Desenvolvimento computacional de um teste mecânico para caracterização do material através de análise inversa

par Nelson Souto

Thèse de doctorat en Sciences pour l'ingénieur

Soutenue le 09-10-2015

à Lorient en cotutelle avec l'Universidade de Aveiro (Portugal) , dans le cadre de École doctorale Santé, information-communication et mathématiques, matière (Brest, Finistère) , en partenariat avec Université européenne de Bretagne (PRES) et de Laboratoire d'Ingénierie des Matériaux de Bretagne / LIMATB (laboratoire) .

  • Titre traduit

    Conception d’un essai mécanique pour la caractérisation du comportement d’un matériau par analyse inverse


  • Résumé

    Grâce au développement des méthodes de mesure de champs, de nouvelles stratégies d’identification de paramètres matériau de lois de comportement mécanique sont proposées, fondées sur l’utilisation d’essais mécaniques hétérogènes. Les champs de déformation hétérogènes développés au cours de ces essais permettent une meilleure caractérisation du comportement mécanique des tôles métalliques et, par conséquent, de réduire considérablement le nombre d’essais nécessaires pour identifier les paramètres matériau de modèles phénoménologiques complexes. Mais comment concevoir ces essais? Dans ce travail, une méthodologie d’optimisation pour le développement d’essais mécaniques hétérogènes est présentée. L’objectif principal est la conception, par analyse inverse et en proposant un indicateur représentatif des états de déformation, d’un essai capable de caractériser le comportement mécanique des tôles métalliques pour plusieurs états de contrainte et déformation. Pour cela, cette étude a été réalisée en considérant un matériau virtuel (acier doux sous forme de tôle mince), obtenu à partir de données expérimentales. En outre, un indicateur qui caractérise les essais mécaniques a été proposé pour être utilisé dans la méthodologie d’optimisation. D’un côté, le comportement mécanique de l’acier doux a été représenté avec un modèle phénoménologique complexe composé du critère anisotrope de plasticité Yld2004-18p, combiné à une loi d’écrouissage mixte et un critère macroscopique de rupture. Pour cette loi de comportement, un procédé d’identification des paramètres du matériau a été développé et le jeu de paramètres identifiés a été validé en comparant des résultats expérimentaux et numériques de l’emboutissage d’un godet cylindrique. D’un autre côté, un indicateur quantitatif pour évaluer l’information du champ de déformation des essais mécaniques a été formulé et sa pertinence a été évaluée à travers l’analyse numérique d’essais classiques et hétérogènes de la littérature. Concernant la méthodologie d’optimisation, deux approches différentes ont été considérées pour la conception de l’essai mécanique hétérogène. La première approche est fondée sur une procédure en une seule étape, où l’optimisation de la forme de l’éprouvette et des conditions aux limites, imposées par un outil, a été effectuée. La seconde approche est fondée sur une technique incrémentale en plusieurs étapes, en optimisant la forme de l’éprouvette et le chemin de déformation, par l’application des déplacements locaux. Les résultats obtenus sont comparés et un essai est retenu pour identifier les paramètres matériau, en utilisant le matériau virtuel comme référence, afin d’illustrer la pertinence de la démarche

  • Titre traduit

    Computational design of a technological mechanical test for material characterization by inverse analysis


  • Résumé

    With the development of full-field measurements methods, recent material parameters identification strategies call upon the use of heterogeneous tests. The inhomogeneous strain fields developed during these tests lead to a more complete mechanical characterization of the sheet metals, allowing the substantial reduction of the number of tests in the experimental database needed for material parameters identification purposes. In the present work, an innovative design optimization process for the development of heterogeneous tests is presented. The main goal is the design of a mechanical test able to characterize the material behavior of thin metallic sheets under several stress and strain paths and amplitudes. To achieve this aim, the study was carried out with a virtual material, though derived from experimental data. An indicator of the mechanical interest of the test was proposed, and was used in an optimization procedure to design both the boundary conditions and the sample shape. On the one hand, the virtual behavior of a mild steel was characterized using a complex phenomenological model composed by the Yld2004-18p anisotropic yield criterion combined with a mixed isotropic-kinematic hardening law and a macroscopic rupture criterion. An efficient material parameters identification process based on finite element model updating type was implemented and the identified parameters set was validated by performing a deep drawing test leading either to full drawing or rupture of the blank. On the other hand, an indicator which rates the strain field of the experiment by quantifying the mechanical information of the test was formulated. The relevance of the indicator was stressed out by the numerical analysis of already known classical as well as heterogeneous tests and the results obtained were validated by a material parameter sensitivity study. Two different optimization approaches were used for designing the heterogeneous test, namely (i) a one-step procedure designing both specimen shape and loading path by using a tool and (ii) a sequential incremental technique designing the specimen shape and the loading path of the specimen considering local displacements. The results obtained revealed that the optimization approach proposed was very promising for designing a single experiment able to fully characterize the several strain paths and amplitudes encountered in sheet metal forming processes.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?