Étude thermodynamique du corium en cuve - Application à l'interaction corium/béton

par Andrea Quaini

Thèse de doctorat en Matériaux, mécanique, génie civil, électrochimie

Soutenue le 03-11-2015

à l'Université Grenoble Alpes (ComUE) , dans le cadre de École doctorale Ingénierie - matériaux mécanique énergétique environnement procédés production (Grenoble) , en partenariat avec Laboratoire de Modélisation de Thermodynamique et de Thermochimie / LM2T (laboratoire) et de Science et ingénierie des matériaux et procédés (Grenoble) (laboratoire) .

Le président du jury était Rudy Konings.

Le jury était composé de Fiqiri Hodaj, Christine Guéneau, Stéphane Gossé, Bengt Hallstedt, Marc Barrachin.

Les rapporteurs étaient Daniel Neuville, Hans Juergen Seifert.


  • Résumé

    Lors d’un accident grave dans un réacteur nucléaire à eau pressurisée, le combustible nucléaire va réagir avec le gaines en Zircaloy, les absorbants neutroniques et les structures métalliques environnantes pour former un mélange partiellement ou complètement fondu. Ce cœur fondu peut ensuite interagir avec la cuve en acier du réacteur pour former un mélange appelé corium en cuve. Par la suite, le corium peut percer la cuve et venir se déverser sur le radier en béton en-dessous du réacteur. En fonction du scénario considéré, le corium qui va réagir avec le béton peut être constitué soit d’une seule phase liquide oxyde ou de deux liquides, métallique et oxyde. L’objectif de la thèse est l’étude de la thermodynamique du corium en cuve, prototypique U-Pu-Zr-Fe-O. L’approche utilisée est basée sur la méthode CALPHAD, qui permet de développer un modèle thermodynamique sur ce système complexe à partir de données expérimentales thermodynamiques et de diagramme de phases. Des traitements thermiques sur le système O-U-Zr ont permis de mesurer deux conodes dans la lacune de miscibilité à l’état liquide à 2567 K. De plus, des températures de liquidus ont été mesurées sur trois échantillons riches en Zr, en utilisant le montage de chauffage laser de l’ITU. Par la même méthode, des températures de solidus ont été obtenues sur le système UO2-PuO2-ZrO2. L’influence de l’atmosphère réductrice ou oxydante sur le comportement à la fusion de ce système a été étudiée pour la première fois. Les résultats montrent que la stœchiométrie en oxygène de ces oxydes dépend fortement du potentiel d’oxygène et de la composition en métal des échantillons. La lacune de miscibilité à l’état liquide a également été mise en évidence dans un échantillon U-O-Zr-Fe. L’ensemble de ces nouvelles données expérimentales avec celles de la littérature a permis de développer le modèle sur le système U-Pu-Zr-Fe-O. Pour tous les échantillons, des calculs de chemin de solidification avec ce modèle ont servi à interpréter les microstructures de solidification observées. Un bon accord est obtenu entre les calculs et les résultats expérimentaux. Des traitements thermiques sur deux échantillons de corium hors cuve ont permis de montrer l’influence de la composition du béton sur la nature des phases liquides formées à haute température. Les microstructures de solidification ont été interprétées à l’aide de calculs avec la base de données TAF-ID. En parallèle, un nouveau montage expérimental appelé ATTILHA, utilisant la lévitation aérodynamique et le chauffage laser, a été conçu et développé pour mesurer des données de diagramme de phase à haute température. Ce montage a été validé avec des systèmes oxydes bien connus. De plus, cette méthode a permis d’observer in-situ à l’aide de la caméra infra-rouge la formation de la lacune de miscibilité à l’état liquide dans le système O-Fe-Zr lors de l’oxydation d’une bille d’alliage Fe-Zr. La prochaine étape du développement est la nucléarisation du montage pour effectuer des mesures sur des échantillons contenant de l’uranium. La mise en place d’une caméra ultra rapide (5000 Hz) pour l’étude de propriétés thermo-physiques de mélanges de corium en cuve et hors cuve est également envisagée. La synergie entre le développement de ces outils expérimentaux et de calcul devrait permettre d’améliorer la description thermodynamique du corium et des codes de calcul sur les accidents graves utilisant ces données thermodynamiques.

  • Titre traduit

    Thermodynamic study of the in-vessel corium - Application to the corium/concrete interaction


  • Résumé

    During a severe accident in a pressurised water reactor, the nuclear fuel can interact with the Zircaloy cladding, the neutronic absorber and the surrounding metallic structure forming a partially or completely molten mixture. The molten core can then interact with the reactor steel vessel forming a mixture called in-vessel corium. In the worst case, this mixture can pierce the vessel and pour onto the concrete underneath the reactor, leading the formation of the ex-vessel corium. Furthermore, depending on the considered scenario, the corium can be formed by a liquid phase or by two liquids, one metallic the other oxide. The objective of this thesis is the investigation of the thermodynamics of the prototypic in-vessel corium U-Pu-Zr-Fe-O. The approach used during the thesis is based on the CALPHAD method, which allows to obtain a thermodynamic model for this complex system starting from phase diagram and thermodynamic data. Heat treatments performed on the O-U-Zr system allowed to measure two tie-lines in the miscibility gap in the liquid phase at 2567 K. Furthermore, the liquidus temperatures of three Zr-enriched samples have been obtained by laser heating in collaboration with ITU. With the same laser heating technique, solidus temperatures have been obtained on the UO2-PuO2-ZrO2 system. The influence of the reducing or oxidising on the melting behaviour of this system has been studied for the first time. The results show that the oxygen stoichiometry of these oxides strongly depends on the oxygen potential and on the metal composition of the samples. The miscibility gap in the liquid phase of the U-Zr-Fe-O system has been also observed. The whole set of experimental results with the literature data allowed to develop the thermodynamic model of the U-Pu-Zr-Fe-O system. Solidification path calculations have been performed for all the investigated samples to interpret the microstructures of the solidified samples. A good accordance has been obtained between calculation and experimental results. Heat treatments on two ex-vessel corium samples showed the influence of the concrete composition on the nature of the liquid phases formed at high temperature. The observed microstructures have been interpreted by means of calculation performed with the TAF-ID database. In parallel, a novel experimental setup named ATTILHA based on aerodynamic levitation and laser heating has been conceived and developed to obtain high temperature phase diagram data. This setup has been validated on well-known oxide systems. Furthermore, this technique allowed to observe in-situ, by using an infrared camera, the formation of a miscibility gap in the liquid phase of the O-Fe-Zr system by oxidation of a Fe-Zr sample. The next step of the development will be the nuclearization of the apparatus to investigate U-containing samples. The implementation of a very fast visible camera (5000 Hz) to investigate the thermo-physical properties of in-vessel and ex-vessel corium mixtures is also underway. The synergy between the development of experimental and calculation tools will allow to improve the thermodynamic description of the corium and the severe accident code using thermodynamic input data.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Grenoble Alpes. Bibliothèque et Appui à la Science Ouverte. Bibliothèque électronique.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.