Second-order prediction and residue vector quantization for video compression

par Bihong Huang

Thèse de doctorat en Traitement du signal et télécommunications

Sous la direction de Christine Guillemot.

Soutenue le 08-07-2015

à Rennes 1 , dans le cadre de École doctorale Mathématiques, télécommunications, informatique, signal, systèmes, électronique (Rennes) , en partenariat avec Institut de recherche en informatique et systèmes aléatoires (Rennes) (laboratoire) , Université européenne de Bretagne (PRES) , Inria Rennes – Bretagne Atlantique (laboratoire) et de Sirocco (laboratoire) .

  • Titre traduit

    Prédiction de second ordre et résidu par quantification vectorielle pour la compression vidéo


  • Résumé

    La compression vidéo est une étape cruciale pour une grande partie des applications de télécommunication. Depuis l'avènement de la norme H.261/MPEG-2, un nouveau standard de compression vidéo est produit tous les 10 ans environ, avec un gain en compression de 50% par rapport à la précédente. L'objectif de la thèse est d'obtenir des gains en compression par rapport à la dernière norme de codage vidéo HEVC. Dans cette thèse, nous proposons trois approches pour améliorer la compression vidéo en exploitant les corrélations du résidu de prédiction intra. Une première approche basée sur l'utilisation de résidus précédemment décodés montre que, si des gains sont théoriquement possibles, le surcoût de la signalisation les réduit pratiquement à néant. Une deuxième approche basée sur la quantification vectorielle mode-dépendent (MDVQ) du résidu préalablement à l'étape classique transformée-quantification scalaire, permet d'obtenir des gains substantiels. Nous montrons que cette approche est réaliste, car les dictionnaires sont indépendants du QP et de petite taille. Enfin, une troisième approche propose de rendre adaptatif les dictionnaires utilisés en MDVQ. Un gain substantiel est apporté par l'adaptivité, surtout lorsque le contenu vidéo est atypique, tandis que la complexité de décodage reste bien contenue. Au final on obtient un compromis gain-complexité compatible avec une soumission en normalisation.


  • Résumé

    Video compression has become a mandatory step in a wide range of digital video applications. Since the development of the block-based hybrid coding approach in the H.261/MPEG-2 standard, new coding standard was ratified every ten years and each new standard achieved approximately 50% bit rate reduction compared to its predecessor without sacrificing the picture quality. However, due to the ever-increasing bit rate required for the transmission of HD and Beyond-HD formats within a limited bandwidth, there is always a requirement to develop new video compression technologies which provide higher coding efficiency than the current HEVC video coding standard. In this thesis, we proposed three approaches to improve the intra coding efficiency of the HEVC standard by exploiting the correlation of intra prediction residue. A first approach based on the use of previously decoded residue shows that even though gains are theoretically possible, the extra cost of signaling could negate the benefit of residual prediction. A second approach based on Mode Dependent Vector Quantization (MDVQ) prior to the conventional transformed scalar quantization step provides significant coding gains. We show that this approach is realistic because the dictionaries are independent of QP and of a reasonable size. Finally, a third approach is developed to modify dictionaries gradually to adapt to the intra prediction residue. A substantial gain is provided by the adaptivity, especially when the video content is atypical, without increasing the decoding complexity. In the end we get a compromise of complexity and gain for a submission in standardization.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Rennes I. Service commun de la documentation. Bibliothèque de ressources en ligne.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.