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Abstract 

 This thesis addresses the structural rationale behind the formation of growth twins, 
with the purpose of opening a route to the future development of synthesis protocols 
to reduce the occurrence frequency of twinning. The reason for this effort is that 
twinning affects negatively the physico-chemical properties of materials and 
biomaterials of technological interests and reduces the quality of the experimental 
data on which the structural investigation is based.

  While on the one hand the reasons for twinning in transformation and mechanical
twins are well understood, in the case of growth twins twinning is still seen as an
accident linked to aleatory conditions where kinetics, rather than thermodynamics,
plays a principal role.

  A general approach known as the reticular theory of twinning has been developed
since the XIX century, based on the existence of a sublattice common to the twinned
crystals, which gives the minimal necessary conditions for the occurrence of a twin.
This approach is, however, insufficient to discriminate between twins with the same
degree  of  lattice  overlap  but  showing  a  fairly  different  occurrence  frequency.  A
structural  approach,  based  on  the  analysis  of  the  eigensymmetry  of  the
crystallographic orbits building a crystal structure was proposed more than half a
century ago (Donnay and Curien, 1960) but remained at an embryonic state, despite
some recent revival (Nespolo and Ferraris, 2009). Also, the idea that a slice common
to the twinned individuals may contain an operation mapping these individuals was
proposed (Holser, 1958) but never brought to a full development. In this thesis, we
present a full development of these ideas and show that the structurally necessary
conditions for the formation of a growth twin can be described on the basis of the
eigensymmetry of the crystallographic orbits and on the sectional layer group giving
the symmetry of the common slice. 

  The detailed analysis of  three well-know twins demonstrates  a clear  correlation
between the degree of structural restoration by the twin operation and the occurrence
frequency of the twins. The analysis of a negative example, i.e. of a hypothetical twin
which one  would  expect  on  the  basis  of  the  reticular  theory  but  has  never  been
observed, strengthens the evidence of this correlation, because of the low structural
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restoration one would observe in that twin.

  We expect that the generalisation of the approach presented in this thesis through a 
semi-automatic procedure will provide crystal growers with a powerful tool to 
modulate the occurrence frequency of twinning through a modification of the crystal 
morphologies towards a larger exposure and development of crystal faces which 
represent an unfavorable interface for twinning.
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  Symbols

(a,b,c): basis vectors of the unit cell; 

a,b,c: length of basis vectors; 

P: point group of the individual crystal; 

G: space group of the individual, G = {g1, g2, …}, with g1 = 1 the identity element

of G;

H: space group associated with the structure of the twinned crystal; 

ri  =|ri〉= (
x i

y i

z i
) : ket-vector, coordinates of the i-th crystallographically independent

atom Ai;

〈ri|= (xi, yi, zi): bra-vector of ri; 

Oi: orbit of ri under G, Oi = {ri, g2ri,…} = {ri
1, ri

2, …} with ri
k = gkri for gk ∈ G;

Oij: splitting of the orbit Oi under the action of a subgroup of G;

m(Oi): multiplicity of the orbit Oi, defined as the number of equivalent points in the

conventional unit cell of G;

Si: site-symmetry group of ri;

E(Oi): eigensymmetry of the orbit Oi;

(P,p): matrix-column pair representing a change of coordinate system; composed

of a 3 × 3 matrix P and a 3 × 1 column p;

T: matrix representation of the twin operation in the basis of the twin.
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Chapter I. Introduction

The subject of this thesis is the investigation of twinned crystals (twins) based on

the symmetry properties of these crystals and of their individual components.

  Abstracting from static and dynamic defects, a crystal is a solid material with a

homogeneous  ordered  distribution  of  its  microscopic  structure,  such  as  atoms,

molecules or ions. The crystal structure forms an atomic pattern that is repeated in

three  independent  directions  of  physical  space  (Figure  1.1).  In  the  mathematical

idealisation, the pattern is regarded as extending infinitely in every direction. This

assumption is reasonable, since the ratio between the size of the crystal (usually in the

order of at least 10-3 m) and the microscopic periodicity (typically some 10-10 m) is

several orders of magnitude.

 

Figure  1.1:  Atom packing  with  translations  in  three  independent  directions  of

space.
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From  a  morphological  point  of  view,  if  the  sample  is  euhedral,  i.e. with  well-

developed faces,  macroscopic single  (untwinned)  crystals are usually recognised by

their geometrical shape, consisting of flat faces with sharp angles (Figure 1.2).  In

contrast, the presence of re-entrant angles is a distinctive feature of twinned crystals,

whereas their absence cannot be taken as a conclusive argument for the absence of

twinning.

Figure 1.2: Image of a quartz single crystal.

The morphological study of crystals goes back to the early description by Nicolaus

Steno, 1669. In his book "De solido intra solidum naturaliter contento", Steno states

that “the angles between corresponding faces on different crystals of a substance

are constant”. For example, the interfacial angles of quartz crystals (Figure 1.2) are

constant, no matter what the shape and size of the crystal and to what extent the faces

are developed. This discovery drew the attention to the significance of crystal forms

(the  sets  of  symmetry-equivalent  faces) and  led  to  the  early development  of  the

science of crystallography. Later, the configuration of the vectors normal to the faces

gave rise to the first step in the description of crystals by their symmetry properties,

namely by the point groups which are the symmetry groups of the face normals. The

32 possible  types of  point groups were enumerated by Hessel in 1830 (Heesch, H.

1929). 
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Although  for  a  long  time  the  macroscopic  shape  and  the  microscopic  three-

dimensional  periodicity  served  as  the  natural  characterisation  of  a  crystal,  more

recent  developments,  in  particular  the  discovery  of  quasicrystals  in  the  1980's

(rewarded by the Nobel Prize for Chemistry in 2011), showed that these features are

not sufficient to define a crystal. The modern definition of a crystal, officially adopted

by  the  International  Union  of  Crystallography  (IUCr)  after  extensive  discussions

between leading experts,  is  based on its  nanoscopic atomic arrangement which is

observed in diffraction experiments. According to this definition, a material is called

a crystal if it has essentially a sharp diffraction pattern. The word essentially means

that most of the intensity of the diffraction is concentrated in relatively sharp Bragg

peaks, besides the always present diffuse scattering. The positions of the diffraction

peaks can be indexed by  n ≥  3 integers  with respect  to a  system of  n rationally

independent vectors in 3-dimensional space. The conventional crystals are covered as

the  special  case  for  which  n =  3,  the  quasicrystals,  as  well  as  co-crystals  and

incommensurately modulated crystal structures, require n > 3. 

In  this thesis, we restrict ourselves to conventional crystals. These are classified

according to their symmetry properties. From the periodic arrangement of the atoms

in space on the one hand, and the discreteness of the structure on the other hand, one

concludes that a crystal structure (crystal pattern) is invariant under the translations

by vectors from a lattice,  i.e.  by all  integral  linear combinations of three linearly

independent vectors. The space group attributed to a crystal structure is the group of

isometries of Rn (i.e. mappings of Rn preserving distances and angles) which leaves

the crystal pattern as a whole invariant. Apart from translations, the space group may

contain further operations like rotations, screw rotations, reflections, glide reflections,

inversions and rotoinversions. An example of a space group (relevant for the melilite

twin) is displayed in Figure 1.3. Neglecting the translations, the additional operations

correspond to the point group describing the macroscopic symmetry of the crystal.
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Figure 1.3: Space-group diagram of space group P4, No. 81 ITA: View along the c-

axis of a crystal structure, where the small red circles are symmetrically equivalent

points of the general position. The + signs indicate that these atoms are located above

the plane generated by the vectors (a,b).    

              : fourfold rotoinversion                : twofold rotation 

The symmetry description of a crystal is the most relevant for this thesis. However,

we have applied the symmetry tools not to the investigation of single crystals, but

rather to the analysis of heterogeneous edifices built by two or more crystals related

by a mapping which corresponds to a possible crystallographic symmetry operation.

Mostly,  during  the  growth  of  a  crystal,  or  if  the  crystal  is  subjected  to  a  phase

transition under a change of temperature and/or pressure, or to a mechanical action,

two or more inter-  or over-grown crystals may be formed in a (quasi-)symmetrical

shape.  These  (quasi-)symmetrical  inter-  or  over-growths  of  crystals  are  called

twinned crystals (twins for short). A classical example of a growth twin is the Japan

twin in quartz shown in Figure 1.4.
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 Having been the subject of research for many eminent crystallographers, the study

of twins can be considered as a specialised branch inside crystallography which has

been called “geminography” by J. D. H. Donnay (Nespolo and Ferraris, 2005). The

development of X-ray diffraction equipments and crystallographic software packages

gives the possibility to analyse simple cases of twinning and obtain structural data

from twinned crystals almost  automatically. However, more complex examples still

pose a challenge for the routine investigation.

Figure 1.4: Japan twin in quartz.

Our interest to study twins is motivated by two important reasons: 

• the rationale for the occurrence of growth twins;

• the effects  of twinning on the crystal properties relevant for applied science

and technology.

1. The problem of twin occurrence

  The  heterogeneity  of  a  twin  structure  presents  an  important  difference  to  the

homogeneity  of  a  single  crystal.  Moreover,  this  heterogeneity  (twinning)  can  be

produced in two ways:

Naturally: Twins can occur as minerals in different locations. Their occurrence
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may be frequent or not. However, based only on the observation, neither the

twin's  occurrence nor  the frequency of  its  occurrence  can  always  be easily

explained. For example, the frequency of the staurolite twins and their crystal

structures  were  regarded  as  an  important  issue  for  mineralogical  scientists

(Marzouki  et  al.,  2014a).  Twins  can  occur,  naturally,  by  sharing  a  surface

(contact twins) or sharing a volume (penetration twins).  

Artificially  : Certain compounds have a high tendency to form twins, but it is

usually desirable to avoid twinning (see below). Understanding the conditions

that favour twinning is therefore a task of fundamental importance.

2. The effects of twinning on the properties of a crystal

Individual  crystals  in  a  twin  are  separated by  an  interface  called  composition

surface which  represents  a  discontinuity  for  at  least  a  sub-structure.  The

heterogeneous character  of  a  twin  represents  an  obstacle  to the  structural

investigation and the technological applications of the material under investigation. In

particular: 

• The potential technological applications are hindered by the presence of twinning

(e.g. the piezoelectric effect is reduced or annihilated). 

• The presence of twinning reduces the amount of details that can be obtained from

a structural study by diffraction experiments, especially for samples with large

unit cells (as, for example, for macromolecules) for which the resolution that can

be achieved is already limited by the size of the unit cell. 

Material scientists growing crystals with targeted properties aim at avoiding the

formation of twins. Understanding the conditions under which they are likely to form

is an important prerequisite to develop a synthesis protocol capable of reducing, if not

eliminating, the occurrence of twins. 

Furthermore, as already remarked, even nowadays twinned crystals still form an
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obstacle in the automatic solution and refinement of crystal structures.

 In this thesis, we take a novel approach to investigate the possible structural basis

for the formation of twins. As of today, the only systematic approach to twinning has

been through the empirical rules of twinning enunciated by the reticular theory of

twinning (“French school”: Friedel, 1904). 

From the reticular point of view, twinning can occur when the operation mapping

the orientation of the individuals overlaps a substantial amount of the nodes of the

individual lattices (restored nodes). As a heuristic rule, at least one sixth of the lattice

nodes should be restored in order to make the formation of the twin likely (Friedelian

twin). Although the reticular theory ignores the actual contents of the unit cell, a high

restoration of lattice nodes indicates the possible existence of a common sub-structure

across the interface between separated individuals. The definite criterion, however, is

the restoration of the atoms within the structure under a mapping known as the twin

operation,  which  is  the  object  of  the  structural  theory  of  twinning:  its  aim is  to

identify  the  atomic  substructure  invariant  under the  twin  operation  (restored

substructure).  The  underlying  lattice  common  to  both  individuals  (twin  lattice)

reduces the analysis to the atoms in a finite volume of the structure. In this thesis, two

approaches  towards  a  structural  theory  of  twinning  are  considered,  the

crystallographic orbit approach and the layer group approach.

The crystallographic orbit approach: As its name suggests, the crystallographic orbit

approach is based on the analysis of the twin structure via its crystallographic orbits

in order to detect  the subset  of atoms which crosses the interface unperturbed or

almost unperturbed. Under the action of the space group G, each atom in a crystal is

repeated in space to form a  crystallographic orbit    O, i.e.  O is the set of all atoms

obtained from a single atom under the  symmetry operations of the space group  G.

Each point of a crystallographic orbit defines uniquely a largest subgroup of G which

maps that point onto itself and is called its site-symmetry group (or stabilizer group).
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The site-symmetry groups belonging to different points in the same crystallographic

orbit  are conjugate subgroups of  G and all  points  X for  which the site-symmetry

groups  are  conjugate  subgroups of G form a  single  Wyckoff  position.  Under  the

action of a subgroup of G, an orbit O can be split into suborbits, since positions which

are  symmetrically  equivalent  under  G may  be  no  longer  equivalent  under  the

subgroup.  The  common  sub-structure  across  the  interface  between  separated

individuals (the composition surface), consists of split suborbits which are invariant

under the twin operation t.

The layer group approach: Due to the periodicity of the twin pattern, it is sufficient to

analyse the restoration for a finite part of the structure. In addition, by restricting the

structural symmetry analysis to a slice around the composition surface, we can find

that such a slice has a symmetry which contains, exactly or approximately, the twin

operation.

For a given space group G of a crystal, the layer group of a section passing through

this crystal is the group of symmetries of this section. In particular, the layer group

has  translational  symmetry  only  in  two  independent  directions.  When  the

composition surface can be considered as a two-dimensional plane and is parallel to

the twin plane, the symmetry of the atomic substructure close to this surface can be

characterised by a layer group. Looking at the slice containing the twin plane, the part

of  the  common  sub-structure  across  the  interface  between  separated  individuals

which is close to the interface can be identified as the subset of atoms within this

slice which is invariant under the twin operation t.

This thesis gives – via these two approaches - structural evidence underlying the

formation  of  twins  that  explains  the  occurrence  and  frequency  in  a  number  of

important examples of twins.  Our investigation strategy is based on modern tools

provided by contemporary mathematical crystallography. The conclusive conditions

14



can only be obtained by the pseudo-symmetry analysis of continuous substructures

across the interface separating the individuals in a twinned crystal. Such an analysis

is still essentially an a posteriori study of known twins, but it represent the first step

towards  a  general  structural  theory  of  twinning  that  should  allow predicting  the

structurally necessary conditions explaining the occurrence and frequency of twinned

crystals.
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Some examples of twinned crystals

Below, a few  important examples of twinned crystals are displayed. The first two,

quartz and calcite are very common and form various types of twins. The other three

examples are the twins of melilite, staurolite and aragonite which were investigated in

the three articles contained in this thesis.

1) Quartz (Japan Law Twin)  is  the most common silicate mineral  and  the most

abundant mineral  in  the  Earth  crust.  Quartz  is  found  in  nearly  every  geological

environment and occurs in practically all but ultramafic rocks.

2) Calcite (Butterfly Twin)  is a  carbonate mineral, the most stable polymorph of

calcium carbonate (CaCO3).
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3) Melilite is a group of sorosilicate minerals with general formula X2YZ2O7, it gives

reflection twins on (100) and (001). More recently, a further reflection twin, on (120),

has been reported by Bindi et al. (2003).

4)  Staurolite  gives two  rotation twins,  which occur  with different  frequency:  the

Greek cross twin (lower frequency, with 90° angle) and the Saint Andrews cross twin

(higher  frequency,  with  60° angle).  Staurolite  has  been  considered  as  an  enigma

because of the frequent twinning and its remarkable pseudosymmetry.

     

 

Greek cross.                                                       Saint Andrews cross.
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5)  Aragonite is  the  high-pressure  polymorph  of  CaCO3,  metastable  at  ambient

conditions. It is a reflection twin with frequent twinning on {110}. 
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Chapter II. Description and analysis of twins

II.1. Basic definitions and classifications of twins

A twinned crystal (twin) is a heterogeneous crystalline edifice composed of two or

more homogeneous crystals of the same phase with different orientation related by a

twin  operation,  i.e. a  crystallographic  operation  mapping  the  orientation  of  one

individual  onto that  of  the other(s)  (Friedel,  1904,  1926, 1933) (Figure 2.1).  The

atomic  structure  itself  is  mapped  by  a  space  group  operation  having  the  twin

operation  as  its  linear  part.  If  we  want  to  emphasize  that  combining  the  twin

operation with different vector parts gives rise to symmetry operations of different

types,  we will  use the term  restoration operation  for  the space group operations.

However, it will usually be clear from the context whether a twin operation (mapping

the orientation) or a restoration operation (mapping the atom positions) is meant.  A

twin element is the geometric element in direct space (plane, line, centre) about which

the twin operation is performed.

The result of a twin operation is an over- or intergrowth of two or more separate

crystals sharing a common substructure. This phenomenon is called crystal twinning.
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Figure 2.1: Mapping of individuals in twins. From the left to the right; Japanese Law twin, 

Swallow Tail twin, Carlsbad Law twin and chrysoberyl cyclic twin  (Figures from Stephen A.

Nelson webpage at Tulane University: http://www.tulane.edu/~sanelson/eens211/twinning.htm).

    Several criteria are used to classify twins. Here we give the most common ones.

Morphology divides twins in:

• Contact twins: separated by a surface;

• Penetration twins: sharing a volume;

• Simple twins: consisting of two individuals.

• Twins in which the individuals are repeated, subdivided into:

◦ Polysynthetic twins: where the individuals are repeated in a more or less

linear arrangement;

◦ Cyclic  twins:  where N individuals  are  repeated  to  form a closed edifice

where the N-th individual is in contact with the first.

Dimensionality of the twin lattice, i.e. the dimension of the subspace in which a

common (reasonable) periodicity can be found (Friedel, 1933):
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• Triperiodic  twins,  having a  common lattice  in  three dimensions (by far  the

most common type of twins);

• Diperiodic twins, for which the common lattice spans a two-dimensional plane;

• Monoperiodic twins, sharing only a lattice row.

According  to  Mallard's  law  (Friedel,  1904,  1926) the twin  operation  is  a

crystallographic symmetry operation about a direct lattice element. On the basis of

the twin operation, twins can be divided into three types:

• Inversion twins: the symmetry operation can be taken as an inversion;

• Rotation twins: the symmetry operation can be taken as a rotation;

• Reflection twins: the symmetry operation can be taken as a reflection.

Twins can also be classified from the  genetic viewpoint, one distinguishes three

categories: 

• Transformation twins, which form during a phase transition leading to a loss of

point symmetry;

• Mechanical twins, which form as the result of a mechanical action (typically,

an oriented pressure) on the crystal;

• Growth twins, which form during crystal growth, either at the nucleation stage

or by oriented attachment (for a review, see Nespolo and Ferraris, 2004). 

For transformation twins, the symmetry relation between the original untwinned

crystal and the twin is easily found. The twin operation(s) belong to the group of the

parent phase but not to that of the daughter phase. For the two other categories, the

symmetry  of  the  twin  depends  on  aleatory  factors,  like  the  orientation  of  the

mechanical  force  or  the  relative  orientation  of  the  individuals  during  the  crystal

growth.  Therefore,  there  is  no  general  relation  between  the  symmetry  of  the

untwinned crystal and that of the twin.

The group-subgroup relation gives the number of domain states for transformation

twins. This number depends on the mechanism and kinetics of the phase transition.
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Based  on  the  atomic  mechanism (Buerger,  M.J.,  1951),  Buerger  classified  phase

transitions in two types:

• reconstructive: with changes in the pattern of chemical bonds;

• displacive: characterised by only small atomic shifts and order-disorder of the

atomic distribution on given Wyckoff positions1. 

For details on this classification see Nespolo, 2015.

The heterogeneity of the twinned crystal makes it impossible to provide a space-

group description of the twin:  there is in fact no  structure  common to the twinned

individuals. However, to the whole twinned edifice a point group can be assigned

which describes the symmetry  of  the twin.  Let  H be the point  group of  the first

individual of a twin. For a twin consisting of N individuals, the point groups H i, i =

1...N of all the individuals are of the same type (same Hermann-Mauguin symbol) as

H,  but  they  have  different  orientations  in  space.  The  common  symmetry  H*  is

obtained as the intersection of these groups Hi, i.e. H* = ∩iHi contains the operations

about symmetry elements which are parallel in the H i groups.  If we  assign to each

individual  a different  colour, then the twin operations are  chromatic, i.e. mappings

that permute the colours (identifying the individuals) and the point group describing

the  symmetry  of  the  twin  is  a  chromatic  point  group,  K  (Nespolo,  2004).  It  is

obtained by extending the common point symmetry of the individuals H*, in their

respective  orientations,  by  the  twin  operation,  in  other  words:  K  is  the  group

generated by H* and the twin operation. If K is decomposed into cosets with respect

to H*,  the single  cosets  are  called  twin laws (see section II.2)  and contain those

operations that map a fixed individual to another chosen individual:

K = ∪itiH* = H* ∪t1H* ∪t2H* …  ∪tnH*     (1)

1 Müller [8] uses the term misorder instead of disorder claiming that the phenomenon is not a real disorder but rather 
“order with faults”.
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Let KA be the achromatic group isomorphic to K. KA is a supergroup of H*; the

different relations between KA and H are:

• If H* = H => KA  H.⊃

• When the extension of  H* by the twin operation  t restores all  point  group

operations which are lost when taking H* as intersection of Hi => KA = H.

• When t restores only a subset of the operations of Hi lost in H* => KA ⊂ H.

• When t does not correspond to any of the symmetry operations of H lost in H*

=> KA is not directly related to H.

For the last  case,  a classical example is that of twins with inclined axes in

quartz  (Japan,  Esterel,  Sella,  Belowda  Beacon,  Breithaupt,  Wheal  Coates,

Cornwall,  Pierre-Levée,  differing  in  the  twin  plane  and  thus  the  relative

inclination of the c axes; Friedel, 1923), for which H = 321, H* = 1, K = m', KA

= m, the prime indicating the chromatic operation (twin operation).

II.2. The twinning parameters and the reticular classification

A  prerequisite  for  the  formation  of  a  twin  is  the  existence  of  a  common

substructure  which  crosses,  more  or  less  unperturbed,  the  interface  physically

separating the individuals (Marzouki et al., 2014a). The crystal structure cannot have

a symmetry higher than its Bravais lattice, however, it can be the same (holohedral

structure) or a lower symmetry (merohedral structure), thus a common lattice or a

sublattice  is  a  pre-requisite  for  the  existence  of  a  common  substructure.  This

represents the necessary condition of the reticular theory of twinning developed by

the  so-called  “French school” (Bravais,  1851; Mallard,1885, Friedel,  1904, 1926).

The common (sub-)lattice called the twin lattice LT (Donnay, 1940) is based on the

twin element (twin plane or twin axis) and the lattice element (line or plane) that are

mutually (quasi-)perpendicular. LT is defined by these two elements, the lattice plane

(hkl)T and the lattice row [uvw]T 
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When the individual lattice Lind or a sublattice of it crosses the composition surface

without  any  perturbation, the  lattice  plane  (hkl)T and  the  lattice  row  [uvw]T  are

mutually perpendicular and LT coincides precisely with Lind or a sublattice of it. One

speaks  of  Twin  Lattice  Symmetry  or  TLS.  When  (hkl)T  and  [uvw]T are  quasi-

perpendicular, this shows a certain mismatch on the two sides of the composition

surface. In this case the common sublattice  LT is defined as an idealisation which

does  not  take  into  account  this  mismatch  and one  speaks  of  Twin Lattice  Quasi

Symmetry or TLQS (Donnay & Donnay, 1974). In other words,  in the TLQS case,

Lind or a sublattice of it crosses the composition surface with small perturbation which

becomes worse the farther one moves from this surface. As a consequence, LT can be,

approximately,  defined  everywhere  with  a  small  change  of  orientation  on  the

composition surface.  The degree of pseudo-symmetry corresponds to the deviation

from  the  perpendicularity  condition  and  is  measured  by  the  angle  ω called  the

obliquity: concretely  ω is the angle between the direction perpendicular to the twin

plane and the rational direction closest to it (or, for rotation twins, between the plane

perpendicular to the twin axis and the rational plane closest to it). The obliquity is the

first parameter of twinning, the second being the twin index, see below. 

A zero-obliquity TLQS may occur for manifold twins, i.e. twins in which the twin

operation is of order higher than two. For example, in a pseudo-tetragonal twin lattice

LT with cell  parameters  a and  b numerically  close  to  each other  where  the twin

operation is a fourfold rotation along c, the twin axis is exactly perpendicular to the

(001) plane, yet the overlap of the lattices of the two individuals is only approximate.

In a case like this, a linear, rather than angular, measure of the mismatch is necessary,

like the twin misfit δ defined as the distance between the first nodes along the two

shortest directions in the plane of  LT perpendicular to the twin axis that are quasi-

restored by the twin operation (Nespolo & Ferraris, 2007; Nespolo, 2015). The twin

misfit δ is computed as:
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δ = 〈∆u∆v∆w|G|∆u∆v∆w〉1/2

where  ∆u∆v∆w is the difference between the  uvw indices in  LT of the  two nodes

quasi-restored by the twin operation (for details of the calculation, see  Nespolo &

Ferraris, 2007). This twin misfit defines the degree of lattice misorientation for the

zero-obliquity TLQS, (for details, see Nespolo, 2015).

Twin laws and twin operations

In the literature,  some confusion exists  when the relation between the orientation

of the individuals in a twin has to be specified. As shown by Eq. (1), the (left) coset

decomposition of K with respect to H* is  the union of a number of cosets each of

which corresponds to a twin law. The length of a coset is equal to |H*|, the order of

H*. Any operation in a coset can be chosen as coset representative and any of these

can be equally taken as  twin operation. This twin operation  represents a mapping

between the individuals in a twin but not a symmetry operation for the individuals in

the twin. For the case of TLS, the twin operation is geometrically equivalent to any

other operation in the same coset in the sense that all operations in the coset map the

orientation of the individual in the same way.

In  the  case  of  non-zero  obliquity  twins  (TLQS),  the  overlap  of  the  individual

lattices only approximately forms the twin lattice LT. Thus, the geometric equivalence

of the twin operations is no longer precise but only approximate within the same twin

law. 

The calculation of the obliquity

The concept of obliquity was introduced by Friedel in 1920 in order to measure the

overlap of  the individual  lattices in the case of  twinning.  Let  (hkl)  be the Miller

indices of the twin plane and [uvw] the indices of the rational direction close to the

normal of the twin plane. For rotation twins, [uvw] becomes the twin axis and (hkl)

the Miller indices of the lattice plane quasi-perpendicular to it. The obliquity is the
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angle  between  [uvw]  and  [hkl]*  (the  latter  expressing  the  normal  to  (hkl)  as  a

direction  in  reciprocal  space)  and  is  computed  through the  following  equation

(Grimmer & Nespolo, 2006; Nespolo, 2015):

ω= cos−1( ∣hu+kv+lw∣

〈hkl∣G*∣hkl 〉1 /2〈uvw∣G∣uvw〉1 /2 )         (2)

where G and G* are the direct and reciprocal metric tensors.

If ω = 0, [uvw] and [hkl]* coincide and this means that the expression of [hkl]* in

direct space is rational.  If this condition does not depend on the external conditions

like temperature or pressure, one speaks of intrinsic-TLS or i-TLS. Conversely, one

speaks of extrinsic-TLS or e-TLS when this perpendicularity is an accidental feature

of  the  crystal  realised  only  in  a  certain  interval  of  temperature  and pressure  (cf.

Nespolo & Ferraris, 2006)).

If ω ≠ 0, the direction [uvw] quasi-perpendicular to (hkl) is irrational. To compute

the obliquity one has to get the irrational expression of [hkl]* in direct space and then

find  a  rational  direction  close  to  it.  The  expression  of  [hkl]*  in  direct  space  is

obtained by imposing (see Nespolo, 2015):

ha*+kb*+lc* =  ua+vb+wc  or, in vectorial expression: 〈hkl|a*b*c*〉  =  〈abc|uvw〉

where u, v and w are not restricted to integer values.

A straightforward computation (see Nespolo, 2015) using the metric tensor G and

its inverse, the reciprocal metric tensor G*, yields the solution:

(hkl)G* = (uvw) (3)

The closest integers to the generally irrational values obtained by Eq. (3) give the
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lattice direction quasi-perpendicular to the twin plane (hkl).

In case of rotation twins, an analogous derivation gives:

(uvw)G = (hkl) (3')

and the closest integers to the generally irrational values obtained by Eq. (3') give the

lattice plane quasi-perpendicular to the twin axis [uvw].

For the Twin Lattice Symmetry (TLS), the twin lattice is defined as the intersection

of the lattices of the individuals in their respective orientations:

LT = ∩iLind(i), where Lind(i) is the lattice of the i-th individual.

Let Lind(1) be a fixed individual taken as reference, the orientation of each Lind(i) is

obtained from the multiplication of Lind(1) by the twin operation ti  which is the i-fold

composition of the twin operation t with itself (Marzouki et al., 2014a):

Lind(i) = tiLind(1)

so that LT becomes:

LT = ∩itiLind(1)

The inverse of the fraction of lattice nodes restored by the twin operation (nodes of

Lind(i) belonging to LT) is called the twin index n. It corresponds to the ratio between

the volumes of the primitive cells of the twin and the individual (Catti & Ferraris,

1976; Nespolo and Ferraris, 2006)
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 n = V(LT)/V(Lind).

The twin index n represents the second twinning parameter. 

The calculation of the twin index

Let (hkl) and [uvw] be the lattice plane and lattice row defining the cell of the twin

lattice, and let us define the quantity X = |hu+kv+lw|. In the case of a primitive cell, X

gives the number of lattice planes of the (hkl) family between successive lattice nodes

along [uvw]. In this case, the twin index is given by n = X or n = X/2 depending on X

being odd or even. In the general case of a possibly centred cell, the twin index is of

the form

n=X/f

where f depends on the centring type and on the parities of X, h, k, l, u, v and w

(see Nespolo & Ferraris, 2007 for the precise computations involved).

In the case of manifold twins, the twin operation is a rotation of higher order about

[uvw] and in general the rotational symmetry of the two-dimensional unit cell in the

(hkl) plane normal to [uvw] does no longer coincide with that of the twin operation.

The above reasoning has to be generalised because for a plane of the family (hkl) no

longer all lattice nodes are restored and because the number of lattice planes of the

(hkl) family between two neighbouring nodes along the [uvw] direction having non-

zero restoration is no longer restricted to 1 or 2. Let ξ be the number of planes (out of

N) that are partially restored by the twin operation (the other N-ξ being not restored at

all). If Ξ is the reciprocal of the relative amount of restored lattice nodes for a plane

of the (hkl) family that is partially restored by the twin operation, the twin index is n

= NΞ /  ξ  (for  a  detailed  derivation,  see  Nespolo  & Ferraris,  2007 and Nespolo,

2015).
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From  the  reticular  point  of  view,  another  important  classification  of  twins

distinguishes four categories: 

n = 1: Twinning by merohedry, for which H* = H and KA is a supergroup of H. It is

subdivided into:

• twinning by  syngonic merohedry, when the twin operation belongs to the same

crystal family as the individual; it is further subdivided into class I when the twin

operation can be taken as an inversion, and class IIA when it cannot;

• twinning by metric merohedry, or class IIB, when the twin operation belongs to a

higher crystal family (this happens in presence of metric specialisations, as for

example when an orthorhombic crystal has accidentally a = b).

n > 1:

• twinning by reticular merohedry, when KA is not isomorphic to H;

• twinning by reticular polyholohedry, when KA is of the same type as H. 

Likewise,  for  TLQS,  the  same  classification  scheme  leads,  respectively,  to

twinning  by  pseudo-merohedry,  reticular  pseudo-merohedry  and  reticular  pseudo-

polyholohedry.

II.3. Friedelian and hybrid twins

The formation of a twin requires the presence of a common substructure across the

composition surface. In other words, a subset of atoms of the crystal structure should

be able to cross the composition surface  more or less undisturbed (Marzouki  et al.,

2014a). Because the lattice represents the periodicity of the structure, the overlap of a

reasonable amount of lattice nodes of the individuals in  LT  with a limited deviation

from perfect restoration is a necessary condition for the existence of this common

substructure. As a consequence, the occurrence frequency of twinning depends on the

twin  index  and  the  obliquity,  which  precisely  measure  the  degree  of  lattice
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restoration. Friedel gave as empirical limits for the occurrence of twins n ≤ 6 and ω ≤

6. Twins falling within these limits are called  Friedelian  twins. Nevertheless some

twins with higher index are known that violate the empirical limits: they are called

non-Friedelian twins (Nespolo and Ferraris, 2005).

The classical reticular theory cannot explain the occurrence of the non-Friedelian

twins  and  their  presence  represents  an  apparent  contradiction  to  the  general

conclusion that a high degree of lattice restoration is a necessary condition for a twin

to form. However, in most cases these twins contain, within the empirical limit on the

obliquity, two or more sublattices based on the identified twin element. The classical

reticular  theory  considers  only  one  quasi-restored  sublattice,  whereas  the

consideration of multiple sublattices is necessary to obtain a good estimation of the

degree  of  quasi-restoration.  When  all  the  concurrent  sublattices  are  taken  into

account, the necessary conditions are no longer contradicted. The interpretation of the

occurrence of this kind of twins, which are called  hybrid twins, is done within the

hybrid theory of twinning  (Nespolo and Ferraris, 2005). This theory represents an

extension of the reticular theory and measures the lattice quasi-restoration in terms of

a twin index nE (Nespolo, M. and Ferraris, G., 2006), called the effective twin index,

which corresponds to the ratio of the total number of nodes inside LT and the number

of nodes inside LT belonging to any of the sub-lattices Lj (the theory of hybrid twins

is developed in detail  in  Nespolo and Ferraris,  2005; 2006). In the hybrid theory,

twins  can  be  classified  into  four  categories  (for  more  details,  see  Nespolo  and

Ferraris, 2009): 

1. Friedelian non-hybrid twins: only one sublattice exists, the twin index and

twin obliquity are within the empirical limits n ≤ 6 and ω ≤ 6;

2. Friedelian hybrid twins: two or more concurrent sublattices exist, which give

an effective twin index lower than the classical twin index, the latter being

nevertheless within the empirical limit of n ≤ 6;

3. Non-Friedelian  hybrid  twins:  more  than  one  concurrent  sublattices  exist,
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which give an effective twin index nE  ≤ 6, whereas the classical twin index is

outside the empirical limit of 6;

4. Non-Friedelian non-hybrid twins: only one sublattice (the twin lattice) exists,

which gives a twin index outside the empirical limit of 6.

The hybrid theory explains the occurrence of twins belonging to the first  three

categories. The few examples in the category No. 4 cannot be explained even by the

hybrid theory but the possibility of a wrong choice of the twin element has to be

considered (reflection twins in place of rotation twins or  vice versa).  This indeed

resolves the apparent contradiction of a higher frequency of twins with higher index

than twins with a lower index observed in some cases like the staurolite twins. The

Saint Andrews cross twin of staurolite, with index n = 12, is more frequent than the

Greek cross twin with index  n = 6 (Nespolo and Ferraris, 2007). These twins are

often reported as reflection twins on (031) and (231), respectively, but experimental

studies (Hurst, et al., 1956) have shown that this interpretation is incorrect and that

they actually are rotation twins. For the Saint Andrews cross twin (n = 12), the correct

choice of the twin element as a line shows the existence of two lattice planes quasi-

perpendicular to it and correspondingly two sublattices are quasi-restored by the twin

operation.  This  gives an effective index  nE = 6.0 and as a consequence the Saint

Andrews twin is brought back into the Friedelian limits. The occurrence frequency no

longer contradicts the necessary condition of a good lattice restoration (Nespolo and

Ferraris, 2009). 

II.4. Towards a structural theory of twinning 

The  reticular  theory  of  twinning  can  only  provide  partial  prerequisites  for  the

formation of twins, which are governed by the structure. More conclusive conditions

can only be obtained via an analysis of the atomic contents of the unit cells. Under

the action of the space group G of a crystal, each atom in the crystal is repeated in

space to form a crystallographic orbit O, i.e. O is the set of all atoms obtained from a
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single atom under the symmetry operations of the space group G. The eigensymmetry

E(O)  of  the  orbit  may  be  a  supergroup  of  G or  coincide  with  it.  Accordingly,

crystallographic  orbits  are  classified  into  three  types  depending  on  the  relation

between G and E:

Characteristic orbit: G = E.

Non-characteristic orbit: G < E but TG = TE.

Extraordinary orbit: TG < TE, a special case of a non-characteristic orbit defining a

superlattice (smaller unit cell).

Here, TE and TG are the translation subgroups of E and G, respectively. When G <

E, an operation  t belonging to  E but not to  G may map the orientation of crystal 1

onto that of crystal 2 while preserving O and may thus serve as twin operation which

fixes the orbit  O as a common substructure. As we will see, the symmetry analysis

will  mainly  be applied to  orbits  under  a  particular  subgroup  H of  G,  namely  the

largest subgroup of  G  compatible with the twin lattice  LT.  With respect to the twin

lattice,  the  continuous substructure across  the interface  is  then given by the split

orbits  Oij or the union of them: it is this substructure which is restored by the twin

operation t:

• a  split  orbit  Oij (obtained  under  the  action  of  H)  is  restored  by  the  twin

operation t if and only if its eigensymmetry E (Oij) contains t;

• the union  ∪ijOij is  restored by t if  and only if  its  eigensymmetry  E (∪ijOij)

contains t.

For twins in which the composition surface is planar and parallel to the twin plane or,

for rotation twins, to the plane (quasi-)perpendicular to the twin axis, one can obtain

additional  information  by  restricting  the  symmetry  analysis  locally,  information

which is not independent but complements the evidence derived from the restoration

of crystallographic orbits. Let K be a slice through the crystal structure taken around

the composition  plane of  the twin and let  L be  the  symmetry  group of K (layer
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group). The two individual crystals have space groups G1 and G2 (of the same type but

with different  orientation)  and induce  layer  groups  L1 and  L2 of  the slice  K,  the

intersection of which is included in L, i.e.  L1 ∩ L2  ⊂ L. If L contains any operation

that  maps  the  orientation  of  G1 onto  that  of  G2,  this  operation  can  explain  the

formation of the twin. In order to find the twin operation as an element of a layer

group,  it  may  be  necessary  to  exclude  some atoms from the  slice  which are  not

restored  by  the  twin  operation.  This  is  analogous  to  the  fact  that  not  all

crystallographic orbits under  G are invariant under the twin operation, but that only

some of the split orbits under H are restored.

It  is  worthwhile  to  note  that  the  two  approaches  just  sketched  have  useful

interrelations. On the one hand, having a crystallographic orbit (or split orbit) which

is restored by the twin operation, restricting it to the slice around the composition

plane  yields  a  substructure  within  the  slice  which  is  invariant  under  the  twin

operation (note that the twin operation fixes the composition plane). On the other

hand, finding the twin operation as an element of a layer group shows which (split)

orbits are related by the twin operation by identifying to which orbits the atoms in the

slice belong.

Crystallographic orbit approach

The formation of a twin requires a structural continuity through the composition

interface.  Such a  structural  continuity  can be realised  by a  substructure  which is

invariant under the twin operation t. To find such an invariant substructure, one may

apply  three  different  types  of  pseudo-symmetry  analysis  with  respect  to

crystallographic orbits:

• orbits under the full space group G of the individual (G-description);

• orbits under the translation group TT of the twin lattice (T-description);

• orbits under the intersection  H of the space groups of the individuals (H-

33



description).

Crystallographic  orbit  approach    under    G   (  G  -description):  The  symmetry  of  a

crystal structure is described by a space group  G and the atomic positions and the

symmetry operations are typically given with respect to a conventional basis of the

individual crystal. However, the description of the twin operation with respect to this

basis  is  usually  complex  because,  with  the  exception  of  twinning  by

(pseudo-)merohedry, the twin element is not aligned with the symmetry directions of

the individual. It is clear that not all orbits  Oi under  G can be fully restored by the

twin operation  t, otherwise  t would belong to  G and the crystal would in fact be a

single crystal  and not a twinned crystal.  For the full  orbits  under  G,  we find the

following two cases of quasi-restoration: 

1. An orbit Oi is quasi-restored by t, i.e. the twin operation t maps each atom of Oi

to a position close to an atom belonging to Oi.

2. A union of orbits under G is quasi-restored by t. 

An example for the first case is found in the  aragonite twin, the carbon atoms are

located on the (011) plane which is the twin plane (Figure 2.2). Thus, the carbon orbit

is quasi-restored by the mirror (011), since all the atoms in this orbit are actually

fixed by the twin operation.
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Figure 2.2: The position of the carbon atoms (brown color) on the twin plane (pink
plane) (Figures of atomic structures are drawn with VESTA: Momma & Izumi,

2011).

The staurolite twins provide examples for the restoration of a union of orbits. The

union of all oxygen orbits is fully restored, although with a small perturbation, in

these twins (Figure 2.3),  whereas this  is  not  the case for  single  orbits  of  oxygen

atoms, since the twin operation maps one orbit to parts of several other oxygen orbits.

Actually, it has long been known that the structure of staurolite is based on a pseudo-

fcc packing of 48 oxygen atoms in the unit cell (Náray-Szabó, 1929) and this pseudo-

cubic symmetry is confirmed by the symmetry analysis of the union of oxygen orbits.

The eigensymmetry of the union of oxygen is Fm3m (No. 225). The latter contains all

twin  operations  which  explains  the  restoration  of  the  oxygen  union  by  these

operations for the staurolite twins (Marzouki et al., 2014b).  
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Figure 2.3: Pseudo-cubic symmetry of the oxygen union; the red balls represent the

union of the oxygen atoms.

As a consequence,  the structural analysis of full  orbits under  G will  be unable to

identify the substructure invariant under the twin operation in the case that only part

of an orbit under G is restored.

Crystallographic orbit approach under   TT (T-description): Noticing that the orbits

under G are too large to identify the substructure invariant under t, one may consider

instead the opposite extreme of orbits which are as small as possible (in a natural

sense),  namely  the  orbits  under  the  translation  subgroup  TT of  the  twin;  this

translation subgroup consists of the translations by vectors in the twin lattice LT and is

the intersection of the translation subgroups of the individuals. Then, each atom in the

cell of the twin lattice represents a different orbit with respect to  TT. To search the

invariant subset of atoms under the twin operation t, one only has to check whether a

chosen atom in the twin cell is restored or not by  t.  Due to the periodicity of the

crystal structure, if one atom is restored by the twin operation (i.e. a single atom is

fixed under the twin operation or a pair of atoms is associated to each other) the

whole  set  of  atoms  equivalent  under  the  translations  of  the  twin  lattice  will  be

restored. Thus, it is sufficient to look at the atoms in the twin cell. 

The symmetry analysis under  TT identifies the restored subset of atoms through a
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case-by-case  checking  of  the  atoms in  the  twin  cell,  but  such an  analysis  is  not

recommended for a twin structure with a large number of atoms in the twin cell. The

natural question is then, which atoms are restored with the same accuracy.  To this

end, instead of looking at single atoms, one can now invert the point of view and look

for subgroups H of G such that atoms in the same orbit under H are restored with the

same accuracy. From the above discussion it is clear that TT already has this property,

hence one will look at subgroups H of G with TH = TT.

Crystallographic orbit approach under   H   (  H  -description)  :  

Let  G be the space group of one of the individuals of a twinned crystal. The twin

operation t maps the first individual to the second individual and the space group of

the second individual is the conjugate group tGt -1. In addition, the twin operation  t

maps the lattice  Lind of the first individual to the lattice  tLind of the other individual

and the intersection LT := Lind ∩tLind is the twin lattice. Since tLT = tLind ∩t2Lind = tLind

∩Lind = LT, the twin operation fixes the twin lattice (assuming a twofold twin for the

sake of simplicity: the generalisation to a higher-degree twin is self-evident).

Under the twin operation, the atoms of the first individual are mapped onto positions

close  to  the  atoms  of  the  second  individual  (with  small  deviations  due  to  the

obliquity). But in order to explain the formation of the twin, at least part of the atoms

should be mapped onto positions belonging also to the first individual, i.e. the atoms

should be restored within the first individual. These restored atoms can be interpreted

as  common  to  both  individuals  and  therefore  provide  a  continuation  across  the

interface  between  the  individuals.  In  order  to  investigate  the  restored  atoms,  a

subgroup  H of  G which is compatible with the twin lattice  LT is  of  interest.  The

intersection of the groups of the two individuals, G and its conjugate tGt-1, clearly has

the correct translation subgroup by construction. Therefore, the intersection subgroup

of  G compatible with the twin lattice is  H =  G ∩tGt-1.  Since the basis of the twin

lattice  LT is built from the twin plane (hkl) and its quasi-normal [uvw] (or the twin
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axis  [uvw]  and  the  quasi-perpendicular  plane  (hkl)  for  a  rotation  twin),  the  twin

operation has a simple description with respect to the twin basis. On the other hand,

the orbits generated under G are split into sub-orbits under the action of H, these sub-

orbits are called split orbits and the components of a full orbit Oi  are denoted by Oij.

The restoration conditions for a split orbit  Oij under  H are:  Oij is restored to itself,

restored to another orbit  Oi'j' or not restored at all. The crucial difference between a

full orbit under  G and a split orbit under  H  is, that it can not happen that different

atoms from a single split orbit are restored to atoms from more than one split orbit (as

is found for the full oxygen orbits in staurolite), or that some atoms from a single split

orbit  are  restored while  others  are  not  (as  is  found for  the  full  calcium orbits  in

melilite). This property is, amongst others, demonstrated in the theorem below.

As a consequence, the substructure invariant under t is the set of all split orbits under

H  which are restored by  t.  The idea of using the intersection subgroup H  and the

properties of the split orbits under H are a core result of this PhD thesis. Using H has

two main advantages: 

• It reduces the number of atoms in the twin cell to check for restoration.

• The symmetry analysis is performed in terms of the minimal supergroup of H

which is generated by H and the twin operation. The pseudo-eigensymmetry E

of a split orbit (or union of split orbits) may be larger than this minimal group,

but as for the orbits under G different atoms in a single orbit under E may be

restored with different accuracy.

The  following  theorem  summarises  the  properties  of  the  split  orbits  under  the

intersection group H which are used in order to identify all the split orbits restored by

the twin operation t and thus allows to find the substructure explaining the formation

of the twin.  

Theorem (Marzouki et al., 2014 a). Assume that t is a twofold twin operation, i.e.

t2 is an element of G. Let Oij be a split orbit under the intersection group H = G ∩ tGt-
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1 and let x be the position of an atom in Oij. Let x' be the position of the atom in the

structure closest to the mapped position t(x) of x under the twin operation, thus dmin

=  ∥ t(x) –  x'  . Then the value of  ∥ dmin is the same for every atom in  Oij,  i.e. the

distance of the image of any atom in Oij under t to the closest atom position in the

structure is always dmin. 

Moreover, if the position x' belongs to the split orbit Oi'j', then the closest atoms to

the mapped split orbit  t(Oij) all belong to  Oi'j'.  In particular, if one atom of  Oij is

exactly restored to an atom in Oi'j', then the full split orbit  Oij is mapped to the full

split orbit Oi'j' under the twin operation.

Proof: Let x be the position of an atom in Oij, let x' be the position of the atom in

the structure closest to t(x) and assume that x' belongs to the split orbit Oi'j'. If y is the

position of another atom in Oij, then there is a symmetry operation h in H mapping x

to y. Since t is a twofold twin operation, one has tht-1 ∊ tGt-1 ∩ t2Gt-2 = tGt-1 ∩ G = H

and hence tht-1 = h' ∊ H. This means that th = h't, thus mapping y = h(x) by the twin

operation t gives t(y) = th(x) = h't(x). If one defines y' = h'(x'), then from the fact that

h' is an isometry and thus preserves distances, it follows that  ∥ t(y) – y'  =  ∥ ∥ h't(x) –

h'(x')  =  ∥ ∥ h'(t(x) – x') =  ∥ ∥ t(x) – x'  = ∥ dmin. Since h' is an element of H, it follows

that Oi'j' contains an atom with distance dmin to y. The same argument applied with the

roles of  Oij and  Oi'j' interchanged now shows that the structure cannot contain an

atom closer to  t(y) than  y',  because that would result in an atom with a distance

smaller than dmin to t(x).
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Remark: The above proof is easily generalised to a k-fold twin operation. In this

case, the intersection subgroup has to be chosen as H = G ∩ tGt-1 ∩ t2Gt-2 ∩ … ∩ tk-

1Gt-(k-1). Then, the crucial argument in the proof that tht-1 = h' ∊ H remains valid.

As an illustrative example we discuss the case of the calcium orbit X in the melilite

twin. The analysis of this orbit gave a guideline for developing the pseudo-symmetry

analysis in a general way. 

Melilite crystallises in space group  G=P421m (no. 113);  Bindi  et al.  (2003) have

reported a reflection twin on (120). 

• The G-description of the calcium orbit X. 

In  the  individual  basis  (abc)I,  the  calcium orbit  is  represented  by  the  position

(0.3316, 0.1684, 0.5065) on Wyckoff position 4e. Therefore, the unit cell contains

four atoms from the orbit X (see Figure 2.4), with coordinates (in the individual

basis)  {  (0.3316,  0.1684,  0.5065);  (0.6684,  0.8316,  0.5065);  (0.1684,  0.6684,

0.4935); (0.8316, 0.3316, 0.4935) }. By using the PSEUDO program (Capillas et al.,

2011) at the Bilbao Crystallographic Server (Aroyo et al., 2006), one checks that the

eigensymmetry of this orbit  is E=  P4/mbm (no. 127). However, this space group

does not contain a symmetry operation with the  reflection on (120) as linear part

(Marzouki  et  al.,  2014a).  The  G-description  shows that  the  calcium orbit  is  not

restored by the twin operation t - the reflection on (120). One concludes that not all

calcium atoms belong to the subset invariant under  t. However, a subset of these

atoms is restored by t (see Figure 2.4). 
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Figure 2.4: View of the calcium orbit (blue color) in the individual basis, along the c-

axis where the green plane is the twin element of the twin operation - reflection in 

(120). 

Figure 2.5: View of the restored calcium atoms (blue color) in the twin basis, along 

the c-axis where the green plane is the twin element of the twin operation - reflection 

in (100).
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• The H-description of the calcium orbit X. 

Let (abc)T be the twin basis, related to the individual basis (abc)I by (abc)I P=(abc)T,

with  P= (
1 1 0
2 2 0
0 0 1) .  The  X orbit  under G  has  four  atoms  in  the  unit  cell  of  the

individual, which give rise to 20 calcium atoms in the twin cell, since the twin index

is 5 in this case. For the melilite case, H = G ∩ tGt-1 = P4 (no. 81), and since all atoms

are in general position with respect to P4, these 20 atoms are regrouped under H in

five split orbits X1 X2 X3 X4 and X5. Note that with respect to the twin basis, the twin

operation  m[120]
I
 becomes  m[100]

T
. In order to check the restoration of a split calcium

orbit,  it  is  sufficient  to  check  whether  its  eigensymmetry  contains  a  symmetry

operation  with  the  mirror  m[100]
T  

as  linear  part.  The  minimal  supergroups  of  P4

containing such an operation are P4m2 (no. 115), P4c2 (no. 116), P4b2 (no. 117) and

P4n2 (no.  118).  By  using  the  PSEUDO program again,  one  shows that  of  these

groups only P4m2 occurs as the eigensymmetry for a split orbit. More precisely, three

split orbits out of five are quasi-restored by t (see Schema 2.1). Thus, 12 out of these

20 atoms are quasi-restored and at  the same time it  is  shown that  the restoration

operation having the twin operation  m[100]
T  

as its linear part must be the reflection

located at x = 0.

The example of calcium leads us the way to a general procedure in order to analyse

the other orbits of melilite and more generally other twin examples.   

                    X1 generated by (0.99896, 0.16632, 0.5065), restored to X1 by m with dmin =0.0364 Å          
                X2 generated by (0.19896, 0.56632, 0.5065), not restored by m                                      

X                 X3 generated by (0.39896, 0.96632, 0.5065), not restored by m                                      

                X4 generated by (0.79896, 0.76632, 0.5065), restored to X4 by m with dmin = 0.8104 Å         

                    X5 generated by (0.59896, 0.36632, 0.5065), restored to X5 by m with dmin = 0.8617 Å

Schema 2.1: Xj stemming from X under H = P4. A split orbit Xj is quasi-restored to 

itself  by a twin operation  (with dmin within the accepted tolerance) with 
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eigensymmetry E=P4m2. 

The twins investigated in the course of this PhD project are analysed, mainly, via the

subgroup H-description of their crystal structure in order to find the substructure of

atoms invariant under the twin operation. As a quantitative measure describing this

restored  subset,  the  relative  amount  of  restored  atoms  is  given  as  restoration

percentage. This restoration percentage served well for explaining the occurrence of

the investigated twins: melilite, staurolite and aragonite. 

Layer group approach

  The  layer  group  approach  takes  an  alternative  perspective  on  identifying  the

invariant subset of atoms which is responsible for the structural continuity across the

composition surface. For that, instead of looking at the entire set of atoms, it might be

sufficient to analyse the symmetry of the atoms close to the composition interface.    

 For twins having a plane as composition interface, the symmetry group of a thin slice

around this plane may contain an operation relating the orientations of the individuals

(Holser, 1958). The restriction to a slice around the composition plane gives rise to a

layer group L as symmetry group, which contains (at least) the subgroup of the space

group G of the crystal pattern that leaves the composition plane invariant as a whole.

Abstractly, the composition plane is a 2-dimensional plane intersecting the crystal

structure and is called a section plane. However, since a crystal structure is built from

physical objects, it makes sense to replace the abstract plane of thickness 0 by a slice

of finite (usually small) width. The width of the slice should be chosen small enough

to increase the chance that its symmetry group contains the twin operation, but large

enough to  be  meaningful  for  the  growth process  of  the  crystal  (Marzouki  et  al.,

2015). This slice extends symmetrically around the section plane and contains the

atoms close to it. The symmetry group of such a slice has a translation subgroup with

translations along two independent directions and is therefore a subperiodic group,
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called a sectional layer group. Let K be a slice around the section plane at a position

z=s (assuming the c-axis being normal to the slice), then a straightforward option is to

choose the thickness of K such that for every type of atoms it contains the atoms

closest to the geometric element of the twin operation located at  z = s (Figure 2.6).

Depending on the type of structure, one might also consider choosing the thickness

such that coordination polyhedra close to the twin plane are contained in the slice. 

Figure  2.6:  View along  the  c-axis  of  the  slice  enclosed  by  the  two pink planes

extending around the twin plane (green plane) located at y=b/2.

   In contrast to the crystallographic orbit approach, the layer group approach is a

local analysis which deals only with the part of the structure within the slice. For a

twinned crystal, the twin operation t restores a subset of the split orbits. Restricting

these restored orbits to a region geometrically close to the geometric element of the

twin operation already gives a substructure in the slice that is invariant under the twin

operation. On the other hand, a split orbit may be prevented from being restored by

non-restored atoms which are far away from the composition interface and which are
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thus of little relevance for the growth process of the twin. In this case, atoms within

the slice may still be restored. For instance, if the twin operation is a reflection, atoms

on the twin plane will be fixed. Therefore, the slice containing the twin plane may be

fully-restored by  t even if not all split orbits intersecting it are restored. In such a

situation, the symmetry of the slice is generated by the layer group  L (induced by the

space group G of the individual) and the twin operation t. 

The layer group approach was succesfully applied in the case of the aragonite twin

and provided additional evidence for the formation of this twin: 

• The chosen slice - meaningful for the growth process of the crystal - has a

width of  4.22 Å and contains the twin operation in its  eigensymmetry and is

thus fully restored. On the one hand, the slice is chosen such that it contains the

atoms closest to the twin plane, but on the other hand the slices at different

locations precisely cover the entire structure. Thus, in any phase of the growth

process  the invariance  of  the  slice  under  the  twin operation allows for  the

formation of the twin.

• The local analysis at the intermediate position y=1/8 shows the existence of a

partial symmetry operation mapping one half of a slice to the other half but not

vice  versa.  This  observation  demonstrates  a  certain  amount  of  structural

continuity  of  the  aragonite  twin  across  the  composition  plane  at  additional

locations of the plane.

The crystallographic orbit approach shows the existence of a substructure invariant 

under the twin operation. Furthermore, the local analysis of the composition plane in 

the structure, via layer groups, indicates the location of the slices which are fixed by 

the twin operation. In fact, these two approaches are not independent of each other, 

but give complementary information. They both contribute to the explanation of the 

high frequency of twinning observed in known twins which have been investigated in

this PhD work.
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Chapter III. Summaries of articles

In this chapter we give brief summaries of the three articles which were written in

the course of this PhD project and which are already published in refereed journals:

• Marzouki, M.A; Souvignier, B; Nespolo, M. (2014a) Analysis of the structural

continuity  in  twinned  crystals  in  terms  of  pseudo-eigensymmetry  of

crystallographic orbits. IUCrJ, 1, 39-48. 

• Marzouki,  M.A; Souvignier,  B;  Nespolo,  M. (2014b)  The staurolite enigma

solved. Acta Cryst., A70, 348-353. 

• Marzouki, M.A.; Souvignier, B; Nespolo, M. (2015). Twinning of aragonite –

the crystallographic orbit and sectional layer group approach. Acta Cryst., A71,

195-202.

All three articles are reproduced at the end of this thesis.

III.1. Summary of the article 'Analysis of the structural continuity in 
twinned crystals in terms of pseudo-eigensymmetry of 
crystallographic orbits'

This article is the first one in the series of articles introducing the new methods for

the analysis of twins which were developed in the course of this research project. It

therefore  has  an  elaborate  theoretical  part  in  which  the  concepts  of  the  pseudo-

eigensymmetry analysis are explained and the techniques used to perform the actual

analysis are described. This analysis has been performed with the PSEUDO program

(Capillas et al., 2011) at the Bilbao Crystallographic Server (Aroyo et al., 2006). The

new approach is validated by applying it to the melilite silicate.

In the first part of the article, the current description of twinned crystals by the

reticular  theory is  summarised,  because the new approach via  the eigensymmetry

analysis of crystallographic orbits aims at providing additional conditions explaining

the  formation  of  twins  which  go  beyond  the  lattice  point-of-view  taken  in  the

46



reticular  theory.  These  additional  conditions  are  termed  structurally  necessary

conditions, to distinguish them from the necessary conditions on the lattice level.

The main theoretical part of the article explains the concepts of the twin lattice and

twin  cell,  which  are  inherited  from  the  reticular  theory.  It  is  shown  how  the

construction  of  the  twin  lattice  as  the  intersection  of  the  lattice  of  one  of  the

individuals  and  its  transformation  by  the  twin  operation  leads to  an  analogous

construction on the level of the space groups of the individuals: there, the intersection

of the space group G of one of the individuals and its conjugate by the twin operation

(taken as space group operations with trivial vector part) yields the largest subgroup

of the two space groups which is compatible with the twin lattice. It is at the same

time the intersection of the space groups of the individuals. The significance of this

intersection group H is its role in the analysis of the restoration accuracy of the atoms:

atoms which are related by a translation of the twin lattice are restored with the same

accuracy, but this is in general no longer true for atoms in the same orbit under G. The

largest group for which this property holds is just the intersection group H  and this

allows to  restrict  the  restoration analysis  to  representatives  of  the  orbits  under H

(which  are  suborbits  of  the  full  orbits  under  G).  This  crucial  property  of  the

intersection group H  is formulated as a theorem and proved in the appendix of the

article.

After a brief summary of how crystallographic orbits split into suborbits (which we

term  split orbits) under the action of a subgroup, the different possibilities for the

restoration of orbits and suborbits by the twin operation are discussed. Furthermore, it

is explained how the actual restoration analysis can be performed by computing the

(pseudo-)eigensymmetry of the crystallographic orbits and split orbits and of unions

thereof. An important concept introduced is that of a restoration operation: the twin

operation itself is a point group operation, mapping the orientation of the individual

crystals. It is the linear part of the space group operation which actually maps the

atoms  in  the  structure.  To  clearly  distinguish  these  two  levels,  the  space  group
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operation is termed restoration operation2. Since the twin operation only determines

the linear part of the restoration operation, different vector parts of the restoration

operation may alter its type (e.g. turning a reflection into a glide reflection) and the

location of its geometric element (the position of the plane or axis).

In the final part of this paper, we present the application of the crystallographic

orbit approach to the melilite twins in order to explain their natural occurrence during

crystal growth, thus validating the new method.

The case of the melilite silicate is interesting since it displays three different known

twins – reflection twins on the planes (100), (001) and  (120) – which are analysed

with respect to their quasi-restored orbits. In particular, it is shown that the first two

twins,  which  are  indistinguishable  from  a  lattice  viewpoint,  being  twins  by

merohedry, show a fairly good degree of structure restoration, but with twin elements

in different locations. Since for twins by merohedry the lattices are fully restored by

the twin operation, in these two cases the intersection group H actually coincides with

the space group G  of the individual. For the case of the  (120) twin in melilite, the

restoration analysis of the split orbits under the intersection group H is performed in

full detail. It is found that for a suitable restoration operation 68% of the cations and

37%  of  the  oxygen  atoms  are  (approximately)  restored,  which  provides  a  good

explanation for the formation of this twin.

III.2. Summary of the article 'The staurolite enigma solved'

  This article is the second one in the series of articles and continues to explain the

new methods for the analysis of twins. Based on the pseudo-eigensymmetry analysis,

developed  in  the  previous  chapter,  the  full  power  of  the  crystallographic  orbit

approach is demonstrated in its application to the two famous types of twins of the

staurolite silicate. In particular, the new methods give the first clear explanation for

the different occurrence frequencies of these twins.

2 Note that in Chapter II we have not explicitly distinguished between the concepts of a twin and a restoration 
operation, in order to keep the description of the main concepts as simple as possible. It should always be clear 
from the context whether – in the terminology introduced here - a twin or a restoration operation is meant.
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In the first part of the article, we start by summarising the historical description of

the staurolite structure; from Cardoso (1928), who suggested the space-group type

Ccmm up  to  Naray-Szabo & Sasvari  (1958)  who confirmed  C2/m as  the  correct

space  group.  Staurolite forms  two  well-known  types  of  twins  with  different

occurrence frequency, the Greek cross twin (lower frequency), with twin index 6, and

the Saint  Andrews cross  twin  (higher  frequency) with twin index 12.  The hybrid

theory of twinning showed that the Greek cross is actually a hybrid twin with two

concurrent  sub-lattices  and  effective  twin  index  6.0  (Nespolo  &  Ferraris,  2007),

which removes the apparent contradiction of having a higher-index twin with higher

occurrence frequency. However, the hybrid theory is still not sufficient to explain the

different occurrence  frequency. In order to explain this frequency issue, one has to

analyse the crystallographic orbits of this twin, in terms of their eigensymmetry. 

 For  this  purpose,  the  main  part  of  the  article  consists  of  applying  the  pseudo-

eigensymmetry analysis to the staurolite structure. It starts by recalling the  Náray-

Szabó (1929) statement that the 48 oxygen atoms in the unit cell form a pseudo-fcc

packing. The pseudo-eigensymmetry analysis of the union of oxygen orbits shows a

cubic  eigensymmetry  (Fm3m, No.  225  ITA) of  this  union  which  confirms  the

previous statement. Moreover, this eigensymmetry contains all restoration operations

of both twins. This implies that the oxygen union is equally and fully-restored by the

twin operations of both types of twins. This equal-restoration of the anions justifies

the  high  frequency  of  twinning  of  this  mineral  but  cannot  explain  the  different

occurrence frequencies of these two twins.

In the next step, we determine for  the Greek cross twin (Gc) an the Saint Andrews

cross twin (SA) the intersection space groups HGc, HSA through the twin operations tGc

and  tSA,  respectively.  The  minimal  supergroup  E of  the  intersection  subgroup

containing the twin operation is of type P4/m (No. 83) for the Greek cross twin and of

type  P2/m (No. 10) for the Saint Andrews cross twin.  We then apply the pseudo-

eigensymmetry analysis to the cation sites, and the results are the following :
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•  A subset of cations in tetrahedral coordination has an eigensymmetry that 

contains a restoration operation corresponding to the Saint Andrews cross, but 

no such subset can be found for the Greek cross.

• A subset of octahedral cations has an eigensymmetry that contains a restoration

operation for the Greek cross twin, but a larger subset has an eigensymmetry 

that contains a restoration operation for the Saint Andrews cross twin.

  In the final part of this paper, after giving a precise description of the restored orbits 

of cations, we summarise the pseudo-eigensymmetry analysis outcomes in terms of 

percentages. 

In addition to the oxygen atoms, which are fully restored for both twins, in the Greek 

cross twin 19% of the cations are (quasi-)restored against 45% for the Saint Andrews 

cross twin. Consequently, a larger substructure is (quasi-)restored for the Saint 

Andrews cross twin, which justifies its higher occurrence frequency.

III.3. Summary of the article 'Twinning of aragonite – the 
crystallographic orbit and sectional layer group approach'

   This article is the third (and in the course of this thesis the last) one in the series of

articles introducing the new methods for the structural analysis of twins. In this paper

we confirm the strength of the new approach by applying the pseudo-eigensymmetry

analysis to the aragonite mineral. Moreover, we introduce the layer group approach

described in section II.4.

  In the first part of the article, we present aragonite as the high-temperature / high-

pressure phase of calcium carbonate CaCO3. It crystallises in a space group of type

Pmcn  (non-standard  setting  of  Pnma, No.  62  ITA).  It  frequently  gives  twins  on

{110}, with twin index  n = 2 and obliquity ω = 3.74º (structural data taken from

Caspi et al., 2005). Therefore, this twin falls within the Friedelian empirical limits for

the occurrence of twins (i.e. the twin index n  ≤ 6 and the obliquity ω ≤ 6º) and its
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formation is justified from the reticular point of view. After a brief summary of the

principles of pseudo-eigensymmetry analysis (Marzouki et al., 2014a,b), we discuss

the  physical  meaning  of  the  pseudo-eigensymmetry  and  tolerance  on  the  atomic

quasi-restoration.  In  this  subsection,  the  physical  meaning  of  the  pseudo-

eigensymmetry is explained in that it identifies a subset of restored orbits which cross

the composition surface,  more or less unperturbed,  in order to build the  common

substructure between  the  individuals.  To  identify  this  substructure,  we  have

rationalised the definition of the tolerance on the atomic quasi-restoration (denoted by

dmin). The latter is limited with respect to the radius (ionic or covalent, depending on

the type of bond).

  The main part of the article carries out  the pseudo-eigensymmetry analysis of the

aragonite crystallographic orbits. With respect to the full orbits under the space group

of  the  individual,  we  show  that  the  calcium  orbit  has  a  pseudo-hexagonal

eigensymmetry  (P63/mmc, No.  194)  which contains  a  restoration  operation.  With

respect to the split orbits under the intersection group, we find the following:

• The existence of an important substructure (60% of the atoms) restored by two

restoration  operations,  a  c-glide  reflection  and an  n-glide,  with  only  minor

perturbation.

• The  two  restoration  operations  alternate  with  respect  to  restored  and  non-

restored atoms every b/4 along the b-axis.

In the final part of this paper, we introduce the layer group approach which is

based on a local pseudo-eigensymmetry analysis of the slice containing the geometric

element of the twin operation (in this case a mirror plane). This local analysis leads to

two important results:

• The local analysis of the composition surface in the aragonite structure shows

that the twin cell is subdivided into 4 slices of width 4.22 Å and the pseudo-

eigensymmetry  of  each  slice  is  a  layer  group  containing  the  restoration

operation.
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• The twin operation restores the slices each 1/4 along the b-axis, but in addition

at the 1/8 position in between there is a partial symmetry operation mapping

one half of a slice to the other half but not vice versa.

  On the one  hand,  the  crystallographic  orbit  approach shows the  existence  of  a

common substructure in aragonite, whose  C2/c pseudo-eigensymmetry contains  c-

glide  and  n-glide  reflections.  On  the  other  hand,  the  local  analysis  of  such  a

composition surface, via layer groups, shows that the structure is built from slices

which are fixed by the twin operation. This explains why the {110} aragonite twin

has a high occurrence frequency.
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Chapter IV. Discussion

The occurrence of twins has as a pre-requisite the continuation of a substructure

across the composition surface. The analysis of this structural continuity is obtained

via  the  crystallographic  orbit  approach,  which  exploits  the  analysis  of  the

eigensymmetry of each crystallographic orbit corresponding to an occupied Wyckoff

position in the crystal. The structural continuity is obtained when this eigensymmetry

contains, exactly or approximately, an operation whose linear part coincides with the

twin operation t. Such an operation is called a restoration operation.

Although the occurrence frequency of twins certainly takes values on a continuous

scale, it is useful to distinguish two categories of twins: 

1)  frequent twins: twins of a given chemical compound for which twinning has

been observed frequently;

2)  rare twins: these are examples which have been found in a limited number of

cases, but for which the chemical compound usually occurs as non-twinned crystal or

as a different type of twin.

As shown in chapter II, the application of the pseudo-symmetry analysis of orbits

is  based  on  the  assumption  that  a  'good  structure  restoration'  will  provide  a

structurally necessary condition for the formation of twins. Two important parameters

are  considered  in  the  evaluation  of  the  quality  of  structural  restoration:  i)  the

tolerance limit on the structural pseudosymmetry,  i.e. the accepted deviation of the

quasi-restoration by a  pseudo-eigensymmetry  from perfect  restoration,  and ii)  the

restoration percentage, i.e. the percentage of atoms restored or quasi-restored by the

twin operation. 

The discussion in this chapter will focus on the interpretation of the percentage

results for the studied twins, with indications for future extensions to other examples,

including rare twins which we expect to have a lower degree of structural restoration.
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IV.1. The restoration percentage and twinning frequency

The  reticular  (classical  and  hybrid)  approach  to  twinning  gives  necessary

conditions for the occurrence of twins on the lattice level via two parameters; the

twin index n and the obliquity ω. However, these two parameters take into account

only  the  restoration  of  lattice  nodes,  but  ignore  the  content  of  the  unit  cells.  Of

course, a good lattice restoration is a prerequisite for the restoration of a substantial

substructure,  but the reticular theory is not sufficient to differentiate between  twins

showing a different occurrence  frequency  despite a close, or even identical, lattice

restoration. A striking example are the staurolite twins,  where  both the St Andrews

cross and Greek cross have the same degree of lattice restoration, yet their occurrence

frequency is different.  

We have shown that  the crystallographic orbit approach,  thanks to its analysis  at

the atomic level, is indeed able to explain such different occurrence frequencies, even

in a difficult case like that of  the staurolite  twins, which for this reason have been

considered  an  “enigma”  for  a  long  time.  In  fact,  our  analysis  provides  a  global,

quantitative, analysis of the structural continuity across the composition surface in

terms of the (pseudo-)eigensymmetry of the orbits forming the crystal structure. The

results of this analysis are expressed in the form of percentages of the atoms in the

structure of the individual crystal which are restored or quasi-restored by the twin

operation within the accepted tolerance and thus are shared by the individual crystals.

This percentage is expected to be a simple indicator which is directly related to the

occurrence probability of the twin. It may be enhanced by taking into consideration

its dependency on the tolerance limit. Having a good restoration percentage for a low

tolerance (and thus almost perfect restoration) is a stronger indication than reaching a

reasonable  restoration  only  for  a  higher  tolerance  limit.  However,  reducing  the

restoration of atoms to a single percentage (or a couple of percentages for different

types of atoms) clearly results in a loss of information. In a more refined analysis,

considering the structure of the restored atoms and their relations (in particular bonds
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between them) gives much more detailed information.

IV.2. Examples of studied twins with a high restoration percentage

    In  case  of  inorganic  crystals,  the  structure  consists  of  electropositive  and

electronegative  atoms  (in  ionic  crystals  these  become  cations  and  anions,

respectively).  In  general,  electronegative  atoms have  a  bigger  size  than

electropositive atoms and span the  bulk of the  volume of the crystal structure:  the

electropositive atoms then  occupy  the  cavities.  When the difference of the size is

relevant, the  largest atoms  may dominate the topology of the structure. Hence, the

restorations  of  these  atoms may  be  structurally  essential  to  explain  the  twin

formation, provided that the degree of restoration is sufficient.

 As a starting point it  was natural to assume that the restoration operation will

relate atoms of the same type, but it turned out that this restriction is too strong. It is

certainly true that the restoration operation must relate atoms with a chemical and

structural  similar  role,  but  these  may  be  of  different  types.  For  example,  in  an

inorganic crystal whose structure is described by coordination polyhedra, atoms at the

corner of a polyhedron can only be restored to atoms in a similar position. Also,

atoms centring the same type of polyhedron (e.g.  tetrahedra or octahedra) can be

related by the restoration operation even if their chemical species is different.  An

example  of  this  type  is  found  in  the  melilite  twin,  where  Al  and  Mg  atoms  in

tetrahedral coordination are interchanged.

In the present thesis, we have analsed the structure of three minerals, for which the

occurrence and frequency of twins has been well known for a long time. Accordingly,

the atomic constituents are described as “cations” and “anions” even if the chemical

bond is not necessarily purely ionic, and in some cases it is definitely not, e.g. in the

case of the carbon-oxygen bond in aragonite. The restoration rates for these three

examples are summarised in Table 4.3.

The percentage of restored atoms is dependent on the chosen restoration operation,
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therefore the existence of different restoration operations for the melilite twins gives

rise to different restoration percentages. However, the melilite case also shows how

the restoration percentages may help to identify the operation really responsible for

the occurrence of the twin, namely as the operation restoring the largest substructure.

For the melilite twin, the highest restoration percentage 50% (Table 4.3) identifies the

mirror m 0,y,z as the restoration operation and it confirms the pseudo-eigensymmetry

analysis for this frequently observed twin.

      In the case of staurolite, since the structure of this mineral is based on an fcc

packing  of  oxygen  atoms  with  the  cations  partly  occupying  the  octahedral  and

tetrahedral  cavities,  the  (pseudo-)eigensymmetry  of  the  crystallographic  orbits

showed  that  the  whole  substructure  built  on  anions  is  fully  restored  (with  small

deviations) by both twin laws. Consequently, the (pseudo-)eigensymmetry explains,

via  the  high  restoration  percentage  of  the  anions,  why  twinning  is  frequent  in

staurolite. On the other hand, 45% of the polyhedral sites are quasi-restored in the

Saint-Andrews cross twin, against only 19% for the Greek cross twin. In conclusion,

this difference in the restoration percentage explains the predominance of the Saint-

Andrews cross twin. A finer analysis, considering the orientations of coordination-

tetrahedra,  adds  a  further  level  to  the  explanation  of  the  different  occurrence

frequencies.

For the aragonite twins, the pseudo-symmetry analysis shows the existence of two

restoration operations, a  c-glide  reflection and  an n-glide reflection,  leading to  the

same restoration percentage. We, therefore, identify them both as being responsible

for the occurrence of the aragonite twin with an exchange of the restored and non-

restored atoms every b/4 along the b-axis.

Again, the pseudo-symmetry analysis confirms, via the restoration percentage, the

occurrence  of  a  frequent  twin  in  aragonite  and  two  restoration  operations  are

identified. In this example, further evidence is obtained by the analysis of the layer

groups of slices in the structure parallel to the twinning interface.
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Table  4.3.  The  different  percentages  of  the  restored  substructure  for  the  three

studied examples

Twin restoration operation % cations % O % all atoms
Melilite m 0,y,z 68 37 (94) 50 (40)

c 0,y,z 0 23 (91) 13 (53)
b ¼,y,z 20 11 (80) 15 (55)
n(0,½,½) ¼,y,z 0 20 (89) 12 (52)

Greek cross 2[100] 19 100 59,5
Saint-Andrews cross 2[101] 45 100 72,5
Aragonite c x,0,z and n x,¼,z 75 50 60

n x,0,z and c x,¼,z 75 50 60

To conclude, the existence of a high percentage of restored atoms confirms the

validity  of  the pseudo-symmetry analysis  on the studied observed twins (melilite,

staurolite, aragonite). However, since only three cases of frequent twins have been

investigated  in  this  study,  it  is  difficult  to  determine  a  universal  value  as  lower

boundary for the restoration percentage which would correspond to a twin with high

occurrence  probability.  Indeed,  at  this  stage,  we  are  unable  to  make  a  definite

conclusion about the general applicability of our approach, but we certainly expect it

to be valid, possibly with certain extensions and refinements. If this is eventually

verified,  then the  restoration  percentage  allows to  estimate  the  probability  of  the

occurrence  of a twin.  With this purpose in mind, one can distinguish the following

four cases:

1) Frequent twins with a high restoration percentage.

2) Rare twins with a low restoration percentage.

3) Rare twins with a high restoration percentage.

4) Frequent twins with a low restoration percentage.

The first category comprises the three examples studied and discussed above. The

high percentage  of  restoration  agrees  with the high frequency of  twinning in  the
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literature.

For the second category, we expect a low percentage of restoration. To confirm that

this is the case, one should collect a statistically significant number of examples of

rare twins and compute their restoration percentage. Also, a systematic analysis of all

reasonably  possible  (reasonably  low  hkl  or  uvw  values)  but  never  observed twin

operations should lead to a low restoration percentage.  Clearly,  for  such a task a

semi-automatic  procedure  has  to  be  developed  and  implemented  to  scan  a  large

interval of (hkl) or [uvw] indices corresponding to possible twin planes or twin axes.

As a demonstration of the considerations required, in the next section we discuss a

hypothetical twin plane in aragonite, plausible according to the reticular theory, but

for which the restoration percentage would be too low, explaining why such a twin

has never been observed.

For categories 3 and 4, we expect to find only a very limited number of examples,

which would represent exceptions to an otherwise general approach. Should there be

a substantial number of exceptions, then the general validity of our approach has to

be questioned and the approach itself has to be further extended and refined.  For

category 3, the approach may still be generally valid but other factors may occur that

prevent the formation of twins,  because the structural continuity is a necessary but

not a sufficient condition. The analysis of examples in this category would allow to

refine the approach by adding additional conditions to the restoration percentage. For

example,  one  could  think  of  bonds  between  the  restored  atoms  or  a  skeleton  of

restored  atoms  which  forms  the  backbone  of  the  twin  structure.  Category  4,  if

examples are found, would definitely contradict  the assumption that  the structural

continuity across the composition surface is measured by the restoration percentage.

This  would  indicate  that  other  factors  complementing  the  restoration  percentage

predominate in these cases. Therefore, the existence of examples in categories 3 and

especially 4 may present a challenge to augment the crystallographic orbit approach

in order to make it generally applicable to all twin cases. 
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IV.3. Example of a "negative" twin case

The main goal of the analysis of structures in terms of the (pseudo-)eigensymmetry

of  crystallographic  orbits  is  to  provide  positive  evidence  that  the  formation  of  a

certain  twinned  crystal  is  likely  by  identifying  a  substructure  which  crosses  the

composition interface more or less unperturbed. One may expect that the restoration

percentages of the different types of atoms give a clear indication for the probability

of  the  twin  to  form.  In  the  few  examples  investigated  in  this  thesis,  it  already

becomes  clear  that  enhancing  the  mere  restoration  percentages  by  additional

structural information gives more profound explanations of the twin formation. But

an  important  additional  question  has  to  be  faced,  namely  how  the  quantitative

analysis of the eigensymmetry of crystallographic orbits can be used to distinguish

crystals  that  are  likely  to  form twins  from crystals  that  do  not form twins.  One

certainly can not expect a simple threshold from which onwards twinning is likely

and below which it is not. However, one still would like to arrive at some criteria

which allow to conclude that a certain structure will not form a twin (or at least only

rare twins, with very low occurrence probability). A first step would be an analysis of

many more known twins by the methods introduced in this thesis, in order to get a

good overview of typical restoration percentages for existing twins. For this purpose,

the  prototype  approach  developed  in  this  thesis  should  be  turned  into  a  semi-

automatic procedure (see section IV.5: Conclusion and outlook). A similar procedure

aimed  at  excluding  twin  formation  is  certainly  much  more  complicated  than  the

affirmative  analysis  performed  in  this  thesis.  One  would  have  to  identify  twin

elements which fulfil the requirements of the reticular theory, which typically means

that the (effective) twin index and obliquity are within the Friedelian limits. This is in

principle not a problem, but the number of candidate directions for a twin axis or the

normal to a twin plane is usually fairly large. For a candiate twin operation one would

then apply the restoration analysis developed in the current thesis.

To  demonstrate  that  this  is  a  feasible  approach,  we  apply  our  method  to  a
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hypothetical twin in aragonite, which from the reticular point of view would have

similar formation probability as the one actually observed. We have seen that the

{110} twin – in the  Pmcn setting – is perfectly justified on a structural basis. We

consider again the same compound and we make the hypothesis of a reflection twin

on {011}, again in the Pmcn setting, which is not known but would have twin index 3

(as opposed to twin index 2 for the existing twin) and obliquity 1.02º (as opposed to

3.74º). The direction quasi-perpendicular to (011), which makes 1.02º obliquity with

it,  is  [012]  which  can  be  regarded  as  the  geometric  element  of  m[012].  The

crystallographic orbits approach justifies the absence of this twin, as we are going to

show.

The pseudo-symmetry analysis for this hypothetical twin is performed from the

standard setting of aragonite, Pmcn, in which the cell parameters are a = 4.96183 Å,

b = 7.96914 Å, c = 5.74285 Å. The shortest directions contained in (011) are [100]

and [011]. The twin operation m[012] fixes the lattice spanned by the basis [011], [012]

and  [100]  and  no  additional  centring  vectors,  therefore  these  vectors  define  a

primitive basis of this aragonite twin. In this case, the intersection group H = G ∩ tG t-

1 is of type P1 (No. 2) and the transformation matrix takes the form 

P = (
0 0 1
1 1 0
1 2 0)

for which (abc)IP = (abc)T (where (abc)I denotes the individual basis and (abc)T the 

twin basis).

The cell parameters for the twin lattice are  a = 9.82281 Å,  b = 13.97957 Å,  c =

4.96183 Å, α = 90º, β = 90º, γ = 91.02º and this setting of LT defines the twin plane as

(010) plane of the twin lattice. 

The extension of the point group of H by the twin operation results in a point group

of  type  2/m  and  the  possible  space  group  types  are  –  depending  on  the  actual

restoration operation having the twin operation as its linear part – P2/m, P21/m, P2/c

and P21/c (in their standard b-unique setting). Of these groups, only P2/c turns out to
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be worth considering, the others restore not a single cation within 0.5  Å (and also

only very few oxygen atoms).

 The Y orbit of G  (in Wyckoff position 4c) splits into six orbits (all in Wyckoff

position 4g) in the standard (P1) setting of H  (Table 4.1). Only the split orbit Y6  is

restored by the c-glide with dmin = 0.38374Å (Table 4.2). Likewise, the X orbit of G

(in Wyckoff position 4c)  splits  into six  orbits  (all  in Wyckoff position 4g) in the

standard  (P1)  setting  of H  (Table  4.1).  The  split  orbit  X3  is  restored  with  dmin =

0.45937Å (Table 4.2). The oxygen atoms OA (in Wyckoff position 4c) and OB (in

Wyckoff position 8d) split into six and twelve orbits  (all in Wyckoff position 4g),

respectively, (Table 4.1).  The c-glide restores  OA4 with dmin =  0.39750  Å  and the

union OB1∪OB3 with dmin = 0.34412 Å (Table 4.2). As a consequence, for a tolerance

limit of 0.5 Å for both the cation and the oxygen atoms only 1/6 atoms are restored.

Therefore,  this  twin  case  of  aragonite  has  a  very  low  restoration  percentage  of

16.66% (Table 4.2). By relaxing dmin up to 1Å, the twin operation restores a few more

split orbits: 

• Y1 with dmin = 0.69545 Å.

• X6 with dmin = 0.58871Å and the union X2∪X4 with dmin = 0.79598 Å.

• The union OB5∪OB9 with dmin = 0.90065 Å. 

These additional restored orbits extend the substructure restored by the c-glide to 

11/30, thus the restoration percentage rises to 36.66%. This percentage is still fairly 

low, moreover it is doubtful whether deviations around 0.8 or 0.9 Å are still 

physically meaningful. Recalling that for the studied twin of aragonite (Marzouki et 

al., 2015) the restoration analysis yielded:

• full restoration of the X-site with dmin = 0.1155 Å

• 50% of the Y-site is restored with with dmin = 0.1680 Å

• 60% of the oxygen atoms are restored with dmin = 0.2154 Å

one sees that the worst degree of restoration for the existing (110) twin is lower than 

the best degree of restoration for the hypothetical (011) twin of aragonite.

61



Summarising, the pseudo-symmetry analysis shows that for the hypothetical (011) 

twin the only eigensymmetry containing a restoration operation whose linear part 

coincides with the twin operation and with at least a minimal restoration quality is 

P2/c, but only 16.66% of the structure is restored by the c-glide reflection, and for 

none of the atoms the restoration is excellent (the smallest deviation being 0.34412 

Å). This low restoration percentage is a strong indicator for the non-occurrence of 

this twin which can thus be considered as a "negative" case of twinning in aragonite. 

A closer analysis of the restoration yields additional evidence. Firstly, the locations of

the restored atoms in the unit cell are not close to the twin plane which one would 

expect in a growth twin. Furthermore, none of the restored cations is bonded to any of

the restored oxygens (see Figure 4.1). This contradicts the postulated structural 

continuity, the restored atoms do not form a meaningful substructure common to both

individuals in the twin which could form the basis for crystal growth in two different 

orientations. 

Comparing the analysis for this hypothetical twin and the existing twin of aragonite is

convincing what concerns working towards a distinction between likely and unlikely 

twins on the basis of the eigensymmetry analysis developed in this thesis.

Table 4.1. The Split orbits Xi, Yi, OAi and OBi stemming from atomic sites X, Y,

OA and OB ( see, Marzouki et al., 2015) under the action of H = P1. All orbits are in

general position, with Wyckoff position 4g. 

Split 

cations

Split orbits 

stemming from 

the Y-site

Y1 Y2 Y3 Y4 Y5 Y6

0.53540
0.22650 
0.25

0.68620 
0.051900
0.25

0.20207 
0.55983 
0.25

0.13127 
0.10683 
0.75

0.35287 
0.38523 
0.25

0.019533
0.71857
0.25

Split orbits 

stemming from 

the X-site

X1 X2 X3 X4 X5 X6

0.35673
0.058267
0.25

0.69663
0.21837
0.75

0.023400
0.39160
0.25

0.30997
0.27503
0.75

0.36330
0.55170
0.75

0.029967
0.88503
0.75

Split anions Split orbits OA1 OA2 OA3 OA4 OA5 OA6
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stemming from 

the OA-site

0.64643
0.27597
0.25

0.41677
0.005633
0.75

0.31310
0.60930
0.25

0.020233
0.057367
0.75

0.24990
0.32770
0.25

0.083433
0.33897
0.75

Split orbits 

stemming from 

the OB-site

OB1 OB2 OB3 OB4 OB5 OB6

0.48247
0.19763
0.4750

0.74237
0.077533
0.0250

0.48247
0.19763
0.0250

0.74237
0.077533
0.4750

0.14913
0.53097
0.4750

0.18417
0.13573
0.5250

OB7 OB8 OB9 OB10 OB11 OB12

0.40903
0.41087
0.0250

0.18417
0.13573
0.9750

0.14913
0.53097
0.0250

0.40903
0.41087
0.4750

0.075700
0.74420
0.0250

0.075700
0.74420
0.4750

Table  4.2.  Degree  of  quasi-restoration  of  split  orbits.  In  all  cases  the

(pseudo-)eigensymmetry is P2/c.

Orbit or union of orbits dmin in Å Restoration 
percentage of all 
atoms.

Y6 0.38374 16.66%

X3 0.45937

OB1∪OB3 0.34412

OA4 0.39750
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Figure 4.1: View along (111) of the (quasi-)restored atoms by the c-glide reflection

for the hypothetical aragonite twin with (011) as twin plane. 

IV.4. "Necessary" vs. "Sufficient" conditions

As shown  above,  the  reticular  theory  of  twinning  makes  abstraction  from the

atomic structure and estimates the lattice restoration by the twin operation in terms of

the twin index and the obliquity. This estimation gives the necessary conditions for

the formation of twins at the lattice level. In fact, the lattice represents the periodicity

of the crystal pattern and the continuity of a sublattice is a necessary condition for the

continuity of a substructure on the atomic level. A good restoration of the lattice is

necessary but not sufficient for the formation of the twins. On the other hand, if we

have  the  "necessary"  condition,  then  it  seems  quite  natural  to  wonder  about

"sufficient" conditions. 

In  mathematics,  the  terms  "necessary"  and  "sufficient"  condition  have  the
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following meaning; related to the implication A => B:

- A is called a sufficient condition for B if B happens in case that A happens, i.e. if

A implies B.

- A is called a  necessary condition for  B if  B can only happen in case that  A

happens, in other words B cannot happen if A does not happen. In this case, not-A

implies not-B, which, as a logical statement, is equivalent to B implies A.

Clearly, crystallography (even theoretical crystallography) is not pure mathematics,

so one may accept notions of the terms "necessary" and "sufficient" which are less

strict  than  the  logical  statements  given  above.  Allowing  for  a  possibly  weakend

interpretation of "sufficient", one still has to face the question:

Does the crystallographic orbit approach provide "sufficient" conditions for 

twinning?

The  crystallographic  orbit  approach  considers  the  atoms  of  the  structure  as

geometric  points distributed in the crystal  space.  Such an idealisation ignores the

physico-chemical nature of the crystals as well as the thermodynamic and kinetic

conditions. The latter are certainly of  fundamental importance because for growth

twins  the  single  crystal  always  corresponds  to  a  thermodynamically  more  stable

(lower energy) state than a twin. The fact that a twin forms instead shows that kinetic

effects must become of primary importance. The composition surface is a region of

partial structural discontinuity, but a few atomic layers away from it the structure is

again the same as in the original crystal, albeit with a different orientation in space.

Therefore,  the  change  in  orientation  that  occurs  at  the  composition  surface  must

represent a sort of compromise between the most stable situation, corresponding to

the  untwinned  crystal,  which  is  not  realised  possibly  because  of  a  perturbation

(defects, impurities, chemical heterogeneities), and the complete arrest of the growth

due to this perturbation. These considerations would be necessary to move from the

structurally necessary conditions we have developed to the estimation of possible

sufficient conditions. Ultimately, a valid statement about sufficient conditions would

require detailed knowledge about the perturbations at the composition surface, which
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in  practice  is  not  accessible.  The  best  one  can  conclude  from  the  structurally

necessary  conditions  is  that  there  is  no  obstacle  that  prevents  a  twin  from being

formed.

IV.5. Conclusion and outlook

The well-known reticular theory of twinning gives general necessary conditions for

the formation of twins but, dealing only with lattices, it cannot predict the structural

conditions. These can be obtained by the analysis of the structural coherence at the

interface. This analysis is based on the search for non-characteristic crystallographic

orbits whose eigensymmetry contains the twin operation and on sections parallel to

the twin interface whose layer groups can be extended by the twin operation. 

The pseudo-symmetry analysis of the twins of melilite,  staurolite and aragonite

presented in this thesis, based on the atomic coordinates and a known twin operation,

shows the existence of  an important  common substructure (consisting of  restored

atoms) in the twinned crystal. 

The crystallographic orbits approach, the layer group approach and in particular

the combination of these two approaches represent a general model for the symmetry

analysis  of the structural  continuity of the twins.  The goal  of this  approach is to

predict the necessary structural conditions for the formation of twins in a general way

through an algebraic algorithm. 

In order to meet this challenge, one has to examine a sufficient number of cases

and develop a new semi-automatic computing procedure  implementing the pseudo-

symmetry  analysis.  The analysis  of  the  examples  presented  in  this  thesis  already

indicates  that the  mere  percentages  of  the  restored  atoms  are  insufficient  for

explaining  the  twin  formation  and  that  further  structural  information  has  to  be

considered,  such  as  the  amount  of  restored  cations  and  anions,  of  fully  restored

coordination polyhedra or of substructures which are close to the twinning interface. 

1. In the case of the melilite example, it was indeed the case that the amount of
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restored cations and anions was sufficient to give a satisfactory explanation for

the formation of this twin. However, in addition to this numerical data, the

visualisations  in  the  corresponding  article  illustrate  that  the  restored  atoms

form a substructure which is substantial enough to provide the backbone for

the  twin  formation,  i.e.  from  the  common  substructure  crystal  growth  is

plausible in both orientations of the individuals involved.

2. For the two types of staurolite twins (Greek cross and St Andrews cross), the

oxygen atoms are fully restored (with high accuracy) which already gives a

strong indication that twinning may occur. It is remarkable that in this case one

either has to restrict oneself to the split orbits under the intersection group or

immediately look at the full union of all orbits of oxygen atoms, since oxygen

atoms within one orbit under the full space group of the individual are restored

to atoms in different orbits. The analysis of the cation restoration explains in

this  case  the  different  occurrence  frequencies  of  the  two  types  of  twins.

Looking at the coordination polyhedra is instructive, since it provides a further

explanation for the lack of restoration for part of the cations: the twin operation

would map occupied coordination tetrahedra to empty ones and vice versa.

3. In the example of the aragonite twin, it is demonstrated how the layer group

approach  complements  the  analysis  by  crystallographic  orbits.  Sections

containing for  each  atom type  the  closest  atoms to  a  plane  parallel  to the

composition surface are restored by the restoration operation, so that the layer

group of this section has in fact as its point group an extension of the point

group induced  by the space group and  the twin operation. The restoration of

the  atoms  in  these  sections  also  determines  the  mapping  between  the  split

orbits  by  the restoration  operation  as  analysed in  the crystallographic  orbit

approach.

A general  algorithm assessing  (and  ideally  predicting)  the  probability  of  twin

formation would take as input the crystal structure data, the known or expected twin

operation – or an interval of indices specifying possible twin elements to scan – and
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possibly a tolerance limit on the structural pseudo-symmetry. As shown in chapter II,

this tolerance can be chosen by default as the ionic or the covalent radii of the atoms

of the input structure unless specified otherwise by the user. The required data for the

structure consists of its space group (e.g. specified by its number in the International

Tables for Crystallography or its Hermann-Mauguin symbol), the cell parameters and

the types and atomic positions of the atoms in the asymmetric unit. A sub-structure is

considered as (pseudo-)restored by a symmetry operation if under the action of this

operation  all  atoms in  this  sub-structure  deviate  from their  ideal  positions  by  an

amount not larger than the tolerance limit on the structural pseudo-symmetry. Taking

a  symmetry  operation  having  the  twin  operation  as  its  linear  part,  the  pseudo-

symmetry  of  the  sub-structure  directly  translates  into  the  mapping  of  this  sub-

structure on the corresponding orientation in the second individual.

In the search of possible reflection twins, the program would iterate over different

(hkl) Miller indices of candidate twin planes, computing the percentages of restored

atoms  and  the  restoration  of  further  relevant  substructures  by  the  corresponding

reflections.  Likewise,  possible  rotation  twins  would  be  analsed  by  considering

different candidate twin axes [uvw].

The output  of  the program  would then consist  of  a  list  of  candidates for  twin

operations,  together  with  the  percentages  of  restored  atoms  (within  the  accepted

tolerance)  and further  information on the restoration supporting the hypothesis  of

twin formation with these twin operations.  Ultimately,  the restoration information

determined should lead to a ranking of the different twin operations, explaining and

predicting the probability of the formation of twinned crystals.

 To validate the algorithm, in a first step the twin operation(s) found in this way

have to be compared with known twin operations. When no restoration operation is

found for a given set of (hkl) or [uvw] indices, or when the corresponding restoration

quality is too low, the corresponding operation should not correspond to any known

twin operation, or at least should correspond to rare twins occurring only occasionally

in the literature.
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The reticular theory of twinning gives the necessary conditions on the lattice

level for the formation of twins. The latter are based on the continuation, more

or less approximate, of a substructure through the composition surface. The

analysis of this structural continuity can be performed in terms of the

eigensymmetry of the crystallographic orbits corresponding to occupied

Wyckoff positions in the structure. If G is the space group of the individual

and H a space group which fixes the twin lattice obtained as an intersection of

the space groups of the individuals in their respective orientations, then a

structural continuity is obtained if (1) the eigensymmetry of an orbit under G
contains the twin operation; (2) the eigensymmetry of a union of orbits under G
contains the twin operation; (3) the eigensymmetry of a split orbit under H
contains the twin operation; or (4) the eigensymmetry of a union of split orbits

under H contains the twin operation. The case of the twins in melilite is

analysed: the (approximate) restoration of some of the orbits explains the

formation of these twins.

1. Symbols

(a, b, c): basis vectors of the unit cell.

a, b, c: length of basis vectors.

ri =

xi
yi
zi

0
@

1
A: coordinates of the ith crystallographically inde-

pendent atom Ai.

G: space group of the individual, G = { g1, g2, . . . }, with g1 = 1

the identity element of G.
Oi: orbit of ri under G, Oi = {ri, g2ri, . . . } = {ri

1, ri
2, . . . } with ri

k

= gkri for gk 2 G.
Oij: splitting of the orbit Oi under the action of a subgroup of

G.
m(Oi): multiplicity of the orbit Oi, defined as the number of

equivalent points in the conventional unit cell of G.
(P, p): matrix-column pair representing a change of basis;

composed of a 3 � 3 matrix P and a 3 � 1 column p.

T : matrix representation of the twin operation in the basis of

the twin.

Si: site-symmetry group of ri.

H: space group associated with the structure of the twin.

EðOiÞ: eigensymmetry of the orbit Oi.

2. Introduction

A twin is a heterogeneous crystalline edifice composed of two

or more homogeneous crystals of the same phase with

electronic reprint



different orientation related by a twin operation, i.e. a crys-

tallographic operation mapping the orientation of one indi-

vidual onto that of the other(s) (Friedel, 1904, 1926, 1933). A

twin element is the geometric element in direct space (plane,

line, centre) about which the twin operation is performed.

Twins can be classified from the genetic viewpoint in three

categories:

(1) Transformation twins, which form during a phase tran-

sition leading to a loss of point symmetry.

(2) Mechanical twins, which form as the result of a

mechanical action (typically, an oriented pressure) on the

crystal.

(3) Growth twins, which form during crystal growth, either

at the nucleation stage or by oriented attachment (for a

review, see Nespolo & Ferraris, 2004a).

For cases (1) and (2), the cause of the formation of the twin

is known. For the growth twins the formation can be a

response to a mistake in the normal crystal growth of the

individual or the random association of two or more crystals

with different orientation (non-equivalent under the

symmetry group of the crystal). This category of twins appears

not only during the formation of a natural crystal but also

during the synthesis of artificial crystals.

The interface that separates the individuals represents a

discontinuity for at least a sub-structure. This heterogeneity

gives rise to serious problems in the structural study of

materials and biomaterials and it represents an obstacle for

structural investigations as well as for crystal engineering and

material design. For example:

(a) The potential technological applications are hindered by

the presence of twinning (e.g. the piezoelectric effect is

reduced or annihilated).

(b) The presence of twinning reduces the amount of details

that can be obtained from a structural study, especially for

samples with large unit cells (for example, macromolecules)

for which the resolution that can be achieved is already limited

by the size of the unit cell.

From the viewpoint of the material scientist and of the

crystal grower, the development of a synthesis protocol

capable of reducing, if not suppressing, the formation of twins

is an important goal. To reach this aim a detailed under-

standing of the formation mechanism of twins is of paramount

importance.

A prerequisite for the formation of a twin is a partial

structural continuity through the interface. In fact, without any

structural continuity the edifice built by the individual crystals

would be unstable or simply not form at all; a complete

structural continuity is the feature of a single crystal; in a twin

a part of the structure has to continue, more or less unper-

turbed, across the interface. This atomic continuity implies the

continuity of a sub-lattice. In fact, the lattice represents the

periodicity of the crystal pattern and the continuity of a sub-

lattice is a necessary condition for the continuity of a sub-

structure. The reticular approach abstracts from the structure

and estimates the lattice restoration by the twin operation in

terms of the twin index and the obliquity. A good restoration

of the lattice is a necessary but not sufficient condition to

obtain a good structure restoration. The latter would enhance

the reticular theory to conditions which are structurally

necessary for the formation of twinned crystals. A general

theory on this has not been developed yet.

Extensive research from the lattice viewpoint during more

than a century led to the reticular theory developed by Bravais

(1851), Mallard (1885) and Friedel (1904, 1926), based on the

existence of a common (sub)-lattice in the three dimensions of

the crystallographic point space (note however the special

case of monoperiodic twins reported by Friedel, 1933). The

common (sub)-lattice, called the twin lattice (Donnay, 1940), is

based on the twin element (twin plane or twin axis) and the

lattice element (line or plane) that are mutally (quasi)-

perpendicular. The twin lattice LT is defined by these two

elements (hkl)T and [uvw]T. When the two elements are

reciprocally perpendicular one speaks of twin lattice

symmetry (TLS: Donnay & Donnay, 1974) and the two

elements are symmetry elements for LT. Otherwise one speaks

of twin lattice quasi symmetry (TLQS: Donnay & Donnay,

1974); the two elements are only pseudo-symmetry elements

for LT. The degree of pseudo-symmetry corresponds to the

deviation from the perpendicularity condition and is measured

by the angle ! called the obliquity.1 The twin index n is the

inverse of the fraction of lattice nodes restored by the twin

operation and corresponds to the ratio between the volumes

of the primitive cells of the twin and the individual, n = V(LT)/

V(Lind). Friedel gave as empirical limits for the occurrence of

twins n � 6 and ! � 6. Twins falling within these limits are

called Friedelian twins (Nespolo & Ferraris, 2005). The

frequency of occurrence of a twin depends on the degree of

lattice restoration: the lower the twin index and the obliquity,

the better is the lattice restoration and the higher is the

probability that the twin actually occurs. This relation between

the occurrence frequency of twins and the values of n and ! is

an empirical observation, based, however, on the extensive

study of twins over more than a century. It shows the necessary

(not sufficient) character of the lattice restoration. Never-

theless some twins with higher index are known that violate

the empirical limits: they are called non-Friedelian twins

(Nespolo & Ferraris, 2005). These twins seem to contradict the

general conclusion that a high degree of lattice restoration is a

necessary condition for a twin to form. However, in most cases

they can be explained by the fact that two or more sublattices

contribute to the lattice quasi-restoration. When all the

concurrent sublattices are taken into account, the necessary

conditions are no longer contradicted. The interpretation of

the occurrence of this kind of twins is the object of the hybrid

theory of twinning (Nespolo & Ferraris, 2005), which repre-

sents an extension of the reticular theory and measures the

lattice quasi-restoration in terms of an effective twin index nE
(Nespolo & Ferraris, 2006), a real number defined as the ratio

between the lattice nodes of the individual and the lattice

nodes belonging to any of the quasi-restored sublattices. In the
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1 For manifold twins (i.e. twins in which the twin operation is higher than
twofold), a zero-obliquity TLS may occur. In this case, a different parameter is
necessary to measure the deviation from the exact restoration of lattice nodes,
like the twin misfit introduced by Nespolo & Ferraris (2007).
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case of a single quasi-restored sublattice, this coincides with

the classical twin index; otherwise it is lower. In the few

examples which are neither explained by the classical reticular

nor by the hybrid theory of twinning, the possibility of a wrong

choice of the twin element has to be considered (reflection

twins in place of rotation twins or vice versa). This indeed

resolves the apparent contradiction of a higher frequency of

twins with higher index than twins with a lower index observed

in some cases like the staurolite twins. The Saint Andrews

cross twin of staurolite, with index n = 12, is more frequent

than the Greek cross twin with index n = 6 (Nespolo &

Ferraris, 2007). These twins are often reported as reflection

twins on (031) and (231), respectively, but experimental

studies have shown (Hurst et al., 1956) that this interpretation

is incorrect and that they actually are rotation twins. For the

Saint Andrews cross twin (n = 12), the correct choice of the

twin element as a line shows the existence of two lattice planes

quasi-perpendicular to it and correspondingly two sublattices

are quasi-restored by the twin operation. This gives an effec-

tive index nE = 6.0 and as a consequence the Saint Andrews

twin is brought back into the Friedelian limits. The

occurrence frequency no longer contradicts the necessary

condition of a good lattice restoration (Nespolo &

Ferraris, 2009).

The reticular theory of twinning can only provide partial

prerequisites for the formation of twins, which are governed

by the structure. More conclusive conditions can only be

obtained by the analysis of the structural coherence at the

interface, but such an analysis reduces to a case-by-case a

posteriori study of known twins. Our purpose is to develop a

general structural theory of twinning to predict the structu-

rally necessary conditions for the formation of twins in a

general way through an algebraic algorithm. A twin fulfilling

these conditions can form (and may even be likely to form),

but does not necessarily have to form. Indeed, a growth twin is

a ‘mistake’ originated by defects or perturbation of growth

conditions and does not correspond to the thermodynamically

most stable situation (Buerger, 1945). Donnay & Curien

(1960) were the first to suggest the application of the analysis

of the eigensymmetry of crystallographic orbits, in the case of

pyrite and digenite, which led to the introduction of a

restoration index for a subset of atoms (Takeda et al., 1967).

This subset must be quasi-continuous across the interface,

otherwise the interface would be incoherent, the contact

between the individuals would be unstable and the twin would

not form. Under the action of the space group G, each atom in

a crystal is repeated in space to form a crystallographic orbit

O, i.e. O is the set of all atoms obtained under the symmetry

operations of the space group G. The eigensymmetry E(O) of

the orbit may be a supergroup of G or coincide with it;

accordingly, crystallographic orbits are classified in three types

according to the relation between G and E:
Characteristic orbit: G = E.
Non-characteristic orbit: G � E but TG = TE .

Extraordinary orbit: TG � TE , a special case of non-char-

acteristic orbit defining a superlattice (smaller unit cell) with

respect to G.

Here TE and TG are the translation subgroups of E and G,
respectively. When G � E, an operation t belonging to E but

not to G may map the orientation of crystal 1 onto that of

crystal 2 and may thus serve as twin operation.

3. Crystallographic orbit approach to the analysis of
structural continuity in twins

Depending on the nature of the twin operation, twins can be

classified into three categories:

(1) twins by reflection;

(2) twins by rotation;

(3) twins by inversion.

An inversion twin is always by (pseudo)-merohedry, i.e. it

corresponds to twin index n = 1 and does not give rise to a

sublattice, because the whole lattice of the individual is

(quasi)-restored. For a twin with index n > 1, the twin

operation is not about a lattice direction, which makes its

matrix representation non-integral with respect to the basis of

the individual. By expressing the twin operation in the basis of

the twin, its representation becomes integral again.

The reticular theory of twinning shows that an exact

restoration of the lattice is not an absolute condition for the

twin to form, a limited departure from the restoration,

measured by the obliquity or the twin misfit, being the rule

rather than the exception. In the same way, we can expect that

a limited departure from structural continuity at the interface

does not represent a hindrance to twin formation. In the

following, all the occurrences of ‘restoration’ should thus be

read as ‘restoration or quasi-restoration’. As a consequence,

the eigensymmetry of an orbit has to be taken with some

degree of tolerance: a pseudo-eigensymmetry will result in

quasi-restoration. The choice of this tolerance has clearly

important consequences on the conclusions one may draw

about the structural quasi-continuity. Choosing a too small

tolerance may lead to a relatively good coherence at the

interface being overlooked; a too large tolerance would have

no real physical meaning. Clearly, the tolerance has to be

chosen keeping in mind the atomic size: it is greater for a large

atom than that for a small one. As a rule of the thumb, about

50% of the atomic diameter (i.e. the radius: ionic, covalent or

atomic depending on the type of bond) seems a reasonable

figure.

Let (hkl)T and [uvw]T be the mutually (quasi)-perpendi-

cular plane and direction which define the cell of the twin

lattice. Let v1 and v2 be two vectors defining a two-dimensional

unit cell in (hkl)T. The three linearly independent vectors v1,

v2 and [uvw]T form the twin basis, denoted by (abc)T, which is

related to the basis (abc)I of the individual by the basis

transformation P:

ðabcÞIP ¼ ðabcÞT : ð1Þ

Lind and LT have a common origin: there is thus no vector

part in the relation between the two references. Given the

coordinates (xyz)I of an atom in the individual basis, the new

coordinates (xyz)T of this atom in the twin basis are obtained

by the relation:
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Each atom with coordinates ri generates a crystallographic

orbit Oi with eigensymmetry EðOiÞ under the action of the

symmetry operations of the space group G. If the orbit is non-
characteristic, its eigensymmetry group EðOiÞ may contain the

twin operation t, in which case the orbit is restored by the twin

operation. This cannot be true for all the orbits, otherwise t

would belong to the space group of the individual and the

structure would be a single individual and not a twin. When

the orbit is not fully restored, a subset of atoms belonging to

the orbit can instead be restored. This subset is defined by a

subgroup H of G obtained by intersecting the space groups of

the individuals. Since the twin index is n > 1, H is a proper

subgroup of G, the translation subgroup of H is a subgroup of

index n in the translation subgroup of G.
Let G be the space group of one of the individuals of a

twinned crystal. The twin operation t maps the first individual

to the second individual (assuming, for ease of description, the

case of a twofold twin) and the space group of the second

individual is the conjugate group t Gt�1. In addition, the twin

operation t maps the lattice L of the first individual to the

lattice tL of the other individual and the intersection

LT :¼ L \ t L is the twin lattice. Since tLT = t L \ t2L = t L \ L

= LT, the twin operation fixes the twin lattice. The space group

H compatible with the twin lattice is the intersection of the

space groups of the two individuals, written with respect to the

twin basis, i.e. H = G \ t Gt�1. The subgroup H is uniquely

determined; it consists of those isometries which fix both

individuals separately. In particular, its translation subgroup

T H consists of the translations by vectors from the twin lattice

LT. The above relation is easily generalized to twin operations

higher than twofold by replacing L1 \ L2 = L \ tL with \iLi =

\i tiL1.

To find the elements of H, let Wi, wi be the linear and

translation parts of a symmetry operation of the first indivi-

dual, written with respect to the twin basis, i.e. (Wi, wi) 2
P�1GP. Since the linear parts of a space group act on its

translation lattice, the elements belonging to H necessarily

have an integral linear part Wi. Moreover, if (Wi, wi) belongs

to the intersection, the conjugate (Wj, wj) = T (Wi, wi)T �1

must be an element of the form (W 0
i , w

0
i) 2 P�1GP. Choosing an

element (W 0
i , w

0
i) with W 0

i = Wj, one finally has to check

whether wj � w0
i 2 LT. Since the translations in H are by

vectors in LT, two elements (Wi, wi) and (Wi, w
0
i) with the same

linear part can only belong to H if wi � w0
i 2 LT. This means

that for a given element (Wi, wi) of P
�1 GP one has to check

elements of the form (Wi, wi + v) for coset representatives v of

L with respect to LT.

The study of the orbit behaviour in the twin basis is char-

acterized by the subgroupH and the matrix P. Considering the

group–subgroup related space groups G � H, atoms which are

symmetrically equivalent under G, i.e. belong to the same orbit

of G, may become non equivalent under H (splitting of crys-

tallographic orbits), and/or their site-symmetry group S can be

reduced (Wondratschek, 1993). LetOi be an orbit under G, [Si,

m(Oi)] the site symmetry group and the multiplicity of the

orbit with respect to the conventional cell of G, and let [Sij,

m(Oij)] be defined correspondingly for a split orbit Oij under

H, the double index indicating the original orbit under G
(index i) as well as the number of split orbits stemming from it

under restriction to H (index j).

In the case of splitting, the orbitOi = {gkri, gk 2 G} is divided
into two or more orbits of H, with the same/or reduced site

symmetry group S and a multiplicity equal or lower than

m(Oi). The atoms belonging to Oi have P�1:gk:ri as coordi-
nates in the twin basis. The possibilities of the splitting of the

orbit Oi are described by the following relations:

i½ � ¼
Xk

j¼1
Rj; Rj ¼

S Oið Þ
�� ��
S Oij

� ��� �� ð2Þ

where [i] is the finite index of H in G, Rj is the ratio of the

order of the site-symmetry groups of the orbits Oi and Oij in G
and in H, respectively, and k is the number of orbits in H
stemming from Oi in H (Wondratschek, 1993).

The atomic restoration by the twin operation can finally be

realised in four cases.

(1) The orbit Oi is non-characteristic and its eigensymmetry

EðOiÞ contains the twin operation t. In this case, P = I, where I

is the identity matrix.

(2) The union of two or more orbits has an eigensymmetry

which is higher than that of any of the orbits of the union. This

may in particular happen in presence of a specialized metric

corresponding, exactly or approximately, to a higher crystal

family. In this case, if the twin operation is included in this

higher eigensymmetry the set of atoms belonging to the union

is restored although each orbit, taken separately, is not. The

union can obviously be formed only from atoms with inter-

changable roles in the structure. For example, the union of

orbits defined by crystallographically different types of

oxygen, or of atoms having the same coordination environ-

ment although a different chemical species. Clearly, the fact

that a different atom occurs in the same coordination on the

opposite sides of the interface does not affect the structural

continuity, especially if the atomic size is not extremely

different. The choice of the orbits to be considered in the

union must thus rely on the analysis of the structural roles of

these orbits. From a formal viewpoint, the restoration occurs if

t belongs to EðUGÞ where UG = [iOi and i spans the orbits

which are not restored by t and are occupied by atoms with

similar structural role. Here again, P = I.

(3) When neither the orbits Oi nor their union UG is

restored, a split orbit Oij underH may be restored by the twin

operation t if its eigensymmetry EðOijÞ contains t.
(4) As in case (2) above, for orbitsOij whose EðOijÞ does not

contain the twin operation t, the union UH = [ijOij, defined on

the same criteria as UG, has to be considered. The restoration

of a union of orbits under H may in particular happen when

the sublattice fixed by H has a specialized metric corre-

sponding, exactly or approximately, to a higher crystal family.
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Cases (1) and (3) could of course be subsumed under cases

(2) and (4) as unions of a single orbit or split orbit, but we

emphasize the importance of these cases by discussing them

separately.

The actual analysis performed is exactly the same no matter

whether the group considered is G orH and whether we work

on a single orbit or a union of orbits. Let K be a general

notation for either G orH and O a general notation for one of

Oi, Oij, UG or UH. IfO is restored by the twin operation t, then

the eigensymmetry EðOÞ is a supergroup of K containing t.

Such an orbit which belongs to the substructure continuing

across the interface of the twin structure that is invariant

under the twin operation explains (in part) the formation of

the twin.

Because the eigensymmetry of (split) orbits or unions

thereof is often approximate and as a consequence the

restoration is imperfect, we need a quantitative measure for

the degree of restoration. Let dmin be the minimal distance

between the position to which a chosen atom in O is mapped

under the twin operation t and the atoms inO. If t 2 EðOÞ, then
dmin = 0 for all atoms inO. If t is only a pseudo-symmetry ofO,

then dmin > 0 and its value is a measure for the degree of quasi-

restoration.

The advantage of dealing with split orbits under the inter-

section group H = G \ tGt�1 is that the value of dmin is the

same for all atoms in a split orbit under H, as is shown by the

theorem in the Appendix A.

Let O1 be an orbit O in the first individual, O2 the corre-

sponding orbit generated by the twin operation t in the second

individual. The application of the twin operation t to O1

generates O2. For a fixed orientation of the twin element, the

formation of a twin may result in a variable degree of atomic

restoration depending on the position of the twin element in

the unit cell, i.e. depending on which atoms are exposed to the

surface or close to it. Since twinning is a point group

phenomenon that occurs at a macroscopic level, the orienta-

tion of a twin element only determines the linear part of the

twin operation, but not its translational part, corresponding to

the position of the twin element. On the other hand, the

operation which restores an orbit acts on the structure, at the

microscopic (atomic) level and may well also contain an

intrinsic translational part (glide or screw component). In

other words, the twin operation one observes macroscopically

as well as in the diffraction pattern as the overlap of differ-

ently oriented reciprocal lattices, can be realised at the atomic

levels at different locations and with or without an intrinsic

translation. This realisation of the twin operation is hereafter

called a restoration operation. In order to find the possible

restoration operations, one starts with the intersection group

H and determines its minimal supergroups which contain an

operation with the required linear part. However, dealing with

split orbits for the intersection subgroup H simplifies the

analysis drastically. For a single split orbit and pairs of split

orbits one simply checks whether the (pseudo-) eigensym-

metry contains an operation of the same type as the twin

operation and with its geometric element parallel to that of the

twin element. The eigensymmetry analysis then provides the

location of the twin element and the nature of the restoration

operation.

O1 is restored if t 2 E(O1) or if dmin is lower than a certain

threshold which depends on the atomic size (being smaller for

smaller atoms). When comparable degrees of restoration are

obtained for different locations of the twin element, the

probability of twin formation is higher because the twin can

form at different stages of crystal growth, corresponding to

different atomic surfaces exposed when the twin formation

starts. In the opposite case, a higher probability of formation

corresponds to the occurrence of a stacking defect, during

crystal growth, on a surface corresponding to more restricted,

possibly unique, locations of the twin element.

4. Case study: the melilite twins

Melilite is a group of sorosilicate minerals with general

formula X2YZ2O7 with X = Ca, Na, Sr, K in octahedral

coordination, Y = Mg, Al, Fe, B in tetrahedral coordination

and Z = Si, Al again in tetrahedral coordination. These

minerals crystallize in space groups of type P�4421m with X and

Z in Wyckoff positions 4e, Y in Wyckoff position 2a and

oxygen atoms distributed over three different Wyckoff posi-

tions, 2c, 4e and 8f, respectively. We have analysed the struc-

ture reported by Bindi & Bonazzi (2005) for which a =

7.826 (1), c = 5.004 (1) Å. The atomic coordinates are given in

Table 1, together with an analysis of the quasi-restoration of

each orbit. This analysis has been performed with the

PSEUDO program (Capillas et al., 2011) at the Bilbao Crys-

tallographic Server (Aroyo et al., 2006). Given the difference

in the dimensions of the cations and the anions, a tolerance of

1 Å for the former and 1.5 Å for the latter has been used to

evaluate the pseudo-eigensymmetry.

Two twins in melilite are reported by Deer et al. (1997), with

reflections in {001} and {100} as twin operations: both are twins

by merohedry so that LT coincides with Lind. The analysis has

to be performed on planes, not on forms, and for this reason in

the following the planes (001) and (100) are used; the result is

obviously exactly the same if another plane from the same

form is used. Since the twins are by merohedry, the intersec-

tion group H = G \ tGt�1 coincides with the group G of the

individual which is of type P�4421m (No. 113). The minimal

supergroups containing symmetry operations with the

required linear parts are (all symmetry operations are

expressed with respect to the standard setting of P�4421m):

(1) P4/mbm (No. 127), with the symmetry operation m x,y,0

for the (001) twin and b 1
4,y,z for the (100) twin;

(2) P4/nmm (No. 129), with n(12,
1
2,0) x,y,0 for the (001) twin

and m 0,y,z for the (100) twin;

(3) P42/mnm (No. 136), with m x,y,14 for the (001) twin and

n(0,12,
1
2)

1
4,y,z for the (100) twin;

(4) P42/ncm (No. 138), with n(12,
1
2,0) x,y,

1
4 for the (001) twin

and c 0,y,z for the (100) twin.

The last two columns in Table 1 give the respective

restoration operations contained in the eigensymmetry of the

different orbits.

Both (001) and (100) twins are by merohedry, with the

whole lattice restored by the twin operations. The degree of
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structural restoration is the same for both twins, since the

minimal supergroups of P�4421m containing a restoration

operation for one of the twins also contain one for the other

twin. All cation orbits are approximately restored by a

reflection located at the origin for the (001) twin and by a b-

glide reflection shifted 1
4 from the origin for the (100) twin, with

displacements ranging from 0 (perfect restoration) to

0.6415 Å. On the other hand, all anions are quasi-restored by a

reflection shifted 1
4 from the origin for the (001) twin and by an

n-glide reflection shifted 1
4 from the origin for the (100) twin,

with displacements between 0.0580 and 0.6956 Å. The two

further possible restorations for O3 correspond to different

pseudo-eigensymmetries but the much higher value of dmin

makes their contribution hardly significant.

More recently, a further reflection twin, on (1�220), has been
reported in melilite by Bindi et al. (2003). The restoration

under the action of the twin operation has to be checked in G =

P�4421m for each orbitOi [this is easily done by inspecting Table

1: EðOÞ never contains m½1�220�] as well as for the union UG of

atoms with similar structural role, i.e. Y and Z, which are both

in tetrahedral coordination, and the three types of oxygen

atoms (Table 2). Neither EðOiÞ nor EðUGÞ contain m½1�220� as a

proper or pseudo-symmetry which therefore does not restore

any orbit or union of orbits under G. The next step is to check

for the restoration of split orbits under H.

In a tetragonal lattice, a plane (hk0) is exactly perpendicular

to the direction with the same indices [hk0]; the direction ½1�220�
is therefore exactly perpendicular to the twin plane, which can

thus also be indicated as m½1�220�. This perpendicularity imposed

by the metric of the lattice is known as intrinsic TLS or iTLS

(Nespolo & Ferraris, 2006). Twinning is by reticular poly-

holohedry, with twin index n = 5 (for details, see Nespolo &

Ferraris, 2004b). The two shortest in-plane directions are [210]

and [001] so that the transformation from the basis of the

individual to that of the twin, see equation (1), is immediately

obtained as follows:

abcð ÞI
1 2 0
�22 1 0

0 0 1

0
@

1
A ¼ abcð ÞT :

Applying the inverse transformation, the twin plane in the

basis of the twin lattice becomes (100) or m[100], equation (10):

P�1
1
�22
0

0
@

1
A

I

¼
1=5 �22=5 0

2=5 1=5 0

0 0 1

0
@

1
A

1
�22
0

0
@

1
A

I

¼
1

0

0

0
@

1
A

T

so that the matrix representation T of the twin operation t in

the twin basis is simply:

T ¼
�11 0 0

0 1 0

0 0 1

0
@

1
A:

In our case, H = G \ tGt�1 = P�44, a = 17.4995, c = 5.0040 Å: in

fact, neither the 2-fold axis nor the reflection plane contained

in G fix the twin lattice, whereas the �44 axis does fix it and is

common to G and tGt�1.
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Table 2
Analysis of the eigensymmetry of UG, G = P�4421m.

UG EðUGÞ ðP0
ij; p

0
kijÞ�1 ½1�220�EðUGÞ

Y[Z P4/mbm (I | 000) ½1�220�; =2
O1[O2 P42/mnm (I | 012

1
4) ½1�220�; =2

O1[O3 P42/mnm (I | 012
1
4) ½1�220�; =2

O2[O3 P42/mnm (I | 012
1
4) ½1�220�; =2

O1[O2[O3 P42/mnm (I | 012
1
4) ½1�220�; =2

Table 1
Atomic coordinates of melilite (after Bindi & Bonazzi, 2005) and analysis of the quasi-restoration of each orbit.

The orbit (pseudo)-eigensymmetry is given as the minimal distance between atoms quasi-restored by the twin operations. This distance coincides with the degree of
pseudo-symmetry (�max) obtained by PSEUDO (Capillas et al., 2011) as the maximal distance between atoms produced by the additional symmetry operations of
EðOÞ. (P, p) is the matrix-column pair relating the coordinate system of G to that of EðOÞ. The restoration operations are given with respect to the coordinate system
of G.

Site
Wyckoff
position Coordinates EðOÞ (P, p)

d min

(Å)
Restoration operations
for (001) twin

Restoration operations
for (100) twin

X 4e 0.3316(1) P4/mbm (I | 000) 0.0651 m x,y,0 b 1
4,y,z

0.1684(1)
0.5065(2)

Y 2a 0 P4/mmm 1 1 0 j0
�11 1 0 j0
0 0 1 j0

0
@

1
A

0 m x,y,0 b 1
4,y,z

0
0 n(12,

1
2,0) x,y,0 m 0,y,z

Z 4e 0.1399(2) P4/mbm (I | 000) 0.6415 m x,y,0 b 1
4,y,z

0.3601(1)
0.9359(3)

O1 2c 0.5 P4/nmm (I | 14
3
40) 0 n(12,

1
2,0) x,y,0 m 0,y,z

0
0.1805(9) I4/mmm (I | 012

1
4) 0.6956 m x,y,14 n(

1
2,
1
2,0) x,y,0 n(0,12,

1
2)

1
4,y,z m 0,y,z

O2 4e 0.1408(5) P42/mnm (I | 012
1
4) 0.0580 m x,y,14 n(0,12,

1
2)

1
4,y,z

0.3592(5)
0.2558(9)

O3 8f 0.0795(6) P42/mnm (I | 012
1
4) 0.3643 m x,y,14 n(0,12,

1
2)

1
4,y,z

0.1868(5) P42/ncm (I | 14
3
4
1
4) 1.2422 n(12,

1
2,0) x,y,

1
4 c 0,y,z

0.7864(6) P4/nmm (I | 14
3
40) 1.2443 n(12,

1
2,0) x,y,0 m 0,y,z
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Let m(Oi) be the multiplicity of each orbit Oi in G, i 2{1, 2,
..6}, and let ni be the number of the atoms of the orbitOi in the

unit cell of the twin lattice. Then:

ni ¼ jPj:mðOiÞ
where |P| is the determinant of the transformation matrix P.

The number of atoms ni, equivalent under G, is divided in the

twin basis on s non-equivalent subsets of atoms under the

subgroup H: each subset corresponds to a split orbit Oij

indexed by s and such that:Xs

j¼1
m Oij

� �
¼ Pj jm Oið Þ ¼ ni:

The restoration of a split orbit Oij is realised when EðOijÞ
contains a restoration operation with linear part m[100]T

. The

extensions of P�44 (No. 81) containing such an operation are

P�44m2 (No. 115), P�44c2 (No. 116), P�44b2 (No. 117) and P�44n2
(No. 118); the corresponding restoration operations are m

0,y,z, c 0,y,z, b 1
4,y,z and n(0,12,

1
2)

1
4,y,z, respectively. To evaluate

whether a split orbit under H = P�44 is quasi-restored by the

operation in G, one checks whether one of these four opera-

tions maps a split orbit either to itself or to another split orbit

of the same type (within the accepted tolerance). This is what

is displayed in Tables 3–8. It turns out that the reflection

located in the origin gives by far the best restoration results,

therefore we will only discuss the restoration by the operation

m 0,y,z.

The atoms of type X in Wyckoff position 4e for G = P�4421m
fall under the action of the subgroup H into five split orbits in

Wyckoff position 4h forH = P�44, each having four atoms in the

unit cell of the twin lattice. The split orbit X1 is almost

perfectly restored (with a deviation of 0.03764 Å), X4 and X5

are also quasi-restored with a much larger but still acceptable

deviation (0.8617 Å).

The atoms of type Y in Wyckoff position 2a fall into four

split orbits, two of which have four atoms in the twin cell and

the other two a single atom. The two split orbits with a single

atom in the twin cell are perfectly restored; the split orbit Y4 is

quasi-restored to the split orbit Z3 with a deviation of

0.6493 Å. This is an admissible replacement, since both the Y

and the Z atoms are in tetrahedral coordination.

The atoms of type Z in Wyckoff position 4e fall again into

five split orbits each having four atoms in the twin cell. Besides

the split orbit Z3 which is interchanged with Y4, three more

split orbits are approximately restored (with deviations

between 0.5621 and 0.9793 Å).

The oxygen atoms in Wyckoff position 2c fall into two orbits

with four atoms in the twin cell and one orbit with two atoms

in the twin cell. The split orbit with two atoms is exactly

restored, the other two split orbits are only quasi-restored

when the threshold for anions is relaxed to 1.5 Å (deviations

1.1740 and 1.3402 Å) and one may doubt whether these are

still meaningful for the formation of the twin. The oxygen

atoms in Wyckoff position 4e fall into five split orbits (each

having four atoms in the twin cell). The split orbits O25 and O22

are approximately restored to themselves (with deviations of

0.5432 and 0.9856 Å), the orbit O24 is quasi-restored to the

split orbit O34 belonging to the oxygen atoms in Wyckoff

position 8f (with deviation 0.4103 Å) and the remaining two

orbits are quasi-restored to different split orbits with devia-

tions between 1 and 1.5 Å. Finally, the oxygen atoms in

Wyckoff position 8f fall into ten split orbits with four atoms
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Table 5
Analysis of the split orbits Zj stemming from Z under H = P�44.

Same conventions as in Table 3.

Orbit Coordinates
Wyckoff
positions

Restoration
operation

Restored
to

dmin

(Å)

Z1 0.88394, 0.12798, 0.9359 4h m Z1 0.7061
Z2 0.08394, 0.52798, 0.9359 4h m Z2 0.9793
Z3 0.28394, 0.92798, 0.9359 4h m Y4 0.6493

b Y3 0.6493
Z4 0.68394, 0.72798, 0.9359 4h –
Z5 0.48394, 0.32798, 0.9359 4h m Z5 0.5621

Table 4
Analysis of the split orbits Yj stemming from Y under H = P�44.

Same conventions as in Table 3.

Orbit Coordinates
Wyckoff
positions

Restoration
operation

Restored
to

dmin

(Å)

Y1 0, 0, 0 1a m Y1 0
b Y2 0

Y2 0.5, 0.5, 0 1c m Y2 0
b Y1 0

Y3 0.2, 0.4, 0 4h b Z3 0.6493
Y4 0.9, 0.3, 0 4h m Z3 0.6493

Table 3
Analysis of the split orbits Xj stemming from X under H = P�44.

A split orbit Xj is quasi-restored to a split orbit Xk (which may be the same as
Xj) by a twin operation if the approximate eigensymmetry E of the union
Xj[Xk contains (with dmin within the accepted tolerance) one of P�44m2, P�44c2,
P�44b2 or P�44n2, corresponding to the admissible restoration operations m 0,y,z,
c 0,y,z, b 1

4,y,z and n(0,12,
1
2)

1
4,y,z, which are abbreviated as m, c, b and n in the

tables.

Orbit Coordinates
Wyckoff
positions

Restoration
operation

Restored
to

dmin

(Å)

X1 0.99896, 0.16632, 0.5065 4h m X1 0.0364
X2 0.19896, 0.56632, 0.5065 4h –
X3 0.39896, 0.96632, 0.5065 4h –
X4 0.79896, 0.76632, 0.5065 4h m X4 0.8104
X5 0.59896, 0.36632, 0.5065 4h m X5 0.8617

Table 6
Analysis of the split orbits O1j stemming from O1 under H = P�44.

Same conventions as in Table 3. The restorations with dmin below 1 Å are
highlighted in bold.

Orbit Coordinates
Wyckoff
positions

Restoration
operation

Restored
to

dmin

(Å)

O11 0.5, 0, 0.1805 2g m O11 0
n O11 0.6956

O12 0.1, 0.2, 0.1805 4h m O21 1.3402
c O36 0.5632
b O34 1.4183
n O35 1.2773

O13 0.3, 0.6, 0.1805 4h m O35 1.1740
b O36 0.2527
n O21 1.3251
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each. Besides the split orbit O34 that is interchanged with O24,

the two orbits O310 and O38 are quasi-restored to themselves

with low deviations (0.1946 and 0.3283 Å). Six more of these

split orbits are quasi-restored with higher deviations (between

1 and 1.5 Å).

Table 9 shows a summary of the above analysis, where we

see that the percentage of atoms quasi-restored by the

reflection is much better than for the three glide reflections.

The fact that 68% of the cations and 37% of the anions are

restored within 1 Å is a strong justification for the occurrence

of this twin.

In Figs. 1 and 2 we display views of the twin cell. Figs. 1(a)

and 2(a) show all atoms, and Figs. 1(b) and 2(b) the quasi-

restored atoms. Fig. 1 is a view along the c axis, i.e. the

direction of the fourfold rotoinversion axis contained in the

subgroup H; Fig. 2 is along the normal of the (111) plane.

5. Conclusions

The reticular theory of twinning represents an elegant and

general approach for estimating the probability of the occur-

rence of a twin. However, because it provides a necessary

condition only on the lattice level, its application as an a priori

predictive tool is limited: while a low lattice restoration clearly

indicates low probability of formation, a high lattice restora-

tion is indicative, but not conclusive, of a probable occurrence.

The analysis of the eigensymmetry of the crystallographic

orbits corresponding to occupied Wyckoff positions is the key

for obtaining a quantitative estimation of the structural

restoration realised by the twin operation(s) and for obtaining

structurally necessary conditions enhancing the reticular

conditions for the twin formation. The example of melilite is

particularly instructive. The (001) and (100) twins are both

twins by merohedry and from the reticular viewpoint both

twins should have a high probability of occurrence. As a

matter of fact, the structural restoration is also fairly good,

although the cations and anions require different locations of

the twin element. The ð1�220Þ twin, despite a twin index of 5, also
leads to a relatively high degree of atomic restoration, which

explains the occurrence of this twin.

The approach we have developed in this article opens new

perspectives in the study of twins and is currently being

applied to other known examples.
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Table 7
Analysis of the split orbits O2j stemming from O2 under H = P�44.

Same conventions as in Table 3.

Orbit Coordinates
Wyckoff
positions

Restoration
operation

Restored
to

dmin

(Å)

O21 0.88448, 0.12816, 0.2558 4h m O12 1.3402
m O31 1.4748
c O21 0.3182
n O13 1.3251

O22 0.08448, 0.52816, 0.2558 4h m O22 0.9856
c O32 1.0051
b O37 1.2569
n O22 1.3950

O23 0.28448, 0.92816, 0.2558 4h m O36 1.4560
c O38 1.1174
b O35 1.1016
n O32 1.4935

O24 0.68448, 0.72816, 0.2558 4h m O34 0.4103
c O24 1.0825
b O39 1.3750
n O36 1.4279

O25 0.48448, 0.32816, 0.2558 4h m O25 0.5432
c O35 1.1363
c O310 1.4764

Table 9
Summary of the percentage of atomic quasi-restoration by the ð1�220Þ twin
plane in melilite for the admissible restoration operations (expressed in
the basis of the twin).

The values in parentheses are obtained by also taking into account the oxygen
atoms restored with a degree of approximation between 1 and 1.5 Å. In the
unit cell of the twin lattice, there are 20 cations of type X, 10 cations of type Y,
20 cations of type Z and 70 oxygen atoms, thus in total 120 atoms.

Restoration
operation %X %Y %Z % cations %O % all atoms

m 0,y,z 60 60 80 68 37 (94) 50 (83)
c 0,y,z 0 0 0 0 23 (91) 13 (53)
b 1

4,y,z 0 60 20 20 11 (80) 15 (55)
n(0,12,

1
2)

1
4,y,z 0 0 0 0 20 (89) 12 (52)

Table 8
Analysis of the split orbits O3j stemming from O3 under H = P�44.

Same conventions as in Table 3.

Orbit Coordinates
Wyckoff
positions

Restoration
operation

Restored
to

dmin

(Å)

O31 0.94118, 0.06916, 0.7864 4h m O21 1.4748
c O31 0.4452
b O310 1.0048
n O310 1.4670

O32 0.14118, 0.46916, 0.7864 4h m O32 1.0794
c O22 1.0051
b O38 1.3284
n O23 1.4935

O33 0.34118, 0.86916, 0.7864 4h m O39 1.2177
c O37 1.1345
n O33 0.7824

O34 0.74118, 0.66916, 0.7864 4h m O24 0.4103
c O39 1.3239
b O12 1.4183

O35 0.54118, 0.26916, 0.7864 4h m O13 1.1740
m O35 1.4413
c O25 1.1363
b O23 1.1016
n O12 1.2773
n O38 1.4677

O36 0.89444, 0.20938, 0.7864 4h m O23 1.4560
c O12 0.5632
b O13 0.2527
n O24 1.4279

O37 0.09444, 0.60938, 0.7864 4h c O33 1.1345
b O22 1.2569
n O37 0.5190

O38 0.29444, 0.00938, 0.7864 4h m O38 0.3283
c O23 1.1174
b O32 1.3284
n O35 1.4677

O39 0.69444, 0.80938, 0.7864 4h m O33 1.2177
c O34 1.3239
b O24 1.3750
n O39 0.3764

O310 0.49444, 0.40938, 0.7864 4h m O310 0.1946
c O25 1.4764
b O31 1.0048
n O31 1.4670
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APPENDIX A
Theorem. Assume2 that t is the twin operation such that t2 is

an element of G. Let Oij be a split orbit under the intersection

groupH = G \ tGt�1 and let x be the position of an atom inOij.

Let x0 be the position of the atom in the structure closest to the

mapped position t(x) of x under the twin operation, thus dmin =

kt(x) � x0k. Then the value of dmin is the same for every atom

in Oij, i.e. the distance of the image of any atom in Oij under t

to the closest atom position in the structure is always dmin.

Moreover, if the position x0 belongs to the split orbit Oi0j0,

then the closest atoms to the mapped split orbit t(Oij) all

belong to Oi0j0. In particular, if one atom of Oij is exactly
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Figure 1
View of the unit cell of the twin lattice of melilite along the c axis. The
atoms of type X (mainly calcium in our example) are coloured light blue,
the atoms of type Y (mostly magnesium) in orange, the atoms of type Z
(mainly silicon) dark blue and the oxygen atoms are in red. (a) View of all
atoms in the cell and (b) the quasi-restored atoms.

Figure 2
View of the unit cell of the twin lattice of melilite along to the (111) plane:
(a) all atoms in the cell, (b) the quasi-restored atoms.

2 This includes the twin operation of a twofold twin as well as twin operations
of higher order about symmetry elements for the individual, like a fourfold
rotation about a twofold symmetry axis or a sixfold rotation about a threefold
symmetry axis. For details, see Nespolo (2004).
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restored to an atom in Oi0j0, then the full split orbit Oij is

mapped to the full split orbit Oi0j0 under the twin operation.

Proof: Let x be the position of an atom in Oij, let x
0 be the

position of the atom in the structure closest to t(x) and let the

split orbit to which x0 belongs be Oi0j0. If y is the position of

another atom inOij, then there is a symmetry operation h inH
mapping x to y. Since t is a twofold twin operation, one has

tht�1 2 tGt�1 \ t2Gt�2 = tGt�1 \ G = H and hence tht�1 = h0 2
H. This means that th = h0t and thus mapping y = h(x) by the

twin operation t gives t(y) = th(x) = h0t(x). If one defines y0 =

h0(x0), then from the fact that h0 is an isometry and thus

preserves distances, it follows that kt(y) � y0k = kh0t(x) �
h0(x0)k = kh0[t(x) � x0]k = kt(x) � x0k = dmin. Since h0 is an

element of H, it follows that Oi0j0 contains an atom with

distance dmin to y. The same argument applied with the roles of

Oij andOi0j0 interchanged now shows that the structure can not

contain an atom closer to t(y) than y0, because that would

result in an atom with distance less than dmin to t(x).

Remark: The above proof is easily generalized to the case of

a k-fold twin. In this case, the intersection subgroup has to be

chosen asH = G \ tGt�1 \ t2Gt�2 \ . . . \ t k � 1Gt�(k � 1). Then

the crucial argument in the proof that tht�1 = h0 2 H remains

valid.
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Staurolite has been long considered an enigma because of its remarkable

pseudosymmetry and the frequent twinning. Staurolite gives two twins whose

occurrence frequency seems to contradict the condition of lattice restoration

requested by the reticular theory of twinning, in that the more frequent one

(Saint Andrews cross twin) has a twin index of 12, whereas the less frequent one

(Greek cross twin) has a twin index of 6. The hybrid theory of twinning shows

that the former is actually a hybrid twin with two concurrent sublattices and an

effective twin index of 6.0. However, this is still not sufficient to explain the

observed higher occurrence frequency of the Saint Andrews twin. The (pseudo)-

eigensymmetry of the crystallographic orbits of staurolite has been analysed and

it was found that the whole substructure built on anions is restored (with small

deviations) by both twin laws, which explains why twinning is frequent in

staurolite. On the other hand, 45% of the cation sites are quasi-restored in the

Saint Andrews cross twin, against only 19% for the Greek cross twin: this

difference finally explains the different occurrence frequencies of the two twins.

1. Introduction

The first structural study of staurolite was reported by

Cardoso (1928), who suggested the space-group type Ccmm.

The following year, and by adopting the same type of space

group, Náray-Szabó (1929) succeeded in solving the structure.

However, the correct space group had not been determined

yet. In fact, Juurinen (1956) suggested C2221 and the same

year Hurst et al. (1956) proposed C2/m, which was then

confirmed by Náray-Szabó & Sasvári (1958).

Nowadays, the crystal structure and chemistry of staurolite

are well known: it crystallizes in the space group C2/m (No. 12)

with cell parameters a = 7.8695, b = 16.60759, c = 5.6658 Å, � =
90.001� (Hawthorne et al., 1993). The metric of the lattice is

thus orthorhombic and this explains the previous uncertainties

in the determination of its space group. The atomic coordi-

nates are given in Tables 1 and 2.

The idealized formula of staurolite can be written as

HX9Y2Z4O24H, with X = (Al3+, Mg2+, Fe2+), Y = (Fe2+, Mg2+)

and Z = Si4+. The structure is based on a slightly distorted face-

centred cubic (f.c.c.) packing of oxygen atoms with the cations

partly occupying the octahedral and tetrahedral cavities,

which can be represented by the symmetrical packing symbol

A(– – 2/3)B(1/4 1/4 1/4)C(– 2/3 –)A(1/4 1/4 1/4)B(2/3 – –)C(1/4

1/4 1/4) (Zoltai & Stout, 1984). This symbol gives the frac-

tional occupation of the independent polyhedra (two tetra-

hedra and one octahedron) formed by a pair of hexagonal

sheets of spheres, representing the anions (oxygen atoms

here). The idealized structure of staurolite consists thus of an

f.c.c. stacking of anions with an alternation, along the stacking

direction, of cationic planes occupying alternatively one-

quarter of each cavity and two-thirds of the octahedral cavities

only. The closeness of the oxygen packing to a truly f.c.c.

packing is shown in Table 2, where the fractional coordinates

are idealized to multiples of one-twelfth and the corre-

sponding displacement from the actual positions are given: the

largest displacement is only 0.35 Å. The real and idealized

oxygen substructures are compared visually in Fig. 1 (figures

are drawn with VESTA; Momma & Izumi, 2011).

Staurolite gives two twins, known as the 90� twin or Greek

cross twin and the 60� twin or Saint Andrews cross twin, whose
relative occurrence frequency remains so far unexplained and

is one of the reasons why Smith (1968) called staurolite ‘an

enigma’. The reticular theory of twinning (cf. Friedel, 1904,

1926) considers a high degree of lattice restoration as a

necessary condition for the formation of twins and relates the

probability of occurrence of a twin with the degree of overlap

of the lattices of the individuals. The latter is measured by two

parameters: the obliquity and the twin index. The twin lattice

LT is defined by two elements mutually (quasi)-perpendicular,

the plane (hkl)T and the direction [uvw]T: one is the twin

element, the other the lattice element (quasi)-perpendicular to

it. The angle between [hkl]* and the direction [uvw] quasi-

perpendicular to (hkl) (for reflection twins), or between

(uvw)* and the plane (hkl) quasi-perpendicular to [uvw] (for

rotation twins) is the obliquity !, which measures deviation
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from perfect overlap of the lattice nodes of the individuals

forming the twin; correspondingly, twins are classified in TLS

(twin lattice symmetry) and TLQS (twin lattice quasi

symmetry), respectively (Donnay & Donnay, 1974).1 The twin

index n is the inverse of the fraction of lattice nodes restored

(exactly, for TLS; approximately, for TLQS) by the twin

operation and corresponds to the ratio between the volumes

of the primitive cells of the twin and the individual: n = V(LT)/

V(Lind). As a heuristic rule, the lower the obliquity and the

twin index, the higher is the occurrence probability of the twin.

Friedel (1904, 1926) reported an empirical limit for the

occurrence of twins as n � 6 and ! � 6. Twins that respect

these limits are called Friedelian twins (Nespolo & Ferraris,

2005).

Staurolite twins are often reported in the literature as

reflection twins on (031) (Greek cross) and (231) (Saint

Andrews cross), the corresponding twin indices are 6 and 12,

respectively. The Saint Andrews cross is thus a non-Friedelian

twin, which should have a low occurrence probability but

instead occurs more frequently than the Greek cross (Hurst et

al., 1956) and seems to contradict the assumption that a high

degree of lattice restoration is a prerequisite for the formation

of twins, which is at the core of the reticular theory. Hurst et al.

(1956) have demonstrated that staurolite twins are actually

rotation twins: the Greek cross twin is obtained by either 90�

rotation around [100] or 180� around [013] and the Saint

Andrews cross by either 120� rotation around [102] or 180�

around [313] (Nespolo & Ferraris, 2007). Ericksen (2003)

presented a detailed mathematical analysis trying to confirm

or refute the interpretation of Hurst et al. (1956), without

however coming to a definite conclusion. The rotation (rather

than reflection nature) does not change the reticular inter-

pretation of the Greek cross twin. For the Saint Andrews twin,

however, there are two coexisting sublattices, which make this

twin hybrid: for the full lattice restoration both sublattices

have to be taken into account and the degree of lattice

restoration is measured by the effective twin index nE (Nespolo

& Ferraris, 2006), which is defined as the ratio between the

lattice nodes of the individual and the lattice nodes belonging

to any of the quasi-restored sublattices. The Saint Andrews

cross twin is found to be a hybrid twin with two concurrent

sublattices leading to an effective twin index of nE = 6.0. The

hybrid interpretation no longer contradicts the necessary

condition of a good lattice restoration (Nespolo & Ferraris,

2009). It cannot, however, explain the higher frequency of the

Saint Andrews cross twin: for this a detailed analysis of the

structural restoration is required.

2. The common substructure of oxygen atoms

Under the action of the symmetry operations of the space

group G, each atom with coordinates ri generates a crystal-

lographic orbit Oi with eigensymmetry E i. If G is a proper

subgroup of E i, Oi is called a non-characteristic orbit. The

eigensymmetry group of Oi may contain the twin operation t :

in this case, the orbit Oi is restored by the twin operation and

forms a substructure which continues unperturbed across the

composition surface and can justify the formation of the twin.

The orbit Oi can also be only pseudosymmetric: in this case

some operations in the eigensymmetry group E i are only

approximate symmetry operations for Oi and thus the

substructure undergoes a limited perturbation across the

surface; the closer the pseudosymmetries of the orbit are to

proper symmetry operations, the lower the perturbation of the

substructure across the surface. The union of two or more

orbits may also have an eigensymmetry higher than G: in this

case, the substructure crossing the composition surface

unperturbed or only slightly perturbed is composed of the

union of orbits and the twin operation restores one orbit to

one or more different orbits in this union. In order for two

orbits to be considered in the union, the atoms occupying

those orbits must play a similar structural role: for example, be

of the same chemical species or have the same type of coor-

dination environment (Marzouki et al., 2014).

As we have seen, the structure of staurolite is based on a

pseudo-f.c.c. packing of oxygen atoms: this means that the

union of the corresponding orbits must have a pseudo-cubic

symmetry. Indeed, Náray-Szabó (1929) had already recog-

nized that the 48 oxygen atoms in the unit cell form a pseudo-
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Table 1
Atomic coordinates of cations in staurolite in the setting of the individual.

Site
Wyckoff
position Coordinates

X1 4g 1/2, 0.17511, 0
X2 4h 1/2, 0.17511, 1/2
X3 8j 0.26288, 0.41053, 0.25011
X4 2a 0, 0, 0
X5 2c 0, 0, 1/2
Y 4i 0.39107, 0, 0.24991
Z 8j 0.13416, 0.16612, 0.24996
Fe1 2b 1/2, 0, 0
Fe2 2d 1/2, 0, 1/2

Figure 1
View of the (pseudo)-f.c.c. packing formed by the the oxygen atoms in
staurolite; (a) exact coordinates and (b) idealized coordinates.

1 For manifold twins (i.e. twins in which the twin operation is higher than
twofold), a zero-obliquity TLQS may occur. In this case, a different parameter
is necessary to measure the deviation from the exact restoration of lattice
nodes, like the twin misfit introduced by Nespolo & Ferraris (2007).
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f.c.c. substructure. This pseudo-cubic symmetry is confirmed

by the analysis of the union of oxygen orbits with the

PSEUDO program (Capillas et al., 2011) at the Bilbao Crys-

tallographic Server (Aroyo et al., 2006). The computation

shows that the eigensymmetry for this union is Fm�33m (No.

225) with transformation matrix (P, p) relating an eigensym-

metry basis (abc)u to the individual basis (abc)I defined as

follows:

ðabcÞIðP; pÞ ¼ ðabcÞu;P�1 ¼
0 3 1

0 �3 1

2 0 0

0
@

1
A;�P�1p ¼

1=2
0

1=2

0
@

1
A:

The cell shrinking corresponds to the determinant of the

matrix P, namely 1/12.

The seven orbits of oxygen atoms in the individual basis,

whose idealized coordinates (expressed as closest multiple of

1/12) are given in Table 2, coalesce into a single oxygen orbit

Ou under the action of the eigensymmetry group of the union

of all oxygen atoms. This orbit corresponds to the Wyckoff

position 4b in the space-group type Fm�33m. The union of

oxygen orbits in the individual basis becomes thus one single

orbit in the cubic basis (abc)u with multiplicity 4 (due to the

F-centring) which, considering that the transformation matrix

has determinant 12, corresponds to the 48 oxygen atoms in the

unit cell defined by (abc)u, as found by Náray-Szabó (1929).

As seen in the previous section, the twin axes for staurolite

can be chosen as [100], [013] (Greek cross twin), [102] and

[313] (Saint Andrews cross twin). These directions are trans-

formed by the matrix P�1 above to lattice symmetry directions

in the cubic basis (abc)u (Table 3), which confirms that the

union of oxygen atoms, with cubic (pseudo)-symmetry, is fully

restored by the twin operations. The substructure built on the

oxygen atoms is thus equally restored in both twins and cannot

explain the different occurrence frequency of these two twins.

Consequently, the restoration of the cations must be the

discriminating factor.

3. Analysis of the pseudo-eigensymmetry of the cation
substructure

Let [uvw]T be the twin axis, (hkl)T the lattice plane (quasi)-

perpendicular to it, and v1 and v2 two vectors defining a two-

dimensional unit cell in (hkl)T. The three linearly independent

vectors v1, v2 and [uvw]T form the basis of the twin lattice,

denoted by (abc)T, which is related to the basis (abc)I of the

lattice of the individual by a basis transformation P:

ðabcÞIP ¼ ðabcÞT: ð1Þ
Given the coordinates

x

y

z

0
@

1
A

I

of an atom in the individual basis, the new coordinates

x

y

z

0
@

1
A

T

of this atom in the twin basis are obtained by

x

y

z

0
@

1
A

T

¼ P�1
x

y

z

0
@

1
A

I

:

The twin operation tmaps the first individual of the twinned

crystal onto the second one, thus the space group of the

second individual is the conjugate group tGt�1. The subgroup

H of G compatible with the twin lattice is the intersection

group of the space groups of the two conjugated individuals,

i.e. H ¼ G \ tGt�1 (Marzouki et al., 2014). Each atom with

coordinates ri generates a crystallographic orbit Oi = {g ri, g 2
G} with eigensymmetry E i under the action of the symmetry

operations of the space group G. The atoms belonging to the

orbit Oi have P�1:g:ri as coordinates in the twin basis. With

respect to the intersection group H, the points in Oi are in

general no longer all equivalent but split into two or

more orbits Oij under H, with eigensymmetry groups E ij

(Wondratschek, 1993). If the twin operation t belongs to E ij,

then the atoms forming Oij are restored by t andOij belongs to

the substructure that crosses the composition surface unper-

turbed. It may, however, also happen that the twin operation t
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Table 2
Idealization of oxygen coordinates in the individual and pseudo-cubic basis.

Oxygen
atom

Wyckoff
position Coordinates ri in individual basis

Approximate
coordinates in the
individual basis

Absolute
displacement
(Å)

Idealized (P, p)�1.ri
in cubic cell

O1 4i 0.23461, 0, 0.96468 1/4, 0, 0 0.23360 1/2, 0, 0
O2 4i 0.23493, 0, 0.53474 1/4, 0, 1/2 0.23081 0, 1/2, 0
O3 8j 0.25523, 0.16128, 0.01537 1/4, 1/6, 0 0.1240 0, 1/2, 0
O4 8j 0.25503, 0.16129, 0.48467 1/4, 1/6, 1/2 0.12985 1/2, 0, 0
O5 8j 0.00152, 0.08876, 0.24971 0, 1/12, 1/4 0.09147 0, 0, 1/2
O6 8j 0.02140, 0.24936, 0.25018 0, 1/4, 1/4 0.1687 1/2, 1/2, 1/2
O7 8j 0.52671, 0.09997, 0.24994 1/2, 1/12, 1/4 0.34720 0, 0, 1/2

Table 3
Expression of the twin element in the pseudo-cubic basis.

Twin element in
the individual basis

Twin element in
the cubic basis

4[100] 4[001]
2[013] 2[100]
3[102] 3[111]
2[313] 2[101]
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belongs to the eigensymmetry of the union of two or more

orbits, [ijOij: in this case, atoms belonging to a split orbit in

one individual can be restored onto atoms belonging to a

different split orbit in another individual, as we have seen for

the set of oxygen atoms.

For the analysis of the restoration of cations in staurolite,

three cases are possible.

(1) Neither the orbit Oij nor its union with other orbits is

restored by t ; the substructure defined by Oij does not

continue across the composition surface.

(2) The orbit Oij or the union of Oij with other orbits is

restored by t ; the substructure defined by Oij continues across

the interface and is restored, within some tolerance, to itself or

to another orbit.

(3) The orbit Oij and the union of Oij with other orbits is

restored by t ; the substructure defined by Oij continues across

the interface and is restored, within some tolerance, to itself

and to another orbit; this is possible because of the accepted

tolerance; obviously, the restoration to one orbit is better than

that on the other. The former will be retained because it

represents a better explanation for the formation of the twin;

the latter would not appear at a lower level of accepted

tolerance.

In the staurolite structure, the sites of the cations are situ-

ated in two different coordination environments: tetrahedral

and octahedral. The tetrahedral sites are occupied by the

cations Y and Z. The octahedral sites are occupied by the

cations X. Further sites, listed as Fe1 and Fe2 in Table 1, have

an atom site occupancy of only 5% and 4.5%, respectively; this

is too low to influence the restoration of the structure and will

be neglected in the further analysis.

4. Results

The crystal structure of staurolite has a space group G of type

C2/m (No. 12) with a metrically orthorhombic lattice. Conju-

gation by each of the two twin operations fixes the identity and

the inversion, but neither the twofold rotation nor the mirror

reflection normal to it are conjugated to an operation in G.
Therefore, the point group of the twin lattice is of type �11, with
the twin lattice obtained by L \ tL = LT (Marzouki et al., 2014).

The twin operation 4[100] fixes a tetragonal lattice with basis

vectors ½0�113�, [013] and [100], which define the basis of the twin
lattice for the Greek cross twin. However, the centring vector

[003] is also compatible with the twin operation (Nespolo &

Ferraris, 2007), therefore H = G \ t G t�1 is of type C�11 (No. 2,
non-conventional setting). The twin operation 2[313] fixes the

lattice with basis ½1�111�, ½10�22� and [313], which defines a

primitive basis for the Saint Andrews cross twin. In this case,

the intersection groupH = G \ tG t�1 is of type P�11 (No. 2). The
transformation matrix P in equation (1) thus takes the form

PGc ¼
0 0 1

1 �1 0

3 3 0

0
@

1
A and PSA

1 3 1

0 1 �1

�2 3 1

0
@

1
A

for the Greek cross twin (Gc) and the Saint Andrews cross

twin (SA), respectively. The corresponding cell parameters are

a = b = 23.7424, c= 7.8695 Å, �= � = 90.001, � = 88.772� for the
Greek cross twin and a = 13.7796, b = 33.4821, c = 19.2283 Å, �

Acta Cryst. (2014). A70, 348–353 Mohamed Amine Marzouki et al. � The staurolite enigma solved 351

research papers

Table 4
Degree of quasi-restoration of octahedral sites for the Greek cross twin.

In all cases the (pseudo)-eigensymmetry is P4/m. As the accepted tolerance is
1 Å, dmin is given with two decimal places.

Orbit or union
of orbits dmin (Å)

X12 [ X14 0.20
X21 [ X53 0.14
X54 0
X23 [ X24 0.20
X16 [ X43 0.14
X44 0

Table 5
Degree of quasi-restoration of tetrahedral sites for the Saint Andrews
cross twin.

In all cases the (pseudo)-eigensymmetry is P2/m.

Orbit or union
of orbits dmin (Å)

Orbit or union
of orbits dmin (Å)

Y2 0.18 Z16 [ Z25 0.10
Y3 [ Z8 0.14 Z22 [ Y22 0.15
Y4 [ Z33 0.15 Z31 0.11
Z5 0.11 Z37 0.09
Z14 0.09 Z44 [ Y23 0.14
Z15 [ Z38 0.10 Y24 0.18

Table 6
Degree of quasi-restoration of octahedral sites for the Saint Andrews
cross twin.

In all cases, the (pseudo)-eigensymmetry is P2/m.

Orbit or union
of orbits dmin (Å)

Orbit or union
of orbits dmin (Å)

X301 [ X104 0.08 X324 [ X115 0.27
X201 [ X110 0.24 X211 [ X120 0.14
X513 0 X326 [ X218 0.08
X302 [ X215 0.27 X212 [ X507 0.14
X413 0 X405 [ X117 0.14
X304 0.28 X329 [ X407 0.14
X103 0.14 X114 0.24
X202 0.14 X213 [ X122 0.24
X203 [ X502 0.14 X512 0
X501 [ X106 0.14 X331 0.29
X307 0.04 X216 [ X411 0.14
X311 [ X403 0.14 X340 [ X511 0.14
X313 0.25 X341 0.15
X205 [ X404 0.14 X118 [ X345 0.08
X206 [ X116 0.14 X119 [ X410 0.14
X318 [ X217 0.08 X219 0.14
X319 [ X504 0.14 X220 [ X348 0.27
X321 0.15 X508 [ X123 0.14
X107 [ X325 0.27 X343 0.04
X109 0.24 X346 0.25
X209 0.24 X124 0.14
X210 0.24 X412 0
X503 [ X406 0
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= 89.472, � = 61.629, � = 35.049� for the Saint Andrews cross

twin.

The orbits at the cation sites X1–X5, Y and Z undergo

splitting when the action is restricted to the intersection group

H. The tolerance on the (quasi)-restoration for the cations,

dmin, is taken as 1 Å, as in our previous analysis of melilite

twins (Marzouki et al., 2014). Tables S1, S2 and S3 (available in

the supporting information2) give the splitting scheme for

those orbits for which at least one split orbit is quasi-restored,

as obtained by WYCKSPLIT (Kroumova et al., 1998): when

none of the split orbits is restored, the splitting scheme is

omitted for the sake of briefness. The quasi-restored orbits

and unions of orbits are given in Tables 4, 5 and 6, together

with the achieved restoration accuracy dmin.

The minimal supergroup E of H containing the twin

operation t is of type P4/m (No. 83) for the Greek cross twin

and of type P2/m (No. 10) for the Saint Andrews cross twin.

The corresponding coordinate transformation from H to E is

simply the transformation (1/2 1/2 0,�1/2 1/2 0, 0 0 1) from the

C to the P cell for the Greek cross twin and the identity matrix

for the Saint Andrews cross twin (no shift of origin in both

cases).

For the octahedral sites (X), the restoration is much higher

in the Saint Andrews cross twin (136 atoms out of 240, 57%)

than for the Greek cross twin (36 atoms out of 120, 30%).

None of the 72 atoms in tetrahedral coordination (Y and Z

sites) is restored for the Greek cross twin, whereas on these

sites 36 atoms out of 144 (25%) are restored for the Saint

Andrews cross twin (Table 7).

Fig. 2 shows the substructure of staurolite built on tetra-

hedra, in the original orientation and after a 4[001] rotation

which corresponds to a Greek cross twin operation. Although

the staurolite structure is based on a distorted f.c.c. lattice

formed by the oxygen atoms, the 4[001] rotation is not a

pseudosymmetry operation for the structure because of the

cation distribution, expressed by the symmetrical packing

symbol. In fact, this operation approximately maps filled

tetrahedra of one individual onto empty tetrahedra of the

other individual and vice versa: none of the tetrahedra is

therefore restored by the twin operation. Furthermore, when

the twin cell of the Greek cross twin is viewed from the side

with the twin axis as vertical axis (see Fig. 3), it becomes

evident that the tetrahedra are arranged in layers perpendi-

cular to the twin axis. Within each layer, all tetrahedra have

the same orientation, whereas tetrahedra in neighbouring

layers have opposite orientation. Since the 4[001] rotation

reverses the orientation of the tetrahedra, this again demon-

strates that none of the tetrahedra can be restored in the

Greek cross twin.

5. Conclusions

The crystallographic orbit analysis explains both the frequent

twinning in staurolite and the different occurrence frequency

of the two types of twins. The complete quasi-restoration of

the substructure built on oxygen atoms is the structural reason

behind the high frequency of twinning. The significant differ-

ence in the restoration of the cations (19% versus 45%: Table

7) explains why the Saint Andrews twin is more frequent than

the Greek cross twin. The ‘staurolite enigma’ is therefore

finally solved.
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Table 7
Summary of the percentage of the polyhedra quasi-restoration by the
twin operations 4[100] and 2[313] for the Greek cross twin and Saint
Andrews cross twin, respectively.

Twin
Octahedral sites
restored (%)

Tetrahedral sites
restored (%)

Cation sites
restored (%)

Greek cross 30 0 19
Saint Andrews cross 56 25 45

Figure 2
View of the tetrahedra in the unit cell of the individual in its original
orientation (dark tetrahedra, oxygen atoms in red) and after applying a
4[100] rotation (light tetrahedra, oxygen atoms in blue). The common part
of the figure corresponds to the common volume of a penetration Greek
cross twin, octahedra omitted. Whereas the oxygen atoms are almost
restored, this is not the case for the tetrahedra: the twin operation maps a
filled tetrahedron onto an empty one and vice versa.

Figure 3
Twin cell of the Greek cross twin viewed with the twin axis as the vertical
axis. The tetrahedra are arranged in layers perpendicular to the twin axis,
within each layer all tetrahedra have the same orientation.

2 Supporting information for this paper is available from the IUCr electronic
archives (Reference: PC5038).
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Friedel, G. (1926). Leçons de Cristallographie. Nancy, Paris,
Strasbourg: Berger-Levrault.

Hawthorne, F. C., Ungaretti, L., Oberti, R., Caucia, F. & Callegari, A.
(1993). Can. Mineral. 31, 551–582.

Hurst, V., Donnay, J. D. H. & Donnay, G. (1956). Mineral. Mag. 31,
145–163.

Juurinen, A. (1956). Composition and Properties of Staurolite.
Helsinki: Suomalaien Tiedeakat Toimituksia.

Kroumova, E., Perez-Mato, J. M. & Aroyo, M. I. (1998). J. Appl.
Cryst. 31, 646.

Marzouki, M. A., Souvignier, B. & Nespolo, M. (2014). IUCrJ, 1, 39–
48.

Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.
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The occurrence frequency of the {110} twin in aragonite is explained by the

existence of an important substructure (60% of the atoms) which crosses the

composition surface with only minor perturbation (about 0.2 Å) and constitutes

a common atomic network facilitating the formation of the twin. The existence

of such a common substructure is shown by the C2/c pseudo-eigensymmetry of

the crystallographic orbits, which contains restoration operations whose linear

part coincides with the twin operation. Furthermore, the local analysis of the

composition surface in the aragonite structure shows that the structure is built

from slices which are fixed by the twin operation, confirming and reinforcing the

crystallographic orbit analysis of the structural continuity across the composi-

tion surface.

1. Introduction

Aragonite is the high-pressure polymorph of CaCO3, meta-

stable at ambient conditions, which occurs also as an impor-

tant component of coral skeletons (Higuchi et al., 2014). A

salient feature of this mineral is its frequent twinning on {110}.

The dihedral angle between (110) and (100) is about 58�: this
favours the frequent occurrence of {110} twins as ‘thrillings’,

whose morphology simulates a hexagonal single crystal. For

this reason, it has been called a ‘mimetic twin’ (Tomkeieff,

1925). A second twin, on {103}, is much less common and

corresponds to a hybrid twin with two concurrent sublattices

(the analysis of this twin is given in Nespolo & Ferraris, 2009).

Symmetry beyond space-group operations plays a crucial

role in the aragonite {110} twin. This has been pointed out by

Makovicky (2012), who analysed the local symmetry of the

aragonite structure and gave an OD [order–disorder, see e.g.

Ďurovič (1997) for a simple introduction or Ferraris et al.

(2008) for a comprehensive account] interpretation of {110}

twinning. Here we emphasize the role of pseudo-symmetry

and show that the crystallographic orbits building up the

structure of aragonite have an approximate eigensymmetry

which explains a high degree of structural restoration across

the composition surface.

2. Crystallographic orbits approach to the structural
study of twins

The general approach of analysing the structure of twins via

the restoration of crystallographic orbits is described in

Marzouki et al. (2014a), together with the application to the

analysis of melilite. The more complex case of staurolite is

analysed in Marzouki et al. (2014b). We therefore restrict
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ourselves to presenting the fundamental principles; the reader

will find more details in the two quoted articles.

Each atom in the asymmetric unit of a crystal structure

represents an infinite set of atoms equivalent by symmetry,

called a crystallographic orbit. Let E be the eigensymmetry of

this orbit, i.e. the group of all motions mapping the orbit to

itself. The intersection of the eigensymmetries of all crystal-

lographic orbits in a crystal structure is the space group G of

that structure: G ¼ \iEi. The eigensymmetry of each orbit can

be equal to or a proper supergroup of the space group of the

structure: one speaks of characteristic and non-characteristic

orbits, respectively.

The twin operation does not belong to the point group of

the crystal but it may belong, exactly or approximately, to the

point group of the eigensymmetry of one or more non-

characteristic crystallographic orbits building the structure of

that crystal. When this is the case, the corresponding crystal-

lographic orbits cross the composition surface of the twin

(almost) unperturbed and define a substructure common to

the twinned individuals. If this substructure represents a

significant portion of the structure of the crystal, the occur-

rence probability of the twin is high.

If the twin operation does not belong to the point group

of the eigensymmetry of a crystallographic orbit in G, it may

still belong to that of a sub-orbit. This sub-orbit is obtained

by taking the maximal subgroup H of G which is compatible

with the twin lattice. A crystallographic orbit in G splits, in

general, into two or more orbits under the action of H
(Wondratschek, 1993) and the twin operation may belong to

the point group of the eigensymmetry of one or more of these

split orbits.

It is to be emphasized that the twin operation maps the

orientation of twinned crystals and is therefore a point-group

operation. Interpreted as a space-group operation it is only

determined up to its translational part. The actual operation

that maps the substructures has, however, a specific transla-

tional part: it is called restoration operation for the sake of

clarity, a term reminiscent of the concept of restoration index

introduced by Takeda et al. (1967) as a structural counterpart

of the twin index. However, to avoid cumbersome formula-

tions we will occasionally say that the twin operation maps an

atom or a substructure, silently implying that some symmetry

operation with the twin operation as linear part (i.e. a

restoration operation) maps the substructure.

2.1. Physical meaning of the pseudo-eigensymmetry and
tolerance on the atomic quasi-restoration

The composition surface of a twin represents a discontinuity

in the atomic structure. As discussed above, for a twin to exist

and be physically stable, a substructure common to the indi-

viduals should exist. This substructure is expected to cross the

composition surfacemore or less unperturbed. This means that

some crystallographic orbits, or sub-orbits, experience a

limited deviation at the composition surface, i.e. that their

eigensymmetry is close to a space group which contains a

restoration operation whose linear part is the twin operation.

Let dmin be the minimal distance between the position to

which a chosen atom in a crystallographic orbit O is mapped

under the restoration operation t and the atoms in O. If

t 2 E(O), then dmin = 0 for all atoms in O. If t is only a pseudo-

symmetry of O, then dmin > 0 and its value is a measure for the

degree of quasi-restoration. A question naturally arises about

the maximal acceptable value of dmin: in the previous examples

of melilite and staurolite (Marzouki et al., 2014a,b) we have

indicated, as a rule of thumb, a value close to the atom radius

(ionic or covalent, depending on the type of bond), because if

the approximation on the atomic restoration is beyond this

limit the atomic separation on the two sides of the composition

surfaces seems too large to justify the existence of a common

substructure. In the two previous examples, and especially for

the case of staurolite, the restoration obtained was signifi-

cantly better than this intuitive threshold. As we are going to

show, the same is true also for aragonite. Clearly, a larger

number of cases has to be analysed before a general conclu-

sion can be satisfactorily drawn but a clear trend seems

already to be emerging.

A related question arises about the possibility of having

sub-orbits with a better restoration than the full orbit. Suppose

that an orbit is restored with a tolerance dG, and that the sub-

orbits obtained by splitting in H are restored with tolerances

dH1 through dHn, where n is the number of sub-orbits in which

the original orbit splits when going from G to H. If dHi is

significantly smaller than dG for some of the i, the atomic

restoration is better described by the split orbits even if dG is

within the accepted tolerance. However, when dG is small, the

difference between dG and dHi does not really have a physical

meaning and the splitting scheme does not give additional

information for the description of the atomic restoration, as

we are going to see for the X atoms in aragonite.

3. Analysis of the {110} twin in aragonite via the
crystallographic orbits approach

A structure analogous to that of aragonite is found also in the

carbonates hosting a cation bigger than calcium: witherite

BaCO3, strontianite SrCO3 and cerussite PbCO3, as well as in

nitre KNO3. The considerations developed in this section

apply to all the isotypes; for the sake of generality, we describe

the general formula as XYO3, with the big cations (Ca, Ba, Sr,

Pb, K) in the X site and small ones (C, N) in the Y site. These

minerals crystallize in space groups of type Pmcn (non-

standard setting of PnmaNo. 62: transformation from Pnma to

Pmcn: bca and yzx; from Pmcn to Pnma: cab and zxy),1 with X

and Y in Wyckoff positions 4c, and the oxygen atoms

distributed over two different Wyckoff positions: 4c and

8d. We analyse the aragonite structure reported by Caspi

et al. (2005) for which a = 4.96183, b = 7.96914, c = 5.74285 Å,

whose atomic coordinates are given in Table 1 (coordinates

expressed with respect to the standard setting Pnma of G).
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1 The twin law {110} is expressed with respect to a morphological cell having
a:b:c ’ 0.6:1:0.7 (Barry & Mason, 1959), which corresponds to the Pmcn
setting of the space group.
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3.1. The twin lattice of aragonite

We denote by (abc)I the basis for an individual and by

(abc)T the basis of the twin lattice. The direction quasi-normal

to the (110) twin plane is [310]; the twin plane can thus also be

regarded as the geometric element2 of m[310]. The following

analysis is performed from the standard setting of the space

group, Pnma, in which the cell parameters become a = 5.74285,

b = 4.96183, c = 7.96914 Å, the twin plane (011) and the

direction quasi-normal to it becomes [031], so that in this

setting the twin plane can be regarded as the geometric

element of m[031]. The shortest directions contained in (011)

are [100] and [011]. The twin lattice LT spanned by the twin

plane and the direction quasi-normal to it is obtained from

the lattice L of the individual by the relation LT ¼ L \ tL

(Marzouki et al., 2014a), its unit cell is spanned by the three

vectors [031], [011], [100]. However, the vector 1
2([031] +

[011]), which relates the origin and the 020 node of L, also

belongs to the twin lattice, hence the cell of LT built in this way

is C-centred (Fig. 1). The twin index is 2 and the obliquity is

3.74� (computation performed with the software GEMINO-

GRAPHY: Nespolo & Ferraris, 2006). Twinning is by reticular

pseudo-polyholohedry, meaning that the twin lattice belongs

to the same crystal family as the lattice of the individual,

within the approximation represented by the obliquity

(Nespolo & Ferraris, 2004).

The maximal subgroup H of G compatible with the twin

lattice is H ¼ G \ tG t�1 = C1: indeed, among the symmetry

elements of Pnma, neither the rotation/screw axes nor the

mirror/glide planes are parallel in the two orientations of G
and tG t�1 so that none of them is retained in the intersection.

Only the inversion centre, being a zero-dimensional point,

remains in the intersection. The bases (abc)I for G and (abc)T
for H are related by the following transformation:

ðabcÞIP ¼ ðabcÞT; P ¼
0 0 1

1 3 0

1 1 0

0
@

1
A; ð1Þ

which results in the cell parameters for the twin lattice a =

9.3876, b= 16.8845, c= 5.74285 Å, �= 90, �= 90, � = 86.26� and
in this setting the cell of LT is the standard C-centred cell.

Equation (1) defines the twin plane as the (010) plane of the

twin lattice; the axial setting of H is therefore the standard

monoclinic b-unique. However, the cell parameters of LT show

that the symmetry-unrestricted angle � is actually 90� whereas
the � angle, which would be symmetry restricted in a truly

monoclinic group, actually deviates from 90� by an amount

that corresponds precisely to the obliquity and represents a

measure of the pseudo-symmetry of the twin lattice.

The extension of the point group ofH by the twin operation

results in a (pseudo)-monoclinic group, either C2/m or C2/c.

3.2. Crystallographic orbits whose eigensymmetry is a
supergroup of G

For the crystallographic orbit defined by the Ca cations in

the aragonite structure (X cations for the isotypes) the

minimal supergroup which contains a mirror plane whose

linear part coincides with the twin plane is E = P63/mmc (No.

194). The transformation matrix from G to E is (001=12
1
2 0=

1
2
1
2 0)

with origin shift 0 1
4
1
4. The inverse transformation

(011=011=100) – origin shift 1
2 00 – applied to [031] gives [120],

which is a symmetry direction of P63/mmc normal to which we

have the (010) c glide of E. This is precisely the restoration

operation for the X cations whose linear part coincides with

the twin operation (once the axial transformation is taken into

account).3 The degree of approximation in the restoration is

the minimal distance between atoms quasi-restored by the

twin operation. This can be obtained by the PSEUDO routine

(Capillas et al., 2011) at the Bilbao Crystallographic Server

(Aroyo et al., 2006), and coincides with the maximal distance

(�max) between atoms produced by the additional symmetry

operations of E with respect to G. For the Ca atoms in

aragonite this distance is 0.1155 Å, i.e. an excellent degree of

quasi-restoration. Considering the relatively large ionic radius

research papers
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Figure 1
The twin lattice of the aragonite (110) twin – (011) in the standard Pnma
setting of the space group – seen in projection along the a axis of G. The
bH axis is direction [031] in Pnma. Red nodes are (quasi) restored by the
twin operation: they represent half of the lattice nodes of G so that the
twin index is 2.

Table 1
Atomic coordinates of aragonite in the Pnma setting of the space group.

Atoms Wyckoff position Coordinates

X (Ca) 4c 0.75985, 14, 0.41502

Y (C) 4c 0.91760, 14, 0.76194

OA 4c 0.90547, 14, 0.92238

OB 8d 0.91275, 0.47499, 0.68012

2 A geometric element is defined, for any given symmetry operation, as the
point, line or plane fixed by the operation after removing any intrinsic
translation. The geometric element allows the operation to be located and
oriented. It differs from a symmetry element in that the latter is the
combination of a geometric element with the set of symmetry operations
having this geometric element in common (for details, see de Wolff et al.,
1989).

3 Between G and E the intermediate minimal supergroup Cmcm (No. 63)
exists, which however does not contain a symmetry operation with a linear
part coinciding with the twin operation. The increase in the translation
subgroup is required to turn the original [031] direction of G into a symmetry
direction of E.
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of the X cations (about 1 Å for calcium), the restoration of the

whole orbit is realized within about 10% of this radius, which

means only a small perturbation in the substructure continuity

across the composition surface. As we are going to show in the

next section, if one checks the restoration of the sub-orbits

into which the X orbit splits under H, one observes an even

better restoration for half of the sub-orbits underH (0.0233 Å

instead of 0.1155 Å), but this does not add further physically

meaningful significance to the above analysis because in both

cases the degree of approximation is much smaller than the

ionic radius.

The same analysis applied to the Y cations results in exactly

the same eigensymmetry with the same transformation matrix.

However, the degree of quasi-restoration is much worse – for

carbon in aragonite it is 0.9641 Å, which is larger than the

covalent radius. The Y orbit is therefore badly restored by the

twin operation. However, for half of the carbon atoms the

quasi-restoration is actually much better, as we are going to

see by analysing the distribution of Y cations in terms of theH
subgroup.

For the oxygen atoms, no supergroup of G containing the

twin plane as symmetry plane exists within an acceptable

approximation and the analysis in terms of split orbits is

mandatory.

3.3. Crystallographic orbits whose eigensymmetry is a
supergroup of H

The Y orbit of G (in Wyckoff position 4c) splits into eight

orbits (all in Wyckoff position 2i) in the standard (P1) setting

of H. These are however pairwise related by the C-centring

vector so that actually splitting is reduced to four orbits (in

Wyckoff position 2i) in the C1 setting ofH (Table 2). The four

atoms belonging to the same split orbit in the unit cell of C1

correspond to four translationally equivalent atoms in

different unit cells of G, i.e. atoms related by integer transla-

tions in G. The pairwise unions Y1 [ Y2 and Y3 [ Y4 possess

eigensymmetry C2/m and C2/c, which correspond to slightly

different restoration (0.1010 and 0.1680 Å, respectively) but

the origin is not the same for the two sub-orbits: it coincides

with that of H for Y1 [ Y2 whereas it is shifted by 1
4

1
4 0 for

Y3 [ Y4 (Table 3). Considering this origin shift, the physical

plane x0z acts as m mirror or c glide for Y1 [ Y2 but as a glide

or n glide for Y3 [ Y4, whereas the physical plane x
1
4z acts as a

glide or n glide for Y1 [ Y2 but as m mirror or c glide for Y3 [
Y4. In other words, one of the two unions is well restored

(within less than 0.2 Å) by one physical plane, whereas the

other union is restored much more poorly (with deviation

about 1 Å, larger than the covalent radius and hardly mean-

ingful) by the same physical plane. The role is exchanged every

b/4. When the union of the four split orbits, which corresponds

to the unsplit orbit in G, is considered, the same eigensym-

metry C2/m or C2/c is found again but this time the degree of

eigensymmetry corresponds to the highest �max, 0.9518 or

0.9612 Å, respectively. The latter corresponds precisely to the

degree of eigensymmetry found for the Y orbit of G.
Quite obviously, in a case like that of the Y cations, when

the realization of the twin operation in the pseudo-

eigensymmetry for an orbit under G gives a large deviation

from restoration, the analysis of the split orbits in H is

mandatory to explain the formation of the twin. On the other

hand, for the X cations the excellent restoration of the whole

orbit does not require such an analysis. However, one has to

check the position of the pseudo-symmetry element respon-

sible for this restoration with respect to the setting of H,

because it is in this setting that the restoration of half of

the Y cations has been obtained. It may happen that the c

glide belonging to E(X) coincides with either of the mirrors
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Table 2
Coordinates of the Y cations in the axial setting of H ¼ C1.

The rows give the split orbits under H. The coordinates in the C1 setting are obtained from those in the original Pnma setting by transforming them with the
inverse basis transformation P�1 = (0 1

4
3
4/0

1
4
1
4/1 0 0). The 16 Y cations in the twin cell are obtained from the coordinates given in Table 1 by first expanding the given

position to the four positions in the unit cell of the individual equivalent under Pnma and then adding to each of these positions coset representatives for the
(centred) twin lattice with respect to the lattice of the individual. These coset representatives may be chosen as (0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 3, 0). Taking the first
atom as representative Y, the other atoms in the split orbit are located at�Y, Y + (12,

1
2, 0),�Y + (12,

1
2, 0). The representatives are chosen with minimal y in their split

orbit.

Orbit Y �Y Y + (12,
1
2, 0) �Y + (12,

1
2, 0)

Y1 0.24105, 0.00299, 0.91760 0.75895, 0.99701, 0.08240 0.74105, 0.50299, 0.91760 0.25895, 0.49701, 0.08240
Y2 0.74105, 0.00299, 0.58240 0.25895, 0.99701, 0.41760 0.99105, 0.75299, 0.91760 0.00895, 0.24701, 0.08240
Y3 0.49105, 0.25299, 0.91760 0.50895, 0.74701, 0.08240 0.24105, 0.50299, 0.58240 0.75895, 0.49701, 0.41760
Y4 0.99105, 0.25299, 0.58240 0.00895, 0.74701, 0.41760 0.49105, 0.75299, 0.58240 0.50895, 0.24701, 0.41760

Table 3
Eigensymmetry of pairs of Yi orbits under H ¼ C1.

The Wyckoff positions are given for the idealized structure having the
(pseudo-)eigensymmetry group E as proper symmetry group. To obtain the
idealized structure, the atoms have to be moved by the given distance dmin. In
some cases, both single orbits in a pair are invariant under the restoration
operation. These cases are indicated by giving two Wyckoff positions.

Orbits E

Wyckoff
position
for E (P, p) dmin (Å)

Restoration
operation
(with respect
to the origin
of H)

Y1 [ Y2 C2/m 2 � 4i (I | 000) 0.1010 m x0z, a x14z

C2/c 8f (I | 000) 0.1680 c x0z, n x14z

C2/m 4g + 4h (I | 14
1
40) 0.9612 m x14z, a x0z

C2/c 8f (I | 14
1
40) 0.9518 c x14z, n x0z

Y3 [ Y4 C2/m 2 � 4i (I | 14
1
40) 0.1010 m x14z, a x0z

C2/c 8f (I | 14
1
40) 0.1680 c x14z, n x0z

C2/m 4g + 4h (I | 000) 0.9612 m x0z, a x14z

C2/c 8f (I | 000) 0.9518 c x0z, n x14z
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belonging to E(Yi), restoring thus both types of cations, or not,

in which case the two types of cations would be restored for

different positions of the twin element, i.e. at different

moments during the crystal growth. To find the answer one has

simply to repeat the above analysis in H performed for the Y

cations this time for the X cations. Tables 4 and 5 are the

equivalent of Tables 2 and 3. The same conclusions can be

drawn for the Xi orbits as for the Yi orbits. However, this time

the difference between the degree of restoration of the two

pairs of orbits is negligible (0.0233 Å versus 0.1155 Å) and

justifies considering the union of all four split orbits as

restored within the slightly larger approximation, which

reproduces the result obtained in the previous section for

E(X) starting from G.
Finally, the analysis of the oxygen orbits leads exactly to the

same conclusions as those obtained for the Y cations (Tables 6,

7 and 8).

The general conclusion that can be drawn about the quasi-

restoration in the structure of aragonite by the twin operation

is that each b/4 (of the H-cell) all the X cations, half of the Y

cations and half of the oxygen atoms are restored, with an

exchange of the restored and non-restored atoms every b/4

(Table 9).

Actually, all the restoration rates given do not take into

account the deviations from the exact metric of E. For the Ca

cation, the P63/mmc supergroup of G is only approximated

because the � angle is 116.18� instead of 120�. For the other

orbits, the monoclinic supergroup of H is only approximated

because the � angle is 86.26� instead of 90�. As a consequence,

the degree of quasi-restoration is slightly underestimated. To

obtain a precise value, this metric deviation should be taken

into account. In the adjusted metric, the linear part of the twin

operation is no longer a unimodular matrix. However, the

correction obtained by using this matrix is within 10% of the

minimal distance obtained by PSEUDO and does not affect

the conclusions drawn from the approximate treatment

neglecting this metric deviation. For example, the union of the

split oxygen orbit OA2 [ OB5 is quasi-restored with dmin =

0.2154 Å, while this union is quasi-restored with dmin =

0.2336 Å after applying a Gram–Schmidt process (Cheney &

Kincaid, 2010) to the aragonite twin basis. Since the effect is

minimal, the small angular deviations are neglected

throughout this article.

The crystallographic orbits approach, which represents a

global analysis of the structure continuity across the compo-

sition surface, shows the existence of two pairs of restoration

operations for the aragonite (110) twin: the c-glide reflection
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Table 5
Eigensymmetry of pairs of Xi orbits under H ¼ C1.

The conventions are the same as those in Table 3.

Orbits E

Wyckoff
position
for E (P, p) dmin (Å)

Restoration
operation
(with respect
to the origin
of H)

X1 [ X2 C2/c 8f (I | 000) 0.0233 c x0z, n x14z

X3 [ X4 C2/c 2 � 4e (I | 000) 0.1155 c x0z, n x14z

X1 [ X2 C2/c 2 � 4e (I | 14
1
40) 0.1155 c x14z, n x0z

X3 [ X4 C2/c 8f (I | 14
1
40) 0.0233 c x14z, n x0z

Table 4
Coordinates of representatives for the split orbits of the X cations under the action of H.

The representatives are chosen to have minimal y coordinate. The full split orbits are obtained as explained in the caption of Table 2.

Orbit X1 X2 X3 X4

Representative 0.75123, 0.16626, 0.75985 0.25123, 0.16626, 0.74015 0.49877, 0.08375, 0.24015 0.99877, 0.08375, 0.25985

Table 7
Coordinates of representatives for the split orbits of the OB anions under the action of H.

The representatives are chosen to have minimal y coordinate. The full split orbits are obtained as explained in the caption of Table 2.

Orbit OB1 OB2 OB3 OB4

Representative 0.89135, 0.21122, 0.08725 0.99615, 0.17628, 0.58725 0.75385, 0.07372, 0.08725 0.39135, 0.21122, 0.41275

Orbit OB5 OB6 OB7 OB8

Representative 0.35865, 0.03878, 0.91275 0.25385, 0.07372, 0.41275 0.49615, 0.17628, 0.91275 0.85865, 0.03878, 0.58725

Table 6
Coordinates of representatives for the split orbits of the OA anions under the action of H.

The representatives are chosen to have minimal y coordinate. The full split orbits are obtained as explained in the caption of Table 2.

Orbit OA1 OA2 OA3 OA4

Representative 0.12929, 0.20690, 0.09453 0.62071, 0.04310, 0.59453 0.12071, 0.04310, 0.90547 0.62929, 0.20690, 0.40547
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cx,0,z located at y = 0 gives, when being composed with the

centring translation (12,
1
2, 0), the n glide n(1/2, 0, 1/2)x,1/4,z,

the c glide cx,1/4,z located at y = 1
4 gives upon composition with

the translation (12,
1
2, 0) the n glide n(1/2,0,1/2)x,0,z. The pairs

of restoration operations differing only by the centring

translation clearly restore the same subset of the atomic

structure.

4. Local analysis via layer groups

The analysis of twins via crystallographic orbits investigates

the structural continuity across the composition surface. This

can take an irregular shape for zero obliquity but is limited to

a plane for non-zero obliquity (Friedel, 1904), although in the

very rare case of monoperiodic twins the twinned individuals

share a single lattice direction (Friedel, 1933). The intrinsic

symmetry properties of the composition surface can be

described by subperiodic groups: layer groups in the case of a

plane and rod groups in the case of a line. In the case of

aragonite, the composition surface is a plane (the geometric

element of the twin operation) and we will from now on

restrict ourselves to the discussion of layer groups (rod groups

being analogous, but simpler).

The composition plane is a two-dimensional plane inter-

secting the crystal structure and is called a section plane.

However, since a crystal structure is built from physical

objects, it makes sense to replace the abstract plane of thick-

ness zero by a slice of finite (usually small) width which

extends symmetrically around the section plane and contains

the atoms close to it. The symmetry group of such a slice has a

translation subgroup with translations along two independent

directions and is therefore a sectional layer group. It is clear

that this sectional layer group contains all those symmetry

operations of the space group G which fix the composition

plane. But the crucial question in the analysis of twins is

whether the layer group is actually larger than this group

induced by the space group and contains an additional

symmetry operation having the twin operation as linear part.

Of course, as in the analysis via crystallographic orbits, the

twin operation may only be a pseudo-symmetry of the layer

and it may be necessary to exclude a (hopefully small) part of

the atoms in the chosen slice.

To analyse the layer-group symmetry, let d be a vector

perpendicular to a section plane S. Owing to the periodicity of

the crystal pattern along d, to find all different types of

sectional layer groups for slices perpendicular to d it is enough

to consider section planes at heights s with 0� s < 1 (fractional

coordinate along d). The sectional layer group L will always

contain translations along two independent directions within

the plane, which we assume to form a crystallographic basis for

the lattice of translations fixing the section plane. To keep in

line with the axial setting (b-unique monoclinic) used in the

previous section, the in-plane vectors will be taken as a0 and c0;
a point p in the section plane at height s is then given by xa0 +
sd + zc0.

Let g be an operation of a sectional layer group. Then the

linear part of g maps d either to +d or to �d. In the former

case, g is called side-preserving, in the latter case it is called

side-reversing (� and � operations, respectively, in the OD

language: Ďurovič, 1997). Moreover, since the section plane

remains fixed under g, the vectors a0 and c0 are mapped to

linear combinations of themselves by the linear part of g.

Therefore, with respect to the (usually non-conventional)

basis a0; d; c0 (Fig. 2) the linear part of g is represented by a

matrix M0
g of the form

M0
g ¼

�11 0 �13

0 �22 0

�31 0 �33

0
@

1
A:

In order to determine which elements of the space group G fix

the section plane, i.e. belong to the sectional layer group L, the
elements of G are expressed with respect to the coordinate

system with basis a0, d, c0, keeping the origin. If Mg is the

matrix of the linear part of g with respect to the original basis

a, b, c and P is the basis transformation such that (a, b, c)P =

(a0, d, c0), the coordinate transformation results in the matrix

M0
g = P�1 Mg P for the linear part and in a vector (t1, t2, t3) for

the translation part. M0
g has to be of the form given above,

otherwise the section plane is not fixed by g. Assuming that

this is the case, i.e. that g does indeed belong to the layer group

L; �22 can only have the values 1 or �1:
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Table 8
Eigensymmetry of pairs of oxygen orbits under H ¼ C1.

The conventions are the same as those in Table 3.

Orbits E

Wyckoff
position
for E (P, p) dmin (Å)

Restoration
operation
(with respect
to the origin
of H)

OA2 [ OB5 C2/c 8f (I | 000) 0.2154 c x0z, n x14z

OA3 [ OB8 C2/c 8f (I | 000) 0.2154 c x0z, n x14z

OB6 [ OB3 C2/c 8f (I | 000) 0.0718 c x0z, n x14z

OA1 [ OB4 C2/c 8f (I |14
1
40) 0.2154 c x14z, n x0z

OA4 [ OB1 C2/c 8f (I |14
1
40) 0.2154 c x14z, n x0z

OB2 [ OB7 C2/c 8f (I |14
1
40) 0.0718 c x14z, n x0z

Table 9
Summary of the atomic restoration.

Restoration
operation X Y O All atoms

cx,0,z and nx14z 16/16 (100%) 8/16 (50%) 24/48 (50%) 48/80 (60%)
nx,0,z and cx14z 16/16 (100%) 8/16 (50%) 24/48 (50%) 48/80 (60%)

Figure 2
Definition of the axial setting for the layer group.
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(a) If �22 = 1, g is side-preserving, M0
g � d = d and t2 must

necessarily be zero, since otherwise the plane is shifted along

d. Such an element belongs to the layer group at any height s.

(b) If �22 = �1, g is side-reversing, M0
g � d = �d and a plane

situated at height s along d is only fixed if t2 = 2s.

In the case of aragonite, the scanning direction d is normal

to the twin plane and thus d = [031]. Since the chosen basis of

the twin lattice consists of two vectors in the twin plane and

one normal to it (with the slight deviations resulting from the

obliquity), the transformation to the basis for the layer group

can be taken as

P ¼
0 0 1

1 3 0

1 1 0

0
@

1
A;

which is precisely the transformation to the twin basis. This

means that the twin basis a0, d, c0 with d = [031], a0 = [011] and

c0 = [100] is also chosen as the basis for the layer group. The

layer groups are found to be as follows:

(a) For �22 = 1, the only side-preserving element of G fixing

the section layer is the identity and the layer group L is of type

p1 [No. 1, International Tables for Crystallography Vol. E

(ITE): Kopský & Litvin, 2010].

(b) For �22 = �1, the only side-reversing elements of G are

the inversion for y = 0 and the twofold screw c axis 2 (0, 0, 12)
1
8,

1
8, z located at y =

1
8. As a consequence, the layer group L is of

type p1 (No. 2, ITE) at y = 0 or of type p21 (No. 9, ITE) at y = 1
8.

Owing to the condition t2 = 2s equivalent elements are found

at y = 1
2 and y = 5

8. But due to the C-centring, the periodicity of

the side-reversing elements is actually 1
4.

Summarizing, the layer group L induced by the symmetry

operations of G is of type p1 (No. 2, ITE) for s = 0, 14,
1
2 and

3
4, of

type p21 (No. 9, ITE) for s = 1
8,

3
8,

5
8 and

7
8 and of type p1 (No. 1,

ITE) for all other s.

The layer groups obtained from the space group G are valid

for slices of any thickness in one of the individuals of the twin.

However, since the twin operation is not contained in the

point group of the individuals, a symmetry operation with the

twin operation as linear part can only belong to the layer

group of a slice of finite width around the composition plane.

In general, the width of the slice should be chosen small, but

large enough to be meaningful for the growth process of the

crystal. A typical choice would be to choose the slice such that

it contains the coordination polyhedra of the structure closest

to the composition plane. In the case of aragonite, a further

indication is the periodicity of the layer-group symmetry,

which is 1
4 along the b axis.

Looking at the cell of the twin lattice shown in Fig. 3, one

sees that subdividing the cell into four slices of width 4.22 Å is

a natural choice, since this slice contains the X cations, Y

cations and oxygen atoms closest to the composition plane

(Fig. 4).

The pseudo-eigensymmetry4 E(K) of the slice K at position

y = 0 is found to be a layer group generated by the layer group

L of type p1 induced by G and the restoration operation, which

is a c glide. The group E(K) is of type p2/c (No. 16, ITE, in a

non-conventional setting), the restoration accuracy is

0.2154 Å. This deviation from perfect restoration is the

maximum of the deviations for the split orbits intersecting the

slice. For the X cations, these are the split orbits X3 and X4

with restoration accuracy 0.1155 Å, for the Y cations the split

orbits Y1 and Y2 with restoration accuracy 0.1680 Å intersect

the slice. For the oxygen atoms, the restoration in the slice

actually determines the matching of the split orbits in the

crystallographic orbit approach. For example, the slice

contains two atoms of the split orbit OA2 which are mapped to

two atoms of the orbit OB5 with deviation 0.2154 Å. Similarly,

two oxygen atoms in the split orbit OA3 are matched with two

oxygen atoms in the split orbit OB8, again with deviation

0.2154 Å and two oxygen atoms in OB6 are matched with two

oxygen atoms in OB3 with deviation 0.0718 Å. Since the cell of

the twin lattice is C-centred, the eigensymmetry E(K) of the
slice K at y = 1

4 is isomorphic (conjugate by the centring

translation). Thus the aragonite structure is built from

equivalent slices invariant under the twin operation which are
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Figure 3
View along the c axis of the slice defined as the thickness limited by the
two pink planes and containing the 12 oxygen atoms (figure drawn with
VESTA: Momma & Izumi, 2011).

Figure 4
View along the a axis of the restored 12 oxygen atoms by the c-glide
reflection.

4 In analogy with the eigensymmetry of a crystallographic orbit, the
eigensymmetry of a slice is defined as the group of motions mapping the set
of atoms in the slice to itself.
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centred at y values that are multiples of 1
4. Therefore, the

composition surface does not impose restrictions on the

formation of the twin.

The slice at y = 1
8 provides an interesting variation of the

above analysis. Considering only the X cations closest to the

composition plane at y = 1
8, the eigensymmetry of the slice

contains a translation by 1
2a

0 and a glide reflection t0 with the

twin operation x; y; z as linear part and translation part (14,
1
4,

1
2).

Note that the square of the operation t0 is equivalent to the

additional translation by 1
2a

0. Now, extending the slice such that
it contains the 12 oxygen atoms closest to the composition

plane (e.g. by again choosing the width as 1
4 of the twin cell in

the d direction), the operation t0 is no longer a symmetry

operation of the slice. This is due to the fact that the trans-

lation by 1
2a

0 is not a symmetry operation for any of the oxygen

atoms in the aragonite structure. However, it is interesting to

note that t0 restores the left half of the slice (i.e. the half

between y = 0 and y = 1
8) to the right half (between y =

1
8 and y =

1
4) (Table 10) and is therefore only a partial symmetry opera-

tion. This partial symmetry actually also holds for the Y

cations, the carbon atoms close to y = 0 are mapped by t0 to
those close to 1

4, but not vice versa. Although t0 is not a proper
symmetry operation of the slice around y = 1

8, the presence of

this partial symmetry operation mapping one half of a slice to

the other half further increases the probability of the twin to

form, since it occurs precisely in the middle between the slices

with full restoration.

5. Conclusions

The crystallographic orbit approach shows the existence of a

common substructure in aragonite, whose C2/c pseudo-

eigensymmetry contains restoration operations having the

twin operation as linear part. Furthermore, the local analysis

of the composition surface in the aragonite structure, via layer

groups, strongly indicates that the {110} aragonite twin has

a high probability of occurrence, since the structure is

built from slices which are fixed by the twin operation.

These two approaches converge to the conclusion that the

{110} twin in aragonite is structurally favoured and

explain the high frequency of twinning observed in this

mineral.
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Table 10
Oxygen atoms restored by the partial symmetry operation t0 = x + 1

4, y +
1
4, z +

1
2

which is a glide reflection with the plane x, 18, z as geometric element and with
intrinsic translation vector (14, 0,

1
2).

The atoms in the first column are restored to those in the second column (with the
given accuracy), but not vice versa.

Oxygen atoms to the left of y = 1
8 Oxygen atoms to the right of y = 1

8 dmin (Å)

0.12071, 0.04310, 0.90547 (OA3) 0.39135, 0.21122, 0.41275 (OB4) 0.2154
0.25385, 0.07372, 0.41275 (OB6) 0.49615, 0.17628, 0.91275 (OB7) 0.0718
0.35865, 0.03878, 0.91275 (OB5) 0.62929, 0.20690, 0.40547 (OA4) 0.2067
0.62071, 0.04310, 0.59453 (OA2) 0.89135, 0.21122, 0.08725 (OB1) 0.2154
0.75385, 0.07372, 0.08725 (OB3) 0.99615, 0.17628, 0.58725 (OB2) 0.0718
0.85865, 0.03878, 0.58725 (OB8) 0.12929, 0.20690, 0.09453 (OA1) 0.2067
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