Analyse mathématique de modèles de trafic routier congestionné
Auteur / Autrice : | Roméo Hatchi |
Direction : | Guillaume Carlier |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences |
Date : | Soutenance le 02/12/2015 |
Etablissement(s) : | Paris 9 |
Ecole(s) doctorale(s) : | Ecole doctorale SDOSE (Paris) |
Partenaire(s) de recherche : | Laboratoire : Centre de recherche en mathématiques de la décision (Paris) |
Jury : | Président / Présidente : Filippo Santambrogio |
Examinateurs / Examinatrices : Guillaume Carlier, Filippo Santambrogio, Yves Achdou, Pierre Cardaliaguet, Bruno Nazaret, Jean-David Benamou |
Mots clés
Mots clés contrôlés
Résumé
Cette thèse est dédiée à l'étude mathématique de quelques modèles de trafic routier congestionné. La notion essentielle est l'équilibre de Wardrop. Elle poursuit des travaux de Carlier et Santambrogio avec des coauteurs. Baillon et Carlier ont étudié le cas de grilles cartésiennes dans ℝ² de plus en plus denses, dans le cadre de la théorie de Γ-convergence. Trouver l'équilibre de Wardrop revient à résoudre des problèmes de minimisation convexe. Dans le chapitre 2, nous regardons ce qui se passe dans le cas de réseaux généraux, de plus en plus denses, dans ℝ^d. Des difficultés nouvelles surgissent par rapport au cas initial de réseaux cartésiens et pour les contourner, nous introduisons la notion de courbes généralisées. Des hypothèses structurelles sur ces suites de réseaux discrets sont nécessaires pour s'assurer de la convergence. Cela fait alors apparaître des fonctions qui sont des sortes de distances de Finsler et qui rendent compte de l'anisotropie du réseau. Nous obtenons ainsi des résultats similaires à ceux du cas cartésien. Dans le chapitre 3, nous étudions le modèle continu et en particulier, les problèmes limites. Nous trouvons alors des conditions d'optimalité à travers une formulation duale qui peut être interprétée en termes d'équilibres continus de Wardrop. Cependant, nous travaillons avec des courbes généralisées et nous ne pouvons pas appliquer directement le théorème de Prokhorov, comme cela a été le cas dans [Baillon et Carlier]. Pour pouvoir néanmoins l'utiliser, nous considérons une version relaxée du problème limite, avec des mesures d'Young. Dans le chapitre 4, nous nous concentrons sur le cas de long terme, c'est-à-dire, nous fixons uniquement les distributions d'offre et de demande. Comme montré dans [Brasco], le problème de l'équilibre de Wardrop est équivalent à un problème à la Beckmann et il se réduit à résoudre une EDP elliptique, anisotropique et dégénérée. Nous utilisons la méthode de résolution numérique de Lagrangien augmenté présentée dans [Benamou] pour proposer des exemples de simulation. Enfin, le chapitre 5 a pour objet l'étude de problèmes de Monge avec comme coût une distance de Finsler. Cela se reformule en des problèmes de flux minimal et une discrétisation de ces problèmes mène à un problème de point-selle. Nous le résolvons alors numériquement, encore grâce à un algorithme de Lagrangien augmenté.