Thèse soutenue

Développement de diodes laser à faible largeur de raie pour le pompage atomique et d'un MOPA (Master Oscillator Power Amplifier) à 780 nm pour le refroidissement d'atomes de Rubidium et la réalisation de capteurs inertiels

FR  |  
EN
Auteur / Autrice : Joseph Patient Bebe Manga Lobe
Direction : Bernard Orsal
Type : Thèse de doctorat
Discipline(s) : Electronique
Date : Soutenance le 24/04/2015
Etablissement(s) : Montpellier
Ecole(s) doctorale(s) : École doctorale Information, Structures, Systèmes (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : IES - l’Institut Electronique et des Systèmes
Jury : Examinateurs / Examinatrices : Bernard Orsal, Laurent Bechou, André Pérennou, Michel Krakowski, Éric Tournié, Jean-Claude Simon, Arnaud Landragin
Rapporteur / Rapporteuse : Laurent Bechou, André Pérennou

Résumé

FR  |  
EN

Cette thèse de doctorat a été réalisée au sein du III-VLab, en partenariat avec l’Institut d’Electronique du Sud (IES). L’objectif de ce travail de thèse vise d’une part à l’optimisation des performances des diodes laser DFB émettant à 780 nm et le développement d’une source plus compacte (MOPA) à 780nm, intégrant de façon monolithique l’oscillateur maître (laser à rétro-action répartie ou DFB) et l’amplificateur de puissance, et d’autre part, à appréhender les phénomènes de bruit, permettant d’évaluer la qualité technologique des lasers. Les développements autour de la longueur d’onde 780 nm, se sont organisés en plusieurs thématiques : les lasers Fabry-Perot et DFB, les amplificateurs (SOA), les MOPA et l’étude du bruit des lasers. Nous avons étudié des structures de différentes épaisseurs de puits quantiques (160Å, 135 Å et 145 Å). La comparaison des performances globales des différentes structures de lasers larges, loin d’être évidente, nous a permis de choisir celle intégrant un puits quantique de 160 Å, pour la réalisation des lasers Fabry-Perot à ruban étroit (3µm à 4µm). Nous avons obtenu sur des lasers larges, de 3 mm de long, bruts de clivage, une puissance d’environ 5 watts par face pour un courant d’injection continu autour de 10 A. Les simulations et caractérisations électro-optiques menées sur des lasers ridge Fabry-Perot, ont servi à affiner le dessin des DFB à 780 nm, par rapport aux briques de base existantes du III-V Lab, et à proposer des structures à cavités optiques larges et super-large (LOC et SLOC) optimisées, en termes de puissance, qualités de faisceau et spectrale.Les mesures de bruits, appuyées d’un modèle de bruit électrique, ont permis d’extraire une valeur du paramètre de Hooge de 2,1.10^-3 pour les lasers ridge, en accord avec la littérature, et qui correspond à une bonne qualité de matériau et technologique des lasers. Différents types d’amplificateurs optiques évasés ont été dessinés, réalisés et caractérisés. Les caractérisations des diverses géométries de SOA, ont donné dans l’ensemble, des valeurs de gain comprises entre 19dB et 25dB. Nous avons obtenu respectivement pour les structures d’amplificateurs à guidages entièrement par l’indice (GI), entièrement par le gain (GG) et mixte (GM), des puissances de 500mW, 750mW et 1W. L’ensemble des résultats obtenus avec ces structures sont prometteurs pour l’intégration monolithique avec le DFB. En ce qui concerne le MOPA, trois approches ont été étudiées: MOPA droit, DFB et amplificateur tiltés de 7° (par rapport à la normale aux faces clivées), et la plus prometteuse mais plus complexe, intégrant le DFB droit et l’amplificateur tilté de 7°, avec une section courbe entre les deux. La prise en compte de l’ensemble des résultats lasers Fabry-Perot, DFB et des résultats d’amplificateurs, nous ont permis de proposer des dessins MOPA originaux. Le dessin du masque réalisé, intègre toutes ces configurations de MOPA, et en plus, des SOA et DFB, qui seront utilisés comme témoins de test lors des caractérisations.