Valeurs centrales et valeurs au bord de la bande critique de fonctions L automorphes

par Xuanxuan Xiao

Thèse de doctorat en Mathématiques

Sous la direction de Jie Wu.

Le président du jury était Gérald Tenenbaum.

Le jury était composé de Cécile Dartyge, Jianya Liu.

Les rapporteurs étaient Christophe Delaunay, Guillaume Ricotta, Kai-Man Tsang.


  • Résumé

    Cette thèse, constitué en trois parties, est consacrée à l'étudie des valeurs spéciales de fonctions L automorphes. La première partie contient un survol rapide de la théorie des formes modulaires et des fonctions L de puissance symétrique associées qui est nécessaire dans la suite. Dans la seconde partie, nous nous concentrons sur les valeurs centrales, par l'étude des moments intégraux dans petit intervalle, pour les fonctions L automorphes. On prouve la conjecture de Conrey et al. et donne l'ordre exact pour les moments sous l'hypothèse de Riemann généralisée. La troisième partie présente des travaux sur les valeurs en s=1 de la fonction L de puissance symétrique en l'aspect de niveau-poids. On généralise et/ou améliore les résultats sur l'encadrement de la fonction L de puissance symétrique, la conjecture de Montgomery-Vaughan et également la fonction de répartition. Une application des valeurs extrêmes sur la distribution des coefficients des formes primitives concernant la conjecture de Sato-Tate est donnée

  • Titre traduit

    Central Values and Values At the Edge of the Critical Strip of Automorphic L-functions


  • Résumé

    Special values of automorphic L-functions are considered in this work in three parts. In the first part, elementary information about automorphic forms and associated symmetric power L-functions, which will be very useful in the following parts, is introduced. In the second part, we study the central values, in the form of higher moment in short interval, of automorphic L-functions and give a proof for the conjecture of Conrey et al. to get the sharp bound for the moment under Generalized Riemann Hypothesis. In the last part, values of automorphic L-functions at s=1 are considered in level-weight aspect. We generalize and/or improve related early results about the bounds of values at s=1, the Montgomery-Vaughan's conjecture and distribution functions. As an application of our results on extreme values, the distribution of coefficients of primitive forms concerning the Sato-Tate conjecture is studied


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Lorraine. Direction de la Documentation. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.