed, and especially related to the potential presence of fibrosis. In this context, cardiac
imaging can provide significant information allowing to elucidate the factors explaining HCM
evolution.
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6.3 Cardiac magnetic resonance imaging with Late gadolinium
enhancement (LGE)-MRI

The clinical diagnosis of HCM is based on the demonstration of LV hypertrophy in the absence
of another disease process that can reasonably account for the magnitude of hypertrophy present.
Various imaging modalities can be used to assess fibrosis and to guide treatment, screening and
preclinical diagnosis. These imaging modalities include: Echocardiography, Nuclear Imaging,
Cardiovascular Magnetic Resonance and Cardiac Computed Tomography. Traditionally, the
diagnosis of HCM relies upon clinical assessment and transthoracic echocardiography (TTE). In
recent years MRI has become established as a useful adjunct to TTE owing to its unrestricted
field of view, more accurate measurement of LV wall thickness, mass, volumes and function and
its ability to provide non-invasive assessment of myocardial fibrosis (Hoey et al., 2014). This
work aims at characterizing myocardial fibrosis in Cardiac Magnetic Resonance Imaging (CMRI),
focusing on fibrosis detection.

Cardiac magnetic resonance is the new gold standard to measure myocardial wall thickness
and to diagnose HCM (Members et al., 2011). Also, it is used to characterize myocardial tissue
enabling to quantify the fibrosis/scar extension (Moon et al., 2004). It is now documented that
approximately half of patients with HCM have late gadolinium enhancement (LGE) suggestive
of areas of fibrosis (M. Maron et al., 2008).

Assessment of myocardial viability is performed using 5- to 20-minute delayed, gadolinium-
enhanced MRI which involves intravenous administration of gadolinium-based contrast agent
followed by the acquisition of T1 weighted images of the myocardium using an inversion recovery
(IR) technique. IR technique is commonly employed to suppress the signal from viable myocardium
by modifying the contrast of the acquired image between viable and nonviable myocardium. IR
uses inversion pulses typically followed by a prescribed delay to allow recovery of the prepared
magnetization before a spin echo or gradient echo pulse sequence used to “read out” the MR
signal. The associated delay is known as the time after inversion (TI) (Betancur, 2014).

Gadolinium is an extracellular contrast agent; thus, it distributes from vascular sector to
the interstitial sector and never enters the cellular sector. The intensity of the gadolinium
enhancement depends upon (i) tissue perfusion and (ii) the volume in which the gadolinium is
distributed.

On delayed enhanced CMRI (DE-CMRI), there is a relatively decreased washout of the
gadolinium contrast agent in areas of myocardium that have been replaced by fibrosis or scar. In
normal viable myocardium, the gadolinium contrast agent washes out more rapidly than it does
from the fibrosis or scar. Since the difference between normal and abnormal myocardium is based
on washout kinetics, images after contrast injection will optimally depict the fibrosis or scar.

There are two types of DE-CMRI: early gadolinium enhanced (EGE) and late gadolinium
enhanced (LGE). EGE- and LGE-CMRI are essentially the same, but the timing of the acquisition
following intravenous administration of the contrast agent is a distinguishing factor, being greater
than 10 min for LGE-CMRI. In a typical LGE exam, 10 to 12 breath hold slices are acquired in
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short axis orientation, followed by long axis and 4-chamber views when clinically indicated.
In (Moon et al., 2004) a direct correlation between the percentage of LGE and percentage of

histologic collagen in an explanted HCM heart was obtained. LGE has been reported in up to
75% of patients with HCM in whom the vast majority have patchy mid-wall-type enhancement
which is typically most pronounced within the segments most severely affected by hypertrophy.
LGE most often involves the interventricular septum, particularly the anteroseptal mid to basal
segments and right ventricular insertion points (Hoey et al., 2014).

In this work we focus on Late gadolinium enhancement MRI. There are two types of LGE
sequences: inversion recovery CMR (IR-CMR) and phase sensitive inversion recovery CMR
(PSIR-CMR).

The IR sequence acquires the magnitude of the magnetization at the time of inversion (TI).
This time must be carefully selected to null viable myocardium which increases the range of gray
levels between viable and non-viable tissue (Simonetti et al., 2001).

In contrast, PSIR-CMR is less sensitive to the selection of TI because it takes account of the
sign of the magnetization at the time of data acquisition; therefore, the dynamic range of IR
signal intensity levels increases. Instances of IR and PSIR images revealing myocardial fibrosis
in one HCM patient are showed in Figure 6.3.

Fibrosis

Fibrosis

LV

Fibrosis

Fibrosis

LV

Figure 6.3– Example of LGE-SAX IR (left) and PSIR (right) acquisitions

6.4 The assessment of cardiac fibrosis detection in LGE-MRI:
A brief state-of-the-art

Several studies have shown the relevance of Late Gadolinium Enhancement in cardiovascular
magnetic resonance imaging in the location and the assessment of myocardial fibrosis (Ordovas
et al., 2011). The accurate estimation of the transmural extent (from the endocardic to the
epicardic zone) of the hyper-enhanced regions is crucial to estimate functional myocardial
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recovery after reperfusion therapy that is a medical treatment after the patient has suffered from
myocardial infarction, or heart attack.

Also, the degree of improvement in global wall-motion and ejection fraction is significantly
related to the transmural extent of LGE. In ischemic cardiomyopathy, the transmural extent of
LGE is predictive of adverse LV remodeling. At the clinical level, infarct size is an independent
prognostic factor for heart failure, arrhythmic events and cardiac mortality (Mewton et al.,
2011), (Adabag et al., 2008). Patterns of fibrosis may be also used to differentiate HCM from
secondary causes of LV hypertrophy such as aortic stenosis or severe hypertension (Rudolph
et al., 2009).

Earlier studies performed visually assessment of the transmural extent of Gadolinium enhanced
and the amount of functional recovery using semiquantitative Likert scales. For example, in
(Kim et al., 2000), the segmental transmurality of the scar was graded on the conventional
five-class scale: 0=no hyper-enhancement, 1=hyper-enhancement extending from 1 to 25%
of LV wall thickness, 2=hyper-enhancement extending from 26% to 50% of LV wall thickness,
3=hyper-enhancement extending from 51% to 75% of LV wall thickness and 4=hyperenhancement
extending from 76% to 100% of LV wall thickness.

An automated segmental scoring of infarct extent begins with the detection of the infarct
on the images. Several methods based on the tuning of signal intensity thresholds with manual
interaction of the user (Amado et al., 2004; Gerber et al., 2002; Kim et al., 2000; Schuijf
et al., 2004) or automated definition of the infarcted zones using morphological operators (Hsu
et al., 2006; Kolipaka et al., 2005) have been developed to this end.

An overview of previously published scar detection, quantification and segmentation methods
in LGE-CMR is presented in (Karim et al., 2013) where a standardised evaluation benchmarking
framework for algorithms segmenting fibrosis and scar in left atrium (LA) myocardium from
LGE-CMR images is also presented. Table 6.1 shows the overview reported in (Karim et al.,
2013) in terms of: a) the model or type of data evaluated (canine or human), b) the number
of datasets, c) the structure of interest: LV or LA, d) the method employed and finally e) the
evaluation measures used.

Most methods employed comprise: i) simple standard deviation (SD) thresholding taking
as reference a base healthy tissue intensity value (Kim et al., 1999), (Amado et al., 2004),
(Kolipaka et al., 2005), (Yan et al., 2006), (Schmidt et al., 2007), (Oakes et al., 2009) ,
ii) the full-width-at-half-maximum (FWHM) used to identify the infarct boundaries into an
initial region that include all pixels with signal intensity (SI) >50% of maximum (Amado
et al., 2004), iii) expectation-maximisation (EM) fitting of a mixture model consisting in the
Rayleigh distribution to represent the darker healthy myocardium, and the Gaussian distribution
to represent the bright late enhanced regions (Hennemuth et al., 2008), iv) the Graph-cuts
method which combines the intensity and boundary information to separate infarct from healthy
myocardium, and v) methods based on clustering that avoid the choice of gray level thresholds
(Detsky et al., 2009; Kachenoura et al., 2008; Positano et al., 2005).

The visualization of infarcted regions can be performed by using the maximum intensity
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projection (MIP) of the intensities from the MR images into an anatomically derived cardiac
surface (Knowles et al., 2010).

Table 6.1– Overview of previously published scar detection, quantification and segmentation methods
presented in (Karim et al., 2013)

Reference Model n LV/LA Method Evaluation
(Kim et al., 1999) Canine 26 LV SD Infarct size, ex-vivo

(Amado et al., 2004) Animal 13 LV SD, FWHM Bland altman, Infarct volume
(Kolipaka et al., 2005) Human 23 LV SD Percentage scar, Bland-Altman
(Positano et al., 2005) Human 15 LV Clustering Percentage scar

(Yan et al., 2006) Human 144 LV SD Percentage scar
(Schmidt et al., 2007) Human 47 LV SD Infarct size

(Hennemuth et al., 2008) Human 21 LV EM fitting Percentage scar, Bland-Altman
(Oakes et al., 2009) Human 81 LA SD Percentage scar
(Detsky et al., 2009) Human 15 LV Clustering Infarct size
(Tao et al., 2010) Human 20 LV Otsu thresholding Dice

(Knowles et al., 2010) Human 7 LA MIP Percentage scar
(Lu et al., 2012) Human 10 LV Graph-cuts Infarct size and Bland-Altman

(SD) = simple standard deviation thresholding, (FWHM)=full-width-at-half-maximum
(MIP)= maximum intensity projection, (EM)= expectation-maximisation.

In clustering methods, the fuzzy c-means is an unsupervised approach providing each voxel
with a level of membership to both, LGE and non-LGE classes, describing the belongingness of
the voxel to the class. The level of membership is a number between 0 and 1. This is advantageous
in the case of fibrosis quantification because, excepted for highly enhanced pixels with a bright
gray intensity, the enhancement between fibrotic and not fibrotic tissues remains unprecise.

The 6 standard deviations above the mean signal of the remote myocardium (the region with
no contrast enhancement and normal wall thickening) method was previously shown to best
correlate with visual LGE assessment and was used in several large studies analyzing the relation
between fibrosis and clinical events in patients with HCM (Małek et al., 2015; Spiewak et al.,
2010).

In (Baron et al., 2013), a comparison of various methods for quantitative evaluation of
myocardial infarct volume from LGE-CMR data is presented. The necrosis volumes were
quantified using: 1) manual delineation, 2) automated fuzzy c-means method, and 3) +2 to
6SD thresholding approaches. The fuzzy c-means method proved appropriate correlations with
biochemical myocardial infarct (scar) quantification as well as LV function parameters.

Segmentation of fibrosis or scar in LGE-CMR is challenging due to multiple causes including
contrast variation due to inversion time, signal-to-noise ratio, motion blurring and artefacts
(Peters et al., 2007). The inversion time choice can generate the appearance of more or less
scar, and change the appropriate scar threshold. Motion blurring also reduces the appearance of
scar (Karim et al., 2013). In the next section we present our proposed approach that is based on
dictionary learning for the detection of fibrosis without the needs of tuning threshold parameters.
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6.5 The proposed method

We follow the idea of the framework for clustering datasets that are well represented in the
sparse modeling framework with a set of learned dictionaries (Sprechmann et al., 2010). In this
framework, a set of K clusters is used to learn K dictionaries for representing the data, and then
associate each signal to the dictionary for which the best sparse decomposition is obtained.

The proposed approach in LGE-MRI is applied in each LGE-SAX image (from basal to apical
planes) to detect enhanced and non-enhanced regions by spliting each image in several patches.
Based on the DL framework, firstly, an initial dictionary is constructed with learning samples
from 2 clusters (LGE and Non-LGE regions). Secondly, the sparse coefficients of the learning
data are computed and then used to train a K -Nearest Neighbor (K-NN ) classifier. Finally, the
label (LGE/Non-LGE) of a test patch is obtained with its respective sparse coefficients obtained
over the learned dictionary and using the trained K-NN classifier. The zones of fibrosis can be
finally detected in the myocardium delimited by the endo- and epicardial contours. Figure 6.4,
resumes the proposed fibrosis detection procedure. The process is thus divided in 4 stages as
described next (Mantilla et al., 2015).

6.5.1 Feature extraction

The ability to compare image regions (patches) has been the basis of many approaches to core
computer vision problems, including object, texture and scene categorization (Shakhnarovich,
2005).

Firstly, in order to normalize the intensity differences across slices and subjects, each LGE-
SAX image is normalized. For that purpose, each pixel in each LGE-SAX image is set to (Ii,j−µ)
/σ, where, Ii,j is the interpolated pixel intensity value, µ and σ are, respectively, the mean and
the standard deviation of the LGE-SAX image (Lu et al., 2009).

Secondly, from different patients, random non-overlapping patches covering enhancing and
non-enhancing regions from LGE-SAX images in the medial plane are extracted. The random
extraction procedure was guided by the selection of approximately one half of the extracted
patches with high gray level intensity values and the other half with low gray level intensity
values. We have performed several experiments varying the number of patches and found out
that selecting 1184 patches from 4 random patients achieves a good trade-off between complexity
and visual detection performance. Thus the learning samples takes 296 patches from each one of
the selected patients.

Figure 6.5 shows an example of the feature extraction from 4 random LGE-SAX images. The
non-labeled extracted patches can belong to different regions: LV and RV cavities, fibrosis and
other regularly enhancing and non-enhancing structures inside and outside the heart.

The similarity among the extracted patches is then calculated by using a Gaussian (radial
basis function RBF) kernel with bandwidth σ (cf. 2.7). The RBF kernel on two samples x and
x′, represented as feature vectors in some input space, is defined as:
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Figure 6.4– Overview of the proposed fibrosis detection method: in a training stage, feature extraction
is performed with the extraction of non-overlapping patches from random LGE-SAX training images, then
a similarity matrix among the extracted patches is computed. In a clustering step, two clusters are obtained
from the similarity matrix among the training patches after performing a multisignal 1-D clustering based
on wavelets: LGE/Non-LGE pixels. In a DL construction step, a dictionary is constructed with the
clustered patches in two classes and a K-NN classifier is trained with the sparse codes coefficients of the
training patches obtained from a DL algorithm based on kernel. In a testing stage, a new LG-SAX image
is partitioned in overlapping patches and their sparse codes are computed using the learned dictionary.
The label of each patch is predicted by using the trained K-NN classifier. In a post processing step the
spatial localization of fibrosis and the quantification of transmural extent is performed.
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K(x,x′) = exp
(−‖x− x′‖22

σ2

)
(6.1)

Since the value of the RBF kernel decreases with distance and ranges between zero (in the
limit) and one (when x = x′), it has a ready interpretation as a similarity measure.

Figure 6.5– Feature extraction example from LGE-SAX images

In figure 6.6-left, a subset of 576 extracted patches is shown, while in figure 6.6-right, a
portion of the similarity among all the extracted patches is presented where, high values of
similitude between patches are represented in red and low values are represented in blue.
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Figure 6.6– Extracted patches from LGE-SAX images (left) and its respective Similarity matrix (right)

6.5.2 Clustering

The initialization of the dictionary is very important for the success of the fibrosis detection
process. Due to the cost associated with the procedure, repeating random initializations is
practically impossible. Thus a “smart” initialization is needed. We propose the construction
of an initial dictionary with two classes based on an unsupervised clustering process over the
similarity measures among patches. Specifically, the aim is to split the patches in two classes,
each one associated respectively with LGE and non-LGE regions.
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For simplicity, we apply a clustering approach based on Wavelets (Misiti et al., 2007) which
constructs clusters from a hierarchical cluster tree. This clustering approach was used in the
construction of the Clustering curve parameter (Cl) in the LV wall motion classification problem
presented in the previous chapter achieving good performance results. In this case, the input
matrix of the clustering algorithm corresponds to the similarity matrix among patches. Each
row of this matrix is decomposed using the DWT function with the Haar Wavelet. A binary
hierarchical cluster tree is constructed with the first level coefficients of the decomposition. Pairs
of objects that are in close proximity are linked using the euclidean distance. Data is then
partitioned into two clusters.

6.5.3 DL-based classification: training stage

The detection of fibrosis is performed by adapting the Kernel Sparse Representation DL
algorithm (KSRDL) (Li et al., 2013) (cf. 2.6.2) with an initial dictionary resulting from the
clustering process described before where training patches are identified in two classes LGE and
non-LGE patches. In the KSRDL algorithm, also applied for the assessment of LV wall motion
with local parametric evaluation (cf. 5.7), sparse representation is introduced from a Bayesian
viewpoint assuming Gaussian prior over the atoms of the dictionary. The KSRDL model is
defined as follows:

min
D,X

1
2‖Y −DX‖

2
F + α

2 trace
(
DTD

)
+ λ

N∑
i=1
‖xi‖1, (6.2)

where the input signals Y ∈ Rn×N represent a data matrix of patches where each column
is a vectorised patch (n is the signal size, N is the number of input signals or patches).
D = [d1,d2,d3, . . . ,dK ] ∈ Rn×K with K atoms is the dictionary to be learned and X =
[x1,x2, . . . ,xN ] ∈ RK×N are the estimated sparse codes of input signals Y . A K-NN classifier is
the constructed over the sparse training coefficients matrix X before to perform the classification
based on DL.

6.5.4 DL-based classification: testing stage

The class label of new p test instances can be predicted using the classifier obtained in the
training step and the learned dictionary D. As the selected classifier is trained based on the
sparse coefficients of the input data, the test data need to be represented in the same space of
representation (sparse coefficients) over the learned dictionary. To this end, the sparse coefficients
matrix X for the new test instances can be obtained by solving the Non negative Quadratic
Problem (NNQP):

min
X

p∑
i=1

1
2x

T
i Hxi + gTi xi s.t. X ≥ 0 (6.3)

where Hk×k = DTD and g = −DTY . As the optimization of the above problems only require
inner products between the data, the sparse coding problem is solved by replacing inner products
to a radial basis function (Gaussian) kernel.
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Each LGE-SAX test image is represented as input by a grid of overlapping feature patches of
dimension [3× 3]. The sparse coefficients of each patch (LGE and non-LGE) are obtained as
described previously with the learned dictionary and then, the label of each patch is obtained
using the trained K-NN classifier. By the overlapping of patches, each pixel is categorized as
LGE or non-LGE pixel. Finally, the LGE pixels corresponding to myocardium fibrosis zones
are selected by adding a spatial constraint given with the endo- and epicardial borders of the
myocardium.

6.6 First experiments and results

6.6.1 Study population

This study was performed in collaboration with the CIC-IT 1 804 (Betancur, 2014) including
30 HCM data patients that have been acquired in the CHU Pontchaillou in Rennes. HCM was
defined as recommended by recent guidelines (Members et al., 2011).

6.6.1.1 Patient selection

The inclusion and exclusion criteria were:

— Inclusion criterion: Subjects carrying a primitive non obstructive HCM with left ventricular
ejection fraction (LVEF) greater than 60%, in sinus rhythm.

— Exclusion criteria: Prospective subjects with one of the following characteristics were
disqualified from inclusion in this study: under legal age, contraindication to MRI (in
particular, patients with an implanted cardiac stimulator/defibrillator at the moment of
MRI acquisition), history of coronary artery disease, permanent atria fibrillation, left
ventricular systolic dysfunction (LVEF ≤ 60%).

All patients had a clinical examination, a resting arterial blood pressure measurement
(Dinamap Procare Auscultatory 100), a resting 12-lead electrocardiogram, a transthoracic
echocardiography (Vivid 7, General Electric Healthcare, Horten, Norway) and a cardiac MRI
(Philips Achieva 3T).

6.6.1.2 Cardiac magnetic resonance imaging

CMR images were performed with a 3T Achieva R© clinical imager (Philips Medical Systems,
Best, The Netherlands), using cardiac SENSE Coil (multicoil). Cardiac synchronization was
performed using a four-electrode vectocardiogram. Scout images were acquired initially to identify
the cardiac axes. CMR acquisitions included cine-SAX, cine-LAX (4CH, 2CH), LGE-SAX and
LGE-LAX (4CH, 2CH). Among the LGE-CMR acquisitions, IR and PSIR sequences were
acquired, restrospective ECG-gated acquisition at mid-diastole and breath-hold volumetric SAX,
4CH and 2CH. Typical parameters for these acquisitions were:

1. Acronym from the French “Centre d’Investigation Clinique Innovation Technologique”.
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— IR Acquisition: Turbo field echo (IR-TFE). TR/TE/FA=4.01 ms/1.23 ms/15◦, IR prepulse
delay = 280 ms,

— PSIR Acquisition: TR/TE/FA = 4.50 ms/2.19 ms/15◦, IR prepulse delay = 280 ms,

— IR, PSIR resolution: 256×256 pixels (in-plane) with 16 and 12 slices for SAX and LAX,
respectively. In-plane pixel size=1.25 × 1.25 mm2, spacing between slices=5 mm, acquisition
slice thickness=10 mm. Given that the spacing between slices is half of the slice thickness,
image slices overlaps in a half of their thickness. This resulted in an output image volume
with slice thickness=5 mm. All IR and PSIR acquisitions were acquired following this
procedure (slice overlapping). This aimed at improving the observability of small portions
with fibrosis

For this study LGE-SAX images in inversion recovery (IR) from 11 patients in the set of 30
HCM patients were retained (patients with exploitable LGE images).

6.6.2 Results

In the training stage, a set of 1184 non-overlapping patches from 4 random inter-patients
LGE-SAX IR images at mid-diastole and at mid-cavity plane are extracted in order to construct
the initial dictionary. The first stage of clustering process splits the patches in two clusters (LGE
and non-LGE) of size 952 and 232 respectively. Then, the KSRDL algorithm (Li et al., 2013)
is applied in order to obtain the sparse codes of the training data that are used in the K-NN
classifier.

Several experiments were performed by reducing the number of atoms employed to represent
each testing patch in the learned dictionary. The results presented here were obtained by using
K=15 atoms from the initial dictionary to train the classifier and to represent each patch. The
DL regularization parameter λ and the parameter α for the Gaussian kernel were tuned by
heuristic search in a mesh from 0.01 to 10 with a step of 0.01. The final values used in this
experiments were: λ = 0.001 and α=0.1.

Several experiments has been realized varying the size of the feature patch. Figure 6.7 shows
an example of a LGE-SAX image with the detection of structures varying the patch size for
[3×3], [5×5] and [7×7].

As it has been observed and as we can see visually in these images, a good detection of
enhanced pixels is achieved by selecting patches of a dimension [3×3]. Figures 6.8 - 6.13 show
LGE-SAX images at mid-cavity plane for the 11 HCM patients of the database and the Fibrosis
detection using the proposed approach. In these figures, the original image for each patient is
shown in the left part and the detected fibrosis is represented on the right part in colors inside the
myocardium delimited by endo- and epicardial boundaries that have been manually delineated
by a cardiologist.

About computing times, the proposed method employ about 59.38 seconds in the Clustering
stage and for training the classifier about 83.46 seconds. For testing, the method employ about
26.35 seconds for the detection of pixels LGE per slice and per patient.
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Figure 6.7– Examples of resulting fibrosis detection using the proposed approach with patches of size
[3×3] (left), [5×5] (middle) and [7×7] (right)

Original image Original image

Figure 6.8– Examples of resulting fibrosis detection using the proposed approach: Patients 01 and 02

Original image Original image

Figure 6.9– Examples of resulting fibrosis detection using the proposed approach: Patients 03 and 04

6.6.3 Evaluation

In a first step of evaluation, a visual analysis by a cardiologist has been performed. The
proposed method is able to detect fibrosis in 9 of 11 patients. The method misclassified LGE
pixels in all the slices of the patient 04, classifying 100% of the pixels as LGE pixels due to
the low contrast observed between myocardium and the LV cavity. In patient 07, the method
misclassified LGE pixels in apical slices.

In a second step of evaluation, our method has been compared with one method of the
literature that has been proposed for the detection of fibrosis in LGE-MRI. The fuzzy c-means



180 Chapter 6. Clustering and Classification via DL for Fibrosis detection

Original image Original image

Figure 6.10– Examples of resulting fibrosis detection using the proposed approach: Patients 05 and 06

Original image Original image

Figure 6.11– Examples of resulting fibrosis detection using the proposed approach: Patients 07 and 08

Original image Original image

Figure 6.12– Examples of resulting fibrosis detection using the proposed approach: Patients 09 and 10

method proposed by (Kachenoura et al., 2008) has been retained to compare the results.
The fuzzy c-means method is an unsupervised method classifying the pixels in the myocardium

as belonging to one out of two possible classes: LGE pixels of non-LGE pixels. This approach
provides each pixel with a level of membership to both, LGE and non-LGE classes, describing
the belongingness of the pixel to the class. The level of membership is a number between 0 and
1. The approach includes a defuzzification procedure to obtain a binary description of those
pixels being part or not of LGE class (fibrosis for pixels inside the myocardium). Then, for the
entire myocardium, a threshold of the LGE-class membership was varied between 0.25 and 0.5,
and the curve representing the number of LGE-pixels was plotted over these varying threshold.
Then the threshold value providing the most stable output (the longest portion in which the
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Original image

Figure 6.13– Examples of resulting fibrosis detection using the proposed approach: Patient 11

number of LGE-pixels remains the same), was selected as the optimal one (Baron et al., 2013).
This threshold is then used to get a binary image from the output of the fuzzy c-means approach.
This approach has been applied in our data and were obtained from (Betancur, 2014). Figure
6.14 illustrates the comparison of this approach and our method for 3 patients.

Figure 6.14-top illustrates the output of the fuzzy c-means for the LGE-pixel class for the
pixels into the myocardium. Figure 6.14-middle shows the resulting detection of fibrosis for the
patients on the top after the defuzzification procedure. Figure 6.14-bottom shows the resulting
detection of fibrosis using our proposed approach. It can be noted that the fibrotic zones are
identified in both methods, for those regions presenting a high concentration of pixels with late
gadolinium enhancement, however, in general the number of pixels LGE detected by the two
methods are different.

To illustrate, Table 6.2 shows the quantification of pixels LGE for the patients shown in
figure 6.14 by the two methods and for each slice. The values shown in this table represent,
for each slice, the percentage of pixels LGE with respect to the total number of pixel in the
myocardium. In the same table, values for three patients in figure 6.14 are resalted. It can be
seen that for the patient 02 both methods detect the same percentage of pixels LGE. For the
other two patients, our method detect in general more LGE pixels than with the fuzzy c-method.
In apical slices (1-5) both methods detect small number of pixels LGE (Mantilla et al., 2015).
These first quantitative results need to be completed by more experiments.

6.7 Qualification and Quantification of myocardial Fibrosis: A
first proposal

The importance of detecting myocardial fibrosis in patients with HCM lies in the potential
prognostic implication of this finding (O’Hanlon et al., 2010). Previous studies have shown that
the amount of myocardial fibrosis and the degree of cardiomyocyte degeneration are inversely
related to both systolic and diastolic left ventricular (LV) function (Hein et al., 2003).

For the detection and quantification of the fibrotic area, we perform a spatial localization of
the myocardial fibrosis according the AHA 17 model representation.
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Figure 6.14– Comparison of results illustrated for three patients (P01 - P02 - P08): Top: the output
of the fuzzy c-means with the membership map of the LGE-class. Middle: The final result with fuzzy
c-mean approach. Bottom: The fibrosis detection using the proposed approach

To identify the LV anatomical segments according to the AHA model, firstly, the LV centroid
is automatically calculated using the contour of the endocardium delineated by a cardiologist.
Secondly, the anterior intersection between the Right and Left ventricles is manually positioned by
the user. By using a radial reference line traced from the LV centroid to the anterior intersection
between LV and RV, the myocardium is divided in different anatomical segments at the different
level slices (basal, mid-cavity and apical): 6 segments for basal and mid-cavity slices using an
angular variation of 60◦ and 4 segments for the apical slices using an angular variation of 90◦.
This procedure allows the localization of fibrosis by anatomical segments. Figure 6.15 shows an
illustrative example of this procedure.

To illustrate, Figure 6.16 shows the result of the spatial localization of fibrosis LGE-SAX
images at the mid-cavity plane in three patients. In Figure 6.16-left, fibrosis is localized in
the anteroseptal and inferoseptal regions. For the patient in the Figure 6.16-middle, fibrosis is



6.7. Qualification and Quantification of myocardial Fibrosis: A first proposal 183

Table 6.2– Quantification of cardiac Fibrosis per slice level in Patients 01, 02 and 08

P01 P02 P08
Plane Slice fuzzy - DL fuzzy - DL fuzzy - DL

Apical

1 0.00 - 3.82 0.00 - 0.00 0.00 - 0.55
2 0.06 - 5.01 0.00 - 0.00 0.00 - 0.75
3 0.00 - 2.72 0.00 - 0.00 0.12 - 2.86
4 1.60 - 3.26 0.79 - 0.79 2.00 - 5.36
5 0.16 - 5.82 1.89 - 7.86 5.14 - 7.27

Mid-cavity

6 0.15 - 5.38 3.49 - 16.98 5.00 - 7.11
7 7.59 - 10.08 12.30 - 22.10 7.78 - 13.68
8 4.52 - 5.72 19.93 - 23.02 4.00 - 7.14
9 1.09 - 6.56 24.32 - 19.12 4.55 - 7.97
10 1.62 - 6.91 25.02 - 15.81 10.00 - 12.95
11 1.44 - 8.06 11.59 - 11.91 10.29 - 13.75

Basal

12 3.07 - 13.51 9.18 − 9.18 15.00 - 14.25
13 4.13 - 15.13 10.23 - 6.92 10.21 - 13.35
14 5.97 - 19.81 1.84 - 6.51 24.16 - 37.77
15 16.18 − 21.04 1.87 - 2.17 36.29 − 47.30
16 12.57 - 21.78 0.00 - 0.50 29.72 - 37.54

a)                                         b)                                      c)                                      d)                                

A

AL

IL

I

IS

AS

Figure 6.15– Framework for spatial localization of fibrosis using the proposed approach over a
LGE-SAX image at mid-cavity plane: a) the original LGE-SAX image, b) a reference line from the LV
centroid to the anterior intersection between RV and LV superimposed over the LV myocardium with
the respective zones of fibrosis, c) the 6 anatomical segments identified in the figure at the left: AL=
Antero Septal, A= Anterior, AS=Antero septal, IS=Infero Septal, I= Inferior and IL=Infero Lateral, d)
the spatial localization of fibrosis according the LV anatomical segmets.

present in the anterior and anteroseptal segments and also in the inferior segment. Finally, for
the patient in the Figure 6.16-right, fibrosis can be observed in the anterior and anteroseptal
regions.

The quantification of fibrosis is performed by calculating the percentage of LGE pixels in one
particular anatomical segment with respect to the total number of pixels in the myocardium.
Table 6.3 shows the quantification of fibrosis of the patient 02 shown in the middle of Figure
6.16.
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Figure 6.16– Spatial localization of fibrosis using the proposed approach for patients 01, 02 and 08.

Table 6.3– Quantification of cardiac Fibrosis per segment and slice level in Patient 02

Plane Slice AL A AS IS I IL (%) Total

Apical

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.11 0.00 0.11 0.00 0.00 0.56 0.79
5 1.88 0.00 1.44 0.00 0.00 4.54 7.86

Mid-cavity

6 0.39 9.46 3.22 0.00 3.90 0.00 16.98
7 3.57 13.10 0.00 2.76 2.67 0.00 22.10
8 0.96 12.38 4.36 0.00 5.32 0.00 23.02
9 0.73 13.86 0.49 2.27 1.78 0.00 19.12
10 0.41 11.63 2.38 1.06 0.33 0.00 15.81
11 0.00 6.30 5.61 0.00 0.00 0.00 11.91

Basal

12 0.00 2.69 6.49 0.00 0.00 0.00 9.18
13 0.00 1.68 5.24 0.00 0.00 0.00 6.92
14 0.00 3.86 2.65 0.00 0.00 0.00 6.51
15 0.00 1.79 0.38 0.00 0.00 0.00 2.17
16 0.00 0.25 0.25 0.00 0.00 0.00 0.50

AL= Antero Septal, A= Anterior, AS=Antero septal
IS=Infero Septal, I= Inferior and IL=Infero Lateral

As we can see, the highest concentration of LGE pixels is quantified in the medial plane,
with 23.02% of fibrosis presented in slice 8. In this slice, broader areas of fibrosis are observed in
the anterior and antero-septal segments with 12.38% and 4.36% respectively.

Table 6.4 shows the quantification of fibrosis in each anatomical segment, calculating the
percentage of LGE pixels in one particular anatomical segment with respect to the total number
of pixels in that anatomical segment.

As we can see, the highest concentration of LGE pixels is quantified in the medial plane
(slice 8), in which the Antero Septal segment presents 54.25% of fibrosis, the Anterior segment
presents 51.89% and the Inferior segment presents 30.79% of fibrosis. Results are consistent
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Table 6.4– Quantification of cardiac Fibrosis per segment and slice level in Patient 02

Plane Slice AL A AS IS I IL

Apical

1 0.43 1.47 0.00 8.20 2.30 2.67
2 0.40 0.46 0.00 0.00 0.00 1.81
3 0.00 0.00 0.00 2.78 0.00 0.00
4 1.20 9.05 3.83 0.00 3.28 0.00
5 0.51 26.14 21.15 0.00 13.92 0.00

Mid-cavity

6 0.00 33.95 41.42 0.92 23.43 0.00
7 0.52 42.09 50.39 0.00 29.52 0.67
8 0.94 51.89 54.25 0.00 30.79 0.00
9 0.00 51.55 44.44 2.00 23.76 0.00
10 0.00 45.08 43.23 0.66 9.15 0.00
11 0.51 34.39 37.85 0.38 0.37 0.00

Basal

12 0.00 18.69 37.55 0.00 0.83 0.00
13 0.00 10.42 31.85 0.00 0.00 0.00
14 0.00 12.23 34.83 0.00 0.60 0.00
15 0.00 8.15 15.03 0.00 0.00 0.70
16 1.11 1.78 12.90 2.56 2.30 2.14

AL= Antero Septal, A= Anterior, AS=Antero septal
IS=Infero Septal, I= Inferior and IL=Infero Lateral

with the observations in (Hoey et al., 2014; Noureldin et al., 2012) in which LGE most often
involves the interventricular septum, particularly the anteroseptal mid to basal segments and
right ventricular insertion points.

6.8 Conclusion

We have presented a method for the detection of Fibrosis in LGE-SAX images using a
Dictionary learning-based clustering approach. The detection approach has been applied on a
set of 11 patients with HCM from which LGE-SAX images at 16 different slices were processed.
The proposed method allows the detection of fibrosis inside the myocardium using the endo- and
epicardial boundaries manually delineated by a cardiologist. The method has been evaluated by a
visual evaluation and by comparing with the results of one method of the literature. The method
has been able to successfully detect fibrosis in 9 of the 11 patients. By using the boundaries and
a manual localization of the anterior intersection between the right and left ventricles, the region
of fibrosis can be localized in different anatomical segments according to the AHA representation.
The method could also be applied without the endo- and epicardial contours resulting in a
segmentation approach of different structures in the MRI image that has to be analyzed. The
proposed method based on DL has resulted in a promising technique for the detection of fibrosis
in LGE-MRI that deserves more extensive validation. The method should be evaluated in a
quantitative way on a set of more HCM patients with the fibrotic zones delineated by an expert.
It must be deepened with broader experiments in the clustering and DL stages, for example,
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varying the number of patches for the initialization of the dictionary and performing a manual
selection of LGE/Non LGE pixels. An analysis of the retained atoms used to represent each
testing patch is also required.
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CHAPTER7
Conclusion and Perspectives

In this thesis, we have proposed new methods i) for the assessment of LV wall motion in the
context of patients with Heart Failure and ii) for the detection of cardiac fibrosis in the context
of patients with Hypertrophic Cardiomyopathy (HCM).

In the context of Heart Failure, we aimed at developing new methods for the assessment of
LV wall motion in cardiac cine-MRI that is currently used in medical imaging for the assessment
of LV function. In clinical practice, this assessment relies mainly on manual segmentations as
well as visual analysis and interpretations of wall motion. Assessment of the LV includes two
main steps: i) global assessment, that is routinely performed based on measurements of LV
volumes, ejection fraction and mass, and ii) regional assessment, that is mostly based on visual
and semi quantitative analysis of dynamic cine images of the left ventricle in several planes.

The interpretation of regional wall motion relies on integrating spatial and temporal informa-
tion, which is subjective and requires extensive training and clinical experience. Another type
of cardiac image modality is Echocardiography that is considered as the reference for cardiac
mechanical analysis. Currently methods for analysis of regional LV function integrate deformation
measures extracted from two dimensional (2D) echocardiographic images, in particular with 2D
speckle tracking echocardiography (2D-STE).

In the literature, works for the automatic assessment of LV wall motion in cardiac MRI are
grouped in three categories: i) Methods based on shape statistics, that provide a statistical
shape modeling of cardiac contraction, ii) Methods based on image features extraction, with the
hypothesis that motion patterns of normal LV segments should be deviated away from motion
patterns of the abnormal LV segments and, iii) Methods based on parametric imaging-based
quantification, that relies on the reader’s ability to integrate spatial and temporal information
on LV wall motion by creating parametric images from which motion abnormalities can be easily
identified.

Most of these methods are sensitive to the quality of the myocardial contours, as they have the
myocardial contours as input. Furthermore, some of them base their analysis only on two phases
(ES and ED) while others exploit all the cardiac sequence. In these methods, the discrimination
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of LV wall motion abnormality is performed by the application of pattern recognition techniques.
Different techniques have been employed: Linear Discriminant Analysis (LDA), linear SVM,
Naive Bayes classifier or specific classifiers based on correlation measures and the quantification
of regional indicators of LV wall motion. In most of these methods, the evaluation is performed
by expert visual assessment.

We have developed an approach for the assessment of LV function using a classification
method based on sparse representations and dictionary learning (DL) to classify normal or
abnormal regional LV motion.

Sparse representation and DL methods used in medical imaging are mostly based on applica-
tions such as denoising that involves the use of dictionaries trained with known basis as DCT
or dictionaries learned using K-SVD algorithm. In the case of supervised sparse representation
for segmentation and classification most of the methods are based on the framework of the
SRC algorithm. In cardiac medical images works are focused on segmentation on epicardial and
endocardial contours of LV in echocardiography images.

In this study, we have searched the benefits of using dictionaries, directly learned from a set
of training medical images, that better capture the distribution of the data and then, used in
specific tasks such as classification and detection.

Our method differs from those methods reported in the literature in three points: firstly, it
differs in the feature extraction procedure which exploits all the information contained in the
cardiac cycle without the need of segmentation of the epicardial and endocardial boundaries.
Secondly, it differs by the use of DL techniques for classification of LV wall motion in cardiac
MRI. Finally, it differs by the evaluation that incorporates for some points of the work, reference
measures provided by local strain information measured in 2D-Speckle tracking Echocardiography.

Firstly, cardiac cine-MRI sequences in short axis view have been collected from two populations:
pathologic and control subjects. Secondly, the subsequent process has been divided in three main
stages: pre-processing, feature extraction and Dictionary Learning-based classification.

In the pre-processing stage, a region of interest (ROI) has been defined at the first frame of
each sequence in order to keep only the LV cavity. Then, the ROI has been spatially normalized
according to the AHA representation to identify different anatomical segments.

In the feature extraction stage, a set of features have been proposed: i) diametral spatio-
temporal profiles, ii) radial spatio-temporal profiles, and iii) time signal intensity curve parameters
extracted from the radial profiles. These kind of representations have not been previously reported
for the classification of LV wall motion in cardiac MRI.

The first proposed feature used in this work correspond to diametral spatio-temporal profiles
that show the temporal evolution of epicardium and endocardium at the same time in opposite
LV anatomical segments, exploiting thus, the relation exhibited by radial motion profiles at the
same orientation.

The second proposed feature is based on the construction of radial spatio-temporal profiles
where motion of LV’s walls is observed for each segment of the LV cavity. Furthermore, the
assessment of these profiles has been performed with the analysis of radial strain curves obtained
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from the 2D-STE studies, where a profile is classified as normal or abnormal (akinetic or
hypokinetic cases).

The third feature for LV wall motion classification is based on the idea that information of
contraction is given by specific information extracted from the radial spatio-temporal profiles
that can be described as quantitative parameters. Specifically, 4 parameters have been extracted:
1) an average curve based on a clustering process, 2) curve skewness over the clustered curves 3)
cross correlation values between each average clustered curve and a patient-specific reference
and 4) mean transition time parameter. These parameters have been defined from time signals
intensity curves that reflect dynamic information of the LV contraction.

In each case, the proposed representations have been taken as input atoms for the training of
DL approaches to provide a classification of local LV wall motion.

In the Dictionary Learning-based classification stage, firstly, two discriminative DL algorithms
have been adapted for LV wall motion classification: the first one, where the discrimination
of the learned dictionary is enforced by imposing structural constraints on the dictionary: the
Label Consistent K-SVD algorithm (LC-KSVD) (Jiang et al., 2013), and a second one, where
the discrimination is enforced by imposing a discrimination term on the sparse decomposition
vectors: the Fisher discriminant DL algorithm (Yang et al., 2014). These two algorithms have
taken, as input atoms, the diametral or the radial spatio temporal profiles. Secondly, another
type of DL algorithm based on kernels: the Kernel Sparse Representation DL (KSRDL) (Li
et al., 2013), has been adapted for LV wall motion classification using parameters extracted from
the radial spatio-temporal profiles. LC-KSVD has been also used with the parametric inputs.
Classical classification based on Support Vector Machines (SVMs) with two different kernels has
been also performed for comparisons purposes.

In the case of diametral profiles, the experiments have been realized in apical, mid-cavity
and basal SAX planes using 360 profiles extracted from a set of 20 subjects (14 patients and 6
controls, 18 profiles per subject) at each short axis plane.

In the case of radial profiles and parameters extracted from radial spatio-temporal profiles,
the experiments have been realized on 108 anatomical segments in a set of 18 subjects (9 patients
with cardiac dyssynchrony and 9 healthy subjects) from which 648 spatio-temporal profiles have
been extracted.

Two levels of evaluation have been elaborated: global evaluation, where the global status of
the patient was used to label each LV anatomical segment and local evaluation, where information
of local radial strain provided by 2D-Speckle tracking Echocardiography was used to label each
LV anatomical segment.

In global evaluation a systematic error has been introduced since the beginning of the training
stage were some anatomical segments in patients that present normal wall motion were assumed
as segments with abnormal LV wall motion regarding the global status of the patient.

We aimed to compare global vs. local evaluation to analyze the impact that the systematic
error has in the classifiers comparing to the more realistic local evaluation.

The complexity of the classification techniques has been compared in term of sparseness
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for the SVMs and sparsity constraint for the DL models. Local results have been presented in
parametric images known as bull-eyes in anatomical segments of the LV according to the AHA
17 myocardial segments.

The best results using global evaluation have been obtained by the FD-DL classifier that
reached 96.51%, using diametral spatio-temporal profiles in the Wavelet domain obtained at the
mid-ventricular slice level. This performance has been slightly improved by using radial profiles
at the same anatomical plane by the same classification technique with an accuracy of 97.05% in
this case in gray level (original domain).

Regarding local evaluation, the best performance in the mid-cavity plane has been achieved
by the FD-DL technique using radial profiles with the assessment of 2D-STE in the gray level
domain with an accuracy of 92.81%. This performance has been improved by using the Skewness
and Clustering parameters extracted from the radial profiles at the same anatomical plane by
the KSRDL technique with an accuracy of 94.49%.

Even through this study has been limited to the number of patients and the availability
of the strain information, our results obtained with local validation can be analyzed taking
as reference results obtained by methods in the literature. The proposed method has two
main characteristics that can be summarized as: i) by performing the evaluation using strain
information and complete information from all phases and segments we were able to determine a
wall motion estimation comparable to the standard manual wall motion scores performed by
cardiologists, and ii) the analysis of the LV radial spatio-temporal profiles in the cardiac cine-MRI
sequences at the mid-cavity short axis plane has been shown to be sufficient for detecting wall
motion abnormalities in this patient study data set.

From the methodological point of view, the adaptation of DL methods to the task of classifi-
cation has resulted in a promising technique for LV motion analysis, achieving an appropriate
balance between complexity and simplicity.

In the context of Hypertrophic Cardiomyopathy (HCM), we aimed at developing new methods
for the detection of fibrosis in LGE-MRI that is the most accessible and accurate noninvasive
imaging tool to assess myocardial fibrosis in a routine clinical practice even if new T1-mapping
sequences seem to be promising and have to be analyzed.

In the literature, methods for the detection of fibrosis in LGE-MRI include: i) methods
based on the tuning of thresholds with manual interaction of the user, ii) methods based on
the automated detection of the infarcted zones using morphological operators and, iii) methods
based on clustering that avoid the choice of gray level thresholds.

We developed an approach that combines a feature extraction method based on clustering
with a classification method based on sparse representations and DL for the detection of fibrosis
in LGE-SAX images. The process has been divided in 4 stages: feature extraction, clustering
and DL training and testing.

In a feature extraction step, the extraction of non-overlapping patches from random LGE-SAX
training images has been performed, then a similarity matrix among the extracted patches has
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been computed.
In a clustering step, two clusters, LGE/Non-LGE pixels, have been obtained from the

similarity matrix among the training patches after performing a multisignal 1-D hierarchical
clustering algorithm based on Wavelet representation of similarities.

In a DL training step, a dictionary has been constructed with the clustered patches in two
classes and a K-NN classifier has been trained with the sparse codes coefficients of the training
patches obtained from a DL algorithm based on kernel: the KSRDL algorithm (Li et al., 2013).

In a DL testing stage, a new LG-SAX image is partitioned in overlapping patches and their
sparse codes are computed using the learned dictionary. The label of each patch is predicted by
using the trained K-NN classifier. In a post processing step the spatial localization of fibrosis is
quantified inside the myocardium.

The detection approach has been applied in a set of 11 patients with cardiac hypermertrophy
from which 16 images from 16 slices covering apical, mid-cavity and basal planes have been
processed for each patient.

The proposed method allowed the detection of fibrosis (LGE regions), localized inside the
myocardium using the endo- and epicardial boundaries manually delineated by a cardiologist.
The method has been evaluated by a visual evaluation and by comparing with the results of one
method of the literature. The method has been able to successfully detect fibrosis in 9 out of the
11 patients.

By using the boundaries and a manual localization of the anterior intersection between
right and left ventricles, the region of fibrosis is localized and visualized in different anatomical
segments according the AHA representation.

The method has been focused on the fibrosis detection problem, bu it can also be applied
without the use of endo- and epicardial contours resulting in a segmentation approach of different
structures in the MRI image.

The perspectives of this study include the following aspects:
Performance of classification of LV wall motion could potentially be improved by an automatic

location of the anatomical landmark between the LV and the RV. In fact, results have shown
that the classification performance has been generally improved using the different classifiers
with the manual tracking of the anterior intersection between the two ventricles. Furthermore,
the accuracy in the detection of fibrosis associated to LV anatomical segments could be improved,
since it depends on the AHA decomposition an thus on the location of the anterior intersection
between the LV and the RV.

We have performed a binary classification between normal/abnormal LV motion based on
the spatio-temporal representations extracted in anatomical segments. This classification could
be extended to a multiclass classification into one of four classes: normal, hypokinetic, akinetic
and dyskinetic LV wall motion.

This work that is focused on LV wall motion characterization could be extended for char-
acterization of cardiac dyssynchrony by considering additional parameters that could be also
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incorporated as input atoms in the DL-based classification methods. These parameters could
include information from global functional indexes (like time-volume curves, ejection fraction,
stroke volume) as well as regional anatomical and functional parameters (like thickening, velocities,
strain and mechanical delays).

The method could be improved with an extensively validation by using more patients.
Furthermore, it could be extended for a new precise classification according to subgroups in HF
pathologies, such as, the classification of responders or non-responders patients in the context of
CRT. Furthermore, it could be applied for the characterization of different cardiac pathologies
and in other cardiac imaging modalities.
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