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Abstract

Apnea-bradycardia episodes (breathing pauses associated with a significant fall in heart
rate) are the most common disease in preterm infants. Consequences associated with
apnea-bradycardia episodes involve a compromise in oxygenation and tissue perfusion,
a poor neuromotor prognosis at childhood and a predisposing factor to sudden-death
syndrome in preterm newborns. It is therefore important that these episodes are rec-
ognized (early detected or predicted if possible), to start an appropriate treatment
and to prevent the associated risks. In this thesis, we propose two Bayesian Network
(BN) approaches (Markovian and Switching Kalman Filter) for the early detection of
apnea bradycardia events on preterm infants, using different features extracted from
electrocardiographic (ECG) recordings.

Concerning the Markovian approach, we propose new frameworks for two general-
izations of the classical Hidden Markov Model (HMM). The first framework, Coupled
Hidden Markov Model (CHMM), is accomplished by assigning a Markov chain (chan-
nel) to each dimension of observation and establishing a coupling among channels. The
second framework, Coupled Hidden semi Markov Model (CHMM), combines the char-
acteristics of Hidden semi Markov Model (HSMM) with the above-mentioned coupling
concept. For each framework, we present appropriate recursions in order to use modified
Forward-Backward (FB) algorithms to solve the learning and inference problems. The
proposed learning algorithm is based on Maximum Likelihood (ML) criteria. Moreover,
we propose two new switching Kalman Filter (SKF') based algorithms, called wave-based
and R-based, to present an index for bradycardia detection from ECG. The wave-based
algorithm is established based on McSarry’s dynamical model for ECG beat generation
which is used in an Extended Kalman filter algorithm in order to detect subtle changes
in ECG sample by sample. We also propose a new SKF algorithm to model normal
beats and those with bradycardia by two different AR processes.

We evaluate the performance of the proposed Markovian methods to detect event
of interest using both simulated and real databases. In the case of simulated data,
the performance of the proposed algorithms is evaluated in classification and detec-
tion procedures, in terms of confusion tables, sensitivity, specificity and time delay for
detection task. The real signal database contains three feature time series extracted
from raw ECG signals, acquired from preterm infants suffering from bradycardia. The
proposed algorithms are evaluated in terms of the same metrics as in detection task of
simulated data, which illustrate their ability in early detection of bradycardia episodes.
The real ECG database is also applied in order to establish and assess the two Switch-
ing algorithms. The best results of AB detection precision are achieved by CHSMM
(94.87% sensitivity and 96.52% specificity) and the lowest time delay is obtained by
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using CHMM (0.73 s). Among methods in Switching approach, wave-based shows su-
perior performance by 94.74% sensitivity, 94.17% specificity and 0.35 s time delay.



Résumé long en Francais

L’apnée est une complication fréquente chez les nouveaux-nés prématurés, pouvant con-
duire & une diminution de la fréquence cardiaque (apnée bradycardie (AB)). La détec-
tion précoce de ces événements d’apnée-bardycardie peut réduire la durée d’hospitalisation,
ainsi que les principaux effets secondaires liés aux thérapies complexes comme la réan-
imation ou l'intubation.

Position du probléme clinique

La naissance prématurée de ’enfant arrive avant 37 semaines de gestation. Cette prob-
lématique est en augmentation constante dans la plupart des pays [Martin et al.,
2010, Zeitlin, 2009|. Elle peut entrainer de nombreuses complications aux enfants en
raison des dysfonctionnements des organes, qui ne sont pas complétement développés
et apres pour la vie extra-utérine. L’un des problémes le plus fréquent est I’épisode
d’apnée-bradycardie, dont la répétition influence de maniére négative le développement
de 'enfant. Par conséquent, les enfants prématurés sont surveillés en continu par un
systéme de monitoring installé dans les unités des soins intensifs néonatals (USIN). Ce
systéme permet de déterminer I’évolution de I’état de santé de 'enfant et, depuis sa
mise en marche, la qualité, I’espérance de vie et le pronostic de vie des prématurés ont
été considérablement améliorés et la mortalité a été réduite.

En effet, les avancées technologiques en électronique, informatique et télécommu-
nications ont conduit a 1’élaboration de systémes multivoies de monitoring néonatal
de plus en plus performants. La plupart sont constitués de modules d’acquisition des
données et d'une station centrale pour visualiser les signaux acquis en temps réel. Des
alarmes sont produites lorsqu’une situation a risque est détectée, comme par exem-
ple, une apnée-bradycardie. L’un des principaux signaux exploités dans ces systémes
est 1’électrocardiogramme (ECG). L’ECG est un outil diagnostique qui mesure et en-
registre 'activité électrique du cceur. Il reste aujourd’hui comme la technique la plus
largement utilisée pour ’exploration de 'activité électrique cardiaque, puisqu’il s’agit
d’une technique non invasive, simple, économique et stire.

Méme si l'analyse de PECG a évolué au fil des années et que le développement
des méthodes de traitement des signaux électrocardiographiques a amélioré la carac-
térisation et le diagnostic des maladies cardiovasculaires, ’ensemble des informations
fournies par 'ECG ne sont pas encore totalement exploitées dans les processus de dé-
cision, notamment en monitoring en USIN. Deux points particuliers sont a nous yeux
sous exploités dans les stations de monitoring néonatal : i) Pexploration multi-variée
des ondes et intervalles de 'ECG, afin de détecter précocement les épisodes d’apnée-



bradycardie et ii) les méthodes d’analyse restent des méthodes de détection et sont trés
peu anticipatives (prédiction de 1’événement).

Objectif principal de la thése

Dans des travaux antérieurs [Dumont, 2008, Altuve, 2011|, des méthodes pour répondre
aux deux points mentionnées précédemment ont été proposées. Elles étaient fondées
sur I'analyse de la dynamique des séries temporelles multivariées, extraites du signal
ECG. Cette dynamique est analysée par l'utilisation de modéles de Markov cachés
(MMC) [Rabiner, 1989a| et des modéles de semi-Markov cachés (MSMC) [Yu, 2010].
Le MMC est un modéle stochastique supposé avoir nombre fini d’états M avec la
probabilité de générer 'observation (b,,). Le MSMC est similaire & un MMC classique,
mais la différence principale est que le processus est semi-Markovien, dans le sens ou
un changement dans un état futur dépend a la fois I’état actuel, mais aussi du temps
passé a cet état. Par conséquent, un parameétre aléatoire supplémentaire est défini dans
les MSMC pour représenter la durée de stage dans 1’état m, appelé le temps de séjour
et désigné par d.

Les modeéles MMC et MSMC ont été appliqués dans le domaine du traitement du
signal pendant plus de deux décennies, en particulier dans le contexte de la reconnais-
sance automatique de la parole. Toutefois, ils constituent également des outils souples,
flexibles et robustes pour le traitement des séries temporelles univariées et multivar-
iées, y compris dans les cas d’observations discrétes ou continues. L’intérét pour la
théorie et les applications de ces modéles est en pleine expansion a d’autres domaines,
par exemple: différents types de reconnaissance (visages, parole, geste, écriture, signa-
ture), bioinformatique (analyse des séquences biologiques, analyse de 'ECG, classifi-
cation de I'électroencéphalogramme), environnement (direction du vent, précipitations,
tremblements de terre) et finances (rentabilité journaliére). Méme si Papplication de
ces approches a la détection précoce des apnées-bradycardies a produit des résultats
supérieurs aux autres méthodes de la littérature [Altuve et al., 2011b, Altuve et al.,
2015|, plusieurs limitations persistent dans la représentation des dynamiques multidi-
mensionnelles. L’objectif principal de ce travail de thése est donc d’améliorer la prise
en compte des dynamiques multi-dimensionnelles en proposant des nouvelles approches
basées sur un formalisme Bayesien, pour la détection précoce des apnées-bradycardies
chez le nouveau-né prématuré.

Méthodes proposées

Dans cette thése, nous proposons deux approches bayésiennes, basées sur les caractéris-
tiques des signaux biologiques en vue de la détection précoce de I’apnée bradycardie des
nouveaux-nés prématurés. D’abord avec ’approche de Markov caché, nous proposons
deux extensions du MMC classique. La premiére, qui s’appelle Modéle de Markov
caché couplé (MMCC), crée une chaine de Markov a chaque dimension de 1’observation
et établit un couplage entre les chaines. La seconde, qui s’appelle modéle semi-Markov
caché couplé (MSMCC), combine les caractéristiques du modéle de MSMC avec le
mécanisme de couplage entre canaux. Pour les deux nouveaux modéles (MMCC et



MSMCC), les algorithmes récursifs basés sur la version classique de Forward-Backward
sont introduits pour résoudre les problémes d’apprentissage et d’inférence dans le cas
couplé.

En plus des modéles de Markov, nous proposons dans ce travail de thése deux
approches passées sur les filtres de Kalman (Switching Kalman Filter, SKF) pour la
détection de I'apnée. La premiére utilise les modifications de la morphologie du com-
plexe QRS et est inspirée du modéle générateur de McSharry, déja utilisé en couplant
avec un filtre de Kalman étendu dans le but de détecter des changements subtils de
I'ECG, échantillon par échantillon. La deuxiéme utilise deux modéles AR (I'un pour
le processus normal et 'autre pour processus de bradycardie). Les modéles AR sont
appliqués sur la série RR, alors que le filtre de Kalman suit I’évolution des paramétres
du modéle AR et fournit une mesure de probabilité des deux processus concurrents.

Evaluation et résultats expérimentaux

Les performances de I'ensemble de méthodes proposées est évalué sur des bases de don-
nées a la fois simulées et réelles. Concernant les bases simulées, des modéles dynamiques
comme le modéle de FitzHugh-Nagumo [FitzHugh, 1961] sont utilisés. La performance
des algorithmes proposés est évaluée pour la détection de perturbations et les critéres
clés sont les tableaux de contingence, la sensibilité, la spécificité et le délai de détection.
Concernant les données réelles, elle est construite des signaux ECG des nouveau-nés
prématurés souffrant d’apnée-bradycardie et suivis dans les unités de soins intensifs
néonatals du CHU de Rennes. Pour chaque enregistrement de la base, trois indicateurs
extraits de signaux ECG sont disponibles et représentés comme des séries temporelles,
battement & battement (intervalle RR, durée du QRS et amplitude du QRS). Les anno-
tations du début de chaque événement d’apnée-bradycardie sont également disponibles
dans la base. Les algorithmes proposés sont appliqués sur ces séries temporelles et éval-
ués en termes de sensibilité, spécificité, ainsi que le délai a la détection, ce qui permet de
démontrer leur capacité dans la prévision des épisodes d’apnée-bradycardie. La méme
base de données ECG est appliquée afin d’établir et d’évaluer les deux algorithmes de
SKF.

Concernant les approches Markoviennes, que se soit sur les données simulées ou
réelles, les meilleurs résultats sont obtenus de I'application des méthodes MSMCC et
MSMC, méme a un nombre d’état relativement faible. En fait, une conclusion im-
portante est que I'approche par modéles couplés facilite de maniére notable la phase
d’apprentissage des dynamiques caractéristiques de chaque événement et ce, d’autant
plus que la dimension des observables est grande. En particulier, sur les données réelles,
le MSMCC donne de meilleurs résultats que le MSMC, notamment en termes de délai
a la détection, de spécificité et de la distance au point de détection parfaite. Ils est
important de noter que le MSMCC est la seule approche a fournir de facon consistante
les meilleures performances de détection (en termes de distance au point de détection
parfaite) en fonction des caractéristiques utilisées en entrée et que les meilleures perfor-
mances sont obtenues quand on utilise 'ensemble de séries disponibles (dimension 3).
De plus, les simplifications et méthodes de calcul proposées ont des complexités simi-
laires ou inférieures a celles décrites auparavant dans la littérature, ce qui ouvre la voie



vers une implémentation en ligne de nos méthodes. Ces contributions aux approches
de Markov couplées, ont été publiées dans un article de conférence internationale et un
article de journal international indexé (|2 et 3| dans liste ci-dessous).

En ce qui concerne les approches SKF, les principaux gains observés sont liés au délai
a la détection, qui sont réduits par rapport aux modéles Markoviens, principalement du
a la simplicité de ces approches. Cependant, ce gain en temps de réponse vient au prix
d’une plus faible performance. Globalement, les meilleurs résultats sont donc obtenus
avec 'approche MSMCC proposée. Ces approches a base de SKF ont été récemment
publiées dans un journal international indexé ([4] dans liste ci-dessous).

Perspectives

Comme travail futur, nous pouvons étudier I'utilisation clinique des méthodes proposées
sur un plus grand nombre de cas et en utilisant d’autres signaux sources que 'ECG
(par exemple les signaux respiratoires ou de saturation d’oxygene), pour la détection de
I’AB. Nous pouvons également étudier d’autres événements pathologiques en plus des
épisodes d’apnée-bradycardie. De plus, sachant que ’ensemble de méthodes proposées
est générique, nous voulons appliquer ces méthodes sur d’autres applications cliniques,
comme la détection précoce des apnées des adultes ou encore le suivi de données ob-
servées des dispositifs implacables de nouvelle génération.

Les méthodes proposées peuvent étre encore étendues dans plusieurs aspects, comme
par exemple I'amélioration des propriétés des parameétres de stage dans les MSMCC
en utilisant des fonctions de densité de probabilités connues. De plus, nous pouvons
améliorer la représentation des états en employant plus d’un noyeau Gaussien ou tiré
d’une autre fonction de distribution.

Les travaux futurs concernant les approches SKF comprennent 'incorporation des
méthodes d’estimation des paramétres AR, plutot que I'approche ML, pour la procédure
d’apprentissage dans les deux approches proposées. Dans I'approche basé sur les mor-
phologies des complexes QRS, nous pouvons utiliser d’autres modéles dynamiques pour
les tracés ECG [Ayatollahi et al., 2005, Das and Maharatna, 2013|. Enfin, nous pouvons
aussi utiliser des observations multidimensionnelles, incluant la série RR et d’autres
caractéristiques, comme entrée pour les approches SKF. Des modéles AR d’ordre plus
elevé peuvent aboutir & une meilleure performance de détection, méme s’ils requiérent
une algorithmie plus complexe.
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Chapter 1

Introduction

This thesis was developed under a joint supervision between two laboratories:

- The Laboratory of Biomedical Signal and Image Processing (BISIPL) of Sharif
University of Technology.

- The Laboratory of Signal Processing and Image (LTSI) of the University of Rennes
1 where the recent projects conducted on analyzing the dynamics of time series by data
mining [Dumont, 2008] and predicting the occurrence of apnea bradycardia (AB) in the
preterm infants using methodologies seeking to exploit the dynamics of multivariate
time series extracted from the electrocardiogram (ECG) |Altuve, 2011].

1.1 Problem definition

The premature birth of an infant happens before 37 weeks of gestation. This problem
is increasing in most countries [Martin et al., 2010]; [Zeitlin, 2009] and can lead to
many complications in children because of dysfunctions of organs, which are not fully
developed and adapted for extra-uterine life. One of the most common problems is
the episode of AB, whose repetition negatively influences the growth of the child [Pich-
ler et al., 2003|; [Urlesberger et al., 1999|; |[Janvier et al., 2004]. Therefore, preterm
infants are continuously monitored by a monitoring system installed in the neonatal
intensive care unit (NICU). This system allows to determine the evolution of health of
an infant and consequently, the quality, life expectancy and prognosis of preterm life
are significantly improved and mortality is reduced. Indeed, technological advances in
electronics, information technology and telecommunications led to the development of
neonatal monitoring multichannel systems. Most modules consist of data acquisition
and a central station for inspecting the signals acquired in real time. Alarms are trig-
gered when a risk situation such as AB is detected. One of the main monitored signals
in these systems is ECG which is a diagnostic tool that measures and records the elec-
trical activity of the heart and it is considered as the most widely used technique for
exploring the performance of of heart, since it is non-invasive, simple, economic and
safe.

Although the ECG analysis has evolved over the years and the treatment methods
based on cardiac signals improved characterization and the diagnosis of cardiovascular
diseases, all information provided by ECG are not yet fully exploited in the decision-
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making process, including monitoring in the NICU. Two particular points can be con-
sidered in monitoring stations of neonates: i) multivariate exploration of waves and
intervals of ECG to detect early episodes of AB and ii) improvement of the detection
methods to predict an event.

In previous works [Dumont, 2008]; [Altuve, 2011], methods to address the two men-
tioned issues are proposed which were based on the use of the dynamic temporal mul-
tivariate series extracted from ECG. This dynamic is analyzed by the use of Hidden
Markov Model (HMM) [Rabiner, 1989a| and Hidden semi Markov models (HSMM) [Yu,
2010]. HMM is a stochastic model assumed to have finite number of states M with the
probability of generating the observation (b,,). HSMM is similar to a classic HMM,
but the main difference is that the process is semi-Markov, in the sense that a change
in a future state depends both the current hidden state and the time spent on this
state. Hence, another random parameter for HSMM is defined for the remaining time
duration in state m called sojourn time and notified as d. HMM and HSMM were
used in the field of signal processing for more than two decades, particularly in the
context of automatic recognition speech. Moreover, they are soft, flexible and robust
tools for the processing of univariate (1-dimensional) and multivariate (having more
than 1 dimension) time series, including the case of discrete or continuous observations.
Interest in the theory and applications of these models are expanding to other areas,
e.g. different types of recognition (faces, gestures, handwriting, signature), biomed-
ical engineering (analysis of biological sequences, ECG analysis, classification of the
electroencephalogram), environment (wind direction, rainfall, earthquakes) and finance
(the daily profitability).

The main advantage of using HMM in the analysis of biomedical signals is based on
the fact that: i) it can represent the time evolution of a variable through the standard
parameters of HMM , ii) except initial values for model parameters, they do not require
any prior knowledge about the data to be processed and iii) the number of states M is
the only parameter which has to be set.

1.2 Subject of the thesis

In this work, the main purpose is the early detection of AB using various Bayesian
Network (BN) [Ghahramani, 1998] methods including HMM and its generalizations.
Expanding the pervious works in our group, we concentrate our study on specific
framework for Coupled Hidden Semi Markov Model (CHSMM) [Natarajan and Neva-
tia, 2007a], which is a generalization of HMM integrating HSMM and Coupled Hidden
Markov Model (CHMM) characteristics [Brand et al., 1997a]. However, it is essential
firstly to establish new framework for CHMM. A CHMM represents a system with mul-
tivariate observations assigning a specific HMM to each of its dimension. The states of
HMDMs mutually interact in a way that a transition to a state in one channel at time
t depends on states of all channels at time ¢ — 1. HSMMs can be replaced to HMMs
in coupled structure in order to form a CHSMM framework. We primarily propose a
framework for CHMM which is extended to CHSMM by considering parameter repre-
senting the sojourn time (d) of the states. The performance of the proposed frameworks
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are compared to each other and to HMM and HSMM based methods in AB detection
task.

Another common method in BN is State Space Model (SSM) and in special case of
linearity, Kalman Filter (KF). In case of nonlinear dynamical model, Extended Kalman
Filter (EKF) is applied for local linearization. Furthermore, the performance of KF is
effectively dependent on the predefined knowledge of the state space coming along with
its dynamic. Hence, their performance for modeling the systems with changeable dy-
namic is not reliable. On the other hand, as a solution, it is possible to model changeable
dynamics by integrating a switch on as many KFs as the number of possible dynam-
ics observed in the system, so that each one tracks one of the dynamics. This switch
is a random variable whose status indicates to a KF and its corresponding dynamic.
Allocating a HMM to the sequence of states of the switch, creates a combination of
HMM and KF which is called Switching Kalman Filter (SKF) in literature [Murphy,
1998]. We also propose a (SKF) and a Switching Extended Kalman Filter (SEKF)
based models for early detection of AB.

1.3 Overview of the thesis

This thesis is organized as follows:

- The chapter 2 summarizes anatomy and physiology of heart and the cardiac char-
acteristics of AB. The physiological concepts of preterm infants and complications,
including AB are also included. The basis of electrocardiography and ECG in preterm
infants are detailed and the works that have already been proposed in this field are
reviewed.

- The chapter 3 provides a brief literature review on strategies for classification and
detection of Markov models including standard HMM, HSMM and coupling concepts
in HMM. Then, our proposed CHMM and CHSMM are introduced.

- In chapter 4, the algorithms based on dynamical model of ECG, developed in
our laboratory, are subsequently reviewed. Our proposed algorithms, SKF (R-based)
and SEKF (wave-based), for modelling the changeable dynamic of cardiac system are
presented.

- In chapter 5, the simulated and real database are introduced properly followed by
description of evaluation methods and corresponding metrics.

- The chapter 6 details the results. First, a comparison on the results of various
Markovian models are presented. Furthermore, the results of switching approach shows
their effective contributions in AB detection.

- Finally, we summarize our findings and contributions in this thesis and suggests
several fields of research for future works.

A list of publications related to this thesis is presented in Appendix C.

1.4 Main contributions

The main contributions of this thesis can be summarized as:
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introduction

1. (a) the introduction of a novel framework for CHMM as a generalization of HMM

to address the analysis of N-dimensional coupled signal features,

(b) the derivation of the FB variables and solutions to the standard problems of
the Markovian models according to the proposed framework,

(c) the application of the proposed framework to AB detection, based on the
log-likelihoods of competing models,

. (a) Combination of HSMM characteristics with previously proposed CHMM frame-

work to proposed CHSMM, a novel generalization of HMM, to address the analysis
of N-dimensional coupled signal features,

(b) the derivation of the related FB variables and solutions to the standard prob-
lems of the CHSMM according to the proposed framework,

(c) the application of the proposed CHSMM to AB detection, and the comparison
of the results with other existing methods,

. (a) the introduction of a wave-based state space formulation according to SEKF

for detecting bradycardia,

(b) the derivation of a linear R-based model according to previously proposed
SKF for detecting the bradycardia from RR signal, and

(¢) comparing the results achieved by wave-based and R-based methods with other
identical previously presented methods.



Chapter 2

Apnea Bradycardia

2.1 Introduction

This chapter aims to give the physiological basis needed to understand our issue ad-
dressed as AB detection in premature newborns. Generalities of the cardiovascular
system are presented in the next section including anatomical structure of heart, its
electrical activity and system of excitation-conduction. Then, the definitions related to
prematurity and neonatal apnea focusing on the causes, consequences and implications
of premature birth and AB of prematurity are described. Finally, a review on methods
for apnea detection especially the researches using ECG of preterm infants is presented
to conclude the chapter.

2.2 Overview of the cardiovascular system

The cardiovascular system is a compound of the heart and blood vessels. This system
ensures a continuous flow of blood to the organs and tissues of the body cell to sup-
ply them with oxygen and nutrients removal of metabolic products generated during
their activity and transporting hormones produced by the endocrine glands to receptors.
Heart as a vital organ of the circulatory system of warm-blooded living creatures is com-
posed of highly complex structure. Naturally, in human being, according to its innate
and vital requirements, its heart has the highest degree of evolution and cooperation
between the organs of all living organisms. In order to know about the performance of
this vital organ, it is essential to be familiar with its anatomy and physiological charac-
teristics. Furthermore, the functionality of the heart in circulatory system to maintain
bloodstream within the vessels can be reviewed.

2.2.1 Clinical anatomy of heart

Anatomically speaking, the human heart is a muscular organ in the chest cavity that
functions as an independent pump, ensuring the progress of the blood within the vessels.
It consists of four contractile cavities, two atria and two ventricles at the bottom of the
atria. Ventricles are separated from each other by muscular walls. The left and right
atria receive venous blood and are separated by the interatrial septum. The left and

21



22 chapter2

right ventricles are divided by the interventricular septum, which ensures the expulsion
of the blood in the pulmonary circulation, respectively and in the systemic circulation.
However atrium and its below ventricle are related through atrioventricular valves,
formed by fine connective tissue. The tricuspid valve between the atrium and the right
ventricle and mitral valve separates the left atrium left ventricle, ensuring the blood to
flow one way. The function of the atrioventricular valves is to prevent reentry of blood
to the atria once it streams to the ventricles. There are also the sigmoid valves within
pulmonary and right ventricle and also aortic artery and left ventricle, preventing the
return of blood to the ventricles, once pumped to the pulmonary artery and to the
aorta, respectively. The location of each elements of heart is illustrated in Fig. 2.1. The
wall of the heart muscle is composed of three layers:

e The pericardium is the outer shell and the core consists of a layer of epithelial
cells and connective tissue.

e The myocardium and the intermediate layer consists of predominantly of fibers
contractile.

e The endocardium is the inside and consists of an additional layer epithelial cells
and connective tissue.

Major part of contraction operation is performed by the myocardial muscles which
consist principally of two different types of tissues. First one is the fabric nodal con-
duction. This tissue consists of cells having properties of automatic excitability and
conductivity histologically. These characteristics allow regular and spontaneous gener-
ation of electrical impulses and the transmission of the pulses through the myocardium
in an organized manner, to ensure adequate and efficient pumping contraction. The
second type is contractile myocardial tissue which is forms the majority of myocardium
and has properties of cellular excitability and conductivity to be capable of contract-
ing. Unlike the nodal tissues, they are not able of being excited automatically. Hence
these tissues requires to be triggered for contracture. The activity of the heart is quasi-
periodic, called the cardiac cycle, pushing blood through the body continuously. The
cardiac cycle consists of a period of ventricular relaxation (diastole), while the heart
is filled with blood, followed by a period of ventricular contraction (systole), when the
blood is directed out of the heart. By contracture of left and right ventricles, the most
of the blood storage is discharged into aorta and pulmonary artery respectively. In
the pulmonary circulation, blood uptakes the oxygen and excrete the carbon dioxide
via the pulmonary veins and then returns to the left atrium. In general circulation,
blood nourishes and refines the body cells. Hence it contains low degrees of oxygen and
high degrees of carbon dioxide then, so it enters the right atrium through superior and
inferior vena cava veins. During the relaxation of ventricles and following the loosening
of atrioventricular valves due to the gradient pressure between their both sides, 3/4 of
the amount of blood in atriums rushes to the corresponding ventricles. Hence, the ap-
propriate performance of the these valves plays a crucial role in maintaining the proper
functioning of heart in sync with its normal cycle |[Fauci et al., 2008].
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Figure 2.1: Heart anatomy. [THI, 2014|

2.2.2 Physiology of heart

Heart is a muscular organ capable of autonomous action which is specially influenced
by higher nerve centers. Cardiac muscle, skeletal muscle, smooth muscle and neuronal
tissue, histologically, possess tissues which are potentially capable of demonstrating an
electrical potential difference between the two sides their cells membrane. The cardiac
tissues are fine, capable of aerobic and long-term metabolism and tightly intercon-
nected to autonomic efferent nerves (sympathetic and parasympathetic). Each cardiac
cell (nodal or myocardial) has a two-layer membrane made of fat in between the layers,
and several ionic valves. They are also surrounded and filled with a solution which
contains ions. The three most important are: sodium (Na™), potassium (K*) and cal-
cium (Ca?"). Active and passive movements of ions through ionic channels, associated
with crossing the cell membrane and their propagation form the basis of the cellular
electrical activity. The ionic valves are able to selectively transmit the ions. Conse-
quently, this feature leads to a difference in electrical potential on both sides at resting
time of the cardiac cells. At rest, the interior of the cell membrane is electrically neg-
ative with respect to the extracellular environment, which is taken as reference. The
potential is approximately -80 to -90 mv. Ions involved in the creation of the resting
potential, mainly are sodium and potassium ions. When an electric pulse of sufficient
magnitude, as a consequence of a nervous, mechanical or cell membrane stimulation,
arrives at an excitable cell, the resting potential within the cell exhibits rapid polarity
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Figure 2.2: SA node: the natural pacemaker of the heart. AV node: transmitter of
electrical stimulation to ventricles. |THI, 2014]

reversal and becomes positive relative to the outside. It increases to the point where
it is called the potential (activation and opening) threshold. This process is known
as cellular depolarization and it is generated by transmembrane opening which allows
the passive entry of Na' in the intracellular space. At this level, the cell membrane
potential reaches even to the 20+ to 30+ mv. This electric potential is called as action
potential (AP). The return of the stimulated cardiac cell to its resting state is called cell
repolarization which is consists of rapid and slow steps. Its first step is characterized
by a rapid and short-time repolarization due to the inactivation of Na® channels and
the outspreading of K*. Slow voltage-sensitive calcium channels in intracellular open,
allowing the passive diffusion of slow inward of Ca?" ions into the cytoplasm cell of
heart. Entered calcium ions sit on special positions, on Myosin fibers and cause the
energy-consuming process of contraction in the muscle cell. Reconstructing the rest-
ing potential is begun by closing of specific ion channels and activating the potassium
channels, which allows the expulsion of the active ions, facilitating the return to the
original negative transmembrane potential. The cells that an external stimulation was
incapable of causing a new AP in them till this stage, becomes excitable again. The
time interval of non-excitability is called the absolute refractory period (ARP). The
duration of ARP depends on the frequency at which the cell is stimulated. AP has the
ability to move along the heart muscles. As mentioned, the cardiac cells are associated
with the ability of ion transmission through intercellular channels. This implies that
the action potential can spread rapidly to all connected muscle cells (Fig. 2.2).

The clinical representation of AP in heart muscle is the creation of contraction
in the muscle. The start of the stimulation process and the contraction of cardiac
muscles needs to have a special regulations, in order to generate a regular performance
of heart for blood pumping throughout the body. In human heart, in the posterior
region of the right atrium, the sinoatrial node (SA node) can be found among the
specific muscles with special characteristics, that are constantly self-stimulating due to
their low resting potential, which is equivalent to -60 mv. Hence, the fiber tissues of
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this region, insistently generates the AP with velocity of nearly 80 beats per seconds
and are tightly connected to the fibers of atrial tissues. Among these particular cells,
SA node is called the dominant pacemaker of heart due to its rapid self-stimulation.
SA node initiates the electrical excitation in atrial tissues through the links between
ion channels of the atrial muscle. The muscle of atrium are electrically isolated from
ventricles by a fibrous-connective tissue that acts as insulation. The only connection
between the atria and ventricles in normal mode is the atrioventricular (AV) node which
is a collection of heart muscle fibers called Purkinje that is able to conduct electrical
signals. This activation is mediated at ventricle using specialized internodal pathways
that connect the SA node to the AV node. AV node is located at the bottom of the
right atrium and consisting of cells which exhibit a slow electrical conduction. The
velocity of activation is physiologically slowed (approximately 100 ms) by AV node,
before reaching to the His bundle. This property of AV node protects the ventricles
from excessive number of activations of the AV node and activations diffused suddenly
which optimizes ventricular contraction. Also, it reserves the regulation of pumping
that the atria are activated before ventricles. The His bundle is located in the upper
part of the interventricular septum and pass through the connective tissue fibers (not
excitable) which electrically separate atria from the ventricles. In normal cases, the
AV node is the only way of propagation of cardiac electrical activity between atria and
ventricles. This is often called the atrioventricular junction. The His bundle includes a
main trunk that divides into two branches, right to left. Purkinje fibers are the branches
of His bundle which is ended in a network of fibers which reaches the ventricular walls.
The Purkinje fibers terminate in anastomoses with myocardial muscle fibers, facilitating
their excitement. The heart rate of a man lying is around 100-120 beats per minute

(bpm).

2.2.3 ECG

The flow and the amplitude of the electric currents generated by depolarization and
repolarization of the myocardial cells can all be detected by electrodes placed on the
surface of the thorax. The electrical signal obtained is an ECG signal. The analysis
of this electrical activity is proved to be an essential technique for the diagnosis of
cardiovascular diseases and is a fundamental tool in cardiac monitoring. As the waves
of depolarization and repolarization have direction and magnitude, they can be rep-
resented by a vector. The vectorial analysis of electrical activity of heart shows the
main concepts of ECG. This means that the ECG is a complex spatial and temporal
mapping of electrical potential of multiple myocardial fibers that are directed to the
surface of the body and is recorded by surface electrodes. This implies that the activity
of some regions can be weakened or discarded from the recorded signal. In order to
have complete outlook of heart performance, it is common to record ECG from various
places on the chest called leads.

The electrical activity generates special waveform patterns in ECG that are summa-
rized as follows. ECG patterns starts with P waves which represents atrial depolariza-
tion. This wave characterizes by a low frequency and energy component which often its
observation is limited to a few ECG leads, especially in noise conditions. Then, atrial
repolarization is represented by Ta wave in opposite direction of P wave. Generally Ta
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Figure 2.3: Conduction of electrical stimulation as the origin of ECG waveform gener-
ation. From left to right and up to bottom. [Wikipedia, 2011|

wave is not visible in the ECG as it coincides with the largest amplitude QRS complex.
Ventricular depolarization is then represented by a deflection of the amplitude of ECG
called as QRS complex. This complex consists of three consecutive waves: Q, R and
S, which are respectively associated with the means of activation of different parts of
ventricles. Ventricular repolarization is reflected by T wave Fig. 2.3.

In addition to the morphology of these waveforms, the distance between their loca-
tions in an ECG beat is another characterization. The RR interval: it is the elapsing
time between the peaks of two consecutive R waves. The reverse of RR interval is equal
to the spontaneous HR. PR interval: this is measured from the beginning of the P wave
and the beginning of the QRS complex. This interval represents the time of conduction
of the electrical activity of atria to the ventricles and the time of transmission of the
front depolarization by the AV node. ST segment is defined as the time between the
end of the QRS complex (or J point) and beginning of the rising phase of the wave T.
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Figure 2.4: Conduction of electrical stimulation as the origin of ECG waveform gener-
ation. From left to right and up to bottom. |Klabunde, 2008]

This corresponds to the time segment wherein all the myocardial cells are depolarized.
The QT interval is the time between the beginning of the QRS complex and the end
of T wave. This wave is an indication of the length of the phases of the depolarization
and ventricular repolarization. The QT interval varies with heart rate.

12 common ECG leads records the difference potential between the electrodes placed
on the surface of the body. This leads are divided into two groups: 6 organ leads and 6
thoracic leads. Organ leads are divided in 3 bipolar (I, II, IIT) and three unipolar leads
(aVR, aVL, aVF). Each of the dipole leads measures the differential potential between
two electrodes placed on the organs that can be identified in table 2.1. 6 Chest leads
are also recorded unipolar which are shown in Fig. 2.4.

ECG leads are placed in a way that if the depolarization spreads to their positive
pole (Fig. 2.5), a positive deviation (upward) will be recorded and vice versa. If the axis
of a depolarization vector is perpendicular to plane of the electrode, it creates a two-
phase deviation (equal amounts of positive and negative). Normal atrial depolarization
vector is towards the bottom left and reflects the spread of the SA node stimulation to
the myocardium of the right atrium and then left atrium. Since the direction of this
vector is toward the positive pole lead II and negative polarity of of aVR lead, P wave
would be positive and negative in these leads respectively. In the case of an ectopic
pacemaker in the lower part of the atrium or in the ventricle and atrium connection,
a negative P waves in lead II or positive P waves in aVR lead can be observed. The
cardiovascular system which appears in early embryological development and continues
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Figure 2.5: Conduction of electrical stimulation as the origin of ECG waveform gener-
ation. From left to right and up to bottom. |[Nottingham, 2014|

Table 2.1: Organ Leads

Unipolar Bipolar

right hand | aVR || right/left hands I
left hand | aVL || right hand/left foot | II
left foot aVF || left hand/foot 111

to develop through the remaining fetal life, remains immature and is intended to con-
tinues the development for several weeks after term birth. In addition to maturation
of the cardiovascular system after birth, a critical changes happen in the structure of
cardiovascular system whereby circulatory shunts, including the ductus arteriosus, duc-
tus venosus and foramen ovale close and transform the system from having a placental
oxygen source to a pulmonary source [Hall, 2010]. In the premature infant the closures
of shunts may not be complete, remaining a transition channel between the right and
left ventricles of the heart. In this case, the blood flow in the aorta can return to the
pulmonary artery and cause an increase in flow heart |Dageville, 2011|. However, the
premature myocardium contains less contractile elements and is more compliant than
the adult. Higher levels of HR, thin rib cage and the undeveloped cardio-respiratory
system in preterm neonates produce very different ECG compared to those of normal
adults. The most differences are notable as: 1- Intervals (RR, PR and QT) and du-
rations of waveforms are shorter; 2- The size of the right ventricle is thicker than the
left ventricle in newborns while the left ventricle is much thicker in adults; 3- R-waves
has greater amplitude in the front aVR lead and V4, V1 and V2 leads; 4- S waves are
deeper in the frontal branch of I lead and in precordial V5 and V6 leads; 5- The QT
interval is prolonged in preterm infants; 6- The P-wave has greater amplitude in leads
IT and V1 [Schwartz et al., 2002].
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2.3 Apnea bradycardia in preterm infants

Reviewing the functionality of heart and ECG generation phenomenon in previous sec-
tion, we can approach to the concept of prematurity in newborn infants and study about
apnea as one of its complication. This section also includes definition of bradycardia
and its relation to apnea occurrence in preterm infants.

2.3.1 The preterm infants

Biologically, a fetus requires a number of weeks in the maternal uterus that its organs
becomes ready for extrauterine life. If the infant is born before completing this cycle,
it may encountered with an irritating environment. Premature birth is defined as any
birth that occurs before 37 weeks counted from the first day of the last menstrual period.
More than 11.5% of babies born in the U.S. each year are premature [Martin et al.,
2013] and nearly 6% (nearly 55,000) of the births are premature in France. The factors
of maturity in preterm infants are expressed by gestational age and birth weight.

Prematurity is one the leading causes of neonatal mortality. In 2009, 35.4% of
newborn infant deaths in U.S. were preterm related [Mathews and MacDorman, 2013].
Advances in medicine and caring of premature infants in NICU improve their chances
of survival [Martin and Fabes, 2008|. Indeed, the number of children born prematurely
is increasing in France and worldwide. For example, in France, a study recently shows
that the number of premature births has increased from 4.5% to 5.5% in singleton live
birth and 40.5% to 42.1% in multiple live birth between 1997 and 2008 |Zeitlin et al.,
2013]. The earlier the child is born, the more serious and frequent the problems of
adaptation are and also the treatment would be more complex. Common problems are:

e Respiratory: respiratory distress syndrome, hyaline membrane disease and bron-
chopulmonary dysplasia,

e Neurological: apnea of prematurity, retinopathy, cerebral palsy and intraventric-
ular cerebral hemorrhage

e Cardiovascular: patent ductus arteriosus,

e Infectious: sepsis, pneumonia, and urinary tract infection,
e Hematologic: anemia, jaundice and thrombocytopenia,

e Metabolic: hypoglycemia, hypocalcemia and hypothermia,

e Gastrointestinal: necrotizing enterocolitis and gastric residuals.

2.3.2 Apnea in preterm infants

Apnea is one of the most important complications of prematurity. Many researches have
been conducted over recent years to try to explain the causes, consequences and identi-
fying better treatments ( [Rigatto and Brady, 1972|, [Kurth et al., 1987], |Di Fiore et al.,
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2001], [Henderson-Smart and Steer, 2004], [Zhao et al., 2011] [Chen, 2013|, [Manzionna
and Di Mauro, 2014] and [Haskova et al., 2013a]).

Apnea is defined as a prolonged interruption of ventilatory flow for more than 15-20
s associated with the instability of controlling rate of breathing, falling blood oxygen
concentration (SpOs 80% for 0.4 s) and bradycardia (heart rate < 2/3 of baseline for 0.4
s) in severe conditions in the preterm infant [Zhao et al., 2011]. Apnea of prematurity
is found in 50% of premature infants and is almost universal in infants who are 1000 g
at the time of birth [Finer et al., 2006]. Attacks of apnea are common consequences of
premature birth, with the most severe essentiality of artificial ventilation and drug treat-
ment. Preemies are supported in a NICU where they are kept in a incubator, which
reproduces the conditions of fetal development by controlling temperature, humidity
and limited exposure from the environment outside (virus, bacteria, ...). Continuous
monitoring is carried out on vital parameters such as temperature, respiration, cardiac
function, oxygenation, and brain activity. Therapies may include intravenous nutrition
catheters, oxygen, mechanical ventilation, and supplemental medicines. The main cause
of apnea incidence is known to be the immaturity of central control of respiration |Ger-
hardt and Bancalari, 1984]. Other factors which are implicated in apnea of prematurity
are unregulated inhibitory neurotransmitters, decreased central chemosensitivity and
some diseases like sepsis, cytokinesis and increased levels of bilirubin [Abu-Shaweesh
and Martin, 2008|.

Alternative theory explaining apnea of prematurity is the Polyvagal theory [Porges,
1995|, which proposes a model for explaining the incidence of apnea as a result of
changes in heart rate (HR). In normal and mature brainstem, vagal stimulation causes
a rise in HR and respiratory sinus arrhythmia. However, in case of immaturity of the
brainstem, increase in vagal tone may result in bradycardia, which in turn causes a
decrease in SpO,, and a decrease reflex in respiration rate. Hence dysfunction in the
neural regulation of cardiopulmonary function results in apnea |Porges, 1996|.

Apnea may be symptomatic type if it comes from a pathology (infection, anemia,
hypoxia, hypoglycemia, hypothermia, etc.), idiopathic or if it is only due to the imma-
turity of the mechanisms controlling the breathing. Furthermore, based on the presence
or absence of respiratory movements, apnea is classified into three categories:

e Central: occurring in the absence of respiratory movement;
e Obstructive: occurring in the presence of respiratory movement;
e Mixed: containing central and obstructive apnea elements.

The clinical observation of a preemie or continuous cardiorespiratory monitoring
allows to detect only the central apnea unlike obstructive apnea which can be only
detected by observing associated phenomena, such as bradycardia and hypoxemia. The
longest and most frequent apnea is often mixed (50 to 70% of cases). Short apnea (less
than ten seconds) is usually central type (10 to 25% of cases) and obstructive infrequent
(12 to 20% case) |Laugel et al., 2000].
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2.3.3 The apnea-bradycardia

The SA node is able to generate impulses at a rate of about 80 bpm in normal mature
man and the stimulation signal is transmitted to the ventricles. Vagus nerve stimula-
tion associated with increased parasympathetic stimulation (drug use) and also in the
presence of heart block, ventricular rate and therefore reduced vestibular signals, lead
to such complication. The HR less than 60 beats per minute is called bradycardia.
Bradycardia in newborn infants is defined by a drop in HR, below 100 bpm or at least
33% from an average value, for 4 seconds or more [Poets et al., 1993]. Bradycardia
usually occurs within the first seven seconds of apnea [Dorostkar et al., 2005]. The
majority of preterm infants have AB during the first weeks. However, they gradually
disappear during the maturation and usually after 40 weeks.

Short apnea are considered as non-pathological which do not usually accompany
with bradycardia or hypoxemia. In contrast, those over 20 seconds are considered
serious because they are followed by a drop in saturation of oxygen in blood, resulting
to bradycardia due to hypoxemia, whose depth is proportional to the duration of the
apnea. AB of prematurity is interpreted as it reflects a form of incompatibility of
preterm infant to life out of uterine life.

2.4 Review on AB detection works

The first researches are conducted to detect apnea caused during sleep in adults. Most
of them use respiration signals due to its simplicity. One of these researches is pro-
posed in [Taha et al., 1997| where pulse oximetry is incorporated into the definitions
of apnea and hypopnea. In proposed algorithm, the detection of desaturation as a fall
in oxyhemoglobin saturation level has been achieved in order to separate apnea and
hypopnea. It would be an apnea, if there is a period of no breathing, as indicated by
sum of respiratory inductive plethysmography (RIP), lasting at least 10 seconds and
coincident with the desaturation event. If there is breathing, a hypopnea is defined as
a minimum of three breaths showing at least 20% reduction in sum of RIP magnitude
from the immediately preceding breath followed by a return to at least 90% of "base-
line" breath. Another work employs nasal flow apnea monitoring and pulse oximetry
data and Principal Components Analysis (PCA) for processing and detecting apnea
since the RIP signals are highly correlated. The PCA tracks the relative changes in res-
piration values and indicates the degree of signal asynchrony. For accurately measuring
RIP phase differences, the cross-correlation function is calculated [Millard, 1999].

Aguirre et al. try to model and analyze three physiological time series: blood oxy-
gen saturation, heart rate and respiration in order to distinguish between the dynamics
corresponding to normal breathing and apnea. The estimated models are nonlinear
autoregressive (AR), moving average (MA) and the regressors used to compose such
models and are carefully chosen, among hundreds of candidates, by an automatic pro-
cedure. They find out that the underlying dynamics of the data are nonlinear and
deterministic and can quantify the stability of the fixed point in phase space using the
blood oxygen of time series as an index to detect apnea [Aguirre et al., 1999].
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Varady et al. make use of signal processing to realize a data fusion based on em-
pirical rules. This approach is applied on all possible features extracted from nasal
and abdominal respiration signals, and an additional verification signal obtained from
blood oxygen saturation to detect apnea. The output of this algorithm would be the
triggering an alarm |Varady et al., 2000]. These researchers in another work, [Varady
et al., 2000|, use four different artificial neural networks in order to recognize three
different patterns in the respiration signals. This method classifies normal breathing,
hypopnea, and Heart rate and blood pressure signals in the apnea detection system
since they show a well-defined performance during sleep apnea: a slight decrease af-
ter the onset of apnea and rapid decrease before its offset. However, the meaningful
changes in cardiovascular signals are superimposed on other cardiovascular phenomena
like fluctuations caused by the vascular baroreflex. Another problem is that the effect
of apnea on cardiovascular changes occurs many seconds later and their exact charac-
teristic is strongly dependent on the actual hemodynamic state of the patient. Hence,
they only employ respiration signals and can achieve to a powerful algorithm to detect
apnea by detection performance of 90%.

Much of the previous works are on extracting respiration information from the ECG
follows an approach of using direct measurements of respiratory-induced characteristics
of the time series ECG signal. Here, ECG is used to derive respiratory waveforms. In
an definitive paper, Moody et al. [Moody et al., 1985| outline a method for deriving the
respiratory waveform using two ECG leads. After subtracting the baseline, the area
of each normal QRS complex in each of the two leads is obtained. Since the window
width is fixed, the area is proportional to the mean amplitude of the signal, hence to the
projection of the mean cardiac electrical vector onto the lead axis. Assuming that the
leads are orthogonal, the arctangent of the ratio of the areas measured in the two leads
gives the angle of the mean axis with respect to one of the axes. The axis direction mea-
surement provides one sample of the respiration signal followed by interpolating using a
cubic spline. Then derived signal is compared visually to chest Pneumatic Respiration
Transducer measurements. Similarly, in another work, [Zhao et al., 1994], the power
spectra of these two signals are obtained and compared statistically. Travaglini et al.
also use such technique in the cardiac vector to derive respiration signal |Travaglini
et al., 1998]. However in this work eight ECG leads are utilized.

Another approach to obtain the effect of respiration from ECG is simply to use the
height of each R peak plotted as a step function to represent the respiratory signal
which is compared visually against the reference respiratory signal [Felblinger et al.,
1999]. There is also a well-known method that examines the power-spectra of the ECG
to establish the presence of components at a respiratory frequency. In [Pallas-Areny
et al., 1989, it is described that the cardiac vector contains respiratory information in
the power spectrum of the ECG. The power spectra of leads I, II and III is obtained
and the respiration harmonics are found to be present in the spectra.

The effect of respiration can be also derived from the photoplethysmography (PPG).
Lindberg et al. employ a band-pass filter to eliminate all frequencies of the PPG except
the range in which respiration is likely to be present The filtered signal is the derived
respiratory waveform. The number of breaths (peaks) recorded by the reference method
are compared with the number of breaths (peaks) in the derived respiratory waveform
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over a ten-minute period [Lindberg et al., 1992]. Nakajima et al. also use a heart rate
tunes band-pass filter approach. In order to assess the performance of this method, the
median value of the breathing rate over five sequential breaths detected from the derived
respiratory waveform is compared with the same measure from a reference transthoracic
impedance plethysmogram |[Nakajima et al., 1996].

Since the most appropriate sensor for acquiring bio-signals from neonates is surface
electrodes of ECG, it is more convenient to detect AB by only monitoring the ECG.
In [McNames and Fraser, 2000, the significancy of changes in various features including
the time distance between R peaks (RR signal), amplitudes and width of each QRS
complex are studied. They report HR (1/RR) as the most affected feature. The
spectrogram of S pulses and the QRS energy also provide useful information about
occurrence of apnea. In another work [Penzel et al., 2002|, it is suggested that in
compare to HR temporal characteristics, features extracted in frequency domain are
more informative. Chazal et al. suggests to derive respiration effect from ECG which
is integrated with HR features. Then a linear discriminant classifier is applied to them
for AB detection |de Chazal et al., 2004]. Mendez et al use the features: beat-by-beat
power spectral density of HR and the area under the QRS complex, in a supervised
learning K-Nearest Neighbor (KNN) classifier separating apnea events from normal
ones [Mendez et al., 2007]. More recent works processed the aforementioned features
using BN approaches. An example of such approach is the work of Travieso et al (2014)
which classifies the cepstrum of RR signals using HMM.

As discussed before, the type of apnea which we intend to detect in this project is
the one caused by prematurity in pretem infants. As can be concluded, the origin of the
revealment of the apnea of prematurity and sleep apnea in adults are totally different
and the mechanisms involve for their generation can be separated from each other.
Hence, we need to review some more studies which are especially presented for apnea of
prematurity. One of the earliest studies on automatic detection of apnea of prematurity
is presented by Johansson et al. where a PPG based device is used for extraction and
monitoring the respiration and ECG signals. They claimed that the effect of cardiac and
respiratory activities can be restored from the PPG signal using appropriate bandpass
filters. Then, the number of peaks are counted by zero crossing approach in respiration
signal and by detecting the positive slopes of the R peaks (using the derivative) in
cardiac signal. The peak number and the power spectral density (PSD) of the extracted
signals are compared with ECG and respiration signals acquired directly with surface
electrodes and impedance sensor respectively. They concluded that their proposed
produces signals of equal quality to these traditional methods, and is in some cases
even better [Johansson et al., 1999].

Another study is presented in [Pravisani et al., 2003] where associates parame-
ter measurements of RR Interval (RRI) series and using principal components analy-
sis (PCA). They found RRI variability to be the appropriate tool to investigate AB,
since RRI carries relevant information about Autonomic Nervous System (ANS) status.
They claim that the power spectral analysis reveals two main components: the High
Frequency (HF) component, which is mainly modulated by vagal tone, and the Low
Frequency (LF) one, which is found to increase in presence of increased sympathetic
tone. Moreover, it has been also shown that the RRI signal involves non-linear contri-
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butions. Therefore in this paper, they investigate both linear and non-linear indexes
of RRI variability using ratio of LF/HF components, Approximated Entropy (ApEn)
and Spectral Entropy (SE) measurements. PCA is used to detect the first two factors
used to provide a meaningful description of the data. Then, Hierarchical Ascending
Classification (HAC) approach which is an useful tool able to evidence the presence of
classes of individuals in a given dataset is employed to stratify the data obtained by
PCA. HAC creates, at each step, a partition obtained by the aggregation of the two
nearest elements. Finally, they are able to detect 10/13 AB episodes. These results
suggest that the RRI contains information that can be employed to predict the onset
of the bradycardia event.

An algorithm fusion approach is presented by Cruz et al. for early detection of AB
in premature infants [Cruz et al., 2006]. In this work, two conventional methods, fixed
and relative thresholds, have been implemented and an abrupt change detection based
method, has been proposed. The fixed-threshold method compares a window-averaged
RRI with a suitable fixed threshold. Most neonatal monitors are based on this simple
detection scheme. The relative threshold method considers the fact that the mean heart
rate of a patient can change through time, and implements a relative threshold of 33%
of increase on the mean RR interval in a 4 seconds window. The third method models
the bradycardia event as a statistically significant change in the mean RR interval. The
Cumsum test is used to define an index which change abruptly while a peak happens
in RR series. A weighted combination of local detectors is considered for the fusion of
the algorithms which provides a higher weight to the more reliable detectors. In this
work, they have used the optimality criterion proposed by Chair and Varshney |[Chair
and Varshney, 1986|. Similarly, Portet et al. apply just amplitude, amplitude-duration
thresholds and an algorithm for sudden changes detection in HR. Then, they integrate
them in a decision tree that exhibits better performance. The third algorithm searches
for a sudden change in a moving window that if the difference between the maximum
and minimum amplitudes is more than a threshold and this window is classified as a
downward spike for which the minimum exceeds the normal range then, a bradycardia is
detected. Each bradycardia previously found is then expanded forwards and backwards
until it reaches the baseline to find the boundary of an AB episodes |Portet et al., 2007].

In [Altuve et al., 2009, Hernéndez et al., 2012], ECG data is acquired to be used for
extracting the features including the RR interval, R-wave amplitude and QRS duration
for periods at rest, before, during and after apnea-bradycardia episodes. Significant
changes in the value of these features is reported. By analyzing their proposed features,
it was observed a statistical significant modification in the amplitude of the R-wave and
in the duration of the QRS complex, associated with the onset of the apnea-bradycardia
episodes. For QRS complex detection, the ECG signal is processed by a cascade of
low-pass and high-pass filters, followed by a double differentiator filter, an amplitude
squaring process and a moving-window integrator. The final step is based on adaptive
thresholds, which are continually adjusted by a set of heuristic rules whose constant
parameters are optimized by evolutionary approach. These findings show the potential
benefit of a multivariate approach to early AB detection and characterization.

Another work |Belal et al., 2011|, presents three processing methods based on the
feature signal extracted from ECG to detect the incidents of apnea of prematurity. The
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slopes of the HR, RR and SpO2 during the marked-up events were calculated using a
linear fit model, which was solved using the weighted least absolute residual (WLAR)
method. Their first method is based on cumulative sum of HR, RR and SpO, along
with the sum of their Shannon entropy. In the second one, the correlation between
them is given to an artificial neural network. Finally, in third method the derivation
of each data sample of the three parameters (HR, RR and SpO,) is calculated. They
claim that the third approach can be implemented effectively in monitoring devices. In
one of the recent works [Camargo et al., 2014|, a novel technology for detecting apnea
of prematurity episodes is introduced which is based on cardiac pulse frequency (PF)
and arterial oxygen saturation (SpO2) simultaneously. After the detection, vibrotactile
stimulation is performed automatically to interrupt such episodes. The thresholds on
PF and SpO2 signals had been established to identify the apnea episode through the
proposed system.

A series of researches are presented by Altuve et al. ( [Altuve et al., 2011a, Altuve
et al., , Altuve et al., 2015]) for AB detection using HSMM. In this works, Altuve et al.
suggests an algorithm which includes allocating two HSMMs (or HMMs) models each of
which are trained by normal periods or Bradycardia episodes in RR signals. In inference
issue, a moving window goes through the test observation sample by sample while each
model generates a value for likelihood during each segments within the window. Then
the labels are determined according to the model with better likelihood at each time
instant. In this thesis, we have used such strategy for applying our proposed Markovian
frameworks in AB detection and discussed about it in details in following chapter. In
addition, Masoudi et al. also benefited from this strategy and employ the CHMM
proposed in [Rezek et al., 2000], instead of HSMM [Masoudi et al., 2013].

An AR model based method for apnea detection in preterm infants, is also proposed
by Ge et al. [Ge et al., 2013]. They use RR series extracted from raw ECG signals and
model it by an AR process with both time-varying coefficients and order. In the normal
periods, it is reasonable to assume that the processes are quasi-stationary and the AR
coefficients are varying slowly, thus the classical Kalman filtering algorithm can be
applied to estimate them. Moreover, a HMM is imposed on the evolution of AR orders
which update the smoothed distribution of the order at each time instant. Finally the
distances of model orders in terms of their distribution functions are quantified by the
Kullback-Leibler and the Kolmogorov-Smirnov distances. The applied distances act
as two indices to detect AB. In addition, Ge et al., in their recent work [Ge et al.,
2014], suggest another AR process based method where similarly the model order and
coefficients are considered unknown. In this work, the joint posterior distribution of the
AR coefficients and orders are updated on-line and recursively while the AR coefficients
are assumed to be normally distributed. They propose the recursive updates of the
posterior distribution of orders using the rank-1 Cholesky factor. The AR process noise
level is used as an index to characterize the rapid shift in the AR model space. Their
proposed method presents outstanding performance in AB detection.
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2.5 Conclusion

In this chapter, the concept of prematurity and its complications are noted. AB is
introduced as a common concern about premature newborns. Prematurity is with
higher frequency as the gestational age is lower and indicating to an immaturity of the
cardio-respiratory system. The preemies are kept in NICU as the oxygenation and tissue
perfusion are monitored. They likely need long-term follow up, extending the period
of hospitalization and sometimes home telemonitoring. Prevention of apnea and their
consequences, require a rigorous and continuous cardiorespiratory monitoring which
allows early intervention. Early detection of these episodes would reduce the associated
risks, promote the development of premature newborns, improve their quality of life.
Indeed, first medical treatment consists of soft and manual stimulation of the baby.
Although this stimulation of the newborn at the time of AB remains the most common
effective method. Experience shows that for babies in distress, the time of intervention
remains as an important factor. The automatic approaches of AB detection can be
helpful since the time of interventions are finally reduced slightly because the time
required for diagnosis of bradycardia (10 seconds on average after beginning apnea) is
not taken into account. One way to reduce this time is to employ a method for early
detection or prediction of the occurrence of bradycardia. These objectives are the main
theme of this thesis and solutions based on BN are proposed in chapters 3 and 4.

In addition, the basics of heart and ECG are reviewed. Understanding of car-
diac physiologic changes associated with prematurity in previous medical and technical
researches, we grasp the ability to interpret premature ECG based on its important
features (duration of segments and intervals, axis deviations and morphologies of the
waves) to find the coincidence of AB episodes.



Chapter 3

Markovian Frameworks

3.1 Introduction

The previous chapter has clearly reviewed the physiological indicators of AB episodes
in premature infants. It is also stated that the early detection decreases dramatically
the side-effects of prematurity. Using an automatic detector accelerates the process
of detection and intervention. The occurrence of AB indicates that the dynamics of
cardiorespiratory system has been changed which is expected to be distinguishable by
monitoring the patterns of appropriate indicators as they construct feature signals over
the time. As the main the subject of this thesis, we are interested in taking into
account the dynamic of events in cardiorespiratory system using mathematical models.
The methodology of this chapter is based on methods suggested by BN models, and in
particular stochastic models such as HMM and its generalizations.

In following parts, firstly, HMM is described as a basic framework for other Marko-
vian approaches. Secondly, some of the HMM generalizations are reviewed briefly,
including HSMM, CHMM and CHSMM [Yu and Kobayashi, 2006| [Rezek et al.,
2000] [Natarajan and Nevatia, 2007b|. The parameter definition and the approach
for re-estimation are described for each method. Finally, our proposed frameworks for
CHMM and CHSMM are discussed in detail.

3.2 HMM and the existing generalizations

3.2.1 HMM

In the world around us, there exists phenomena like speech or activity of the heart which
can be described in the form of a sequence of static patterns which evolve according to
finite certain statuses. HMM can be introduced as a tool to describe such time series.

3.2.1.1 Markov chain

Consider a system that can change its condition to one of M different states S,,, m =
1,2,---, M in every moment. In other words, at each time instant, the system can
enter to another state or remain in current state based on their probabilities. Define
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¢; as the state of the system at time ¢, t = 1,2,--- |T. Generally, in order to have a
complete description of the system, it is needed to specify ¢; and all the previous states.
It is assumed that transition to a state depends only on previous state of the system.
This is the first order Markov characteristic. Hence, the probabilistic dependency in
state transitions can be simplified as follows:

P(Qt|Qt—1aQt—2> T ,Q1) = P(C]t|Qt—1)
am:P(Qt:Sm|Qt—1:Sn) n,m=1,2.- M (31)

where a,,, is the state transition probability. The basic assumption is that the output
of this process is the state at each time instant. Hence the state are observable and this
model, is called observable Markov model. Accordingly, it fails to model the system
with the random stochastic observations.

3.2.1.2 Hidden Markov chain definition

HMM is a tool to assign a probability distribution on a sequence of observations. Due
to the aforementioned limitations of the Markov chain, we can generalize this model in
a way that the observations are the probabilistic function of states. This generalization
makes the model stochastic in two directions: 1- in the transition state to the next
one and 2- after the determination of current state, observations are generated with
the corresponding probability distribution. Hence, the state sequence is hidden and
can not be observed while it follows the properties of Markov processes. Fig. 3.1(a)
illustrates a HMM sequence. The hidden states of HMM are considered to be discrete
and the observations at each time instant depends only on the state at that time. o; is
defined as the observation at time ¢ and is independent of the previous states and all
observations in the past. Thus, the joint probability of corresponding BN is expressed
according to eq. 3.2:

T
P(ovr, qur) = P(oilq) [ | Platlgi—1)P(orlr) (3.2)
t=2

The state transition probability distribution is determined by matrix Ap;«as. It is
also assume that the values of observation is chosen from a time invariant set of N
symbols defined by matrix By which is called emission matrix. A HMM is described
with respect to its parameters: A = {A, M, B, N, 7w}, where m,, = P(q1 = Sp).

The reason that the observation probability is represented by a matrix is that its
nature is a discrete random variable which is chosen from countable set of symbols.
This means that this model can represent only the limited systems whose observations
values are from a finite subset of the integers or concepts (eg, weather). However, if the
observation values are infinite or uncountable finite, the dimensions of the matrix B will
be unlimited. Hence, the alternative would be assigning continuous random variable
to observation. In this case, the emission probability of observations is defined by a
probability distribution function (pdf) according to eq. 3.3. A Gaussian kernel is usually
considered as the probability of density function with mean vector and covariance matrix
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( pm and o, respectively). We consider just one kernel for simplicity, however it is
common to use more. For more information see [Rabiner, 1989b)].

b (0r) = N(04; fm, Om) (3.3)

3.2.1.3 Three main issues

In the context of HMM three main issues are usually stated which are studied in the
following part.

Problem 1- Probability evaluation. The subject of this issue is to answer to a
question that, given a model with parameter A, how much the sequence of observations
o1.7, would be likely generated by the mentioned model. A straightforward solution
is to evaluate all possible state transitions that can generate the sequence. Since one
state can move to M other states at each time instant, there would be N7 possibilities
for state sequence. Another approach called forward algorithm is commonly used by
defining the forward parameter as:

ar(m) = P(g: = S, 01:¢) (3.4)

which can be calculated recursively by:

ay(m) = Z a—1(M) Qb (04) (3.5)

Then, P(oy.7) is equal to S-M_ ap(m).

Problem 2- The most likely sequence of states. In this case, given a sequence of
observations o1.7 and the parameters of the HMM, we search for a state sequence that
is the most probable one which have generated the observations. The importance of
this issue is related to HMM application. One of the HMM applications is classification
problem where the solution of this issue is the way to classify the test data while the
parameters of the model is estimated from training data set. Using the solution of this
issue reveals the most probable class/state for each sample of observation. In fact, we
seek to understand the inference of the observations. A simple solution is to choose the
most probable state at each time instant. In first vision, this would have the accuracy
and optimality. However, a scenario can be taken into account that a state is not likely
at the moment but given the the state of the next time instant, they are the most likely
sequence which are then able to generate two sample of observation. Therefore, the
probability of two or three observations could be studied together. One of the most
popular methods is Viterbi which presents the best state for observation generation at
each time instant. In this method, ¢;, the joint probability of a sequence of previous
states till time £ — 1 and the observed state at time ¢, is calculated by Eq. 3.6:

0¢(m) = argmax {P(qi,q2, - G—1,q = Sm,014|A\) } (3.6)

(91,92, ,qt—1)

So d; shows the sequence with maximum probability that starts from the initial state
and ends with state m at time ¢, leading to the best partial route. This criterion can
be defined as a recursion for time ¢ + 1:

Se+1(n) = (max, {6:(m)amn}) by (0r41) (3.7)
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In order to find the sequence of states with a given criterion, it is necessary that
the maximum partial probability for each time ¢ and state m should be studied. To
facilitate the search, an array, ¢,(m) is used to store the chosen state at each time
instant. The Viterbi method is expressed as a step by step algorithm as follows. For
each state m, the recursive algorithm is initialized as:

d1(m) = Tmbm(01)1(m) =0 (3.8)

In the next steps of the algorithm, the probability of the most likely sequence at
time ¢ is stored in v;. Using relations of Eq. 3.7 for time ¢ and Eq. 3.9 in each iteration,
we have:

i(m) = arg;nax{ét,l(m)amn} (3.9)

Now the best sequence that produces the observations, after the T'th step, is chosen
by Eq. 3.10:

P = lg%xM{(ST(m)} (3.10)
q; = arg max{dr(m)} (3.11)
1<m<M

Using these values, it is possible to move backward and determine the rest of the
nominated states at previous time instants:

¢ = Ve, t=T-1,7T-2,---,1 (3.12)

Problem 3- Estimating the model parameters. The third issue arises about the model
parameters. We are looking for a set of HMM parameters, A, which maximizes P(o|\)
given a series of observation. Generally, it seems to be complicated, and perhaps it is
impossible to generally achieved the maximization of P(o|\), however, according to the
famous Baum-Wlech method [Baum et al., 1970], we can achieve the local optimality.
In this method, the backward parameters, §;(m), is introduced as:

Bi(m) = P(041, 0142, ,0r|qr = m) (3.13)

which can be calculated like forward parameter by a recursion, given as:

Bt(m) = Zamnbn(0t+1)ﬁt+l(n) (314)

by considering the initial value: fr(m) = 1. Defining the forward and backward pa-
rameters, a recursive algorithm can be used for estimation of HMM parameters. In
this algorithm which is called the forward-backward (FB), at each step, a new values
of A* replaces A\. Two other parameters, (;(n,m) and 7;(m) which are defined as the
number of transitions from state n to state m and the number of transitions from state
m respectively, are calculated in terms of FB parameters:

G(n,m) = P(qi—1 = Sn. gt = Sml|o1.7) (3.15)

(m) =Y Gln.m) (3.16)
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Using Expectation-Maximization (EM) algorithm, the parameters, (;(n,m) and
v:(m) are calculated in step E and then a,,,, 7, and b,,(o;) are estimated using Eq. 3.17
in step M:

o Zf:]l Ct(”: m)

o = 2214 (3.17)
Zt:l %(n)

() (3.18)

5 _ Lo nu(m)(o = )’ (3.20)

Zfzz Ye(m)

In the context of classification, this algorithm is similar to the process of learning
or training. So the third and then second issues, demonstrate a learning and inference
approach for classification respectively.

3.2.2 HSMM proposed in [Yu and Kobayashi, 2006]

One of the famous generalizations of HMM is the hidden semi-Markov model (HSMM),
in which the pdf of the amount of time that the system rests in a state (sojourn time)
is not coerced into geometric distributions. (cf Fig. 3.1(b)). There are many works
on HSMM like [Ferguson, 1980], [Levinson, 1986], [Yu and Kobayashi, 2006] and [Yu,
2010|, and we review the framework proposed in |Yu and Kobayashi, 2006| due to its
simplicity in implementation. The HSMM is called explicit-duration if the observations
are supposed to be independent of sojourn time as considered in this work.

Consider {Si,S2,---,Sm} to be the states of HSMM with initial and transition
probability 7, and @, = p(q—1 = Sn|lq = Sm) where ¢, t = 1,--- | T, is defined as the
state at time ¢t. Also it is assumed that the resting time in a state is a random variable,
generating value d, with p,,(d) probability where d € {1,2, -+, Dyaz}. 7 and o, are
the remaining time of current state to transit to another state and the observation at
time ¢ respectively. 7, = d means that the system leaves the current state at t = ¢y +d.

3.2.2.1 FB recursions

The forward parameter can be defined as follows:

at|t—l(m7 d) = P(Qt =S, Tt = d|01:t—1) (3-21)

Let ¢t = Sy, 7+ = d, so two conditions might happen. The state sequence may transit
to S, from any other states or continues the previous state, i.e. ¢;_1 = S, -1 = d+1.
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Therefore, the following equation is straightforward:

Oét|t—1(m, d) = P(Qt—l =S, -1 =d + 1‘01:1‘,71) + P(Qt =Sm, Tt =d, @1 = Sp, Te1 = 1)

M
= a—1(m,d+1) + Z —1jt—1(1, 1) G ()
n=1
= ayp—1(m,d + 1 m(01—1) + ZO‘W 1(n, 1 n(0t-1) P (d) (3.22)
where (m. d)
7 at|t m,
bn(0f) = —————— 3.23
(@) O‘t|t71(m7d) ( )
and the initial condition of forward variable is given by:
aijp(m, d) = Tppm(d) (3.24)
Similarly, for backward parameter which is defined as:
P(o,. =Sn, e =d
Bu(m, d) = Lol n=d) (3.25)

P(Ot:T|01:t—1)

by assuming ¢; = S,,, % = d, two conditions might be happen. While d = 1, at
next sample of time, there would be a state transition, ¢;41 = S,,7v.1 = d’. Whereas

for d > 1, the state sequence remains in current state (g1 = Spm, 741 = d — 1),
Consequently, backward variable is defined as follows:
b (Ot)ﬁtﬂ(m d—1) d#1
/8 m7d - { T mazx
D = o) S, 5 B, dpald) d = 1

with initial condition defined as:

Bijo(m, d) = by, (or) (3.26)

3.2.2.2 Three main issues
Now we are ready to present the solution of three important and famous problems
usually defined in HMM context.

Problem 1- Probability of specific sequence of observations subjected to the model
parameters:

T
P(orr) = P(or HP 0¢]01:4-1) (3.27)
=2

where

P(04|01.4-1) Zaﬂt 1(m, d m(0r) (3.28)

Problem 2- Choosing the most probable sequence of states that generates the se-
quence of known observations (Inference): The solution is based on the criterion pre-
sented in the paper [Yu and Kobayashi, 2006| for maximum a posteriori (MAP) re-
estimation of model parameters. Unlike the Viterbi algorithm, only one forward pass is
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necessary based on the previously calculated F-B variables. First, Eq. 3.29 is calculated
for each samples of time. Then starting from ¢ = 1, assigning ¢; to the states between
time ¢ to t + 7/, ¢/ .- to the states of t +- 7 + 1 to ¢t + 7/ 4+ 7, .., and so forth.

(qf, ) = argmax P(S,, starts at t, 7 = d|o1.1) (3.29)
m,d
oxgmas m, dpn(@) Y se-a(m, DB (01

Problem 3- Finding the parameters of the models from the observation. The fol-
lowing Maximum Likelihood (ML) procedure should be repeated till the convergence
of the likelihood :

o — 3 —Ctzt=2 D0t T ()i, )

g (3.30)
t=2 > Qt1jt—2(1 1)biy (04—1) Qs D2 P (d) B, d)

3 Y, tja(1, Db (0121 QP (d) By (m, d)
o (d) = A 3.31
! ( ) tz—; d’ Zn at—l\t—Q(n7 l)bn(ot—l)anmpm(d/)ﬁt (m7 d,) ( )

RS SO

LR SIES Spr A F) (3:32)
i = Y oieo D q Cp—1(m, d)B(m, d)oy (3.33)

Y S (!, d)By (!, d)
G, = Zt:ﬁ Zd at\t—l(m7 d)ﬁt<m? d) (Ot - ﬂ)Q (3‘34)
D im2 Dt Da Qa1 (M, d) By(m, d)

3.2.3 Coupling in HMM

There are variety of new HMM architectures that have been proposed to solve a spe-
cific class of problems and to overcome certain limitations in the traditional HMM. The
characteristics coming along with each of the generalization of standard HMM are effec-
tive in special aspects. More over, combining the features of different generalizations to
form a more powerful model seems to be a need to model some of the real systems. Al-
though HMMs are, by definition, single-process models, different approaches have been
proposed to use them for the analysis of multivariate data. One common approach is to
consider the observation data as a multi-dimensional random variable (multivariate).
Although these approaches provide interesting results in some applications ( [Dumont
et al., 2008|, [Altuve et al., 2011a] and [Altuve et al., 2011b]), the single-process na-
ture of HMM can not be adapted easily in other cases, where observations are indeed
generated by distinct underlying processes, such as in vision, speech recognition |Brand
et al., 1997b| or forensic analysis |[Brewer et al., 2006].

In order to overcome these limitations, another BN, called CHMM is presented
(Fig. 3.1(e)). There have been some variations of the fully coupled HMMs as an inter-
esting new HMM architectures for which the model size and inference problem are more
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(a) (d)

- oo
L.

Eﬁﬁaaa

Figure 3.1: Structures of a) HMM, b) HSMM, ¢) ECHMM, d) FHMM, e¢) CHMM and
f) CHSMM. Squares and circles/rectangular represent observations and states respec-
tively. Rectangular shows a resting in a state.

(©

flexible but more complicated than the standard full coupled HMM models. Among
these variations, we can point out to Event Coupled HMM (ECHMM), Multirate-
coupled CHMMs (MCHMM), Coupled Factorial HMM (CFHMM) (Fig. 3.1(d), Cou-
pled observation Decomposed HMM (CDHMM) [Guo et al., 2012|, Error Weighted
semi-coupled HMM (EWSCHMM) [Lin et al., 2012| and Coupled Hidden Semi Markov
Models (CHSMM). The former is depicted in Fig. 3.1(c), proposed in |Kristjansson
et al., 2000]. The motivation of this variation is to model the processes with loosely
coupling where the coupled parameter is the onset of the events. However, only lim-
ited range of processes can be modeled by ECHMM since its specific structure makes
restrictions. MCHMMSs are a multiscale generalization of HMMs for the joint modeling
of scale-based observation sequences. Similar to CHMMs, hidden states are assumed to
underlie the observations in a multi channel structure, but unlike standard HMMs, each
channel is associated with a particular scale. This will force the sequences of observa-
tions to have different lengths naturally |Cetin et al., 2007|. The CFHMM is a factorial
hidden Markov model (FHMM) with the coupling between the components shown as
the dependencies between their corresponding independently evolving HMMs [Kodali
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et al., 2010].

3.2.3.1 Previous studies on Coupling of HMM

CHMM has been proposed for the first time by Brand in [Brand, 1997, Brand et al.,
1997b] as a generalization of HMM. In a CHMM, each channel (Markov chain) is as-
sociated with an univariate observation to represent its underlying generation process
and transition probabilities depend on the current state of all channels. However, this
structure implies that the state space grows exponentially with respect to the number
of channels |[Brand, 1997|. In order to cope with this complexity, Brand proposed a
simplification, considering a factorization of the transition matrix:

C
P(S§IS} 1,87 1.+ . SE) = [ P(S5185) (3.35)

c=1

where S§ denotes the state of channel c at time ¢ and C' is total number of channels.
According to Brand’s assumption, the state conditional probability in the left side of
equation (3.35) is substituted by the product of all marginal conditional probabilities.
This model has been successfully applied in the field of sensor fusion, such as in Foren-
sic Electronics |Brewer et al., 2006|, genetics |Zhao et al., 2011], audio-visual speech
recognition systems |Nefian et al., 2002] and target tracking |Gai et al., 2007].

In another work, Rezek et al. computed the FB parameters without considering
Brand’s assumption in Eq. (3.35) and derived the ML estimators for the CHMM pa-
rameters using EM algorithm [Rezek et al., 2000]. They considered the CHMM as
an one-channel HMM with an ordered C-fold state formed by (S*,S2,---,SY), with
a state space of N = Hle n. and a transition matrix of dimension N x N. The al-
gorithm’s complexity reaches O(TM?“) with M = n,.. Based on the idea of Rezek et
al., an N x N transition matrix A is formed, whose indices represent probability of
transition from one C-fold state to another state of the respective structure in large
HMMe-like. Practically there is no necessity to estimate the full N x NN state transition
matrix A. Each of its element can still be obtained as a factor of the elements of the
original transition matrices A°. In this framework, observation at each time instant can
be chosen from a set of finite and countable set of symbols or may be generated from
a pdf. Consequently solving the three aforesaid problems for a CHMM is equivalent to
solving the same problems in a single-channel HMM context.

Rezek applied CHMM using Gibbs sampling and ML criterion in learning procedure
of two different real data. First database, named Cheyne Stokes data, consisted of one
EEG recording and a simultaneous respiration recording. A fractional spectral radius
(FSR) measure was computed from consecutive non-overlapping windows. Respiration
FSR and EEG FSR formed the first and second channel respectively. ML estimator
in comparison with sampling method needs more restart to find the most dominant
solution and also it mostly converges to the singularities. The second database is
considered to model a full night EEG recording were fitted to a fifth order Bayesian
auto regressive model whose coefficient were extracted priory from two EEG channels.
Each of which is considered as an observation of each CHMM channel. The number
of states in one channel is set to 3 corresponding to three sleep stages. The results
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fully agreed with literature and show that the coupling is minimal during periods of
wakefulness and maximal during deep sleep. ML approach is faster while runs in to
singularities and demands several restarts and if the number of states grows, ML tries
to visit the states of relatively low data evidence.

Zhong et al. proposed another approach in [Zhong and Ghosh, 2001,Fu et al., 2003,
in which the transition probability is expressed under the form of a weighted sum of
marginal conditional probabilities, associated with a rather complex estimation method
for the model parameters considering the normalization of weights as follows:

C
P(S51S{ 1, Stys - S20) = ) 0 P(S;1STy) (3.36)

c=1

where 0. is a coefficient, named coupling weight, which shows the amount of effect,

v 1 from channel c induced to the distribution of S;_; in channel c. Using the assump-
tion, they could model the joint dependency as a linear combination of all marginal
dependencies. Since the C channels are coupled together, the extended FB variables
should be defined jointly across C' channels as follows:

a(my,mg, - ,me) = P(Oy :t,q} = Spy,--+ ,q° = Sime:) (3.37)
= Ony,no,-- ,ncat—l(nlv Nng, - - 7nC) H binc(og) Z eclca(rzz/:/mc (338)
Bt<mlam27 T 7mC) = P(Ol : t|qtl = Sml’ T 7qtc = Smc) (339)
= Onq,ng, ,ncﬁt+1 (nh Ngy -y nc) H b7cnc (Og) Z ecclavc’slcn’c (340)

where b5, (0f) and af{clmc are the observation probability subjected to the state of cor-
responding channel and transition matrix considering the impact of between or within
channels. According to this formulation, both the joint FB variables cannot be easily
decoupled into product of marginals the same as what we can see in Rezek’s work.
Zhong’s algorithm failed to use Baum-Welch method for re-estimation part. This is
the exact consequence of their inability to calculate the separate FB parameters so
that, both the E and M steps become too complex to compute since they are entan-
gled together. Here, lagrange multiplier optimization method is used to address the
problem since all parameters are still restricted to stochastic constraints. They claimed
that it would be straightforward to prove that and applying the transformation, the
re-estimation of parameters will converge to a critical point of the likelihood function
P(O|)). The only remaining complication is that the calculation of model parameters
using likelihood can be stated as the analytical forms.

Zhou et al. apply the coupled HMM in the field of genetic, defining the nodes as
the states which are affected from previous nodes called parents. They consider the
conditional probability for a node with multiple parents as if node Y has m parents
which is computed as follows |[Zhou and Wong, 2007]:

C
1 (&
P(Sﬂstlﬂa 5152717 T 75121) = Z EP(SﬂStfl) (3.41)
c=1



3.2. HMM and the existing generalizations 47

This equation shows that the probability of jumping to a node with multiple parents
can be equal to the average of marginal probability.

In another study, Nefian et al. propose an idea on using the two-channel coupled
HMM to model an audio-visual speech recognition system |[Nefian et al., 2002, Xie
and Liu, 2006]. Avoiding the problems of ML estimation, they present an efficient
method for the initialization of the ML training which employs a Viterbi algorithm
derived specially for the coupled HMM. The Viterbi algorithm determines the optimal
sequence of states for the coupled nodes of the audio and video streams and maximizes
the observation likelihood. CHMM can be tracked in many other applications like in
Forensic Electronic [Brewer et al., 2006] and target tracking [Gai et al., 2007].

3.2.3.2 A study on CHSMM

CHSMM can be considered as another variation of CHMM as a combination of the
HSMM and CHMM. It is first proposed by Natarajan et al. [Natarajan and Neva-
tia, 2007b] to include a more complex structure in both space (channel) and time
(Fig. 3.1(f)). Although Brand’s original formulation as the conditional independence
assumption in Eq. 3.35 is not really a marginal conditional probability since the terms
does not sum up to one, it is a necessary simplification to yield tractable calculations in
CHSMM. Natarajan adopted this formulation to avoid excessive parameters appeared
in |[Zhong and Ghosh, 2001]. The normalization issue is handled by scaling and nor-
malizing the FB variables.

CHSMM is a CHMM for which the sojourn durations of each state have an explicitly
specified probability density function. Its implementation in [Natarajan and Nevatia,
2007b] suffers from numerical underflow commonly occurred in HMM and its gener-
alizations, and is also a well known situation in Bayesian analysis when probabilities
(smaller than 1 by definition) are multiplied for the forward and backward calculations.
We propose a simple trick inspired from the work of [Yu and Kobayashi, 2006| to rescale
F'B probabilities in order to avoid the underflow problem. As mentioned previously, the
idea is to replace the joint probabilities with conditional probabilities in both FB pa-
rameters definitions. We then derived the algorithmic procedures to re-estimate the
model parameters using the ML criterion.

In following of this part, we briefly describe the CHSMM framework as stated
in [Natarajan and Nevatia, 2007a|. In this study, the parameters of the model is defined
as before just adding the duration variable as A = (Q¢, O¢, A¢, B¢, D¢, 7). In this rela-
tion, the variables, A, B¢, D¢, ¢ are possible states set, set of observation, observation
probability distribution and initial state distribution respectively. D¢ contains a set of
parameters of the form P(df, = k|¢f = m), i.e. the probability of resting in state m
in channel ¢ for k samples of time. A¢ is the transition matrix in channel ¢ which is
calculated based on Brand’s assumption. As in the standard HMM, Baum-Welch algo-
rithm used for parameter re-estimation. So calculation of FB parameters is sufficient
to establish the framework. For this goal, a helpful parameter defined as they called it,
brick(c,m, tsc, tec), which denotes the probability of channel ¢ staying in state m for a
duration of tec —tsc+ 1 and then observing the sequence (Oyge, -+ + , Ogee). Then we can
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have:
tec

brick(c,m,tsc,tec) = P(d;, = tec —tsc+ 1) H P(O¢lg; =m) (3.42)
t=tsc
where the first term is the probability of channel ¢ in state m having a duration tec —
tsc + 1 and the second one denotes the probability of observing O, in channel ¢ and
state m. Then they defined a4, as the probability of channel ¢ remaining in state
¢ from time ts to te, given the observation 01 to Oy on channel c¢. So the forward
parameter can be calculated recursively using the following recursion:

ts—1
mts Jte T b,ka C m, tS t@ § E P(qts m|qts 1 mc>a/mc ts’ ts—1
mc=1ts'=ts—1-Th
C ts—1 tsc'+Th

X H {Z Z Z Pqts_m’qts 1—mc) mc’tsc’tec} (3.43)

d=1,c#c mc'=1tsc’=ts—Th—1tec'=ts—1

This recursion is true under the condition of the channels evolve independently and
influence each other only in state transition. The second and third term of the equation
correspond to the intra-channel and cross-channel effects, respectively. The backward

parameter 3y, ;. can be calculated according to the following recursion:

M ts+14+Th

C
o tste = = brick(c,m,ts, te) E E P¢(mc|m Bretestier

mc=1 te’=te—1

te tsc'+Th

H { Z Z mlmc mc’ Jtsc! tec! } (3-44)

=1,c/#c tsc’=te—Th tec'=te

In this equation, they have used the forward parameter to weight the cross-channel
effect since this parameter controls the state transition. By the means of FB parameters,
the re-estimation parameter can be readily calculated as follows:

- Initial Probability
te=Th

A =70 Y B (3.45)

te=1

- Transition Probability

t

T c
> c _ d o o
P(qt+1 = m|qt+1 =n)= § { § § O sl te!
t=1  ts'=t—Th te'=t
t+1+Th

xP(giy =mlgiy =n) > Boiiie) (3.46)

te=t+1
- Output Probability

te+1+Th

T M
]5(02‘%6 =m) = Z Z {ain,t,te Z P(gjeqy = mlgy, = n) Z ﬂrcmteﬂ,te'} (3.47)

t=1 te:t,of,:og,tgt’gte m=1 te! =te+1
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- Duration Probability

ts+d+1+Th
(d |Qt - m am ts ts+d P Qts—l—d—‘rl - m|Qts+d - n Bm Jts+d+1, te}(3 48)
ts=1ts=1 te=ts+d+1

The most interesting part of this work is the decoding algorithm. To make an
inference in a graphical model, it is needed to find the MAP path, given the observations.
Let us denote highest probability path at that time instant with variable d;, ;. ;., which
is defined as the log-likelihood of the maximum probability path such that channel c is
in state m from time ts to te.

60

n,ts,te

= log(brick(c, m, ts,te)) + mavy, s (0, 1 151 + log(P(n|m)))

+ Y maz i (65 44 40 + log(P(nin))) (3.49)

where, ts' < tsand te’ > te. maxS_,{max)_, (0%, ,, 1)} gives the approximate maximum
log-likelihood probability by storing the (m,ts’) values that produce the maximum in
Eq. 3.49, the most probable path through CHSMM can be reconstructed. We can
criticize this algorithm in numerical underflow commonly happened in implementation
of HMM and its generalization. However, in these equations, this problem empowered
a great deal more severely due to considering channels. Hence, the problem should be
systemically overcome in any algorithm which is proposed for a coupling issue. Other
previous coupling methods in HMM context are based on the recursive relations of FB
variables, for which the learning procedure can be complicated and time consuming,
such as in [Zhong and Ghosh, 2001]. In following sections, we try to introduce a kind
of equations using the approach in [Yu and Kobayashi, 2006] that is capable of solving
the underflow problem and suggesting a new framework for CHMM with a considerable
reduction in the complexity of the FB algorithm comparing to CHMM proposed by
Rezek.

3.3 Proposed generalizations

3.3.1 CHMM

Let’s note {S},S55, -+, Sj )} to be the state space of channel ¢ in a CHMM and
let ¢ and of, t = 1,2,--- T be the state and the observation of channel ¢ at time
t, respectively. C' is the total number of channels in the CHMM model. Also, let
atc = P(q¢ = 5S¢ |¢¢ , = S¢) denote the probability of transition to state m in channel
¢ at time t, subjected to being in state n in channel ¢’ at time ¢ — 1. The probability of
the observation is written as b,,(0f) = P(0f|q¢f = S¢,), where of may be either discrete
or continuous. We also define o, = {o},0%,---,0¢}. In this study, a is assumed to be
normally distributed, and characterized by its mean (1¢,) and standard deviation (c¢,).
For simplicity, we also note vf(m) = {¢¢ = S}, so that a®¢, = P(v¢(m)[v¢ (n)). The
structure of the inter-channel coupling is depicted in Fig. 3.2 for the two-channel case.
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Figure 3.2: Bayesian Network representation for the proposed CHMM showing the
probabilistic relations among the states and observations for the particular case of a
two-channel CHMM.

3.3.1.1 FB recursions

In order to define the FB parameters, first consider the probability of observation of
each channel at time ¢ given all the previous observations.

M(s) M(s)
P(oj|01:4-1) = Z P(v;(m), 0;|01.4-1) Z P(o5|v;(m), 01.4-1)P(v;(m)|o1.4-1)
m=1
M(s)
= D bm(0§) P(v;(m)|o1:4-1) (3.50)
m=1
Following [Yu and Kobayashi, 2006|, we define the forward parameter as:
a3, (m) = P(v;(m)]o1.4) (3.51)

where for x = t—1,¢,T, the above quantity is termed as predicted, filtered and smoothed
probability respectively. The forward recursion based on the predicted probability is
determined by

M1)M(2) M(C)

azltfl( ) ( |01t 1 —Z Z ZP Ut Ut 1 nl) U1£271<n2>7"' 77151(”0)’01:1571)

ni=1lngs=1 nc=1
M1)M(2

_ZZ ZP Ut |Ut 1 "1) Ut2 1(”2) e aU£1(nC)701:t—1)

ni=1lng=1 ng=1

X P(vf_y(m1), -+, 01 (no)|014-1) (3.52)

where the first term can be simply calculated by Brand’s assumption in Eq. (3.35). 01.4—1
can be omitted since knowing all the previous states, it does not add any information
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to estimate vy (m)
c

P(v;(m)[vi_y(m1), -+ v (ne), ore-) = [ [ P (m)lof_y (ne)) (3.53)

c=1
For the second term, we show in appendix A.3 that the states of channels given the
observations 0141 are independent:

P(o}y (1), e, o4 () lo11) HP oy (n) ora-1) (3.54)

Substituting Eq. (3.35), (3.53) and (3.54) in (3.52), the following recursion can be
obtained:
M(2) M(C) ©

0y (m ZZ 3™ TP, (n0) x Py (no)loras) — (3.55)

ni=1ns=1 nc=1c=1

Note that P(v;(m)|ve ;(n.))#P(vi(m)|vi_{(n.),01.4-1). Hence, the summations can
be exchanged with the product.

C“§|t 1 HZP vi (m)|vi_y (ne)) P(vi_1 (ne)|o14-1) Hzan mQ— 1lt—1 (ne)

c= 1nL71 c=1n.=1

= HZ Q% 06 —a(0)BS (0p-1) (3.56)

c=1n.=1

where S ¢ (0r) is defined as the ratio of the filtered probability, « aj 2,(m), over the predicted
probability ay, ,(m).

BC (Ot) N Oét\t(m) _ P(0t|v§(m),01;t,1) _ P(Ot‘vt%m)a()l:tfl)‘
agltfl(m) Plorori-1) HcC:1 P(0f|o14-1)

The last equality is based on the observation decomposition (cf appendix A.2),

(3.57)

Ot’01t 1 HP Ot|01t 1 (358)

Assuming the effects of other channels, the nominator of Eq. (3.57) is summarized as
the product of distinct channel effects as follows:

M(1) M(C)

P(oi|v;(m), 014-1) E E P(og, v} (n1), -, 0% (ne)|vs(m), 01:4-1) (3.59)
ni=1nc=1
——
C—1 (except channel )

1) M(C)

—Z S P(o} ol (1)) P(o2|v(n2)) - - - P(of [of (ne))

ni=1ncg=1

C—1 (except channel )

XP(Utl(nl)7 T 7Utc(nc>|v§(m)7 01:t—1) (360)
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since the probability calculation of of only needs the corresponding state, i.e. vf(n.),
we can establish the following equation:

M(1) M(C

P(01]v§ (m), 01:4-1)= bun(05) ) me 01) *++ bug (0F)

ni=1nc=1

C'—1 (except channel ¢)

XP(Utl(nl)f” vvtc<nc)|v§(m)7011t—1) (361)

For achieving a recursion, we utilize the following simplification (also necessary to
prove Eq. (3.54)) :

C
P(vf(m),- v (nc)lov—1) = [ P(vf(ne)lors-1) (3.62)

c=1

Then we have:

17, P(v§(n)|ore)

c
Pl(ny), -, 0% (ne)|vs(m), 014-1) = = g, q(ne) (3.63
( t( 1) t( C)| t( ) 1:t 1) P(’Ug(m)|01;t_1) C::ll_‘c[?ég t)t 1( ) ( )
Hence, using Eq. (3.50), we have:
C Mo
P(oi]v;(m), 01.4—1)= bm(0; H anc o)1 (ne) = by (0f HP of|01:4-1) (3.64)
c=1,c#snc=1 c=1,c#¢

Accordingly, b5 (0;) can be calculated by:

bm (0})
P(oi|o1.4-1)

b5, (0r) = (3.65)

Backward parameter is defined in a way that the probability of being in state m
of channel ¢ given all the samples of observations, i.e. smoothed probability, could be
easily calculated by the product of forward and backward parameters.

o (m) = a5, (m) x 55 (m) (3.66)

which leads to :

The backward recursion is derived based on the next transition in channel ¢ as
follows:

M
S 7s < P(ogsir, Uy (n)lv;(m), 01.¢)
t(m) = bm(ot) P(
—1 Ot 1.701:¢)
M(s)

- P(or1r|vig(n), vi(m), 014)
P(Ot+1:T|01:t)

x P(vy,,(n)|vi(m),014)  (3.67)
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Considering P(0p11.7|v5,1(n),vi(m),014) = P(o1.70|vi1(n),01) and Eq. (3.67),
the first term in the summation can be identified as 8;(n). The second term writes :

P(v1(n)|v;(m), o) ZZ (V541 (n), v (na), -+ v (n)[v; (m), 012)

ni=1nc=1

excepts
M(1) M(C)

=35 Pi (m)lvf (n), -+ vl (ne), v (m), 014) x P(u(ne), -+ vf (ne)|vi(m), o1)

ni=1nc=1
N——

except ¢

H Z a, nat\t 1(ne) 5 n.(0¢) (3.68)

c#£S ne=1
Thus the backward recursion is given by:

M(s)

By (m) = by, (o, Z {8 (n)ag,, x H Z A g1 (1) )b e (00)} (3.69)

c=1,c#£¢ ne=1

The initial condition of parameters are 37.(m) = b}, (or) and af, = w705, (01).

3.3.1.2 Three main issues

We resume hereby the three main issues treated in the context of hidden Markov models.
Problem 1: Evaluation of the likelihood of an observation sequence, given the model
parameters:

T
P(OlT 01 HP Ot‘olt 1 (370)
t=2
where
C
P(ot|or4-1) = HP(OﬂOI:t—l) (3.71)
c=1

the latter can be calculated by Eq. (3.50).
Problem 2: Finding the optimal state m that generates the observations. We can
use the maximum a posteriori (MAP) estimation:

m,(t) = arg max P(v;(m)|or.r) = arg max ajz (3.72)
to construct the optimal sequence of channel ¢: QF = {m*( ),mi(2),--- ,mi(T)}.

Problem 3: Learning of model parameters A = {a®$  uC,, o¢,, ¢} that best fit the
observation {o1.7}. The Baum-Welch algorithm [Baum et al., 1970] can be applied,
using the ML criterium. As a special case of the EM algorithm, the likelihood is
estimated using the forward-backward parameters in the E-step while the M-step uses
expected counts of transitions and observations to re-estimate the parameters A (see
Fig. 3.3). This procedure is performed iteratively until convergence.
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Figure 3.3: Overall EM algorithm structure depicting the use of FB algorithm.

Liporace generalizes the Baum-Welch algorithm to a larger class of distributions
of observation probability than just Gaussian distribution [Liporace, 1982|. In the
following, we present a generalization of the re-estimation method inspired from the
Liporace paper. The likelihood probability of the observations {o;.7} given the model
parameters A writes:

(o1r) ZP)\ or.r,S (3.73)

while Py(01.7,S) can be written as:

T C

Py(ovr, §) = H{7T b1(05) x [T TT aime_smebrme (09} (3.74)

c=1 t=2 /=1

where S is the set of the state sequences of all channels. The objective is to maximize
Py(o1.7) over all parameters A. The algorithm starts with an initial guess of Ao, and
then updates it to ensure that Py, ., (o1.7) > Py, (o1.r) in each iteration. As in the
EM algorithm structure, an auziliary function Q(\, ) is used, defined by ( [Liporace,
1982]):

N) =Y Pi(ovr,8)log(Ps (017, S)). (3.75)
S

The reason to use Q(\,\) is related to the fact that Q(A\, A) > Q(),\) implies that
Ls(o1.7) > Ly(o1.7). This can be proved in case we notice that logx < x — 1, with
equality if and only if x = 1. Therefore

)< L<><%

= L;\(OLT) - LA(01:T>

Lx(o1.1)

QO A) = QO A) = La(our) og( ov s

~1)  (3.76)

Extra normalization conditions include:

M(c)

M(c)
Z acs and » 7, =1 (3.77)

m=1

for all channels (c) and states of channel (m'). These constraints are integrated
using the Lagrange multiplier method to yield the maximization problem:
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o ME c M)
Mew = argmax QA A) + > 0> " ass,, — 1)+ > () 7wl —1) (3.78)
A c=1 m=1 c=1 m=1

where 0., ¢. are the Lagrange parameters.

A description of the re-estimation procedure is detailed in the following part 3.3.1.2-
3 |Liporace, 1982].

-Re-estimation of transition matrices: Differentiate Eq. (3.78) with respect to
each @  to obtain

ZPA o1r, S Zal —0.=0 (3.79)

texes m'm

where Interchange the order of summations as in [Liporace, 1982] to get

T T
C_lf;ﬁmec = Z Z P<01:T78) = ZP(Ol:Ta%CI—l = Sm/7q1fc = Sm) (380)
t=1

=1 sees (1)

where &6 (1) = {S : ¢¢ ., = Sy, qf = Sim} denotes the set of state sequence having
state m’ at time ¢t — 1 and state m at time . Summing over all states of channel ¢, we
obtain 6.

T M(e
Z Z 01:T7 qtc,—1 = S’m’a qz: = Sm) (381)

k=1 m=1
Furthermore, we define AS¢(m/,m) = P(qf_; = Spr,q¢ = Sp|or7) as the conditional
smoothed transition probability:
P(Utd—l (m'),vi(m), orlo1:4-1)
P(Ot:T|01:t—1)

= B (m) P (v (m)|vi_y (m)) P(vi_y () |ore—1) = B5 (m)as s,y (m) b (0f_y)

It is then straightforward to achieve the re-estimation for the transition probability:

T ’
e T A m)
T L e A m)
-Re-estimation of 7;,: Adding the appropriate constraint for initial probability
of being in state m to the auxiliary function, we have

A7e(m'ym) = P(o_y (m'), v(m)|ovr) =

(3.83)

am {QU ) — e, ~ 1} =0 (3.84)
1
ZP)\(OLT»S)T —e.=0
T
S m
7T-fnéjc - P(OI:Tu Q$ = Sm)
M(c)
Ec = P(OI:Tu QE = Sm)

(3.82)



56 chapter3

Thus, using Eq. (3.66), the re-estimation of initial probability is straightforward

__ %p(m) (3.85)

> /(0)1 0‘1|T(m/)

-Re-estimation of [f, and &;,: As previously mentioned, the density functions of
observations b,,(0f) are assumed to be Gaussian functions. Applying the derivation on
auxiliary function with respect to the components of ji{ , we can obtain:

T
e D e 1‘)‘§|T( m)og

T

3.86)
m M(c (
Zt 1 2m i 1at|T<m/)
T (6 C 7C
i Die 1at|T< m)(of — fi5,)*
Om = M) ; (3.87)
Zt D 1at|T(m)

3.3.2 CHSMM
Let SY, S5, - 7516\4(6) be the states of a semi-Markov chain in channel ¢ mentioned by
the superscript in this paper, with the initial distribution {7¢,} and ¢ the state of the
model at time ¢t with ¢ =1,2,--- ,T. of denotes the observation of channel ¢ with the

conditional probability b,,(0f) = P(of|¢f = S¢,) and the transition probability matrix
is defined as a%¢ = P(qf = S¢|¢¢ = S¢). The duration of a given state is a discrete
variable, having value d with probability p¢, (d), where d € {1,2,---, D(c)}.

Each semi-Markov chain remains in a state for d samples of time so 77 = d defined as
the remaining sojourn time of the current state (¢ = S¢,) which denotes that cth semi-
Markov chain stays in S¢, from ¢ to t+d—1 and transits to another state at time t+d. So
a coupled hidden semi Markov model is specified by, say A = {{n¢}, p¢,(d), a’¢,, b (0,)}.

All the probabilities which will be supposed in the following parts are conditioned on
the parameter set that we will omit it due to simplicity.

In our model, we assumed that of is only depended on ¢f. Also, we chose to use
Brand’s original formulation such that the interaction between channel ¢ and j is in-
dependent of interaction between ¢ and k. Another important assumption is that only
when there is a state transition in a given channel, the states of all other channels affect
the transition. Also, the sojourn durations in each channel are considered as indepen-
dent random variables without specific superscript. We note that o, denoted the set
of observations of all channels at time ¢. In addition, let’s define v;(m,d) equal to the
ordered pair (¢; = S5,, 77 = d). For the rest of the chapter, the superscript of the state
variable is omitted due to the simplicity.

3.3.2.1 FB recursions

In order to generalize the Baum-Welch method to re-estimate the parameters of CHSMM,
it is essential to define the forward and backward variables and derive the recursion
formulas for the ease of calculations which are needed in solving the three standard
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problems of HMM. It should be noted that when there is a state transition in a chan-
nel, the other channels affect it, Otherwise, we just consider the intra-channel effect.
The Forward parameter is defined as the probability of being in state m of channel ¢
at time ¢ and resting in it till time ¢ + d subjected to the observations of all channels
from the beginning to time x.

at\x(m d) P(U?(m, d)|01::1:) (3-88)

where if © = t — 1,¢t and T, predicted, filtered and smoothed definition of forward
parameter are achieved respectively. We can write the recursion based on predicted
form of forward parameter at time ¢ (a3, ,(m,d)) by considering the forward parameter
at time ¢ — 1 (ozf_l‘t_Q(m, d)). In order to follow the transitions correctly, the value of
7;_, should be inspected. Since Two possible situations can happen, we define A;(m, d)
and B;(m, d) which represent resting and transition effect respectively:

Case 1: 7, = dc # 1 consequently we have only the intra channel effect. Resting

parameter is defined as:
A5(m, d) = P(u5(m, d), 75, > Lorsr) = i, (m.d + 1)lor. 1)
= 5y, (mod £ 1) (3.80)
cf the definition in (2)

To achieve the recursion, we can use ~by; parameter as follows:

be (o) 2 ozg‘t(m, d) _ P(otvp(m,d),01.41)  Plog|vi(m,d),0141) (3.90)

m\Yt) — - - :
a§|t,1(m7d) P(og01:4-1) Hf:l P(of|o1:4-1)

where the last derivation is based on the mean field assumption for the observation of

different channels,

c
P(oor:-1) = HP(0§|01:75—1) (3.91)
c=1

Assuming the effects of other channels states, the nominator of (3.90) is summarized
as the product of distinct channel effects:

M(1) D(1) M(C) D(C

P(oi]v;(m), 01.4-1) Z Z Z ZP (o4, v (ny,dy), -, vE (ne, de)|vs (m, d), 014-1)  (3.92)

ni=1ldi=1nc=1dgc=1

C'—1 (except channel ¢)
M(1

D) ¢
Z H Ot|vt T, C)) X P(Utl(nhdl)?'” 7Utc<nC'7dC)|Ut<(m7d)701:t—1) (393)

HMG
< ”MQ

C—1 (except channel )

since the probability calculation of of only needs the corresponding state, i.e. v{(n.,d.),
we can substitute P(of|vf(ne, d.)) by bn.(0f). In the appendix, we will deal with the
predicted independency of the states given the observations:

P(v}(ny,dy), - 08 (ne, do)|ors—1) HP Vi (e, de)|01:4-1) (3.94)
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Based on this assumption, we have:

P} (ny,dy), - 08 (ne, de)|vs(m, d), o14-1) = Hc_paiz;,(:;)]()liljl):t_l)

=1 afii(ne.do) (3.95)

0:1767£§

Accordingly, we can establish the following equation:

P(o|vg (m), o1:4-1)= b (0}) H Z Enc o;) at|t 1(ne, de)

c=1,c#£sne=1d.=1

c
= bm(0) | [ P(ofl01:-1) (3.96)
c=1,c#¢g
Hence, b, (0;) is given by:
. b, (05
by (00) = bnlod) (3.97)

P(0§|01:t71)

Note that the value of the b5, (0;) is nearly 1 if the model learns the observation
accurately. Therefore, it is easy to show that:

Ai(m,d) = a;_y,_o(m,d+ 1B, (0-1) (3.98)

Case 2: 7,1 = d. = 1 so both cross and intra channel effect constitute the transition
parameter. knowing that there is a transition in channel ¢, we consider the effect of
other channels as follows:

B (m,d) = P(v;(m,d), ;_; = lo1—1) (3.99)
M(1) D(1)  M(C) D(C)

= e Z Z P(Ug(mvd)’vtl—l(nlvdl)a e ,Uﬁl(nc,dc)|01;t_1) (3100)

Applying the Bayes theorem gives:

P<,U§(m> d)> Utlfl(nla d1)7 Tty Uﬁl(n07 dC)|01:t71)
= P(,Utg(m7 d)|vtl—1(n17 dl)y e ’Uto—l(n07 dC)) Ol:t—l)
XP(Utlfl(nla dl)? o 71)1‘,6;1(7107 dC)|01:t—1) (3101)

and using Brand’s assumption over the first term, we derive the following equation:

M(1) D(1)

B;(m,d) = ZZ Z ZHP (m, d)|vy_{(ne, d.))

ny= 1d1 1 ng= ldC 1c=1

xP(vi_((n1,dy), -+ v [ (ne,de)|o1i—1) (3.102)
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Note that the term P(v;(m,d)|vi_,(n.,d.)) is substitute by a; .. We also use

C
P(v_y(m1,dy), -+ oy (noyde)|ove-1) = [ [ Poi_i(ne, de)lorer) (3.103)

c=1

due to the proves given in appendix. In addition, we organize Eq. 3.102 according to
the parameters of double summations corresponded to each channel as follows:

C M(c) D(c)

B;(m,d) H Z Z P(v;(m,d)|vi_i(ne, de)) x P(vi_i(ne, de)|ore—1)  (3.104)

c=1nc.=1d.=c

Hence, B;(m,d) can be established as follows:

B (m,d) = Z{anm 51y o(ne, DB, (01-1)}

ne=1

C M(c)D(c)

XH Zz{ancmat 1t— 2 nCadc)B%c(Ot—l)} (3.105)

c=1,c#snc=1d.=1

and finally, an obvious summation gives the forward parameter recursion:
aj,_,(m,d) = A (m.d) + B (m, d) (3.106)

By considering the initialization of this recursion as o, (m, d) = m;,p;,(d), we can
complete the calculation of the forward variable. Moreover, P(0f|o1.+—1) can be calcu-
lated by the means of this variable:

M(c) D(c)

P(0f]01.4-1) ZZ&W 1(m, d)bS, (o) (3.107)

m=1 d=1

The Backward parameter is defined as a normalized form of the probability of obser-
vation at time ¢ to T" of channel ¢ subjected to staying at state m for d more samples of
time. Similarly, the state transitions in a channel result to different equations for back-
ward parameter. d = 1 is indicating a transition so ; (m, d) is obtained by considering
all channels impact. It is generally defined as:

P(v;(m,d)|or.r)

P(vi(m,d)|o1.4-1)

_ P(ox.r,vi(m,d)|o14—1)

B P(opr|01.4-1)P(v;(m,d)|o1.4-1)

_ P(oyr|vi(m,d), 014-1)

B P(Ot:T‘Olztfl)

o Plsahilm. o)
(0t+1:T\01:t)

Bi(m.d) £

(3.108)

Case 1: 7;, = d # 1 consequently we have only the intra channel effect.
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In this case, it is simple to show as follows:

= P(0t+1;T|U§+1(ma d—1),014)
;(m,d) =1b;,(o
Fitm,d) = o) =5 Tow)

= 5, (0r-1) By (m,d — 1) (3.100)

Case 2: 7;, = d =1 other channels impact on current channel.
The current state v;(m, 1) transits to a new one vy, (ng, d;), so backward recursion
is derived based on the next transition in channel ¢ as follows:

7 P(OH‘LT’ U§+1 (n§7 d<) |Utg (m7 ]-)7 Olzt)

F(m) = b5, (0) > Y Flors.mlord] (3.110)
M(<) M(<)

— % (o) i i P(ory17|vp 1 (ng, do), v;(m, 1), 014)

x P(vs,(ne,d)|vs(m, 1), 1.
P(Ot—i-l:T‘Ol:t) ( t+1( S <)| t( ) lt)

n¢=1d.=1

The first term after summation can be interpreted as 5;,,(n., d;) according to 3.108
and P(oi41.7|vp1(n), v (m), 01.4) = P(0g41.70|v;11(n), 014). The last term should be cal-
culated correctly as follows including the effects of other channels:

P(ugyq(ng, do)|vy(m, 1), 014)
M(1) D(1) M(C) D(C)

=N N P (ne do), v (s dy), v (ne, ne)|vf(m, 1), 01)

n1=1di=1nc=1dc=1

Cc-1 (except channel ¢)
M(1) D(1) M

_Z Z Z Z Ut—i—l nca )‘Utl(nbdl)a"' ,Uf(nc,dc),vf(m, 1)701:75)

ni=1ldi=1nc=1dc=1
N vV

C—1 (except channel )

x P(vE(ne, de), - ,v° (ne, de) v (m, 1), 01,4 )3.111)

which can be simply written as follows:

P(Utc—f—l(nQdC)‘vt((m? 1)7011t) = mngpnc H Z ancngpnC at|t l(nc) C <0tI3 112)

c=1,c#£¢s ne=1

Thus the backward recursion is given by:

M(s) D(s) ¢) D(c)
Bt (m 1) - b§ Ot Z Z {/Bt-‘,-l n€ mnpng H Z Z ncnpnc at\t 1<nC C Ot }(3 113
ne=1dc.=1 c=1,c#£s ne=1d.=1

Finally a recursion to calculate backward parameter with the initial value g; (m,1) =
bs,(or) for all d is achieved.
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3.3.2.2 Three main issues

Similar to CHMM, in addition to FB parameter, we further introduce four more vari-
ables for convenience in re-estimation part. Firstly, The conditional probability of
transition to state m in channel ¢ while the channel c is in state n given the observation
of all channels writes:

)

(<)

T?(TL, m) = E 2 (QtC—l :Sna U),?(m: d)> 7—t§_1 = 1|01:T)
d=1
D(

S)
=> B (m, d)ags,ps, ( Zat 12 (n, d)E (0r1) (3.114)

d=1

while ignoring the impact of other channels. Then, the conditional probability of tran-
sition to state m at time ¢ and rest in till £ + d given the observation of all time and
channels. Separating o;.r gives us a trick to calculate this variable.

P(Ttg—l = 17 Ut<<ma d)7 0t:T|01:t—1)
P<0t:T|01:t71)

d; (m,d) = P(r;_; = 1,v;(m, d)[01,4-1) = (3.115)

hence, it is straightforward to obtain:

6§(m’d) ﬁt (m d pm Z th 1t—2 n 1 (Ot 1)

¢) D(c)

X H Z Z a; 1[t—2 (e, d )55_1(nc7dc)affcm (3.116)
c=1nc.=1d.=1

= B; (m, d)p;,,(d)B; (m, d) (3.117)

Furthermore, we can readily calculate the smoothed version of the forward variables
as a product of forward and backward variables:

agp(m, d) = P(v;(m, d)|or.r) = o3y, (m,d)B;(m, d) (3.118)
The summation on d defines another variables:

F(m) = agp(m,d) (3.119)
d

Problem 1: Evaluation of the likelihood of an observation sequence, given the model
parameters:

T
P(OlT 01 HP Ot|01t 1 (3120)
t=2
where
0t|01t 1 HP Ot|01t 1 (3121)

where the latter can be calculated by Eq. 3.91.
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Problem 2: Finding the optimal state m that generates the observations. We
can use the MAP estimation for inference of CHSMM. First, we calculate &;(m,d) for
t=1,2,---,T and over all states and durations in all channels. Then we begin from
to = 1 and find m and d which gives us the maximum of &; (m,d). Consequently, the
optimal state sequence assigned as Qaz(to : to + d) and we continue for the rest of
samples of time. This algorithm is illustrated for more detail.

Algorithm 3.4: Inference
Inputs: §;(m,d) = P(1;_; = 1,q; = S, 75 = d|o1.7).
Outputs: likelihood probability Il° = log(P(0{.;-)) and the series of states Qmaz(t)

1: For each state (m) and duration (d), compute g, ,(m,d) (Eq. 3.106),

2: For each state (m) and duration (d), compute 55(m,d) (Eq. 3.109, 3.113),

3: For each state (m) and duration (d), compute &5(m,d) (Eq. 3.116),

4: Start from t =1

5: repeat

6: Find the state (m*)and duration (d*) which give the maximum (m* d*) =
arg max,, {o¢(m, d)}.

T ¢ L(tit+d)=m*.

& t=t+d +1
9: until ¢t > T
10: Calculate [I¢ from log (TTL 169,00ty (01)-

Problem 3: Learning of model parameters A = {a®$  u¢ , o¢, 7¢} that best fit the
observation {o1.r}. The Baum-Welch algorithm [Baum et al., 1970] can be applied,
using the ML criterium.

To learn the parameters of HMM according to ML criterium from the given obser-
vations {o1.7}, we use similarly our approach in proposed CHMM learning procedure.

We assume that the set of model parameters A is given and there are K. transi-
tions happened in the Markov chain of channel c¢. The likelihood probability of the
observations {o;.7} given A in all channels can be written as follows:

NCED) ZP)\ orr,S (3.122)

and Py(01.7,S) can be written as:

do

Py(ovr, S 1_[{7%019,”0 do) [ [ (85, (010)) (3.123)
to=1
c do++dy

><H Do (di)ass, I e, T (00}

cp=1,cp#c tp=do++dp_1+1

where 35 (d) = T in channel ¢
In addition to the conditions in CHMM, a constraint on resting time parameter is
maintained as:

> P(d) =1, (3.124)
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-Re-estimation of transition matrices: Considering 3.105, a transition proba-
bility a;-,, . satisfies

0 _
G 1) — o(zmas, —1)}=0 (3.125)

where 6 is the Lagrange parameter. Applying the derivation we obtain as follows:

ZPA o17.8) Y acl.; —0=0 (3.126)

tETC c k

where T6 = {t : ¢¢ | = Sy, ¢ = Syn}. If we change the order of summations similar
to |[Liporace, 1982|, 3.126 becomes

T
A=Y > Plour,S) (3.127)

=1 sees (1)

a0 =S P(orr, ¢y = Sw, 6§ = Sm) (3.128)

where &5 (1) = {S : ¢° | = Sw,qf = Sm}, the set of state sequence which contains
state m’ at time ¢t — 1 and state m at time . Summing over all state of channel ¢, we
obtain 0

M(c o c
6 = Zg 12 /g )1P(013T7qt71 = Sm’7qt e Smu) (3129)
and the re-estimation equation for transition probability is achieved.

ZtT 1T6/0(m/ m)
> 12 T"’C(m m')

/
—c'c
At =

(3.130)

m” 1

-Re-estimation of p¢ (d): The same manipulations that we perform in previous
part, are used for estimation of duration probability densities.

O Q) — D5 () 1)) = 0

op;,.(d)
M(e)
1
> P01, S) D = S~ —0=0 (3.131)
S teGy, 4 pm( )

ﬁ%(d)e = Z1?:1P<01:T>7_tc—1 = 17Utc<m7 d))

where Gy, ;= {t: 77, = 1,v{(m,d)}.
Summing over all values of d in both sides, we obtain 6 and p,(d) as follows

0 =% S0 Porp e, =1,¢8 = Sy, 18 = d)
YL, 5¢(m, d)
EI{ 12d’ 6)60( 7d/)

P (d) = (3.132)
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-Re-estimation of 7;,: Adding the appropriate constraint for initial probability of
being in state m to the auxiliary function, we have

0 {QAN) — oz Y7, — 1)} =0
ore,
1
ZPA(01:T73)7,T—C —0=0 (3.133)
S m
ﬁfne = P<01:Ta C]f = Sm)
0 =509 Plovr, ¢ = Su) (3.134)

Thus using 3.118, the re-estimation of initial probability is straightforward

D(c) ¢
o - aiofp(md (3.135)
T = SN @) 2D e (o '
Vi =121 0‘1\T(mvd)

-Re-estimation of ji;, and o;,: In this work, the density functions of observations are
assumed to be Gaussian function. Each b5, (0;) has the form, 05,(0:) = N(oy; 5, 05,) =

27lram exp{—(z — 115,)?/(2(c5,)?)}. Applying the derivation on auxiliary function with
respect to the components of ji;,, we can obtained:

OQ(\, A OQ(\, A
e _ D i(m)of
" 25:1 %C(m)
e e(m) (o — ,)?

m T .
21 E(m)

Considering the changes of likelihood during the execution of learning algorithm
shows that after each iteration, this value is rising until it reaches near the ideal solution.
Then, if the iterations continue, the likelihood probability gradually decreases and the
algorithm will diverge. Also, the more the initial condition is closer to reality, the less
iteration is needed to converge to the optimal answer.

o

3.4 The methodology of application

In our laboratory, HMM and HSMM are used in a particular algorithm to detect AB
[Altuve et al., 2011a]. In this section, the initialization of the model parameters is
detailed as well as the evaluation of the likelihood of each model which is generated
by a sequence of observation. The mentioned Markovian frameworks can be used in
classification and detection of events of interest by analyzing the likelihood. For this
approach, K models are used to represent K different dynamics of all observations
being analyzed (univariate or multivariate). The underlying assumption is that these
dynamics are associated with states or distinct pathophysiological events, which should
be discriminated. An initialization is required to obtain the initial values for model
parameters prior to the learning procedure. First a K-means based method is used to
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Figure 3.5: Classification algorithm.

estimate the mean (u,,) and variance (0,,) of the learning data corresponding to a state
(m). Note that each class is signified by a state. The initial values of the rest of the
model parameters are defined randomly. In following parts, we describe the scenarios
of classification (on simulated data) and detection (on both simulated and real data).

3.4.1 Classification

In previous works like in [Dumont et al., 2008, the problem of classifying a time-
series into one of K classes has been addressed by defining a set of K competing
models, for which a learning dataset corresponding to each class is used to estimate
the parameters of each model (A1, -+, Ag). Then, in the test phase, each time-series
of the test dataset (o) is analyzed by calculating the log-likelihood using each model:
log P(o | Q*,M\¢),7 € {1,2,---, K}, where Q* represents the optimal state sequence.
The classification result is obtained by choosing the class corresponding to the model
presenting the maximum log-likelihood.

A similar approach is applied in this research for the proposed frameworks. However,
in order to cope with the multichannel nature of the Coupled frameworks (CHMM and
CHSMM), the overall log-likelihood corresponding to each class will be obtained by
summing the log-likelihoods in all channels with their optimal state sequence (:

o
= log{ P(o°]Q, M)} (3.137)

c=1

The classification algorithm is depicted in block diagram in Fig. 3.5.
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A classification is performed on simulated data, by defining three classes: a;, as and
a rest condition. We further assume that the number of states of the two competing
models are equal and more than that of the model for learning the rest condition.

3.4.2 On-line Detection

The classification application can also be extended to on-line detection, as in [Dumont
et al., 2008]. The data can be divided into overlapping moving windows, and the
classification procedure is applied to each window. One of the K classes (i.e. class k)
is defined to represent the event of interest. The difference of log-likelihood of class k&
from other classes can be obtained:

Uy (1) = W (£) = U5(0) (3.138)
where j € {1,2,--- , K} — {k}. In case of multiple channels as in our proposed coupled
frameworks, the above equation can be rewritten as:

. c

U5 (t) = (U5(t) — US(1) (3.139)
c=1

An event corresponding to class k takes place in a window containing time ¢ if the
following condition is satisfied

20 (8) > S (3.140)

where 0, is a constant threshold that should be optimized.

In order to implement a system for monitoring premature babies, developed detec-
tion method must be adapted to the processing line. Indeed, the proposed implemen-
tation in [Dumont, 2008| is restricted to block processing and is not suited for this
case. Altuve has proposed an adaptive preprocessing of AB observation series [Altuve,
2011]. He multiplies sequences of observations by a significant and arbitrary value, to
overcome numerical problems during the learning phase. Furthermore, in order to in-
crement the likelihood of a particular condition and its path in the Viterbi algorithm,
the amplitude variability of observations should be minimized from the first sample.
He has proposed a procedure to narrow the observation sequences around the average
which is determined in a window of size L:

t=T

R 1
OLT = O-T1t = E oy (3.141)
V=t—T—L+1

where 0.7 is now the observation to take into account by the model and it is chosen
by the moving window. In this case, the log-likelihood for the model k£ at time ¢ is now
determined by:

Ui,(t) = logP(01:7|Q%, Ak) (3.142)

where ()}, is the best state sequence obtained from inference procedure. The detection is
determined by using the Eq. 3.140. Fig. 3.6 summarizes the method of on-line detection
of apnea-bradycardia used in this thesis, using a sliding window on the observation.
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Figure 3.6: Algorithm for event of interest detection.

3.5 Conclusion

In this chapter, we review HMM framework and some of its generalizations which are
related to our proposed methods. Among these generalizations, HSMM as stated in [Yu
and Kobayashi, 2006] inspired the CHMM and CHSMM frameworks which are proposed
in this thesis. Yu’s approach to solve the HSMM issue is simple and well-defined that
results in logical relations for FB algorithm. The same idea is employed in simplification
of coupling issue in HMM. The effect of different channels in the state transition in one
channel is not a straightforward computation in CHMM. In addition, considering the
resting time parameter for the states makes the CHSMM more complex. According
to this approach, the problem is broken into two situations: remaining in a state or
transiting to other one. Then, for each of the cases, the FB parameters are presented.
Furthermore, by defining b parameter, the problem of overflow can be overcome and
the FB parameters are rescaled. At the end of this chapter, the methodology in order
to apply a Markovian framework for AB detection is also presented.
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Chapter 4

Switching methods

4.1 Introduction

The morphology and dynamic of ECG signals are studied extensively using the com-
bination of dynamical and state space models (SSM) [Sameni et al., 2007, Akhbari
et al., 2012|. Moreover, they are also studied based on the sequential models like
HMM [Coast, 1993|. In this chapter, we study the ECG signal containing AB episodes
from the switching SSM point of view which can be accounted as a mixture of SSM and
sequential models.

As discussed, apnea can greatly affect the activity of the heart. The subtle changes
in the ECG patterns can be interpreted as a change happened in the dynamic of ECG
beat generation process. In order to study such systems, one can propose to use SKF
which is widely used for modeling systems with changeable dynamics |Ghahramani,
1998, Marculescu et al., 1998|. In a simple form of SKF, it is assumed that the model
has linear dynamic at each time instant but it is time variant and switches among
several linear subsystems over the time; each linear subsystem can be described by
linear dynamical equations of continuous states (zy) as state equations and a linear
relation between states and observation (yx) as observation equation:

xp = Azp_1 + W
yr = Mxyp + 1y (4.1)

v, and 7 are state and measurement noises. A and M are state and observation
coefficients respectively. This type of modeling is generally referred to SSM. In SKF,
the states are estimated by several KFs with different state or observation equations
at each time instant. Meanwhile, a hidden discrete state variable called switch (s) is
considered, so according to Markov characteristics, the status of this state changes over
the time and indicates to the KF with the best state estimation performance. In general
structure of SKF', both state and observation equations depend on the switch variable
as follows:

xp = A(S)xr_1 + 1($)
Yy = M(s)xy + ri(s) (4:2)
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where I'(s) and R(s) are covariance matrices of 5 and r respectively which are related
to switch s. The inference and learning algorithms of SKF are fully described in [Mur-
phy, 1998|. In SKF, an EM algorithm is applied to estimate the parameters of the linear
models. The switching approach is used previously in other contexts such as tracking
meteorological features over the time [Manfredi et al., 2005] and in a computer vision
application for event detection and data collection at traffic intersections [Veeraragha-
van et al., 2005, Veeraraghavan et al., 2006|. In [Pavlovic et al., 1999, an approximate
Viterbi inference approach is proposed by defining a cost function based on KF parame-
ters. They applied their method on figure motion analysis with convincing results. This
algorithm is also applied in [Zheng and Hasegawa-Johnson, 2003| for segmentation of
vowels, nasal, frication and silence in an acoustic signal. Depending on SKF application
and the BN structure, switch may set on some of the continuous state variables rather
than all of them, so that unaffected states are simply estimated by standard KF algo-
rithm [Wu et al., 2003].In some other works where the dynamic that has generated the
observation is not specified, the switch is only allocated on observation equation [Wu
et al., 2004].

In this chapter, in order to model dynamic changes caused by AB occurrence in
ECG, we assume two models for normal and bradycardia dynamics. Two approaches are
also considered in this strategy and the results are compared with each other. The first
approach is based on a research proposed by [Sameni et al., 2007], an Extended Kalman
Filter (EKF) framework using McSharry’s dynamical model. Hence, the method is a
waveform based SEKF. This model uses the ECG and RR signals to include the HR
information as well as ECG intra-beat characteristics. The second approach is a R-
based SKF model, inspired from [Wu et al., 2004| by assigning the AR, dynamics to
each subsystem and using only RR signal as the observation.

The chapter is organized as follows. Section 4.2 provides relevant background on the
ECG dynamical model based on McSharry’s model and two algorithm EKF2 ( [Sameni
et al., 2007]) and EKF3 ( [Akhbari et al., 2012]). The approaches of [Murphy, 1998]
and |Wu et al., 2004| are presented in section 4.3. In section 4.4, we describe extensively
our contribution including two different SKF based methods: 1- a wave-based SEKF
and 2- a R-based SKF approaches for AB detection in real data.

4.2 ECG Dynamical Model

In this section, in order to be self-contained, a dynamical model of ECG and two EKF-
based algorithms which are proposed previously for ECG denoising are presented.

4.2.1 McSharry’s Differential Equations for ECG

Every heartbeat on an ECG record consists of finite number of characteristic waveforms
(typically the P wave, QRS complex and T wave), each of which can be easily modeled
by sum of Gaussian kernels. This idea is presented by |[McSharry et al., 2003| in
order to propose a nonlinear dynamic model for generating synthetic ECG. This model
consists of three differential equations in Cartesian coordinates whose solution generates
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a trajectory in 3D space around a circular limit cycle that upward and downward
deviations from the plane of the circle create waves like the waveforms of an ECG beat.

4.2.2 EKF2 Algorithm

The EKF2 algorithm introduced by [Sameni et al., 2007], includes the simplified discrete
form of McSharry’s model in cylindrical coordinate system as follows:

ok = (pr—1 + wrd)mod(2m)
Wi 2

A
b = Zp_1 — Z J 2 Ay, exp(— 2;02”) + (4.3)
ne{PQ.RST} " "

where Ay, = (pr_1 — 6,), @r is the phase of ECG signal, wy is angular velocity (pro-
portional to the inverse of the RR-interval), z; is the ECG signal considered as the
sum of some Gaussian functions and 7 is a random additive white zero-mean noise
that models the baseline wander. ¢ is the sampling period and a,, b, and 6,, are the
parameters of the Gaussian kernels (amplitude, angular spread, and location of the
Gaussian functions, respectively). A simple interpretation of this model is to map each
heartbeat over the time on a unit circle lying on XY plane in a way that the first and
last samples of a beat take phase —m and 7 respectively. Accordingly the R peak is
expected to be located around phase zero. Changing the parameters of Gaussian ker-
nels results in ECG generation with different morphology. The parameter wy, tunes the
HR of generated ECG and determines velocity of moving on unit circle. The proposed
differential equations can be integrated in KF model if we consider appropriate obser-
vations and relate them to the state variables. Eq.4.4 shows the observation equation
of EKF2 model:

D = i + 71% (4.4)
Zk = ZL + Tk
where 7, = [rix, 72| is the observation noise of the model. @y is the phase observation
and Zj represents the measured ECG signal. Since the state equation of this model is

nonlinear, EKF is applied for state estimation. Following the notation of Eq.4.1, the
state vector, state noise vector and observation noise vector are defined as:

Tk = [Pk, 2k
Vi = lap, -+ ar,bp, -+ by, Op, - Op, Wi, k] (4.5)
Y = [ék‘qu]

TE = [rlk,‘a/er]

The main application of EKF2 is denoising and compression of ECG signal [Sayadi
and Shamsollahi, 2008|.

4.2.3 EKF3 Algorithm

In the aforementioned algorithms, the angular velocity, wy, is one of the state noises.
However, it can also be considered as a state variable ( [Lin et al., 2011]). This is the
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main subject of EKF3 algorithm proposed by [Akhbari et al., 2012|. In this algorithm,
wy, 18 considered as the third state variable and an appropriate corresponding observation
is introduced. Due to the small changes of the distance between different waveforms
during several consecutive beats, a simple autoregressive (AR) model is used for angular
velocity as:

WE = Wr_1 + Bk (4.6)

where (. is a white zero-mean Gaussian noise with variance, a%, and represents the
uncertainty in angular velocity estimation. In this model, angular velocity observation,
Q, is obtained using RR signal and it is assumed to be almost constant during each
beat but may be contaminated by noise. Hence the corresponded observation equation
may be considered as = wy + 3.

4.3 SKF

According to Eq.4.2, a two-class classification problem (or an event detection) can be
stated in the form of a SKF model and the estimation of Markovian discrete state
practically performs the classification. A SKF algorithm includes two main issues. 1-
Training: estimation of the model parameters from labeled training data, 2-Inference:
estimation of state variables (Kalman continues states and Markov discrete state) from
observations. As discussed, the classification problem is solved by monitoring the dis-
crete state variable. In the following parts, in order to be self-contained, we review
the inference problem for general structure of SKF and parameter re-estimation of two
proposed SKF structures in ( [Murphy, 1998] and [Wu et al., 2004]) for AB detection.

4.3.1 State Estimation (Inference)

The inference problem of KF deals with finding aposteriori mean Iy = E{zg|y1.x}
that minimizes the mean square error E{(zy — 2%)?|y1.1}. For SKF, this can be sim-
ply achieved by taking into account the status of the switch. This statement can be
expanded as follows:

N

N
p(Trlyrr) = Zp(ﬁlm sk = ilyrr) = Z Kip(xilyrn, sk = 1)

i=1 i=1

N
= Z Kli Zgi‘zp(xkkyl:lm Sk = 1,81 = J)

=1 7j=1

N
- Z Z Ki'p(xr|yrik, sk =1, 5p-1 = J) (4.7)

=1 j=1

where K} = P(s = i|yi.1), gi'l = P(sp_1 = jlyrk, sx = i) and K}’ = K,igi'z = P(sp =
iy Sk—1 = Jly1.k) for i,7 =1,--- | N. Knowing that the system is in dynamics j and ¢ at
time k£ — 1 and k respectively and assuming that all the noises and the initial values are
Gaussian random values, p(xy|yi.k, Sk = ¢, Sxk—1 = Jj) is a Gaussian function, according
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to standard KF assumption. Hence we have:
p(@rlyn, sk = i, s6-1 = j) = N(a2, PI") (4.8)

where x?; = E{x|yik, sk = 1,8.—1 = j} and Pl = Cov{zk|y1.k, Sk = i, Sx—1 = j} and
the standard KF algorithm can be utilized for calculation of its mean and covariance.
According to Eq.(4.8) and the last expression of Eq.(4.7), p(zx|y1.x) is calculated by the
mixture of N? Gaussians. So, in order to calculate p(xy1|y1.x11), N® Gaussians should
be considered. Hence the number of Gaussians increases exponentially by the time.
The suggested solution in previously proposed SKFs is to approximate N? Gaussians
by N Gaussians at each step by considering p(zg|yix, sk = i) ~ N(z%, P{), where
rt = FE{xi|yik, sk = i} and P} = Cov{zy|y1k,sx = i}. Finally, the desired mixture
approximation for the aposteriori probability of the states are achieved as follows:

N
p(xk‘ylsk) = Z K,éN(.Z‘%, P;i) (49)
i=1

Another issue is to calculate the weights of Gaussian mixture. It is straightforward
to show K}’ can be given as follows:

Ji J
LiejiKy

Uy ,
D i1 ijl Ly ey,

K’ = (4.10)

where Lf: = p(yk|y1k—1, 8k = 1, 8k—1 = j), the likelihood of observation given states at
time k and k£ — 1, is calculated within the KF algorithm execution.

Therefore, the SKF algorithm based on the given interpretation can be summarized
in three stages defined properly in appendix as follows:

1-[z)', P, L") =FilteringKF(x)_,, Pl_,, Ai,Ti, My, R;)

2-[K7' Ki, g/ =StatesProbability(L1, cji, K _.)

3-[z%, P{] = Collapsing(z]', PI', K}, gilz)

where ...; = ...(sy = i) and the switching discrete state s is assumed to have a
first order Markov chain with matrix transition cj; = P(sy = i|sg_1 = j). First stage is
dedicated to perform the filtering based on standard KF algorithm. For evolution of KF
from time k — 1 to k, this three-step algorithm is executed N? times in order to assess
the probability of all possible transitions from i to j and calculate K}. Note that K
is a parameter whose monitoring gives us the result of inference of the switch variable.
During the collapsing step, N? Gaussian pdfs are approximated by N Gaussians.

4.3.2 Parameters Re-estimation (training)

In re-estimation, the parameters of the models are obtained during training phase. SKFs
parameter re-estimation can be set up in various forms according to the impact of the
switch on the state equation or observation equation or both. In the following parts,
we review the training procedure of two different SKF structures. These structures are
interesting for our proposed methods for early detection of AB.
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4.3.2.1 SKF1I

Let us consider a SKF whose the switch affects only on state equation and determines
which linear model should be used for state evolution at each time instant. Hence, the
model equations are given as follows:

xp = A(8)xr_1 + (8)

In practice, the parameters of the matrix of states (A;), covariance matrix of cor-
responding process noise (I';) and the transition matrix of the switch (C) are required
to be trained from the training data for executing the inference algorithm. In order
to estimate the unknown parameters of this SKF structure, first we consider the joint
probability of states zi.7, observations y;.7 and switch sy.7:

N

p({xrr, Y, sur}) = )p(xo|so) Hp Sk|Sk—1)P(Tk|Tr—1, sk)P(Yk|Tk) (4.12)
k=1

Then log-likelihood of the joint probability is given by:

T
1 . L . i
L =log(p{zvr, yur, s1r}) = —5 > {{(552 — Ay )T (), — Ay, )T + log [} K

1
+(yp — M) Ry, — Mai)T +log |R| + log CS,HS,C} + log(P(s9) P(x|s0))
(4.13)

The criterion we maximize is as follows:

arg max p({slzTaylzTaxl,T}) = arg max p(SlzT)p(-’ElzT\S1:T)P(?J1:T|$1:T)

RN isl4,Cji

= arg max p(sy.r)p(xrr|sir) (4.14)

i 14,C50

The details of the maximization process can be found in (Murphy 1998). We only
show closed-form solution for re-estimation as follows:

T PR
> o K2y
T i i
Y ko KT 7y
S Kizial — A E  Kigia
k=2 DLl i 2 =2 PNETETE—1
T i
> ko K

i =

Fi:

T i
_ 2= KY
o T—-1 7-;

k=1 5%

(4.15)

Cji

Note that the parameter M in observation equation, is known by considering the
relation between observation and state variables. R can be set by estimation of noise
covariance from the observation.
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4.3.2.2 SKF II

In the second SKF, the switch affects only the observation equation:

Ty = Axp_1 + W
Yr = M(8)xg + ri(s) (4.16)

In this structure all the model parameters (A, I', M;, R; and c¢;;) can be estimated

optimally. Considering the structure of the SKF, the optimization criterium based on
the joint probability of states, switch and observation is as (4.17) ( [Wu et al., 2004]):

arg A,F,Iz%%,cﬂ p({z1.7, St Y1r}) = arg Igarxp(xl .7) arg M{%%)’iﬂp(sl 7, Yyrr|Tir) (4.17)

First term is related to states which are continuous variables and its maximization
is straightforward by EM algorithm.

T
1
Ly=—5 > {(wr — Azp_)TH(ay — Az_y)T + log |T[} (4.18)

Taking the derivation of L; based on the parameters A and I', we have:

T T
= wal) O wmazl_) !
k=2 k=2
| Z T
ijka — AZwk_lxg (4.19)
k=2 k=2

Using second term, we can estimate parameters of observation equation and transi-
tion matrix of the switch which is a discrete variable. Therefore Baum-Welch algorithm
should be applied to estimate the transition matrix of the switch. This algorithm uses
expectation of the log likelihood for the discrete parameters estimation:

T
Z { Yp — Mixp) Ry, — Myzy,)T + log | R;| + log cskflsk}K,i (4.20)
k=1

l\DI»—

So we have

o E;{:z Ky}

Z 25:2 Kjxpaj

S hs Kyl — Miziy) (4.21)
K

Cji = —ngl i
1 K

R =
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4.4 Proposed Methodologies for AB detection

4.4.1 Waveform based SEKF model

In order to detect AB from normal beats in ECG, some modifications can be applied on
EKF3 algorithm to incorporate dynamical variations. In wave-based approach, we try
to employ inter-beat as well as intra-beat characteristics. This can be achieved using a
dynamical model for the waveforms of a beat. Inspired by existing studies, the famous
dynamical model of ECG beats suggested by McSharry is used. Hence, for normal
beats and those associated with bradycardia, two dynamic models are considered. At
this stage, we assumed that bradycardia complication does not change the morphology
of the waveforms; hence the properties of parameters of Gaussian kernels («o;, b; and
6;) which are considered as state noise variables during EKF2 and EKF3 algorithms
are constant. The only parameter that can be affected by bradycardia is the temporal
distance between the peaks of these waveforms. To characterize such phenomenon,
we take the main idea of EKF3 algorithm which gives a continuous state variable to
angular velocity (wy) which represents the speed of beat generation on the unit circle in
McSharry’s model. Fig 4.1 depicts two segments of synthesized ECG generated based
on McSharry’s model with various angular velocity. The parameters of the Gaussian
kernels are kept equal in these traces. As can be seen, the radial trajectories are equal,
whereas the temporal expansion of beats are infected by their angular velocity.

If wy is low, the generated beats elongate in time samples and vice versa. This
parameter was mainly applied as a noise with constant properties during a beat gen-
eration [Sayadi et al., 2010]. However, using EKF3 idea, we relax this parameter to
be assigned at each instant of algorithm evolution. The state variable representing wy
is added to the other state variables in EKF2 to form EKF3 state equations. Con-
sequently, any subtle changes in wy can be detected. In our proposed approach, a
two-value switch s is set on the state equation corresponding to wy, in order to change
it whenever the dynamic changes and to judge between normal and bradycardia con-
ditions. This switch indicates the most probable one which the observation may be
generated by. s is a discrete state and assumed to have a first order Markov chain with
matrix transition C' with ¢j; = P(s, = i|sy—1 = j). Note that .., = ...(s = ) can be
considered for all the parameters of SKF model (A, M, I" and R) which the switch is
allocated on them. The modified EKF3 is given as follows:

wr = A(s)wip—1 + Br(s)

¢r = (Pr—1 + wg—16)mod(27) (4.22)
QU Wg—1 Ap?
h=za— Y. 0 o Aen exp(=0) + i
ne{P,Q,R,S,T}

The observation can be related to the states of Eq.4.22 as the following equations:

Qk = Wk + Tk
Qp = Q. + T2 (4.23)
Ly = 2 + T3
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Figure 4.1: A benchmark on the effect of angular velocity in beat generation of ECG
using McSharry’s model. (a,c): the trajectory of beats around unite circle. (b,d):
temporal expansion of trajectories in (a) and (c¢). (b): Generated beats with angular
velocity of 5 rad/s. (d): Generated beats with angular velocity of 7 rad/s.

where 7, = [rix, ok, 3] is the measurement noise. Moreover, we define a physiological
envelope on the amplitude of the angular velocity corresponding to normal condition
(i.e. wg(s = 1)) that spans between the upper and lower ranges of )., defined as:

Qenv = ﬁnormal + 309 (424)

normal

where Qormar is the mean of the observation of angular velocity related to normal ECG
and its standard deviation is oq,_. .. deny is set by the training data. This constraint
is defined since, practically, the value of wy(s = 1) is nearly constant in normal beats.
In case of bradycardia, the value of angular velocity decreased due to beats elongation.
So wg(s = 1) is set to the nearest endpoint. Similarly, in normal circumstances, the
value of the state of angular velocity related to AB, wy(s = 2), is equal to the mean of
), during the intervals that an AB is observed in training data. As mentioned, due to
nonlinearity of the third equation in Eq.4.22, our proposed model is called as a SEKF.
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Following the notation of Eq.4.1, the state, observation and their corresponding noise
vectors are defined as:

T = (Wi Ok 2]
f}/k:[an bnenﬁk nk] nE{P,Q,R,S,T}
yr = [Qk Pr Zy] (4.25)

Ty = [le ok Tgk]

where I', the covariance matrix of states 7, which is a 17-dimensional matrix as we
have considered three parameters for five Gaussian kernels in addition to two additive
noises.

Since the second process equation is nonlinear, a linear approximation of Eq.4.22
near a desired point (Zy,7) is required for estimating the state vector according to
EKF algorithm. Linearization can be performed as follows:

tr = f(@p—1,7k, k) = f(@r-1, Vs k) + Gr(@p—1 — Tp—1) + Fi(ve — ) (4.26)

where f represents the nonlinear state evolution function. G} and F} are state lin-
earization coefficients which are given by:

_ 0f (@i, )

G,

|Ik—1:ik—178k:i,$k—1:j

01
Of (Br—1, 7k, k)
Fy = kaf;k . "Yk=’7k75k=i,5k71=j (4.27)
According to Eq.4.22 and Eq.4.27, we have:
Gr(2,1) =9 Gr(2,2) =1 Gr(2,3) =0
a, A(0,,)?
1) =— —A —
ol AG,)? AG?
Gi(3,2) = —0—J=1(1 - ( - ) Jexp(——2)  Gi(3,3) =1 (4.28)
b2 b2 2b2
F.(1,1)=1 Fr(1,2:17)=0 Fr(2,1;17) =0 Fr(3,1)=0
wl A, AG?
Fr(3,2:6) = —5’“2—2 exp(—;5")
wl_ AG, AG? —NA§?
Fp(3,7:11) = 26 ’“b; (1= 55 exp(——5")
_ _ Wty _ Aby _AQZ
Fr(3,12:16) =0 2 (1 8 ) exp( o0 )
F.(3,17) =1 M =1 (4.29)

where I3 is the 3-dimension identity matrix. Hence, the SEKF approach is comprised
of three stages : FilteringSEKF, StatesProbability and Collapsing (see appendices B),
the same algorithms as in 4.2 and 4.3 are used for training and inference procedures.
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Algorithm 4.2: Wave based: Training
Inputs: m Pg , initial values of A;, I';, M, R and C, i,j =1, 2.
Outputs: Tralned values of A;, I'; and C

1: repeat

2: fork=1,2,--- T do

3 Compute G and Fj from Eq. 4.27.

1 (7', P", L] =FilteringSEKF (x]_,, P]_,, A, Ti, M, R, Gy, )
5 (K K, gl StatesProbablhty(ij, i Ki_)

6: (%, Pi] =Collapsing(z)', ), K}, le)

7. end for

8 Calculate A;, I'; and C' using Eq. 4.15.

9: until Convergence

Algorithm 4.3: Wave based: Inference
Inputs: =)', PJ', A;, Iy, M, Rand C,i,j = 1,2.
Outputs: K}C,

1: for:=1,2,--- ,M do

2 for k=1,2,--- T do

3 Compute Gy and Fy from Eq. 4.27.

4 [xk , P,gz, Lﬂ} FllterlngSEKF(xk 1,P,§ A Ty MR, Gy, Fy,)
5: [K7' K}, g/"] =StatesProbability (L', ¢;s, KI_))

6 [z, P —Collapsmg(:vk,P,g’,K}w ﬂl)

7 end for

8: end for

9: Applying a threshold on K}

Initial values of our proposed SEKF model are set similarly to ( [Sameni et al., 2007])
while the unknown parameters of switching dynamics (i.e. A;, I'; and C) are updated
iteratively in the re-estimation procedure. Therefore, the function FilteringSEKF (cf
appendix B.1), is performed followed by StatesProbability and Collapsing functions over
training data. Then using Eq. 4.15, we obtain the parameters of SEKF. Note that the
parameter M in observation equation, is known by considering the relation between
observation and state variables. R can be set by estimation of noise covariance from
the observation. The re-estimation repeats itself till convergence.

After the training procedure to obtain the parameters of each model, we used the
inference procedure over each test signal to achieve the probability of the dynamic ¢
for each time instants (Kj,i = 1,2). If K} > K}, the observation at time k is likely
generated by dynamic 1. Moreover, since bradycardia is an event happening in a beat
not in a time instant, it would be more accurate to relate each beat to a dynamic.
Therefore, if more than £% of the temporal samples of an ECG beat are related to the



80 chapter4

18-

o(s=2)
o(s=1)
Q=1/RR

0 50 100 150 200 250
Time(s)

Figure 4.4: Estimated angular velocity (state variable controlled by switch) and the
observation of the angular velocity for wave-based method.

dynamic of bradycardia, it is supposed that the AB begins from the first sample of that
beat. The estimated state variable corresponding to angular velocity of wave-based
model is illustrated in Fig.6.1. Physiological envelope (Eq. 4.24) restricts the range of
this state variable value (w}.).

Physiologically speaking, the elongation of a beat does not occur only at the end
of the beat and it is accompanied by increase of temporal distances between different
waveforms. Hence, we try to give an intra beat interpretation to angular velocity
using dynamical model to detect the changes not only in the R-R distances but also in
temporal distance between the waveforms peaks in a beat. We also investigated two
methods in order to compute local mode on the label of consecutive samples.

In the first method, mode on window (MOW), we calculated the mode of labels fall
in a window moving through the signal as the SEKF algorithm is applied on a sample
basis. The length of the moving window is set to the average length of ECG beats in
training data set. If more than £% of the temporal samples of an ECG beat are labeled
as AB, it is supposed that the AB begins from the first sample of that beat. £ can be
in range of 0 t0 100%. Whereas in the second method, mode on beat (MOB), we can
consider the label of samples of a beat and calculate their mode. Note that in MOB
method, the label of the samples in a beat located in the beginning of AB event is
determined at the end of the beat. Therefore, even with all samples labeled as AB, the
detection delay of an AB event is one heart beat. There is an ambiguity in the borders
of a beat, so it is required to choose a logic for defining the beginning and ending points.
We have used Sameni’s definition [Sameni et al., 2007| where the beginning of a beat
is considered on a point placed in a equal distance between the corresponding R peak
and the previous one.
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4.4.2 R-based SKF model

The alternative and simple method that we propose for AB detection, consists of a SKF
structure where the switch affects just the observation equation. In this structure, the
observation includes the RR signals obtained from raw ECG. The normal RR signals
are modeled by an AR process. A bradycardia episode commits a rise in RR signal
and can also be independently fitted by an AR model which differs from the AR model
corresponding to normal HR. Normal and bradycardia AR models whose parameters
are obtained during training phase configure the state equation of this SKF. Using
higher order AR models would be more accurate, but with more complexity. Therefore,
we restrict our study to the first order AR models. Each of the first order AR model
is equivalent to a 1-D SSM. The states of these two models evolve independently and
estimate the amplitude of RR based on their given dynamic. Hence, z;, and xy, are RR
signals corresponding to normal and AB respectively resulting from two independent
AR models. They generate various K} and K? which are used to classify the samples
of RR signal into one of the normal and bradycardia classes. It can be concluded that
the approach employs just the inter beat information since it employs RR signal as the
only observation. The state and observation equations are given as:

v = [r1,  ®9,]T = Avxalry, w2 T+
yp = M(s)[x1, w2, |7 + 71(s) (4.30)

where y; is the calculated RR from recorded ECG that can be considered as a noisy
version of z1, or z3,. A is diagonal matrix. In this structure all the model parameters
(A, T', M;, R; and c¢;;) can be estimated optimally. If we consider the structure of the
SKF, the optimization criterion based on the joint probability of states, switch and
observation is as Eq. 4.17 which is proposed by [Wu et al., 2004]. We perform the
training of parameters A,I', M;, R; and c;; using Eq.4.19 and 4.21.

The training and inference of this method are performed according to algorithms 4.5
and 4.6 using FilteringKF which is defined in appendices and includes the standard KF
algorithm.

Algorithm 4.5: R-based: Training
Inputs: z', PJ', initial values of A, ', M;, R; and C, i,j = 1, 2.
Outputs: Trained values of A, I', M;, R; and C

1: repeat

2: fork=1,2,---,T do

3 [z}, P, L] =FilteringKF («)_,, P!_,, A,T, M;, R;)

4 (K7 Ki. g)"] =StatesProbability(L7’, ¢;s, KI_,)

5: %, P{] =Collapsing (], P, K,i,gi'i)

6: end for

7:  Calculate A and I" using Eq. 4.19 and M;, R; and C using Eq. 4.21.
8: until Convergence




82 chapter4

Algorithm 4.6: R-based: Inference
Inputs: z', PJ', A, T, M;, R; and C, i,j = 1,2.
Outputs: K},

1: for:=1,2,--- ,M do

2. fork=12---,Tdo 4 .

3: [z, P!", L7'] =FilteringKF (z7_,, P! |, A, T, M;, R;)
4: (K7 K, gi'i] —=StatesProbability (L7, ¢;s, Ki_,)

5: [z, P :Collapsing(x?:7 P,gi, Kj, gilz)

6: end for

7: end for

8: Applying a threshold on K}

4.5 Conclusion

In this chapter, the algorithms which are previously proposed in literature and can be
described based on dynamical and EKF modeling of ECG beat generation system, are
reviewed. Then, the SKF inference is remarked followed by considering two different
switching structure and their relevant parameters estimation in training phase. Finally,
having the vital tools for construction of the novel methods to detect AB events, we
introduce a wave-based and R-based methods. The former, according to its name,
directly processes the morphology of the wave-forms and defines a state variable for
the term angular velocity. The second method, fits readily two different AR models to
the normal and bradycardia segments and evaluate the probability of each class for the
inference.



Chapter 5

Datasets and Evaluation Metrics

5.1 Introduction

According to the previous chapters, we can divide the proposed methods in this thesis
into Markovian and Switching approaches where the main interest is to suggest methods
which take into account the dynamic of time series in the detection of pathophysiological
events. For evaluation of the methods in both approaches, a real database consisting
of raw ECG and three feature signals extracted directly from the ECGs is used. It
includes AB episodes in preterm neonates. These features were previously exploited
from the raw ECG in past studies conducted in our laboratory whose complete descrip-
tion can be found in |Altuve, 2011|. The database is used for on-line detection of AB
episodes; however in various configuration in Markovian and Switching approaches. A
part of database (Data 1) which includes just the feature signals are applied in Marko-
vian approach, while their corresponding raw ECG segments together with one of the
feature signals (Data 2) are employed to evaluate the Switching methods. Moreover,
in Markovian approach, FitzHugh-Nagumo model [FitzHugh, 1961] is used to generate
simulated bivariate signals. This model is particularly suited to our problem because
its state variables have heterogeneous dynamics which can be altered by adjusting a
parameter. For the simulated database, two studies have been performed and evalu-
ated: i) three-channel classification of segments of multivariate time series including
two classes corresponding to different dynamics of disturbance and a class for rest con-
dition, ii) the on-line detection of disturbances. The methods which are proposed in
Switching approach are specified by the physiological characteristics and present algo-
rithms to solve directly the AB detection issue. Hence, their evaluation using simulated
data gives no information. In the following parts, the simulated and real databases
are detailed. Then, the evaluation procedure of Markovian and Switching methods are
described.
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Figure 5.1: v (blue line) versus r (red line) trace.

5.2 Markovian Approach

5.2.1 Simulated database

The simulated data is generated with the FitzZHugh-Nagumo model, defined by the
following differential equations:

1
2—1}23(0—51}3—#7“—#])
dr 1

where the variables r and v are set to their "rest" values (fixed point) and disturbances
are injected to the system by changing the value of [ from 0 to 1. Fig. 5.2 shows
different dimensions of simulated data (v versus r). The dynamics of the system depend
on the value of parameter a, which is assumed in this test to be a random variable
with a uniform probability density function a; ~ U(0.58,0.62) for the first class and
as ~ U(0.78,0.82) for the second class. The impact of changing parameter a in the
simulated data is illustrated in Fig. 5.2. The resemblance between the time series in
class 1 and class 2 makes the classification a difficult issue. An appropriate classifier
for such problem needs to correctly differentiate the dynamics of these time series and
not only their instantaneous amplitudes. In order to evaluate methods of Markovian
approach, 200 sequences of 400s duration at a sampling frequency of 10 Hz are generated
with a disturbance introduced during 300-305s (Fig. 5.2(a)). 40 segments of the interval
300 — 310s are used for training (cf Fig. 5.2(b)) and the rest of them for evaluation.

Concerning on-line detection, train data is similar to that used for the classification
case. However, the test data contain the whole 400s-duration signals and are processed



5.2. Markovian Approach 85

1 Il 1 1 1 1 1
301 302 303 304 305 306 307 308 309 310
b time(s)

Figure 5.2: a: Simulated signals obtained from the FitzHugh-Nagumo model (state
variables v and r) with a disturbance applied in 300-305(s) without noise. b: focusing
on v dimension with 5 db additive noise, in the rest condition and during activations
with different dynamics (a; and ag). Note that different dynamics are obtained when
using parameters a; and as, while the amplitude of the responses is similar.

with 10 s sample by sample sliding window. Finally, a white Gaussian noise was added
to achieve SNR value of 5 dB to all the database.

5.2.2 Real database: Data 1

For real data analysis, we use a database consisting of 236, 1-lead ECG segments ac-
quired from 32 preterm infants, hospitalized in the NICU at the University Hospital
of Rennes, France [Altuve et al., 2011al. ECG signals were acquired at 400Hz. This
observational study was approved by the ethical committee of the University Hospital
of Rennes and a written consent was obtained from the parents of each infant. All data
were anonymized at acquisition. As a summary, the algorithm for data preparation
comprises: i) preprocessing of raw ECG for discarding of base line drift and effect of
50/60 Hz of electricity. ii) detecting the ECG beats from the raw ECG signals using
Pan and Tompkins method [Pan and Tompkins, 1985|, iii) extracting beats: each beat
was detected and extracted from the ECG in a defined time window around the QRS
complex. It was then readjusted to beat prototypes that represent different types of
morphologies. Prototype beats were created by average of the latest beats detected
in 10 seconds ago. Only beats which had a normalized cross-correlation greater than
0.96 were used to update prototype beats. iv) segmenting each detected beat by a
wavelet-based algorithm and v) constructing the RR time series (successive differences
R waves), RAMP (differences between the peak of the R wave and the isoelectric level)
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Figure 5.3: Approximation of the RR time series (shown by circles) for an episode
of bradycardia, a sigmoid function (red continuous curve). The black dotted curve
represents the derivation of the sigmoid function and the vertical line corresponds to
annotation of the bradycardia onset.

and QRSd (the difference between the end and the beginning of the QRS complex) for
each subject in the database [Altuve, 2011]. All the needed parameters for preprocess-
ing, ECG segmentation and time series generation were optimized using evolutionary
analysis proposed in [Altuve et al., 2011b, Hernandez et al., 2012|. All the obtained
time series which we call them as feature signals, were uniformly oversampled at the
frequency of 10 Hz, using well-known interpolation techniques to get sufficient tempo-
ral resolution for the application of Markovian models. In addition, the amplitude of
RAMP series were reduced by dividing on the maximum absolute value found in the
first two minutes.

In this study, the onset of bradycardia were annotated manually by a clinician,
but before that, a curve fitting procedure has been proposed to locate, with the best
reproducibility, the beginning of the bradycardia. A sigmoid function in Eq. 5.2 is used
to approximate the RR time series around the onset of bradycardia:

B

)=A+ ——F——F
1) +1—exp%

(5.2)

The beginning of the bradycardia is the point where the first derivative of the
sigmoid function is greater than 1. An example of approximating the RR time series is
shown Fig. 5.3. A total of 148 sets of time series are integrated in the database from
32 preterm infants (each consisting of the RR series, Ramp and QRSd). This database
has 233 episodes of bradycardia which have been annotated with 21.48 + 16.07 seconds
duration.

Fig. 5.4 depicts the change of these features before, during and after an apnea-
bradycardia episode. Two datasets were constructed for the learning phase, consisting of
segments of 7 s duration: LS1: composed of 30 segments taken randomly and beginning
with a bradycardia event. LS2: consisting of 30 segments taken randomly from the
normal parts of the series (without any apnea-bradycardia event). The length of these
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Figure 5.4: Example of time series extracted from test data. The onset of the apnea-
bradycardia event is shown by dashed grey line.

segments (7 s) corresponds to the average time measured from the beginning of the
bradycardia to the peak RR value within the bradycardia episodes [Altuve et al., 2011a].
After learning procedure, the evaluation of the trained models for detecting the onset of
bradycardia is applied with a sliding window of size T = 7 s. The test dataset includes
40 sets of RR-RAMP-QRSd time-series including mostly normal activity and one or
more apnea-bradycardia events.

In real data, since the RAMP data is modulated by respiration activities [Haskova
et al., 2013b]|, the effect of apnea will first appear in the RAMP feature. We apply a
synchronization time delay (7), whose possible values are observed around 4.5 s. The
best value of 7 is investigated and reported in chapter 6.

5.2.3 Evaluation of Markovian approach

We evaluate the performance of a detector using the most common metrics found in
the literature. To express how successfully a detector recognizes events without missing
them, sensitivity is used. Likewise, specificity measures how exclusively it does not
detect a wrong event.

SEN = TP/(TP + FN)
SPC =TN/(TN + FP)

where TP, FP, TN and F'N denote the number of true positives, false positives,
true negatives and false negatives, respectively which are counted over the samples of
observations of test data. False positive rate error can also be defined as 1 — SPC'. The



88 chapter5

Beginning of AB End ot AB

] 1 | 1 |

1
1 1
0 20 40 60 80 100 : 120 140 : 160 180
. " 1 1
Time (s) ! '
T T T T T : T T : T
1 1
1 1
1 1 i
=) 1 1
. 2 1] 1 1
= il
3]
3
5]
g o
=
= _
[}
1 1 -
1 | I | | h | | : |
0 20 40 60 80 100 T 120 140 160 180
1 1
Time (s) : i
: ‘
T T T T T T T T T T
1 1
1 1
. : ) T
:‘ 1 1
@] 1 ] -
: 1 1
153 1 1
15} 1 1 =
41—)' ) 1 1
e FT i 1P ' i
'-.,«: _{—) s
0 1 1
1 1
1 1
1 1
1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180
Time (s)

Figure 5.5: Method of claculation of TP, FFP, TN and F'N in detection scenario in
order to

accuracy can also be quantified as:
AC =(TP+TN)/(N + P) (5.5)

where N = TN+ FN and P = TP+ FP. Moreover, time delay (TD) is another crucial
metric for the overall system performance evaluation in the case of on-line detection of
a desired event, and is defined as the elapsing time between the detected onset and the
annotated onset of the event. The definition of the metrics is illustrated in Fig. 5.5.

In an on-line detection, performance is further analyzed by determining the value of
threshold on total likelihoods obtained by Eq. (3.140) and are assessed from a Receiver
Operating Characteristic (ROC) curves, based on the values of SEN and SPC. ROC
is traced using different threshold values in Eq. (3.140). The point with optimum
detection performance and related threshold are chosen using a criterion called perfect
detection (PD) defined as:

PD = argmax{SEN x SPC}. (5.6)
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Table 5.1: Confusion table.

Classification
class1 --- class K
class 1 T11 cee T1K
Reference
class K | xx1 TKK

In the cross-validation approach, the ROC curves are obtained by averaging the
SENs and SPCs achieved by an identical threshold. Furthermore, three other metrics
are also calculated: i- the distance to PD defined as /(1 — SEN)2 + (1 — SPC)?, ii-
AUC of the averaged ROC curve and iii- Positive Windows (PW) which is defined
as the ratio of the number of detections occurring after the annotated onset, over
the number of detected AB episodes, for all executions. PW illustrates the ability
of an algorithm in AB prediction. Lower values of PW (below 50%) is an indication
of the detection performance that can be reached by a given detection method, when
configured optimally (optimal threshold). Similarly, lower values of this metric indicates
a better performance.

The classification performance is evaluated using confusion tables, by calculating
the SEN, SPC and AC. A confusion table is constructed by setting the rows for
reference labels and columns for labels obtained by the classification algorithm, as
shown in table 5.1. The SEN and SPC which show the ability of the method in
finding the event of interest and in separating this event from others respectively, can
be determined using the Eq.s 5.7 for class £ and according to table 5.1.

Tk
i=1 Lki
K K
SPC — Zizl,i;ék Zj:l,j;ék Lij (5.7)
K K :
Zi:l,i;ék Zj:l Lij
In a classification task, the accuracy (AC) is defined as Eq. 5.8:
K
AC = — izt T (5.8)

— K K
Dict Zj:l Lij

In order to cross-validate the results, the procedure of detection is repeated in 5
rounds, each of which involves a hold-out cross-validating and calculation of metrics.
In each round, 20% of the data used for training and the rest remains for test data.
Each segment includes at least an AB episode; therefore, various number of ABs are
used for training in each round.
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5.3 Switching approach

5.3.1 Real database: Data 2

As discussed, this data is derived from the same raw ECGs of Data 1 which is used in
evaluation of Markovain models; however, to ensure the consistency of the results on
various subjects and reducing the number of normal temporal samples, the full-length
of the records were divided in to segments with lower duration. As discussed, the
wave-based approach requires ECG, phase and angular velocity signals to be observed.
Data 1 includes RR, QRSd and RAMP feature signals. Therefore, RR signal is used in
order to generate the angular velocity observation using Eq. 5.9:

2 f

) = RR(1)

(5.9)

where f is the sampling frequency of the RR signal. Phase observation is constructed
according to EKF2 algorithm [Sameni et al., 2007]. Generally, 105 groups of observation
consisting of ECG, RR and angular velocity with 250 seconds duration and 400 Hz
sampling rate construct the Data 2. This database is used to study the performance of
the proposed wave-based method. For R-based approach, we used only the RR feature
signal.

5.3.2 Evaluation of Switching approach

For the evaluation of this approach in detection issue, quantitative results are reported
using common metrics: SEN and SPC, defined as in 5.2.3. In R-based method, the
extracted RR signal is interpolated to reach 400 Hz sampling rate to be matched with
annotations. Then, in order to have AR models with more convenient parameters and
avoiding the algorithm to be overtrained, tedious and time-consuming, it is downsam-
pled to 10 Hz. The metric, TD, is also defined in this approach to show the speed of an
algorithm to detect an AB. It is calculated similarly as the elapsing time between the
annotated onset of occurring AB and the onset which the algorithm determines. The
wave-based method is expected to find the onset by 2.5 ms time resolution while R-
based method has 0.1 s time resolution according to their sampling rate. The accuracy
of detection in terms of events (AC.vent) is also computed as the ratio of detected AB
episodes over the total number of AB episodes.

Similar to the Markovian approaches, we perform cross-validation. All the methods
are executed 5 times with different records in the train and test sets. Therefore, the
mean and variance over all executions are reported.

5.4 Conclusion

In this chapter, the real database which is acquired from preterm neonates monitored
in NICU and suffer from apnea associated with prematurity, was characterized. This
data was employed in both Markovian and Switching approaches. In addition, in former
approach, a simulated data which had a similar dynamics as AB events, was introduced
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in order to study the performance of the proposed frameworks. After describing the
data applied in each approach, we demonstrated our strategy for the evaluation issue.
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Chapter 6

Experimental Results

6.1 Introduction

Throughout the previous chapters, we have already justified and explained our interest
to study the dynamic of time series in the context of a pathophysiological event de-
tection, AB, from the ECG signal recorded from preterm infants. In this chapter, the
performance of the proposed algorithms presented in chapters 3 and 4 are studied in
two main parts: 1- Markovian and 2- Switching approaches.

In Markovain approach, the methods are evaluated for classification and detection
scenarios on simulated and for detection scenario on real signals. In classification, each
segment of test data is classified in to one of the classes including dynamics and rest
condition. An off-line procedure is used for classification task where the specific time
of the events arrival is not important. Detection is performed using a specific sliding
procedure which aims to estimate the precise time of events of interest incident. The
algorithms are based on analyzing the likelihoods of observation given the models of
normal condition and the dynamics. Experiments on simulated data are presented in
sections 6.2.1 and 6.2.2 which demonstrate the feasibility of our proposed CHMM and
CHSMM and optimize their structure for the analysis of the dynamic variables. The
simulated bivariate signals which includes pattern looks like an AB episode are also
used for evaluation. Section 6.2.3 presents the application of the proposed frameworks
on real multivariate time series. They consists of the features extraction from the ECG
of preterm neonates, including RR, RAMP and QRSd, as described in chapter 5 of
this manuscript. The evaluation is performed in on-line detection of AB events. In this
approach, total likelihood signals are calculated and assessed as indices whose alteration
can indicate to AB incidence.

In part two, the performance of Switching approach including R-based and wave-
based methods is presented using the same real database which is employed in Marko-
vian methods, however, the raw ECG data and RR feature signals are only used. Qual-
itative and quantitative results are presented in section 6.3. During the evolution of
SKF algorihtm in both structures, K} and K7 (defined in Eq. 4.10) are computed. They
can be considered as indices that by their monitoring during inference, we can receive
meaningful information about the performance of each model.
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6.2 Evaluation of Markovian approach

In this section, we proceed to evaluate the performance of models proposed in chapter 3
on synthetic signals, and then, examine them over real signals. The procedure for gener-
ating synthetic noisy signals based on FitzHugh-Nagumo model is described in section
5.2.1. Bivariate time series, with two slightly different dynamics are produced using
this model by modifying one of the parameters. In addition, an amplitude reduction
procedure was applied to the synthesized time series in order to make the subtraction
of instantaneous values of the likelihood corresponding to each class easy and feasible.
The process of classification and detection in this type of signals are particularly diffi-
cult since although the dynamics are different, however, their range of amplitude have
overlap. The same detectin procedure is applied for AB detection on a real database. In
all parts, the performance of the proposed frameworks are compared to HMM and some
of the existing generalizations. The performance evaluation of Markovian approach is
carried out in four following experiments:

1- Studies on simulated data:

- 3-class classification of simulated data: The objective here is to evaluate the ability
of these models to classify segments of observation based on their dynamics. The results
have confirmed the superiority of coupling models.

- Detection a specific event based on the dynamics of observations: The interest
here is to assess the impact of changes on the values of sensitivity, specificity and time
delay of detection, whose simulated signals dynamics are finely modified by changing
the model parameters of FitzHugh-Nagumo model.

2- Studies on real data:

- Detection of AB episodes based on only the dynamics of observations: The purpose
of this experiment is to firstly analyze the impact of different values of synchronization
time delay, because as reported in chapter 5.2.2, the impact of apnea appears imme-
diately in the RAMP signal while apnea influences the RR and QRSd features couple
of seconds later. Furthermore, in this experiment, we intend to finally illustrate the
performance of our proposed frameworks in AB detection in preterm infants comparing
to other identical existing models.

6.2.1 Classification on synthetic data

A classification is performed on simulated data, by defining three classes: ay, as and
rest condition whose performance is assessed by contingency tables and calculating the
accuracy per class. We further assume that the number of states of the two competing
models is equal and is more than that of the model corresponding to rest condition.
The SEN, SPC and AC metrics are calculated for various numbers of states to find
their optimum number of states. Classification performance is presented in table 6.1,
including the results of univariate observation of HMM using just dimension v. All
results are obtained with optimal state numbers. According to this table, coupling
methods are more efficient in distinguishing the two dynamics from each other compared
with HMMs. Although our proposed CHMM apparently shows superior performance
in terms of sensitivity and accuracy to separate dynamics related to a; and as, it fails
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Table 6.1: Comparison of the cross-validation results corresponding to Markovian meth-
ods for optimal state number for dynamics classification

Method Class | f states SEN (%) SPC(%) AC(%)
ay 7 55.63 + 37.30 | 91.56 4+ 18.69 79.584+10.13
HMM ao 7 83.13+37.39 77.50+18.63 79.38+ 9.96
(v) rest 3 99.38+0.77 10040 99.79+0.26
aq 3 86.25+5.23 90.63+2.30 89.174+1.59
HMM as 3 81.25+4.59 92.94+2.52 89.04+1.55
(v/1) rest 2 99.6340.34 1000 99.880.11
aq 7 67.00 + 12.67 84.50 + 3.81 78.67 &+ 4.74
HSMM ao 7 69.00 £ 7.62 80.50 £ 6.82 76.67 & 4.64
(v) rest 3 94.00 £ 3.79 100 £ 0 98.00 £ 1.26
aq 3 100+£0 74.444+1.26 82.9640.84
HSMM ao 3 48.8842.52 100+£0 82.9640.84
(v/r) rest 2 100+0 100+0 100+0
aq 5 89.56 £ 31.49 96.75 & 8.65 94.35 £ 11.26
CHMM as 5 99.69 £ 0.53 93.25 &£ 17.80 | 95.40 £ 11.85
(v/1) rest 3 90.75 £ 16.99 100 £ 0 96.92 + 5.66
our aq 5 96.04 £ 9.69 97.19 & 4.04 96.81 & 3.43
CHMM Qs ) 93.98 £ 6.26 95.38 & 4.49 95.58 £ 4.00
(v/1) rest 3 95.13 £ 2.98 100 = 0 98.38 £ 0.99
our a1 3 72.13 £ 10.71 92.06 + 3.33 85.42 + 2.32
CHSMM as 3 84.13 + 6.65 86.06 + 5.36 85.42 & 2.32
(v/1) rest 2 100 £ 0 100 = 0 100 = 0

to detect dynamics from rest condition accurately. Fig. 6.1 illustrates the source of
the problem. This figure depicts two dimensions of an observation, as well as their
fitted Gaussian pdfs, each of which corresponds to a state m of channel ¢ of a model
(b (0f)). Focusing on dark circles in the figure, we can observe that for a few samples
of the rest condition, the probability of observation generated by one of the dynamic
models is more than its probability in rest model. This problem can be suppressed by
increasing the number of states in rest model, which leads to slow execution rate. So
we accept some errors in classifying rest class in order to separate dynamics from each
other accurately and rapidly. Whereas, the results show that CHSMM is capable of
separating the dynamics from rest condition accurately (100% in all metrics), although
its poor performance in classification of the dynamics. Similar performance can be
observed in results of multivariate HSMM. We can conclude that coupling in HSMM
perfectly separates dynamics from rest condition, however, coupling in HMM is able
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Figure 6.1: Examples of simulated responses for state variables of the FitzHugh-Nagumo
model (observations) v (b) and r (d), and the fitted Gaussian pdf b,,(of) obtained for
each state (a and c, respectively) after the training phase. m different Gaussians can
be observed in each case, each one characterizing one state of the corresponding model.
In a and c traces of this figure, black, light grey and dashed dark grey kernels belong
to states of rest, a; and ay models respectively. Circles show the source of error around
rest conditions.

to sense subtle differences of characteristics between two dynamics. D(c) is considered
equal to 5 for simulated data analysis.

6.2.2 Detection on synthetic data

For on-line detection, performance of proposed methods is further analyzed by deter-
mining the optimum value of sensitivity and specificity using ROC curves which are
traced based on the values of sensitivity, specificity for various values of threshold on
total likelihood. The detection of dynamic a; is accomplished with first training three
models corresponding to a;, as and rest. Fig.s 6.2 and 6.3 depict the relation of states to
the range of observation amplitude which is obtained after training of the three models
using CHMM and CHSMM respectively in disturbance detection task. In these fig-
ures, all signals used for training are plotted. Moreover, the states are shown according
to their mean and variance of their Gaussian kernel. These characteristics determine
intervals in the observation range of amplitude which are related to the states. In an-
other word, each state can be represented by a mean and a variance (we assume just
one Gaussian kernel for simplification of such a complex issue as coupling.) which is
interpreted as an origin in the range of amplitudes of observation.

Fig. 6.4 and 6.5 illustrate the CHMM based processing of likelihoods obtained ac-
cording to Eq.s (3.137) and (3.139). Fig. 6.4(a,b) shows 2-D observations generated by
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Figure 6.2: The state allocation in range of amplitude of training data in simulated
disturbance detection using CHMM model. The optimal number of states for rest and
disturbance classes are 2 and 5 respectively. (a) States of rest model. (b) Training
data of rest condition including first 10 seconds of 2-D observation. (c) States of a4
model. (d) Training data of a; dynamic including 300-310 seconds of 2-D observation.
(e) States of az model. (f) Training data of as dynamic including 300-310 seconds of

2-D observation.



98

chapter6

Hange ot amplitude

Range of amplitude

Range of amplitude

1500

1000

500

-500

-1000

-1500

1500

1000

500

-500

-1000

-1500
02 04 06 08

Probability

1500

1000

500

-500

-1000

-1500

02 04 06 08
Probability

ol
T
°
=)
£
or £
g
B
43
o

02 04 06 08
Probability

a dynamic training data

a, dynamic training data

(e)

1500

1000 -

-500

-1000 -

-1500
0

1500

1000

I3
=3
S

-500

-1000

1 2 3 4 5 6 7 8 9 10
Time(s)

-1500
300

1500 —

1000

33
=}
=)

-500

-1000

-1500

301 302 303 305 308 309 310

Time(s)

306

300

! ! !
307 308 309

(f)

1 1
305 306
Time(s)

! ! ! !
301 302 303 304 310

Figure 6.3: The state allocation in range of amplitude of training data in simulated
disturbance detection using CHSMM model. The optimal number of states for rest and
disturbance classes are 2 and 5 respectively. (a) States of rest model. (b) Training
data of rest condition including first 10 seconds of 2-D observation. (c) States of a,
model. (d) Training data of a; dynamic including 300-310 seconds of 2-D observation.
(e) States of az model. (f) Training data of ay dynamic including 300-310 seconds of
2-D observation.
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a; and ay dynamics. The tree next rows of traces (Fig. 6.4(c-h)) depict [, the likeli-
hood of channel ¢ resulted by kth model. The summations of likelihoods over channels
and II}7,  are shown in Fig. 6.5(a-b) and Fig. 6.5(c-f) respectively. The process of a,
dynamic detection is accomplished by first detecting the disturbance from rest condi-

tion using a threshold on lli;la}l{rm}. If a disturbance is detected, then by using second

threshold on llf(ila];{ﬂ}, we are able to determine which dynamic (a; or az) has generated
the observation. The same traces using CHSMM framework are illustrated in Fig. 6.6
and Fig. 6.7. As can be seen in Fig. 6.5(e-f) and 6.7(e-f), by choosing an appropriate
threshold, the observations generated by dynamics a; and as can be successfully sep-
. {a1}{rest} . {a1}{a2} . .
arated. The alterations of Il, comparing to ll, are enough intensive for

detection of disturbance, as in Fig. 6.5(c-d) and Fig. 6.7(c-d).

The detection of disturbances generated by dynamic as are not analyzed since it does
not provide any additional information. Similar to classification, we assume the same
number of states for dynamic models while the model corresponding to rest condition
has less states. D(c) is considered equal to 5 for simulated data analysis. The results
corresponding to the optimal number of states based on BIC algorithm are reported
in table 6.2 where all the metrics are related to the optimal threshold value (PD) of
the corresponding ROC. The results of the proposed approaches are compared to con-
ventional HMM-based detection techniques (HMM and HSMM). Furthermore, they are
compared with a CHMM framework previously proposed by Rezek |Rezek et al., 2000).
An interesting result happens while using more than one dimension of observation, as
can be observed, multivariate HMM achieves better SEN and SPC than univariate
HMM. Moreover, coupling the dimensions leads to better results than even multivari-
ate HMM because in CHMM, each dimension is processed by a Markov chain and the
coupling between them can extract the information more efficiently than using these
dimensions in multivariate way in a single HMM. The SEN and SPC' of our proposed
CHMM reached 94.32% and 99.34% respectively and the time delay is 0.98 £ 0.16 s
which are superior than even CHMM of Rezek. According to the results of this table,
the proposed CHSMM demonstrates marginally better performance in terms of SEN
(96.67%), SPC (98.98%) and mean time delay (1.58 s), comparing to univariate and
multivariate HSMM which implies that the coupling approach is able to perform far
better than even multidimensional observation as discussed about the comparison of
HMM and CHMM. Furthermore, although the proposed CHSMM achieves the best
sensitivity and its specificity is nearly the same as the others, its mean time delay value
is higher than methods like (univariate/multivariate) HMM and CHMM. This fact can
be seen in methods based on HSMM and it is likely due to the effect of parameter d
which allows the model to rest in a state for several samples; and hence the model has
more inertia, whereas more dynamical characteristics are considered.

6.2.3 Detection of AB on real data

For real data, only the issue concerning the detection of AB is studied. As discussed in
part 5.2.2, the real data used for Markovian approach include three time series (feature
signals) extracted from ECG signal: RAMP, RR and QRSd. In order to analyze such
data, we construct LS1 and LS2 training data for obtaining the parameters of the
models corresponding to normal and bradycardia episodes and calculate the metrics on
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Table 6.2: Comparison of the cross-validation results corresponding to Markovian meth-
ods for optimal state number for dynamic a; detection

Method £ states SEN(%) SPC(%) mean std

delay(s) delay(s)

HMM (v) 2-5-5 61.384+2.65 | 89.73+2.41 | 0.404 0.02 | 1.0140.41

HMM (v/r) 2-4-4 86.61+£6.56 | 85.31£3.78 | 0.24£0.21 | 1.05£0.19

HSMM (v) 3-5-5 90.78+2.39 | 98.81+£0.36 | 2.84£0.71 | 0.11£0.04
HSMM (v/r) 3-5-5 94.99£0.02 | 99.45+0.01 | 1.59£0.01 | 0.0671+£0.01

CHMM (v/r) 2-4-4 94.38+ 0.09 | 99.4240.01 | 1.7840.03 | 0.07£0.04

Our CHMM (v/r) 2-5-5 94.4940.50 | 99.344+0.12 | 0.98£0.21 | 0.16%0.15

Our CHSMM (v/r) 2-5-5 96.67+0.35 | 98.98£1.45 | 1.58£0.18 | 1.06£0.49

Table 6.3: Summary of the results of proposed CHMM using various synchronization
time delays for RAMP.

Synchronization || SEN(%) | SPC(%) mean delay(s)
Delay (s)
3 92.82 91.67 0.95+2.99
3.5 89.34 91.25 1.12+3.55
4 93.45 97.25 -0.15£2.09
4.5 92.38 85.84 -0.5945.39

40 test data. This process is repeated 5 times for cross-validation performed according
to hold-out method. For applying CHMM and CHSMM models in the method described
in part 3.4, there exists some parameters that require to be optimized. Furthermore,
different combination of feature signals are evaluated to achieve the best results in each
tasks.

Among the three time series, RAMP data is modulated by respiration activities [Haskova
et al., 2013b]. In other word, the effect of apnea will first appear in the RAMP feature.
Hence, there exists an asynchronization between RAMP and the rest of the feature
signals which can be parameterized by the synchronization time delay (7). The delay
values are observed between 3 — 4.5 s [Poets, 2010]; however, it has to be chosen opti-
mally. For CHMM, the performance of the detection in terms of different values of 7 are
reported in table 6.3. This study is performed using RR and RAMP features while con-
sidering 5 states for both models (bradycardia and normal). Similar study is reported
in table 6.4 for CHSMM. The results are obtained using RR and RAMP features while
considering 2 states for both models (bradycardia and normal). we have used the syn-
chronization time delay (7) for RAMP signal in all the following results, whose optimal
values are observed about 4 s and 4.5 s for CHMM and CHSMM respectively.

The performance for the bradycardia detection and the detection time delays of the



6.2. Evaluation of Markovian approach 105

Table 6.4: Summary of the results of proposed CHSMM using various synchronization
time delays for RAMP.

Synchronization || SEN(%) | SPC(%) mean delay(s)
Delay (s)
3 83.58 85.03 0.56+4.28
3.9 92.26 91.08 1.24+3.88
4 88.41 89.94 1.03£5.14
4.5 93.03 93.35 0.31+3.22

proposed models comparing to other models are detailed in table 6.5. This comparisons
are reported in various combinations of the three features: (RR-QRSd), (RR-RAMP)
and (RR-RAMP-QRSd). The results of the proposed models comparing to other HMM
based models using different combination of feature signals are illustrated in Fig.s 6.8,
6.9 and 6.10 for CHMM and in Fig.s 6.11, 6.12 and 6.13 for CHSMM. In these figures,
trace (a) illustrates the feature signals used as observations. Traces (b,c) and (d,e) are
the likelihoods of channels corresponding to models and their summations respectively.
(b) and (d) are related to bradycardia and (c¢) and (e) are for normal model. The total
likelihoods are shown in trace (f) in all of these figures.

In the cross-validation approach, the reported metrics of these tables are related to
the PD point of the ROC curves obtained by averaging the SENs and SPC's achieved
by an identical threshold. Furthermore, three other metrics (distance to PD, AUC and
PW) previously defined in section 5.2.3 are also calculated and reported in table 6.5.
The optimum number of states per model is also reported in this table.

The best results of our proposed CHMM in terms of AUC and time delay criteria
are achieved by (RR-RAMP-QRSd) combination, for which the average SEN and SPC
reach 95.74% and 91.88% respectively. This method has an average time delay of —0.59
s with average standard deviation (std) of 2.79 s. Its PW shows that more than the half
of the detections occur earlier than the clinically-annotated onset of bradycardia which
implies that AB events are better predicted with the proposed CHMM. In Fig. 6.14, the
ROC curves traced according to the resulted SEN and SPC of the proposed models and
other HMM based models are shown. In addition, the time delay curve in terms of SPC'
is also depicted for better comparison. As illustrated in this figure, the coupling of all of
the three features provides higher detection rates. Moreover, significant improvement
can be observed in all metrics except SPC by comparing our proposed three-channel
CHMM with its two-channel configuration.

Similarly, the best (except in TD) results of our proposed CHSMM are achieved
using (RR-RAMP-QRSd) combination, for which the average value over 5 rounds of
cross-validation of SEN and SPC reach 94.87% and 96.52% respectively and the av-
erage time delay is reported as 0.73 s with average std of 2.45 s. Furthermore, its
superiority is obvious, especially in terms of AUC and the distance to PD. The value
PW in CHSMM shows that more than the half of the detections occur earlier than the
clinically-annotated onset of AB which implies that AB events are predicted using such
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(f)

likelihoods obtained after performing CHMM inference on two 2-D

observations including RR and RAMP feature signals. (a) 2-D observation. Red line
shows the bradycardia incidence. (b,c) Likelihoods obtained for each channel corre-
sponding to bradycardia and normal respectively. (d,e) Summation of likelihoods over
channels for each model. (f) Total Likelihood where the threshold is applied.
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Figure 6.9: The likelihoods obtained after performing CHMM inference on two 2-D ob-
servations including RR and QRSd feature signals. (a) 2-D observation. Red line shows
the bradycardia incidence. (b,c) Likelihoods obtained for each channel corresponding
to bradycardia and normal respectively. (d,e) Summation of likelihoods over channels
for each model. (f) Total Likelihood where the threshold is applied.
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Figure 6.10: The likelihoods obtained after performing CHMM inference on two 3-D
observations including RR, QRSd and RAMP feature signals. (a) 3-D observation.
Red line shows the bradycardia incidence. (b,c) Likelihoods obtained for each channel
corresponding to bradycardia and normal respectively. (d,e) Summation of likelihoods
over channels for each model. (f) Total Likelihood where the threshold is applied.
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Figure 6.11: The likelihoods obtained after performing CHSMM inference on two 2-D
observations including RR and RAMP feature signals. (a) 2-D observation. Red line
shows the bradycardia incidence. (b,c) Likelihoods obtained for each channel corre-
sponding to bradycardia and normal respectively. (d,e) Summation of likelihoods over
channels for each model. (f) Total Likelihood where the threshold is applied.
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Figure 6.12: The likelihoods obtained after performing CHSMM inference on two 2-D
observations including RR and QRSd feature signals. (a) 2-D observation. Red line
shows the bradycardia incidence. (b,c) Likelihoods obtained for each channel corre-
sponding to bradycardia and normal respectively. (d,e) Summation of likelihoods over
channels for each model. (f) Total Likelihood where the threshold is applied.
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Figure 6.13: The likelihoods obtained after performing CHSMM inference on two 3-
D observations including RR, QRSd and RAMP feature signals. (a) 3-D observation.
Red line shows the bradycardia incidence. (b,c) Likelihoods obtained for each channel
corresponding to bradycardia and normal respectively. (d,e) Summation of likelihoods
over channels for each model. (f) Total Likelihood where the threshold is applied.
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Table 6.5: Summary of the cross-validation results of proposed CHMM compared with other frameworks using different configura-
tions of features

Features | Method f states SEN(%) SPC(%) mean std delay(s) | PW(%)| AUC| Distance to
delay(s) PD
RR HMM 6 85.82 £ 6.81 | 88.34 + 2.21 0.77 = 0.97 2.14 £0.98 64.30 | 0.94 0.18
RAMP | HSMM 3 93.74 £ 0.40 | 91.86 = 0.23 0.56 = 0.07 1.49 £ 0.03 60.00 | 0.95 0.10
CHMM 4 87.59 £ 0.18 | 88.05 = 0.24 1.10 £ 0.03 1.67 £ 0.03 69.23 | 0.94 0.18
Our CHMM Y 87.64 =094 | 92.13 £+ 6.44 0.59 £ 0.01 3.11 £ 1.94 47.29 | 0.95 0.15
Our CHSMM 3 95.99 £ 0.31 | 93.84 £ 0.24 | -1.11 £ 0.04 2.56 £ 0.03 35.00 | 0.97 0.07
RR HMM 2 82.28 + 16.87 | 85.32 £ 3.78 1.81 £ 0.84 4.10 £+ 4.09 73.72 | 0.89 0.23
QRSd | HSMM Y 84.74 + 0.36 91.33 +£0.18 2.93 £ 0.03 3.08+ 0.03 87.50 | 0.93 0.18
CHMM 2 84.99 £+ 0.26 | 94.80 = 0.51 3.43 £ 0.01 2.89 £ 0.03 90.00 | 0.95 0.17
Our CHMM Y 87.04 £ 3.78 | 95.31 £ 1.36 2.51 £0.93 3.02 £ 0.18 83.22 | 0.93 0.14
Our CHSMM 5 89.97 £ 0.21 | 92.99 = 0.31 1.85 = 0.03 3.14 £ 0.04 78.95 | 0.95 0.12
RR HMM 2 91.02 £ 0.64 | 93.47 £ 0.08 6.55 £ 0.69 2.29 £0.79 63.13 | 0.97 0.11
RAMP | HSMM 7 86.83 £+ 25.62 | 93.77 + 4.44 1.10 £ 2.74 1.64 £ 1.18 44.10 | 0.96 0.16
QRSd | CHMM 3 84.42 £ 0.27 | 92.21 £ 0.32 7.27 £ 0.02 4.26 = 0.02 60.53 | 0.94 0.18
Our CHMM 2 95.74 £0.82 | 91.88 £ 0.31 | -0.59 £ 0.21 2.79 £ 0.06 44.23 | 0.98 0.09
Our CHSMM 4 94.87 + 3.18 | 96.52 + 0.64 0.73 £ 0.60 2.45 £ 0.69 35.00 | 0.98 0.06
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configuration of features. Like CHMM, it can be seen that the (RR-RAMP-QRSd)
combination demonstrates the best average performance. (RR-RAMP) combination
performs marginally better than the (RR-QRSd), but still underperforms the three-
channel combination except in average time delay which is reported as a negative value

and shows that the AB episodes are mostly detected sooner than their occurrence in
combination of (RR-RAMP).

As illustrated in Fig. 6.14, CHMM performs nearly better comparing to HMM and
HSMM frameworks except in (RR-RAMP) combination. It seems that HSMM is able
to learn some characteristics of the dynamics which are not considered by HMM and
even CHMM. The idea of integrating the HSMM approach in CHSMM arises from
comparison of HSMM and CHMM performances. As can be seen in Fig. 6.14, the pro-
posed CHSMM method demonstrates the best average performance in all combination
of features except SPC in (RR-QRSd) and time delay in (RR-RAMP-QRSd). It can
be totally concluded that better results are reported in the three-channel configuration
than the two-channels, since we can observe the improvement in all metrics. The opti-
mum number of states per model is also reported in table 6.5 and D(c) is set equal to
10.

6.3 Evaluation of switching approaches

Implementation of the wave-based and R-based approaches include a training phase
primarily for estimation of unknown parameters of the model and a test phase to eval-
uate the performance of proposed procedure in terms of metrics. Then, quantitative
results in terms of SEN, SPC, T'D and AC.vent of detection are presented. Finally,
the best proposed method is compared with existing methods in AB detection context.

6.3.1 Qualitative results of wave-based performance

Fig.6.15 depicts an example of AB detection of wave-based method in a segment. In
this figure, a RR signal of the test data is shown in Fig. 6.15(a). Moreover, K} is
illustrated in Fig.6.15(b). As depicted in this figure, K} of wave-based method has many
fluctuations. Hence, a mode calculation procedure is employed, which is implemented
by two methods: MOW and MOB. In MOW, first a mode calculation is employed,
hence the local changes in labels which are determined by comparing the K} with K7,
are decreased. Then, the decision on the labels of beat is made using the parameter &.
The duration of moving window is 360 samples and the value of £ is optimized using the
ROC curve. Each point on ROC curve represents a value for sensitivity and specificity
achieved by a specific value for . Fig. 6.16(a) shows ROC curve obtained by altering
the value of £. The marked point is the perfect detection (PD) point as introduced in
Eq. (5.6).

According to Fig. 6.16(a), the parameter £ is chosen equal to 85% for the best
detection of MOW using train-test data. The corresponding time delay plot is also
depicted in Fig. 6.16(b). In MOB, the result of mode calculation directly leads to the
label determination of the corresponding beat.
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Figure 6.15: The performance of wave-based frameworks. a: RR signal. b: K} for i =
1,2. c and d: The real annotations and labels determined by the algorithm with MOB
and MOW processing respectively. Labels 0 and 1 indicate normal and bradycardia
respectively.

The annotations determined by an expert and the label decided by the wave-based
algorithm with MOB method are shown in Fig. 6.15(c). Similarly, Fig. 6.15(d) il-
lustrates the labels decided by this algorithm with MOW method as well as those
determined by an expert.

6.3.2 An example of R-based approach performance

The performance of R-based method on the same example segment is shown in Fig. 6.17.
As can be seen, since each sample of the feature RR is extracted from a beat, no
fluctuation can be observed in K (Fig. 6.17(b)), thus unlike wave-based method, mode
calculation is not required. The labels obtained by R-based models and the expert
annotations are illustrated in Fig. 6.17(c).

6.3.3 Quantitative results

The metrics for the proposed approaches over test data calculated by cross-validation
are reported in tabel 6.6. According to table 6.6, MOB comparing with MOW is
found to be more reliable to detect AB event. This shows that the assumption used
for defining the beginning and ending of the beats in ECG is significant. In addition,
calculation of mode over beats mainly reduces the amount of computation comparing
to MOW in which the mode is computed sample by sample. The results show the
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Figure 6.16: Searching for the best value of £ which is the precentages of the samples in
a beat labeled as AB event by our wave-based MOW method. The results are achieved
on train-test data. a: ROC curve (SEN vs. 1-SPC). b: Time delay of detection vs.
1-SPC'. PD is marked by an square in each plot.

Table 6.6: Proposed Wave-based (MOW and MOB) and R-based methods performance
evaluation using cross-validation. Accuracy is computed over the average number of
events detected correctly. The rest of the metrics are in terms of samples.

’ method H AC H SEN \ SPC \ mean 1D (s) \ std T'D(s) ‘
MOW || 99.2940.40 || 94.51£0.35 | 92.68+0.30 1.78+0.52 1.77+0.53
MOB 99.1140.73 || 94.7440.69 | 94.17£0.87 0.35£0.13 2.1240.29

R-based | 99.1340.02 || 90.3545.46 | 88.59+11.28  1.80+0.89 1.9440.43

ability of wave-based and R-based methods to detect the AB occurrence accurately.
However, wave-based methods reflect better detection performance, although they are
more complicated. Moreover, they are capable of detecting the AB nearly faster than
R-based method.

The average values of SEN and SPC using MOB are 94.74% and 94.17% respec-
tively. The low average time delay in this method, 0.35£2.12, is achieved by searching
for AB sample by sample in SEKF algorithm with MOB postprocessing and intro-
duces this approach as a fast detector. Whereas, in R-based detector, processing of the
RR signal looses the intra-beat information and higher average value for time delay,
1.8041.94, is reported.

It can be seen that the wave-based MOB demonstrates the best average performance.
MOW performs marginally better than the R-based, but still underperforms the MOB
approach while the AC.vent of all methods are more than 99%.

It should be noted that in wave-based detectors, the average standard deviation
(std) of time delay are larger than its mean, which implies that in some cases, these
detector predict the occurring of AB since its onset is reported prior to the annotation
determined by the expert. Moreover the reported value of time delay is the average
of all obtained values consisting of the prediction with negative time delays and the
detection cases with positive time delays.
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Figure 6.17: The performance of R-based frameworks. a: RR signal. b: Kj fori =1, 2.
c: The real annotations and labels determined by the algorithm. Labels 0 and 1 indicate
normal and bradycardia respectively.

6.3.4 Comparing MOB with other existing methods

In order to compare the proposed methods with other benchmarks, we have studied the
previous methods on our database for AB detection in preterm infants. Furthermore,
the conventional threhsolding has been tested. In this simple method, the value of
threshold is determined on train data and the evaluation is performed over test data.
The reported results are based on R peak detection (Pan and Tompkins 1985) and RR
signal extraction (the same algorithm used in proposed methods), together with a fixed
hard thresholding strategy. For performance evaluation, Altuve et al. (2011) used 148
RR series (series duration = 26.25+11.37 minutes) with 233 bradycardia episodes. They
employed 48 series for training and left the rest for test. We have used the same records;
however, to ensure the consistency of the results on various subjects and reducing the
number of normal temporal samples, the full-length of the records were divided in to
105 segments with 250 s duration with the same total number of AB episodes. The
whole procedure was repeated 5 times over the training data consisting of the 20% of
selected records, each time using the same initial parameters.

The average SEN and SPC of the AB detection for different methods are depicted
in table 6.7. For HSMM and HMM methods, two values for each metric are reported,
the first one is the value reported in [Altuve et al., 2015|, and the second one (shown by
* in the table 6.7) is obtained by our implementation of the corresponding algorithm.
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Table 6.7: Comparing the best results with other methods

method SEN SPC mean T'D (s) std TD (s)
our work MOB 94.74+0.69 94.17£0.87 0.35£0.13 2.12£0.29
Altuve 2014 ~ HSMM 88.66+1.72 92.87+0.86 1.59£0.24 3.61£0.30
* 88.46+1.16 93.57£1.14 2.10+0.66 2.26+0.81
Altuve 2014 ~ HMM 86.52+£3.96 92.27+1.77 1.61+0.43 3.74£0.32
* 89.06£1.08 92.2840.71 1.59+0.36 1.284+0.17
Masoudi 2013 CHMM 84.92+0.26 94.17+0.51 2.324+0.01 4.82£0.03
- Thresholding 87.98+0.88 84.46+1.42 2.7140.12 2.07£0.17

* The results are obtained based on [Altuve et al., 2015] and by our implementation
to reconstruct raw results.

The minor differences observed between these two results are due to small differences
in implementation (for instance in optimum number of states in the models and the
cross-validation procedure). It can be seen that the wave-based MOB demonstrates
the best average performance in lower ratio of the number of records in training over
those in test procedures. Furthermore, its superiority is obvious, especially in terms of
average time delay, where it can detects AB far faster than the others. The thresholding
method finds the AB episodes based on the amplitude of observation and according to
table 6.7, it has weaknesses in time delay and the precision of detection, while other
methods learn the dynamic rather than depending on the amplitude of observation.

Fig. 6.18 is illustrated in order to visually compare the repeatability of the results of
table 6.7. It shows five values for each metric resulted from the cross-validation rounds.
The values corresponding to HSMM and HMM are obtained from our implementation.
Moreover, lower quartile, median and upper quartile values of the results are included.
As depicted in Fig. 6.18, the CHMM method proposed by Masoudi et al. demonstrates
lower std among the under studied methods. In this method, the QRS complex duration
is also employed as the second feature beside RR signal; hence, it might be resulted in
low variance in metrics. However, it still takes more time to detect AB. While, MOB
shows reasonable std and mostly the best average results.

6.4 Conclusion

In this chapter, the results of the evaluation of the proposed methods in both Markovian
and Switching approaches were presented. For Markovian approach, three scenarios
based on the proposed models were studied which include: classification for simulated
data, detection for simulated data and AB detection for real data. The results in
this approach were compared with those of other existing HMM based models. For
Switching approach, the methods which are established specifically for AB detection
were evaluated. Finally, obtained results were compared with other existing methods
presented for AB detection.

It is interesting to compare the results of the two proposed approaches. Table
6.8 illustrates the best results of these methods. As can be observed from this table,
CHSMM shown the best precision in AB detection whereas CHMM had the lowest TD
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Figure 6.18: The comparison of wave-based MOB performance with existing methods
showing the lower quartile, median and upper quartile values. The raw data are illus-
trated by red crosses. a: sensitivity. b: specificity. c: mean of time delay d: std of time

delay.

comparing to others.

Table 6.8: Comparison of the bests results of Markovian and Switching approaches in

AB detection.

method SEN | SPC | meanTD (s) | std TD(s) |
CHMM 95.74+0.82 | 91.88+0.31 -0.59=+0.21 2.79£0.06
CHSMM 94.87£3.18 | 96.52+0.64 0.73%0.60 2.45%0.69
MOB 94.74£0.69 | 94.17£0.87 0.35%+0.13 2.12+0.29
R-based 90.35£5.46 | 88.59+£11.28  1.80+0.89 1.94+0.43
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Chapter 7

Discussions, Conclusions and
Perspectives

In this thesis, we proposed several methods for on-line detection of event of interest.
These methods include two Markovian models (CHSMM and CHMM) evaluated in de-
tection of a specific disturbance in simulated data and AB episodes in real data set
consisting of three different feature signals extracted from raw ECG and two Switching
algorithms to detect AB episodes from raw ECG and RR feature signal. According to
existing methods proposed in our laboratory, [Altuve et al., 2015], HSMM was previ-
ously introduced as a powerful model for learning the dynamics of our real data. This
thesis suggests to involve the concept of coupling in HSMM framework. However, we
could not maintain a meaningful binding between them unless the coupling is firstly
studied in HMM context. Moreover, CHMM and CHSMM as two generalizations of
HMM were previously proposed in [Brand, 1997, Rezek et al., 2000] and [Natarajan
and Nevatia, 2007a| respectively. Hence, due to the lack of simplicity and other prob-
lems like higher orders of complexity and overflow issue in these models, we began with
CHMM to propose a novel coupling framework based on HMM. Then, it was generalized
in CHSMM as a combination of HSMM and coupling. In order to reach our goals, we
have used several assumptions to simplify the solutions and achieve FB recursions for
each model. Moreover, we demonstrate a re-estimation approach based on ML criterion
to train the parameters of each model. In this chapter, we first discuss the results given
in chapter 6 and make conclusions. We then present some ideas for future works.

7.1 Discussions and Conclusions on Markovian ap-
proaches

7.1.1 Experiments for 3-class classification over simulated database

In part 6.2.1, we first examined the proposed CHMM and CHSMM frameworks in a
classification scenario in the context of disturbance detection in simulated database.
The disturbances are generated by two distinct dynamics caused by changing the sta-
tistical probabilities of a parameter in Fitzhugh-Nagumo model. Since, the patterns of
dynamics are not completely different, their separation can be a complex issue. How-
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ever, experimental results showed the efficiency of the proposed CHMM in solving the
separation of dynamics from each other. Whereas, it fails to detect disturbances from
rest condition. In contrast with CHMM framework, the proposed CHSMM is com-
pletely successful in detection of disturbances, although it underperforms CHMM in
separation of the dynamic separation.

7.1.2 Experiments for on-line detection of a dynamic over sim-
ulated database

In the second part of our study, we examined the efficiency of the proposed frameworks
for on-line detection of a typical disturbance with specific dynamic in simulated data.
To this end, we compared the training procedure of the two proposed framework in
terms of their state characteristics illustrated by Gaussian kernels. Accordingly, each
state is related to an interval in the range of amplitude of the observations used in train-
ing dataset. Totally, in terms of sensitivity and specificity, the proposed CHMM and
CHSMM surpass HMM, HSMM and CHMM in disturbance detection. However, com-
paring to each other, CHMM detects faster than CHSMM. After the proposed CHMM,
the methods based on CHSMM, CHMM and multivariate HSMM produce similar re-
sults in terms of time delay. Surprisingly, HMM in both univariate and multivariate
approaches shows the lowest time delay, whereas does not work precisely in detection
issue. Although the results of CHSMM in terms of time delay are not the best, it has
acceptable result in terms of specificity.

The first noticeable conclusion from this set of experiments is that coupling approach
can enhance the degree of learning the dynamics characteristics. Secondly, they show
that the HSMM based methods including CHSMM and univariate and multivariate
HSMM frameworks can not detect disturbances as fast as the HMM based frameworks.
But, in terms of sensitivity and specificity, they have acceptable results. Even it can be
concluded that the characteristics of dynamics can be learn more accurately in semi-
Markovian models.

Another remark that should be considered is the levels of total likelihoods obtained
by comparing models corresponding to dynamics a; and as. In a scenario, the alteration
of these likelihoods for two disturbances generated by the two different dynamics are
compared to each other using proposed CHMM and CHSMM. For both of the frame-
works, there exists highlighted contrast between the two total likelihoods. Hence, the
disturbance separation can be performed perfectly by applying suitable threshold. It is
clear that the total likelihoods computed by comparing models for dynamic a; and rest
show a significant rises around disturbance incident. Consequently, by using a simple
thresholding, the disturbance detection issue can be solved appropriately. It should
also be noted that all the above-mentioned results were obtained for optimal number
of state which are obtained by BIC method.
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7.1.3 Experiments for on-line detection of AB episodes in real
data

In the third part of our study, we examined the efficiency of the proposed CHMM
and CHSMM frameworks by establishing coupling between RR and RAMP feature
signals. However, the results was poor. This was expected since the effect of apnea
appears in RAMP signal right after the apnea incident, whereas in RR signal, apnea
impacts are observable a few seconds later. We verified this claim by using the manually
tuned synchronization time delay to temporally align the alterations induced by apnea
in RAMP signal. It is observed that the performance of these methods considerably
increases by using this information.

The results obtained for real data were nearly similar to simulated results. The
results are prepared for three combination of the three feature signals: 1- RR-RAMP
2- RR-QRSd and 3- RR-QRSd-RAMP. For those combination including RAMP, the
suitable values of synchronization time delay are considered. Using combination 1, the
CHSMM and HSMM methods surpass the other methods for even lower number of
states. However, CHSMM gives better results than even HSMM especially in terms of
time delay, specificity and distance to PD. The reported time delay in HMM, HSMM
and proposed CHMM are positively low, but not better than the time delay of CHSMM
which has a negative value. The negative time delay coming along with PW proves that
most of the AB episodes are predicted as the detected onsets are prior to the annotated
onsets. Note that the proposed CHMM performs slightly better than the CHMM pro-
posed by Rezek in terms of the metrics, however it underperforms comparing to HSMM.
The inspiring idea of CHSMM framework proposal arose from this result, in order to
combine the power of HSMM and CHMM to achieve better detection performance.

For the second combination, the coupling frameworks surpass the other methods
in terms of sensitivity, specificity and distance to PD. After the coupling frameworks,
HSMM gives better results than HMM. Whereas, the time delay reported for HMM is
the best which is marginally the same as time delay of CHSMM. The values reported for
PW declare that by using such combination, the prediction of AB is likely to be more
difficult comparing to the first combination. These experimental results prove that there
exists a significant coupling between RR and QRSd features, but the information about
the characteristics of AB episodes prior to their annotated onsets is low. Accordingly,
all the time delays are higher than those achieved in first combination.

For the third combination including all the feature signals, the proposed coupling
frameworks surpass the other methods especially in terms of distance to PD. However,
the CHSMM demonstrates superior performance in specificity and sensitivity. Whereas,
similar to the results of simulated data, the proposed CHMM is the fastest method with
a negative time delay.

In summary, CHSMM has the lowest distance to PD in all the combinations. Among
the CHSMM results, the best PD is achieved using all the feature signals as 3-channel
observation. Moreover, CHSMM appropriately has the lowest time delay while using
first combination. PW and AUC has the lowest and highest values respectively in all
combinations using CHSMM framework. The recursive structure of the frameworks
based on the nature of standard HMM and sample by sample windowing process makes
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the algorithm computationally tractable, and suitable for on-line applications. More-
over, the computational cost of our proposed FB algorithm in CHSMM is O(TM®)
which is comparable with the CHSMM proposed by Natarajan [Natarajan and Neva-
tia, 2007b] (O(C?MT)). In CHMM, the computational cost is O(T M%) comparing to
the CHMM proposed by Rezek (O(TM?“)). These findings show that our suggestion to
use the conditional definitions for FB parameters and establishment of their correspond-
ing recursions assuming the simplification in Eq. 3.62 for the coupling of observation in
HMM context, results in lower complexity and more speed in implementation. Hence,
such a complex issue as coupling is simplified logically.

7.2 Discussion and Conclusion on Switching approaches

In this work, the main goal is to use SKF for AB detection. Therefore, we proposed
two SKF-based models where in one approach ECG signal is utilized as an observation
while, in other approach, RR series is employed. In EKF framework which is previously
used in different applications like denoising or compression, McSharry’s model is used
in order to model ECG signal as a combination of finite number of Gaussian kernels
and establish a set of state equations of KF. The performance of this model is eligible if
the characteristics of ECG has slight alterations. Hence, when an arrhythmia like AB
happens, the parameters of relevant model is totally different from normal situation.
Therefore, if we intend to detect AB, it is convenient to integrate two EKF models
for normal and AB in the form of a SKF and monitor the probability of discrete state
variable corresponding to switch (K7) as a detector.

On the other hand, we suggest a R-based method based on SKF structure proposed
in [Wu et al., 2004] which includes two independent linear AR models. The models
provide a state equation whose states are the RR signal corresponding to normal and
AB. The observation is the calculated RR which can be considered as a noisy version
of state variables. The switch indicates to the state variable of one of the models to be
used in observation equation.

The SKF algorithm is comprised of several KF, each of which includes the model pa-
rameters related to a dynamic. Each filter is able to adapt with different morphologies
and temporal nonstationarities since the variance of the observation noise defines the
degree of reliability of an observation. This determines a bound of how much tracking
the observation interferes in estimation of state variables. However, in case of powerful
noises in observation or dynamic alteration, the information that KF obtains from its
model is expected to be poor and it decreases the probability of observation to be gener-
ated by such model. SKF quantifies this probability and refers to it as the probability
of a switch conditions. Compared to the R-based detection scheme, the wave-based
model provides a better detection performance, especially in finding bradycardia events
without missing them.

The application of HMM-based approaches had been previously reported [Altuve
et al., 2011b, Masoudi et al., 2013, Altuve et al., 2015|. The major drawback of such
methods is that each beat is represented by finite number of features which results
in methods using only the inter-beat information like our R-based method. However,
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the wave-based technique does not depend on the specific features and instead uses
a dynamic state space representation for adaptive signal tracking sample by sample.
Moreover, unlike the EKF that depends on covariance of measurement noise in the
case of nonstationarities, the wave-based method evaluates the performance of different
EKF and uses the most probable one to match the state variables to the observation.
Another point of interest is time delay improvement for wave-based model, that ensures
an early detection of bradycardia which is an important factor for the algorithm of a
monitoring device of NICU. A simple thresholding approach spends a couple of seconds
to detect a rise in RR signal and it mainly uses the amplitude, yet the proposed methods
are expected to learn the dynamic and to detect the change in observation earlier with
better precisian. The results show that our proposed wave-based method is capable of
detecting AB faster than the other methods like [Masoudi et al., 2013, Altuve et al.,
2015].

7.3 Discussions and Conclusions on comparing Marko-
vian and Switching approaches

Comparing all the best results achieved by the proposed methods in Markovian and
Switching approaches, we can make interesting conclusions. CHSMM approach shows
superior performance in precision of detection. After CHSMM, wave-based method
comparing to CHMM achieves better results. Whereas, CHMM is able to detect (pre-
dict) faster than the others methods. After CHMM, wave-based method has the lowest
value for TD. Although, R-based method does not outperform comparing to others,
however, the obtained results are considerable according to its simple structure. To-
tally, Markovian approach is more successful than the Switching approach.

7.4 Future works

As a future work, we can study the clinical usage of the proposed methods on a large
number of cases, for AB detection. We can also study more complicated scenarios
in subjects with more complications than just apnea. Moreover, since the proposed
CHMM and CHSMM approaches are completely generic, we plan to apply them to
other clinical applications such as adult apnea event detection, using specific datasets
and coupling different cardiorespiratory signals.

As another extension to this work, we can improve properties of resting parameter
in CHSMM, for instance defining one of the famous statistical function as its pdf.
Moreover, such study can be performed on the pdf of states. Instead of Gaussian
kernels, we can employ more than one kernel or use any other pdfs.

In this thesis, the proposed frameworks are evaluated for AB detection. It seems
interesting to employ them in any other fields of researches like studying the connectivity
or coupling between different features. For example, the proposed frameworks are ready
to fit to the dynamic spacial connectivity of the brain signals.
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Future works in Switching approaches include incorporating AR parameter esti-
mation methods instead of ML approach for training procedure in both proposed ap-
proaches. In wave-based, we can use other dynamical models for ECG waveforms |Ay-
atollahi et al., 2005, Das and Maharatna, 2013|. Other feature signals (like duration
and the amplitude of QRS complex) rather than RR signal can be extracted and then,
an SKF model similar to R-based approach can be used for processing and AB detec-
tion. Furthermore, we can also use multidimensional observation including RR signal
and other features. Higher orders for AR models may result in better detection perfor-
mance although they make the algorithm more complex.
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A.1 An assumption in Markovian approach

For better understanding, consider Fig. 3.2, which depicts a minor loop of the two
coupled chains at times t — 1, ¢ and ¢t + 1. We simplify the predicted joint probability
of states P(v}(my),v2(ma)|o1s_1) by P(vi(mi)|oni—1) X P(v2(ma)|o1s—1) ie. vi(my)
and v?(my) are conditionally independent. We generalize it to more than 2 channels as
follows:

P(of(ma), - ,vf (me)loi—) = [ [ Plof(me)lore—1) (A1)

c=1

This simplification helps us to prove other statements like Eq. (3.54) and Eq. (3.58).
The following proofs are presented in two channels for simplicity.

A.2 Joint probability estimation of channels observa-
tions

During the parameters definition and for obtaining more compact and simpler relation
for forward and backward parameters, we need to estimate the joint probability of ob-
servations P (o}, 02|01.4-1) (Eq. (3.58)). One estimation is to use mean-field assumption
of joint probability of the two observations, i.e. the joint probability is calculated by
the product of the probability of each variable, which means they are conditionally
independent [Ye et al., 2011].

P(0y,0701:4-1) = P(0;|01:4-1) x P(0f]01:4-1) (A.2)

Other estimations are uniform and weighted. In uniform case, the joint probability
P(o},0%|014-1) is calculated by the summation of the conditional probability of each
observation, P(o}|o1.4—1) + P(0?|01.4-1), which seems to be incorrect from the weighted
point of view as follows.

Weighted case is a more general form. The joint probability of the observations of
channels can be expressed as follows [Ye et al., 2011]:

P<0%70?‘01:t—1) = P(O%‘O?aOlzt—l)P(OﬂOl:t—l)

P(o;,0;|o14-1) = P(0}|o;, 01.4-1) P(07|01:4-1)
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so, it is correct to have

P(0;,07]01:4-1) = [0.5P(0;]0}, 01:4—1] P(0;|01:4-1)
+[0.5P (0?0}, 01.4—1)] P(0?|01:¢-1)
= w1P(0%|01:t71) + w2P(0§|01:t71)

As we know, it is difficult to estimate P(o}|07,01.+_1) or P(0?|o},01.4_1). Also, mean-
field assumption for the observations seems to be correct, since although they are corre-
lated but they give us no information about each other given the previous observations
and it is widely used in other works ( [Brand, 1997| and [Zhong and Ghosh, 2001]).
This is what we have used in definition of b.

Moreover, by Eq. (3.62), we can prove the mean-field assumption as follows:

0t|01t 1 ZZP Ot,Ut ml y Uy (m2)|01t 1)

mi mo

- Z Z P(0t|vtl(m1)a Utz(mQ)a 01:4-1)

m1 M2

X P (v} (my), v} (mg)]o141) (A.3)

then we have:

P(oi]o14-1) ZZHP 0f|vi(me), o1:¢-1)

mi; mg c=1
2

% H P(vi(me)|o1.4-1)

c=1

— H Z P(of|vi(me), 01:4-1)

c=1 mec

X P(vi(me)|01:4-1)

— H Z P(of, v (m.)]0o1.4-1)

c=1 mec

— [ Pletlonis) (A.4)

where it can be generalized for C' > 2.

A.3 The filtered joint probability of forward parame-
ters

In this part a prove for Eq. (3.54), the filtered joint probability of states given the
observations, is presented by using Eq. (A.1) and Eq. (A.2). Therefore, we start with
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adding the observations at time ¢ to the states:

P(UtlaUtQaOt‘Olth)

P(Otlolzt—l)
_ P(og |v)) P(of|vf) P(vy, v7]01:4-1)
- P(Ot’01:t71)

P(Utla Ut2|012t) -

On the other hand, we can write:

P(vtl7Ot|01:t—1)P(Utzv0t|01:t—1)
P(Ot’01:t—1)2
) Zuf P(0}|vf) P(v}]o1.4-1)
N P(04]01:¢-1)
P(07|v?)P(v7|o1s—1) ZU% P(o}|v})P(v}o1.-1)
: P(0t|01:t71)

P(v;]o1e)P(vf]o14) =

P(o;]v;) P(v}]01:1-1

(A.5)

(A.6)

with some simple manipulation, we can derive the term P(v},v?|01;) and simplify the

statement above as follows:

P(Utl|01:t)P(Utz|Oltt) = P(“tla Ut2|01:t)

szg > Plog,vf|01-1) P(0}, v} |01:4-1)
P(Ot|01:t71>

Plotlor. VP20
:P(Utlavt/zbl;t) X (0]01:-1) P(0f[01:4-1)

P(0t|01:t—1)

where the second term is equal to 1 based on Eq. (A.2). Thus, we have:

P(v; o) P(v/]o14) = P(v;, v/ ]01.4)
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Appendix B

B.1 Functions of Switching appraoches

FilteringKF': evolution of the KF from k—1 to k.
Require: :vk . Pg 1M, R;
Ensure: z]', P/,

1,7=1: N

a7 = Al
P 7= A, P,gflAiT + 14
ex =y — Mz, ”* g
L} = N(ex; 0, MP_]ZMT +R)
B = (P_”MT)(MP Tt + R)
P,gl = (I BM)P, 7 )
v, = o, + By — M(x,,""))

where (...)” = p(...|ly1x_1). L}’ has a Gaussian pdf as ./\/'(Mx,;”, MP_7"MT + R) which

is usually substituted by its zero-mean version, N (y, — Mz, ”*; 0, MP PMT + R).
FilteringSEKF: evolution of the EKF from k—1 to k.

Require: 2] _,, P/ |, M R .Gy Fy

Ensure: xf:, P,gi,

i,j=1:N
R A J
1w, = Ajwy_
—ji

Pk (SOgc 1+ 5“% | )mod2m
z,;ﬂ— > (5anw’“ LA, exp(— (( )) )42,
z,” = [Wkﬂ S%ﬂ 2k ]
P = GyPl |Gl + F,IF}
er = Yp — Mmfﬂ

L} = N (ex; 0, MP_jiMT +R)
B= (P_”MT)(MP M+ R)-
P’ = (1 BM)P;”"

x =z, + B(yy — Mz’ )

where (...)” = p(...|y1p_1)-
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StatesProbability
Require: L?, Ciiy K',Jg'il,
Ensure: K, K}, gi‘l,

,7=1:N
T A 1y
k > Zj Ly'ejiKy
. i Jt
2. K, = Z] K]
ol K
3 g, = K

During the last stage, moment matching is performed for reduction of the mixture
components to N Gaussians by the following relations
Collapsing: reducing the number of Gaussian kernels.
Require: :c{:, P,gl,
Ensure: zj, P},

=3l )
2 Pi =gl (P)' + () — xi)(a) — i)T
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