Stratégies de Cache basées sur la popularité pour Content Centric Networking

par César Bernardini

Thèse de doctorat en Informatique

Sous la direction de Olivier Festor et de Thomas Silverston.

Le président du jury était Olivier Perrin.

Le jury était composé de Guy Leduc.

Les rapporteurs étaient Toufik Ahmed, Dario Rossi.


  • Résumé

    Content Centric Networking (CCN) est une architecture pour l'Internet du futur. CCN inclut des fonctionnalités de cache dans tous les noeuds du réseau. Son efficacité dépend largement de la performance de ses stratégies de cache. C'est pour cela que plusieurs études proposent des nouvelles stratégies de cache pour améliorer la performance d'un réseau CCN. Cependant parmi toutes ces stratégies, ce n'est pas évident de décider laquelle fonctionne le mieux. Il manque un environnement commun pour comparer ces stratégies. De plus, il n'est pas certain que ces approches soient les meilleures alternatives pour améliorer la performance du réseau. Dans cette thèse, on vise le problème de choisir les meilleures stratégies de caches pour CCN et les contributions sont les suivantes. On construit un environnement commun d'évaluation dans lequel on compare via simulation les stratégies de caches disponibles: Leave Copy Everywhere (LCE), Leave Copy Down (LCD), ProbCache, Cache "Less For More" et MAGIC. On analyse la performance de toutes ces stratégies et on décide la meilleure stratègie de cache pour chaque scénario. Ensuite, on propose deux stratégies de cache basées sur la popularité pour CCN. On commence avec un étude de la popularité de contenu et on présent la stratégie Most Popular Caching (MPC). MPC privilèges la distribution de contenu populaire dans les caches afin d'ameliorer les autres stratégies de cache. Dans une deuxième étape, on présent une stratègie de cache basé dans l'information des réseaux sociaux: Socially-Aware Caching Strategy (SACS). SACS privilèges la distribution de contenu publié par les utilisateurs les plus importantes

  • Titre traduit

    Popularity-Based Caching Strategies for Content Centric Networking


  • Résumé

    Content Centric Networking (CCN) is a new architecture for a future Internet. CCN includes in-network caching capabilities at every node. Its effciency depends drastically on performances of caching strategies. A lot of studies proposing new caching strategies to improve the performances of CCN. However, among all these strategies, it is still unclear which one performs better as there is a lack of common environment to compare these strategies. In this thesis, we address the challenge of selecting the best caching strategies for CCN. The contribution of this thesis are the following. We build a common evaluation scenario and we compare via simulation the state of the art caching strategies: Leave Copy Everywhere (LCE), Leave Copy Down (LCD), ProbCache, Cache "Less" For More and MAGIC. We analyze the performance of all the strategies in terms of Cache Hit, Stretch, Diversity and Complexity, and determine the cache strategy that fits the best with every scenario. Later on, we propose two novel caching strategies for CCN based on popularity. First, we study popularity of content and we present Most Popular Caching (MPC) strategy. MPC privileges distribution of popular caches into the caches and thus, it overcomes other caching strategies. Second, we present an alternative caching strategy based on social networks: Socially-Aware Caching Strategy (SACS). SACS privileges distribution of content published by influential users into the network. Both caching strategies overcome state of the art mechanisms and, to the best of our knowledge, we are the first to use social information to build caching strategies


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.