Analyse de survie bivariée à facteurs latents : théorie et applications à la mortalité et à la dépendance

par Yang Lu

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Christian Gourieroux.

Soutenue le 24-06-2015

à Paris 9 , dans le cadre de Ecole doctorale de Dauphine (Paris) , en partenariat avec SCOR (entreprise) et de Centre de recherche en mathématiques de la décision (Paris) (laboratoire) .

Le président du jury était Serge Darolles.

Le jury était composé de Christian Gourieroux, Serge Darolles, Michel Denuit, Christian Genest, Xavier d' Haultfoeuille, Donatien Hainaut, Armelle Guillou.

Les rapporteurs étaient Michel Denuit, Christian Genest.


  • Résumé

    Cette thèse étudie quelques problèmes d’identification et d’estimation dans les modèles de survie bivariée, avec présence d’hétérogénéité individuelle et des facteurs communs stochastiques.Chapitre I introduit le cadre général.Chapitre II propose un modèle pour la mortalité des deux époux dans un couple. Il permet de distinguer deux types de dépendance : l’effet de deuil et l’effet lié au facteur de risque commun des deux époux. Une analyse de leurs effets respectifs sur les primes d’assurance écrites sur deux têtes est proposée.Chapitre III montre que, sous certaines hypothèses raisonnables, on peut identifier l’évolution jointe du risque d’entrer en dépendance et du risque de mortalité, à partir des données de mortalité par cohortes. Une application à la population française est proposée.Chapitre IV étudie la queue de distribution dans les modèles de survie bivariée. Sous certaines hypothèses, la loi jointe des deux durées résiduelles converge, après une normalisation adéquate. Cela peut être utilisé pour analyser le risque parmi les survivants aux âges élevés. Parallèlement, la distribution d’hétérogénéité parmi les survivants converge vers une distribution semi-paramétrique.

  • Titre traduit

    Bivariate Survival Analysis with Latent Factors : Theory and Applications to Mortality and Long-Term Care


  • Résumé

    This thesis comprises three essays on identification and estimation problems in bivariate survival models with individual and common frailties.The first essay proposes a model to capture the mortality dependence of the two spouses in a couple. It allows to disentangle two types of dependencies : the broken heart syndrome and the dependence induced by common risk factors. An analysis of their respective effects on joint insurance premia is also proposed.The second essay shows that, under reasonable model specifications that take into account the longevity effect, we can identify the joint distribution of the long-term care and mortality risks from the observation of cohort mortality data only. A numerical application to the French population data is proposed.The third essay conducts an analysis of the tail of the joint distribution for general bivariate survival models with proportional frailty. We show that under appropriate assumptions, the distribution of the joint residual lifetimes converges to a limit distribution, upon normalization. This can be used to analyze the mortality and long-term care risks at advanced ages. In parallel, the heterogeneity distribution among survivors converges also to a semi-parametric limit distribution. Properties of the limit distributions, their identifiability from the data, as well as their implications are discussed.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Informations

  • Détails : 1 vol. (168 p.)

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Dauphine (Paris). Service commun de la documentation.
  • Non disponible pour le PEB
  • Bibliothèque : Université Paris-Dauphine (Paris). Service commun de la documentation.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.