Stress cellulaire et modulation de l'activité des cytidines désaminases APOBEC3 - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2015

Cellular stress and modulation of APOBEC3 cytidine deaminases activity

Stress cellulaire et modulation de l'activité des cytidines désaminases APOBEC3

Résumé

APOBEC3 proteins (A3A-A3H) catalyse the deamination of cytosine (C) to thymidine (T) on single stranded DNA. This activity, called cytidine deaminase, has initially been described as a mechanism involved in restriction against retroviruses and DNA viruses by massively inducing C->T mutations on viral genome : this phenomenon is called "hypermutations". Nevertheless, this activity is not virus-specific and some A3 can induce mutations on mitochondrial DNA (A3A, C, F, G, H) and nuclear DNA (A3A and A3B). Thus, the impact of those proteins on cancer formation is now established in cancers where mutations mostly show an APOBEC3 signature. In view of those considerations, we decided to study how those enzymes are regulated in the context of a viral cellular stress or an endogenous cellular stress. The first part of our work is focused on A3DE, the only APOBEC3 lacking a cytidine deaminase activity. Interestingly, A3DE is upregulated in cirrhotic livers infected by HBV, HCV or coinfected with HBV & HCV. We show that A3DE inhibits A3F & A3G activity by interacting with those HBV restriction involved A3. Then, we studied the attributes of the genotoxicity potential of A3B. This protein, by his strictly nuclear localization, constitutes the only double domain A3 which is not regulated by A3DE. Unlike A3A, A3B is weakly active on nuclear DNA and does not induce double strand breaks. We determine by directed mutagenesis the clusters of A3B involved in genotoxicity attenuation compared with A3A. We also show that this attenuation is conserved among primates. Finally, we investigated the role and regulation of A3A in the context of DNA catabolism. We proved that mitochondrial cytoplasmic DNA (mtcyDNA) triggers the RIG-I/DNA polymerase III pathway, which induces IFN production leading to A3A expression. So A3A will be involved in mtcyDNA catabolism and contribute to the clearance of this stress signal, but will also induce double strand breaks on nuclear DNA. A3 are major enzymes of the innate immune response and DNA catabolism. We show that A3DE modulates A3F and A3G activity while A3B is attenuated among primates and is less genotoxic than A3A. A3A participates to cytoplasmic DNA catabolism and limits inflammation. Nevertheless, A3A could be dangerous for the genomic integrity and contributes to cancer, especially in cases of chronic inflammation.
Les protéines APOBEC3 (A3A-A3H) catalysent la désamination des cytidines (C) présentes sur l'ADN simple brin en thymidine (T). Cette activité cytidines désaminase a initialement été décrite comme impliquée dans la restriction des rétrovirus et de certains virus à ADN par leur capacité à induire de nombreuses mutations C->T, ou hypermutations, sur les génomes viraux. Il apparait néanmoins que leur activité n'est pas restreinte aux génomes viraux et que certaines A3 peuvent induire des mutations sur l'ADN mitochondrial (A3A, C, F, G et H) et nucléaire (A3A et A3B). Ainsi, l'impact somatique des A3 est désormais établi dans la formation de certains cancers, dont la majorité des mutations, portent signatures des APOBEC3. Aux vues de ces observations, nous nous sommes intéressés à la façon dont sont régulées ces enzymes dans le contexte du stress cellulaire viro-induit ou endogène. La première partie de nos travaux a porté sur la protéine A3DE, seul membre de la famille APOBEC3 ne possédant pas d'activité cytidine désaminase. De façon intéressante, il apparait qu'A3DE est surexprimée dans les cirrhoses infectées par le VHB, VHC ou co-infectées par le VHC et le VHB. Nous avons pu mettre en évidence qu'A3DE interagit et module l'activité d'A3F et d'A3G, deux cytidines désaminases exprimées dans le foie et impliquées dans la restriction du VHB. Dans un second temps, nous nous sommes intéressés à la caractérisation du potentiel génotoxique de la protéine A3B. Cette protéine, de par sa localisation strictement nucléaire, constitue la seule A3 à double domaine n'interagissant pas avec A3DE. Contrairement à A3A, A3B est faiblement active sur l’ADN nucléaire et n’induit pas de cassures de l’ADN double brin. Nous avons pu mettre en évidence par mutagénèse les régions de la protéine impliquées dans l’atténuation de la génotoxicité d’A3B par rapport à A3A et que cette atténuation est conservée chez les primates. Enfin, nous avons étudié le rôle et la régulation d’A3A dans le catabolisme. Nous avons mis en évidence que l’ADN mitochondrial cytoplasmique (ADNcymt) active la voie RIG-I/ARN polymérase III ce qui a pour effet d’induire la production d’IFN qui va activer l’expression d’A3A. A3A va ainsi jouer un rôle dans le catabolisme de l’ADNcymt et contribue à l'élimination de cette source de stress cellulaire, mais occasionnant par la même des dommages sur l’ADN nucléaire. Les A3 sont des enzymes fondamentales de la défense immunitaire innée et du catabolisme de l’ADN. Nous montrons qu’A3DE a pour fonction de moduler l’activité d’A3F et d’A3G tandis qu’A3B, possède un phénotype atténué chez tous les primates et s’avère moins génotoxique que’A3A. Cette dernière participe à la dégradation de l’ADN cytoplasmique, limitant ainsi l’inflammation. Néanmoins, A3A peut s’avérer dangereuse pour l’intégrité génomique et contribuer à l’émergence de cancers, notamment en cas d’inflammation chronique.
Fichier principal
Vignette du fichier
these_archivage_2700529o.pdf (66.29 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-01334908 , version 1 (21-06-2016)

Identifiants

  • HAL Id : tel-01334908 , version 1

Citer

Mohamed Salah Bouzidi. Stress cellulaire et modulation de l'activité des cytidines désaminases APOBEC3. Virologie. Université Pierre et Marie Curie - Paris VI, 2015. Français. ⟨NNT : 2015PA066597⟩. ⟨tel-01334908⟩
321 Consultations
84 Téléchargements

Partager

Gmail Facebook X LinkedIn More