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THÈSE

presentée et soutenue publiquement le 24 Août 2015
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Crépey et M. Laurent Denis, sans qui cette thèse n’aurait jamais pu voir le jour.
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Labordère qui, malgré leur emplois du temps très chargés, ont accepté d’être les
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Je tiens à remercier tous les membres du laboratoire LaMME, dont les membres
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toujours apporté leur soutien et leur gentillesse. Merci à tous mes collègues, mes
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Résumé

Cette thèse traite de deux domaines d’analyse stochastique et de mathématiques
financières: le calcul Malliavin pour châınes de Markov (Partie I) et le risque de
contrepartie (Partie II).

La partie I a pour objectif l’étude du calcul Malliavin pour châınes de Markov
en temps continu. Il y est présenté deux points : démontrer l’existence de la densité
pour les solutions d’une équation différentielle stochastique et calculer les sensibilités
des produits dérivés. Dans le premier point, on considère une châıne de Markov en
temps continu comme une généralisation d’un processus de Poisson dont l’intensité
de saut et l’état suivant dépendent de l’état actuel. Nous perturbons les temps de
saut de la châıne de Markov conditionnellement au nombre de sauts à un horizon
de temps fixe. La perturbation est compensée par un changement de mesure via
l’utilisation de Girsanov, on obtient la dérivée directionnelle ainsi qu’une formule
d’intégration par partie. Une propriété de densité de l’image de l’énergie en termes
de la forme de Dirichlet associée et des opérateurs de gradient et de divergence est
établie pour déduire les conditions de l’existence d’une densité pour les solutions
d’équations différentielles stochastiques. Cette approche permet le calcul des sensi-
blités des options asiatiques dans des modèles financiers concrets. Dans le deuxième
point, on considère une châıne de Markov en temps continu comme un processus
de Poisson ayant subi un changement de mesure, qui permet le calcul Malliavin via
les opérateurs de différences finies pour les processus de Lévy. Cette approche est
appliquée au calcul de sensibilités de dérivés de credit.

La partie II traite de sujets d’actualité dans le domaine du risque de marché, à
savoir les XVA (ajustements de prix) et la modélisation multi-courbe. Dans un
premier temps, nous développons une approche multi-courbe. La modélisation
s’exprime par des fonctions rationnelles de processus de Markov. On calibre le
modèle à partir des données de swaptions sur LIBOR et montre qu’un modèle
multi-courbe rationnelle à deux facteurs log-normaux est suffisant pour s’ajuster aux
données de marché. On élucide la relation entre les modèles développés et calibrés
sous la mesure risque neutre Q et ceux sous la mesure historique P. Le modèle de
valorisation sous P est utilisé pour calculer les expositions aux risques éventuellement
exigées par la réglementation. Afin de calculer des ajustements de valeur de crédit,
comme la CVA, nous modélisons les processus d’intensité de défaut sous la forme
de fonctions rationnelles. Nous étoffons notre étude en appliquant les résultats à un
contrat de swap de base. Dans un second temps on considère les calculs numériques
de XVA. Pour les problèmes non linéaires et de très haute-dimensions, le seul schéma
numérique réalisable est purement à terme. Nous comparons deux de ces schémas
dans le cadre du calcul des ajustements de risques de crédit et des ajustements de
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risques de financement pour des dérivés de crédit, à savoir une expansion linéaire de
Monte Carlo et un schéma de séparation de particules.



Abstract

This thesis deals with two areas of stochastic analysis and mathematical finance:
Malliavin calculus for Markov chains (Part I) and counterparty risk (Part II).

Part I is devoted to the study of Malliavin calculus for continuous-time Markov
chains, in two respects: proving the existence of a density for the solution of a
stochastic differential equation and computing sensitivities of financial derivatives.
In a first approach, we consider a continuous-time Markov chain as a generalization
of a Poisson process with jump intensity and next state depending on the current
state. We perturb the jump times of the Markov chain conditionally on the number
of jumps up to a fixed time horizon. The perturbation of time is compensated by a
Girsanov’s measure change, from which we deduce the directional derivation together
with an integration by parts formula. An energy image density (EID) property
is derived in terms of the associated Dirichlet form and gradient and divergence
operators. This property is then applied to deduce conditions for the existence
of a density for solutions to stochastic differential equations. This approach also
permits the computation of the sensitivities of Asian options in concrete financial
models. In a second approach, we consider a continuous-time Markov chain as a
measure changed Poisson process, which allows using the Malliavin calculus via
finite difference operators for Lévy processes. This is applied to the computation of
sensitivities of credit derivatives.

Part II addresses topical issues in interest rates and credit, namely XVA (pricing
adjustments) and multi-curve modeling. In a first work, we develop a multi-curve
term structure setup in which the modelling ingredients are expressed by rational
functionals of Markov processes. We calibrate to LIBOR swaptions data and show
that a rational two-factor lognormal multi-curve model is sufficient to match market
data with accuracy. We elucidate the relationship between the models developed
and calibrated under a risk-neutral measure Q and their consistent equivalence class
under the real-world probability measure P. The consistent P-pricing models are
applied to compute the risk exposures which may be required to comply with reg-
ulatory obligations. In order to compute counterparty-risk valuation adjustments,
such as CVA, we show how default intensity processes with rational form can be
derived. We flesh out our study by applying the results to a basis swap contract.
The second work regards numerical XVA computations. For nonlinear and very
high-dimensional problems, the only feasible numerical schemes are purely forward
simulation schemes. We compare two such schemes regarding the computation of
counterparty risk and funding valuation adjustments on credit derivatives, namely
a linear Monte Carlo expansion and a branching particles schemes.
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Chapter 0

Introduction

This thesis deals with two areas of stochastic analysis and mathematical finance:
Malliavin calculus for Markov chains (Part I) and counterparty risk (Part II).

0.1 Part I

Malliavin calculus extends the calculus of variations from functions to stochastic
processes, which allows one to compute derivatives of random variables. It was
initiated in the late 1970s by the mathematician Paul Malliavin to prove the existence
and smoothness of a density for the solution of a stochastic differential equation. It
was then applied in financial mathematics to compute the sensitivities of financial
derivatives, using the integration by parts formula.

This method first involved the Wiener space and processes based on the Brown-
ian motion (see the historical notes of Bouleau and Hirsch (1991), Ma and Röckner
(1992), Nualart (1995), Malliavin (1997), Watanabe (1987), Shigekawa (2004)).
However extensions of the Malliavin calculus to the case of stochastic differential
equations with jumps were rapidly proposed by Bichteler, Gravereaux and Jacod
(1987) and gave rise to an extensive literature. There are three main approaches
using local operators acting on the size of the jumps (Bichteler et al. (1987), Coquio
(1993), Ma and Röckner (2000), Bouleau and Denis (2015) etc.) or acting on in-
stants of the jumps (Carlen and Pardoux (1990), Denis (2000), etc.), or using finite
difference operators and the Fock space representation that exploit similarities be-
tween the Poisson space and the Wiener space ( Dermoune, Kree, and Wu (1988),
Nualart and Vives (1990), Picard (1996), Ishikawa and Kunita (2006), Applebaum
(2008), Privault (2009), etc.). In other words, unlike Malliavin calculus on the
Wiener space, there is no “natural” choice for the gradient operator on the Poisson
space and the different approaches yield different operators. In the first and second
approaches, the Dirichlet structure is local, i.e. the gradient satisfies the chain rule
and the Energy Image Density property, which is a powerful criterion, introduced
in Bouleau and Hirsch (1991), permitting to establish absolute continuity of the law
of Poissonian functionals. The third approach yields a structure which is non local
but satisfies a Clark-Ocone formula.

Speaking of applications of the stochastic calculus for jump processes in finance,
apart from Lévy processes, continuous-time Markov chains are other examples of
semimartingales with jumps not only important in theory but also with vast ap-
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14 CHAPTER 0. INTRODUCTION

plications in diverse fields. Continuous-time Markov chains are distinct from the
class of Lévy processes since they have memory, i.e. the probability of jump to the
next state may depend on the current state. But they are Markov processes, so it
is natural to wonder whether the calculus of variations for jump processes, which is
well established for Poisson random measures and Lévy processes, can be adapted to
Markov chains. Relatively little attention has been paid to this issue. Biane (1990)
and Elliott (1991) introduce and study martingales associated with Markov chains.
In addition, Biane (1990) establishes an homogeneous chaos expansion, which is a
starting point of the above-mentioned third approach regarding Malliavin calculus
with jumps. However, it did not go further due to the complexity of dealing with
many martingales associated to Markov chains. Siu (2014) uses perturbations of the
jump intensities to obtain an integration by parts formula and thereby a martingale
representation.

The first part of this thesis is devoted to the study of Malliavin calculus for
continuous-time Markov chains, in two respects: on the one hand, proving the ex-
istence of a density for functionals of the Markov chain such as the solution of a
stochastic differential equation driven, by it and, on the other hand, computing sen-
sitivities of financial derivatives. Since the set of jump sizes of a Markov chain is
discrete, the first approach above is not available. In the line of the second approach,
Chapter 2, which is based on Denis and Nguyen (2015), considers a continuous-
time Markov chain as a generalization of a Poisson process with jump intensity and
next state depending on the current state. We follow the second approach of the
Malliavin calculus and consider a continuous-time Markov chain as a generaliza-
tion of a Poisson process whose jump intensity is not constant but depends on the
current state, then we perturb the jump times of the Markov chain conditionally
to the number of jumps up to a fixed time horizon. The perturbation of time is
then compensated by a Girsanov’s measure change from which we establish the di-
rectional derivation together with an integration by part formula. Then by means
of a sequence of well-chosen directions in a space playing the role of a Cameron-
Martin space, we construct a local Dirichlet structure and the gradient, divergence
and carré du champ operators. Then, we prove that it satisfies the Energy Image
Density (EID) property, which is then applied to deduce conditions of the existence
of a density for solutions to stochastic differential equations. in the last part of this
chapter, we apply the Malliavin calculus to the computation of greeks in a concrete
model. More precisely, we consider asian type derivatives such that the price of
the underlying asset satisfies a stochastic differential equations driven by a Markov
chain and compute the delta in terms of directional derivations. Finally,we make
some simulations and compute the delta by two methods: the first one using the
Malliavin calculus and the second one using the finite difference approach.

Chapter 3 is an illustration of the third approach of the Malliavin calculus.
More precisely, we still consider a non-homogeneous continuous-time Markov chain
with finite state space. The first step consists in transforming it into a homogeneous
Markov chain by a change of probability measure. Then, since a homogeneous
Markov chain is naturally associated with a random Poisson measure, we apply
the standard Malliavin calculus based on the creation operator (see for example Di
Nunno, Øksendal, and Proske (2008)). Then, we apply it to the computation of
sensitivities of credit derivatives following the homogeneous-group model (see also
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Crépey and Nguyen (2014)), where we have the inverse change of measure, so that we
can profit the Clark-Ocone formula in the changed measure but do the simulation
under the original measure, which is practically simpler due to many absorbing
states.

The main contributions of Part I are the two constructions of the Malliavin
calculus for non homogeneous Markov chains and the applications to solutions of
SDEs and to concrete models in finance.

0.2 Part II

The world wide credit crisis and the European sovereign debt crisis have highlighted
the native form of credit risk, namely counterparty risk. This is the risk that the
counterparties might not live up to the fulfillment of their contractual obligations
in a financial transaction. In a bilateral perspective, counterparty risk affects both
parties in the contract and should be considered when evaluating a contract via
the credit valuation adjustment (CVA, which prices the other party’s default risk)
and the debt valuation adjustment (DVA, which prices own default risk). In this
context, the classical assumption of a locally risk-free asset used for both lending
and borrowing is no longer sustainable, which raises a companion issue of proper
accounting for funding costs, priced by the funding valuation adjustment (FVA).
These adjustments (XVA) need be accounted for both in pricing and regulatory
capital.

Taking a look inside, CVA (and similarly DVA) is an option on the future value
of the contract with random maturity given by the first to default time of the two
parties, whereas the funding cost coefficient depends on the future value of the
contract. This leads to a non linear valuation and interdependence between the
adjustments, so that they must be computed jointly. The works of Crépey (2012a,
2012b) and recently the book Crépey, Bielecki and Brigo (2014) have constructed
a backward stochastic differential equation (BSDE) approach to counteparty risk
under funding constraints valuation with all these criteria, where the total valuation
adjustment (TVA, i.e. the sum of CVA, DVA and FVA) is the solution of a BSDE.
We do not have an explicit solution for such a BSDE but only numerical methods
to approximate the solution.

Since August 2007, one has also seen the emergence of a systemic counterparty
risk, referring to various significant spreads between quantities that were similar
before, such as the Overnight Index Swap (OIS) rate versus the London Interbank
Offer Rate (LIBOR). Through its relation with the concept of discounting, this sys-
temic counterparty risk has impacted all derivative markets. Hence, the assumption
that all interest rates can be modeled as one (single curve modeling) is no longer
sustainable.

Part II deals with the above topical issues. First, in Chapter 4, which is based
on Crépey, Macrina, Nguyen, and Skovmand (2015), we develop multi-curve interest
rate models which extend to counterparty risk models in a consistent fashion. The
aim is the pricing and risk management of financial instruments with price models
capable of discounting at multiple rates (e.g. OIS and LIBOR) and which allow
for corrections in the asset’s valuation scheme in order to adjust for counterparty-
risk inclusive of credit, debt, and liquidity risk. We thus propose factor-models for



16 CHAPTER 0. INTRODUCTION

the OIS rate, the LIBOR, and the default intensities of two counterparties involved
in bilateral OTC derivative transactions. The three ingredients are characterised
by a feature they share in common: the rate and intensity models are all rational
functions of the underlying factor processes. Since we have in mind the pricing of
assets as well as the management of risk exposures, we also need to work within a
setup that maintains price consistency under various probability measures. We will
for instance want to price derivatives by making use of a risk-neutral measure Q while
analysing the statistics of risk exposures under the real-world measure P. This point
is particularly important when we calibrate the interest rate models to derivatives
data, such as implied volatilities, and then apply the calibrated models to compute
counterparty-risk valuation adjustments to comply with regulatory requirements.
The presented rational models allow us to develop a comprehensive framework that
begins with an OIS model, evolves to an approach for constructing the LIBOR
process, includes the pricing of fixed-income assets and model calibration, analyses
risk exposures, and concludes with a credit risk model that leads to the analysis of
counterparty-risk valuation adjustments (XVA).

The issue of how to model multi-curve interest rates and incorporate counterparty-
risk valuation adjustments in a pricing framework has motivated much research.
For instance, research on multi-curve interest rate modelling is presented in Kijima,
Tanaka, and Wong (2009), Kenyon (2010), Henrard (2007, 2010, 2014), Bianchetti
(2010), Mercurio (2010b, 2010a, 2010c), Fujii (2011, 2010), Moreni and Pallavicini
(2014), Bianchetti and Morini (2013), Filipović and Trolle (2013) or Crépey, Grbac,
Ngor and Skovmand (2015). Pricing models with rational form have also appeared
before. Flesaker and Hughston (1996) pioneered such pricing models and in par-
ticular introduced the so-called rational log-normal model for discount bond prices.
Further related studies include Rutkowski (1997), Döberlein and Schweizer (2001)
and Hunt and Kennedy (2004), Brody and Hughston (2004), Hughston and Rafai-
lidis (2005), Brody, Hughston and Mackie (2012), Akahori, Hishida, Teichmann and
Tsuchiya (2014), Filipović, Larsson and Trolle (2014), Macrina and Parbhoo (2014)
or Nguyen and Seifried (2014). However, as far as we know, our work is the first
to apply rational pricing models in a multi-curve setup, along with Nguyen and
Seifried (2014) who develop a rational multi-curve model in the spirit of Rogers
(1997) based on a multiplicative spread, and it is the only rational pricing work
dealing with XVA computations. We shall see that, despite the simplicity of these
models, they perform surprisingly well when comparing to other, in principle more
elaborate, proposals such as Crépey et al. (2015) or Moreni and Pallavicini (2013,
2014).

In Chapter 5, which is based on Crépey and Nguyen (2015), we endeavour
to study counterparty risk on credit derivatives. For nonlinear and very high-
dimensional problems, any numerical scheme based, even to some extent, on dy-
namic programming, such as purely backward deterministic PDE schemes, but also
forward/backward simulation/regression BSDE schemes, are ruled out by the curse
of dimensionality (see e.g. Crépey (2013)). The only feasible numerical schemes
are purely forward simulation schemes, such as the linear Monte Carlo expansion
of Fujii and Takahashi (2012a,2012b) or the branching particles scheme of Henry-
Labordère (2012). We compare two such schemes regarding the computation of
counterparty risk and funding valuation adjustments on credit derivatives. In both
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cases, a Markov structure is required to justify the use of the method, but is too
heavy for practical use. Instead, fast and exact simulation and forward pricing
schemes are available based on the dynamic copula features of credit portfolio mod-
els. However, the branching particles scheme requires a stronger dynamic copula
property where, conditionally on the past, the future again obeys to some copula
structure. In the end, it’s only in one of two proposed models that the two schemes
can be run and compared numerically. They show similar performance but the
branching scheme requires a fine-tuning that can only be achieved by a preliminary
knowledge on the solution (which can be provided by linear approximation).

The main contributions of Part II are: on the one hand, the demonstration of
the practical abilities of the linear-rational models of chapter 4 in terms of calibration
and post-crisis multicurve and counterparty risk modeling, whereas most previous
work on linear-rational or pricing kernels models had stayed more theoretical; on the
other hand, the mathematical and algorithmic understanding of the realm of validity
of the two numerical schemes of chapter 5, the adaptations required for fitting these
schemes to our credit problems and the comparison of their empirical performance.
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Chapter 1

Preliminaries

1.1 Basic facts on Poisson random measures, Lévy pro-
cesses and Dirichlet forms

1.1.1 Poisson random measures

Here we adopt the definition of Poisson random measures that was introduced in
Cont and Tankov (2003).

Definition 1.1.1. (Poisson random measure)
Let (Ω,F ,P) be a probability space, E ⊂ Rd and ν a given positive Radon measure
on (E, E). A Poisson random measure on E with intensity ν is an integer-valued
radom measure

M : Ω× E → N
(ω,A) 7→ M(ω,A),

such that

a) For every ω ∈ Ω, M(ω, .) = M(ω) : E → N is an integer-valued Radon measure
on E. This measure depends on a random source ω ∈ Ω, which is the reason
why M is called a random measure.

b) For every A ∈ E such that ν(A) < +∞, M(., A) = M(A) : Ω → N is an
integer-valued random variable on Ω following the Poisson law with parameter
ν(A), i.e.

∀k ∈ N, P(M(A) = k) = e−ν(A) (ν(A))k

k!
.

As a consequence ν(A) = E[M(A)].

c) IfA1, . . . , An are pathwise disjoint sets in E then the random variablesM(A1), . . . ,
M(An) are independent.

Since M(ω) is a Radon measure on E, we can define integrals with respect
to this measure. First, for simple functions f =

∑n
i=1 ci1Ai : E → R+ where

ci ≥ 0 and Ai ∈ E are disjoint, we define M(f) =
∑n

i=1 ciM(Ai), then M(f)
is a random variable on Ω with expectation E[M(f)] =

∑n
i=1 ciν(Ai). Next, for

21
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positive measurable function f : E → R+, we define M(f) = limn→∞M(fn) where
fn → f is an increasing sequence of simple functions. By the monotone convergence
theorem, M(f) is then a random variable on Ω with values in R+ ∪ {∞} with
expectation E[M(f)] = ν(f). For a real-valued measurable function f : E → R,
we can decompose f into a positive part and a negative part: f = f+ − f− where
f+ = max(f, 0) and f− = max(−f, 0) are positive measurable functions with values
in R+. If the function f verifies

ν(|f |) =

∫
E
|f |ν(dx) <∞ (1.1.1)

then the positive random variables M(f+), M(f−) have finite expectations. In
particular, M(f+), M(f−) are almost surely finite, so we can define M(f) :=
M(f+)−M(f−). M(f) is thus a random variable with expectation

E[M(f)] = ν(f) =

∫
E
fν(dx).

We set M̃ = M−ν, the compensated random measure. Similarly, under the condition
(1.1.1), one can define the integral of f with respect to M̃ . The following lemma is
classical:

Lemma 1.1.1. Let f ∈ L1(ν) ∩ L2(ν), then

E[(M̃(f))2] =

∫
E
f2 dν, (∗)

as a consequence, the mapping f ∈ L1(ν)∩L2(ν) 7→ M̃(f) can be extended uniquely
to a continuous mapping from L2(ν) into L2(P), it is still denoted by f 7→ M̃(f)
and relation (∗) holds.

In our framework, we consider E = R+ × Z, where Z ⊂ Rd\{0}, with E is
the family of Borel sets in E, and the random measure M defined on the canonical
probability space (Ω,F ,P) where Ω is the configuration space, the space of measures
which are countable sums of Dirac measures on E

Ω = {ω =
∑
i∈I

ε(ti,zi) : I ⊂ N; ∀i ∈ I, ti ∈ R+, zi ∈ Z; ∀i 6= j, (ti, zi) 6= (tj , zj)}.

M is the canonical map M(ω) = ω, ∀ω ∈ Ω.

1.1.2 Lévy Processes

See Bertoin (1998) Chapters 0 to III, Cont and Tankov (2003) Chapters 3 and 4 for
the details of Lévy processes. We introduce here the definition in Cont and Tankov
(2003).

Definition 1.1.2. A cadlag stochastic process (Xt)t≥0 on (Ω,F ,P) with values in
Rd such that X0 = 0 is called a Lévy process if it possesses the following properties

1. Independent increments: for every increasing sequence of times t0, · · · , tn, the
random variables Xt0 , Xt1 −Xt0 , · · · , Xtn −Xtn−1 are independent.
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2. Stationary increments: the law of Xt+h −Xt does not depend on t.

3. Stochastic continuity: ∀ε > 0, limh→0 P(|Xt+h −Xt| ≥ ε) = 0.

Example 1.1.1. 1. Brownian motions and Poisson processes are two typical ex-
amples of continuous and jump Lévy processes.

2. A stochastic process Xt defined as

Xt =

Nt∑
i=1

Yi

where jump sizes Yi are i.i.d. with distribution µ and (Nt) is a Poisson pro-
cess with intensity λ, independent from (Yi)i≥1, is called a compound Poisson
process. Every compound Poisson process is a Lévy process, and every Lévy
process with piecewise constant sample paths is a compound Poisson process.

If (Xt)t≥0 is a compound Poisson process with intensity λ and jump size distri-
bution µ, then its jump measure JX defined, for every 0 ≤ t1 ≤ t2, A ∈ B(Rd\0),
by

JX([t1, t2]×A) = #{(t,Xt −Xt−) : t ∈ [t1, t2], Xt −Xt− ∈ A},

(the number of jump times ofX between t1 and t2 such that their jump sizes are in A)
is a Poisson random measure on R+×Rd\{0} with intensity ν(dt×dx) = λdtµ(dx).

1.1.3 Dirichlet forms

We shall only consider local, symmetric Dirichlet forms admitting a carré du champ
operator and defined on locally compact spaces. Our main reference is Bouleau and
Hirsch (1991). The locality assumption implies that the form we consider satisfies
some algebraic properties. The fact that the Dirichlet form admits a carré du champ
means that, in some sense, it is regular and that the domain of the generator associ-
ated to the underlying semigroup contains a dense algebra. The main point is that
if a Dirichlet form is local and admits a carré du champ, one can develop a very
useful and intuitive functional calculus, as in the case of the historical energy form.

We now briefly recall the main objects we consider, all the details can be found
in Bouleau and Hirsch (1991). We consider (E, E , ν) a measured space such that ν
is σ-finite measure.

A symmetric closed form is a non-negative quadratic form e defined on a dense
subspace d ⊂ L2(ν) such that d equipped with the norm

||u||2d = ||u||2L2(ν) + e[u]

is a Hilbert space. We denote by e[u, v] the bilinear form associated. Then

e[u, v] =
1

4
(e[u+ v]− e[u− v]), ∀u, v ∈ d.

If normal contractions operate on e, in the sense that if ϕ : R→ R is a contraction
(|ϕ(x)− ϕ(y)| ≤ |x− y|, ∀x, y ∈ R) such that ϕ(0) = 0 then

u ∈ d ⇒ ϕ(u) ∈ d and e[ϕ(u)] ≤ e[u],
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then we say that (d, e) is a Dirichlet form. To construct a Dirichlet form, normally,
we construct a “pre-Dirichlet form” on a set of “smooth” function and then extend
it by density and closability properties as in Example 1.1.3. If a Dirichlet form (d, e)
is local (∀u ∈ d e[|u+ 1| − 1] = e[u]), we say that it admits a carré du champ γ (cf.
Bouleau and Hirsch (1991) p17) if and only if there exists a continuous operator γ
from d× d into L1(ν) such that

e[u, v] =

∫
γ[u, v]dν, ∀u, v ∈ d.

We shall simply denote γ[u] = γ[u, u]. For all u, v ∈ dn, all F,G of class C1 on Rn
with bounded derivatives and such that F (0) = G(0) = 0, we have the following
functional calculus for carré du champ operator

γ[F (u), G(v)] =
∑
ij

∂iF (u)∂jG(v)γ[ui, vj ]. (1.1.2)

The space d equipped with the scalar product (‖.‖2L2(ν) + e[., .])
1
2 is a Hilbert

space, we assume that it is separable. As a consequence (see Bouleau and Hirsch
(1991) ex.5.9 p.242), we can construct a linear operator which has the same proper-
ties as a derivation operator that we call the gradient. More precisely, there exists a
separable Hilbert space H and a continuous linear map, D, from d into L2(E, ν;H)
such that

• ∀u ∈ d, ‖D(u)‖2H = γ[u].

• If F : R → R is Lipschitz ∀u ∈ d, D(F ◦ u) = (F ′ ◦ u)D(u), where F ′ the
derivate of F defined almost everywhere with respect to the Lebesgue measure.

• If F is C1 and Lipschitz from Rd into R, then

∀u = (u1, · · · , ud) ∈ dd, D(F ◦ u) =

d∑
i=1

(∂iF ◦ u)D(ui). (1.1.3)

One of the main interest of Dirichlet Structures is that they permit to establish
existence of density for random variables without integration by parts formula (cf
Bouleau and Hirsch (1986 1991), Denis (2000)). It based on the following property
that we call energy image density property, or EID for short.

For any integer d ≥ 1, let B(Rd) denote the Borelian σ-field on Rd an λd the
Lebesgue measure on (Rd,B(Rd)). For any measurable function u, we denote by u∗ν
the image measure of ν by u.

Definition 1.1.3. The Dirichlet structure (E, E , ν,d, γ) is said to satisfy EID if for
all d ∈ N∗ and all U = (U1, · · · , Ud) ∈ dd,

U∗[(detγ[U,U t]) · ν]� λd

where det denotes the determinant and γ[U,U t] is nothing but the matrix

γ[U,U t] = (γ[Ui, Uj ])1≤i,j≤d .
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The EID property is always satisfied in the case d = 1 if the Dirichlet form is
local and admits a carré du champ operator (cf. Bouleau (1984) Thm 5 and Corol
6). In 1986, it was conjectured that EID were always true for local Dirichlet forms
with carré du champ (Bouleau and Hirsch (1986) p251). To better illustrate the
definitions, we introduce a classical example below.

Example 1.1.2. Let E = Rd, E = B(Rd), the family of Borel sets in Rd, and ν = dx,
the Lebesgue measure on Rd. We consider the Sobolev space

H1(Rd) = {u ∈ L2(Rd, dx);
∂u

∂xi
∈ L2(Rd), i = 1, · · · , n}.

It is well-known that H1(Rd) is dense on L2(Rd) and H1(Rd) equipped with the
following norm

||u||21 = ||u||2L2(Rd) + ||u||2H1(Rd)

is a Hilbert space, where

||u||2H1(Rd) =

∫
Rd

d∑
i=1

(
∂u

∂xi

)2

dx.

Hence, e = ||.||2
H1(Rd)

=
∑d

i=1

∫
Rd

(
∂

∂xi

)2

dx is a closed form defined on d =

H1(Rd). If F : R → R is a contraction with F (0) = 0 then F (u) ∈ H1(Rd) for
all u ∈ H1(Rd) and ||F (u)||2

H1(Rd)
≤ ||u||2

H1(Rd)
, which deduces that the closed form

(d,e) defined above is a Dirichlet form. This Dirichlet form admit a carré du champ

γ[u, v] =
d∑

i,j=1

∂u

∂xi

∂v

∂xj

and a gradient taking values in Rd

Du := ∇u = (
∂u

∂x1
, · · · , ∂u

∂xd
), ∀u ∈ H1(Rd).

Moreover, for all u ∈ H1(Rd) and A ⊂ R with Lebesgue measure 0, we have∫
Rd

1A(u(x))||∇u||2dx = 0,

which shows that the Dirichlet structure (Rd,B(Rd), dx,d, γ) satisfies EID for di-
mension 1.

Example 1.1.3. More generally, we consider (Rd,B(Rd)) and ν = k(x)dx where k
belongs to H1

loc(Rd) and k−1 is locally bounded. Let ξ = (ξij)1≤i,j≤d : Rd → Rd×d
be a symmetric Borel function that is locally elliptic on an open set of Rd and

d = {u ∈ L2(kdx) :
∑
i,j

ξij
∂u

∂xi

∂u

∂xj
∈ L1(kdx)}.
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Then the bilinear form e defined by

∀u, v ∈ d, e[u, v] =

∫
Rd

d∑
i,j=1

ξij(x)
∂u

∂xi

∂v

∂xj
k(x)dx

is a local Dirichlet form on L2(kdx) which admits a carré du champ operator γ given
by

∀u, v ∈ d, γ[u, v] =
d∑

i,j=1

ξij(x)
∂u

∂xi

∂v

∂xj
.

Moreover, the Dirichlet structure (Rd,B(Rd), kdx,d, γ) satisfies the EID property
(see Bouleau and Denis (2009)).

The EID property has been established on the Wiener space, for the Dirichlet
structure associated with the Ornstein-Uhlenbeck operator and for some other ex-
amples by Bouleau and Hirsch (1991) Chap. II § 5 and Chap. V Example 2.2.4, but
the EID conjecture being at present neither proved nor refuted in full generality, it
has to be established in each particular framework.

On the Poisson space, it was first proved by Coquio (1993) in the case where the
intensity is the Lebesgue on an open domain and then has been proved in a more
general case (see Bouleau and Denis (2009) Section 2 Thm 2 and Section 4).

The EID property on the Wiener space is a powerful tool widely used now (cf.
Nualart and Quer-Sardanyons (2007), Nualart (2010), Chighouby, Djehichez and
Mezerdix (2009)). It is also recently developped and adapted for the Poisson space
in Bouleau and Denis (2015). One of the aim of our work is to study the EID
property in the context of Markov chains.

1.2 Malliavin calculus via chaos decomposition

1.2.1 Multiple integrals and chaos decomposition

Let us assume that ν is diffused, and that the space (E, E) is separable and Hausdorff,
what means (cf. Dellacherie and Meyer (1975) Chap. I §9) that the σ-field E is
generated by a countable family and that the atoms are the points of E i.e. (∀A ∈
E , (x ∈ A ⇔ y ∈ A)) ⇒ x = y. This implies that for all x ∈ E, {x} belongs to
E and that the diagonal of E × E is measurable (cf. Dellacherie and Meyer (1975)
Chap. I Thm 12). This implies that all the diagonals of the form {(x1, . . . , xn) :
∃i 6= j xi = xj} are measurable and ν-negligible.

We are going to define multiple integral with respect to a Poisson random mea-
sure, a generalization of the the integral defined in Section 1.1.1. The construction
is mostly based on Bouleau and Denis (2015) who follow the idea of the beautiful
paper of Itô (1951), but in the context of a Poisson random measure.

A real-valued function f defined on (E, E , ν)n is said elementary if it is a weighted
sum of indicator functions of sets of the form A1 × · · · ×An where for all i, ν(Ai) is
finite.

If f is elementary, we can re-number the sets A1, A2, . . . , Ak which appear in the
expression of f and even assume that they are disjoint (since ν×n does not charge
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the diagonals) in such a way that

f(x1, . . . , xn) =
∑

ai1,··· ,in1Ai1 (x1) · · · 1Ain (xn) ν×n − a.e.

where the A1, A2, . . . , Ak are disjoint, with finite mesure and ai1,··· ,in = 0 if two
indexes among i1, . . . , in are equal.

Since for any n ∈ N∗, ν×n does not charge the diagonal in Xn, the set of ele-
mentary functions is a dense subvector space in L2(ν×n).

Then we put

In(f) =
∑

ai1,··· ,inM̃(Ai1) · · · M̃(Ain)

In is clearly a linear map on the set of elementary functions, moreover

In(f) = In(f̃) (1.2.4)

where f̃ = 1
n!

∑
σ∈S f(xσ(1), . . . , xσ(n)) is the symetrized of f , this is due to the fact

that the products of the form M̃(Ai1) · · · M̃(Ain) are commutative. We also have

〈In(f), Im(g)〉L2(P) = δm,n n!〈f̃ , g̃〉L2(ν×n). (1.2.5)

This equality is not so obvious, we refer to the article of Itô (1951) for a rigorous
proof of it. As a consequence of (1.2.5)

‖In(f)‖2L2(P) = n!‖f̃‖2L2(ν×n) ≤ n!‖f‖2L2(ν×n)

so, by a density argument, In can be extended uniquely to f ∈ L2(ν×n) and we have
∀f ∈ L2(ν×n), ∀g ∈ L2(ν×m)

In(f) = In(f̃) 〈In(f), Im(g)〉L2(P) = δm,n n!〈f̃ , g̃〉L2(ν×n). (1.2.6)

Let L̃2(νn) be the subset of all symmetric function in L2(νn). The following theorem
and also the introduction of Malliavin derivative in the next subsection are based
on Di Nunno, Øksendal, and Proske (2008).

Theorem 1.2.1. (Wiener-Itô chaos expansion for Poisson random measure) Let
F ∈ L2(P) be a FT -measurable random variable. Then F admits a representation

F =

∞∑
n=0

In(fn)

via a unique sequence of elements fn ∈ L̃2(νn), n = 1, 2, · · · . Here we set I0(f0) := f0

for the constant values f0 ∈ R0. Moreover, we have that

||F ||2L2(P) =

∞∑
n=0

n!||fn||2L2(νn) <∞. (1.2.7)
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1.2.2 Malliavin derivative

Definition 1.2.4. The stochastic Sobolev space D1,2 consists of all FT -measurable
random variables F ∈ L2(P) with chaos expansion

F =
∞∑
n=0

In(fn), fn ∈ L̃2(νn), (1.2.8)

satisfying the convergence criterion

||F ||2D1,2
:=

∞∑
n=0

nn!||fn||2L2(νn) <∞.

In comparing with (1.2.7), we see that D1,2 is strictly contained in the space of
all FT -measurable random variables in L2(P).

Definition 1.2.5. (Malliavin derivative) We define the operator D : F ∈ D1,2 ⊂
L2(P) 7→ DF ∈ L2(P× ν) by

Dt,zF =
∞∑
n=0

nIn−1(fn(., t, z)) (1.2.9)

for all F ∈ D1,2 of the form (1.2.8). Here In−1(fn(., t, z)) means that the (n−1)-fold
interated integral of fn is regarded as a function of its (n− 1) first pairs of variables
(t1, z1), · · · , (tn−1, zn−1), while a final pair (t, z) is kept as a parameter. Dt,zF is
called the Malliavin derivative of F at (t, z).

The Malliavin derivative defined as above is a closed operator.

1.2.3 Creation operator

The creation operator with its companion, the annihilation operator are well known
in quantum mechanics.They are one of the main ingredients for the lent particle
method, a new approach to study the Malliavin calculus on Poisson spaces in Bouleau
and Denis (2015). We recall here the creation operator ε+ for the purpose of giving
an intuitive understanding of the Malliavin derivative defined via the chaos decom-
position on the configuration space:

∀x ∈ E, ∀ω ∈ Ω, ε+x (ω) = ω1{x∈suppω} + (ω + εx)1{x/∈suppω}, (1.2.10)

where suppω = {xi, i ∈ I} if ω =
∑

i∈I εxi , I ⊂ N, xi ∈ E ∀i ∈ I, xi 6= xj ∀i 6= j. It
is extended to the functionals H : Ω× E → R by

ε+H(ω, x) = H(ε+x ω, x), ∀ω ∈ Ω, x ∈ E.

We recall the following lemma whose proof can be found in Nualart and Vives (1990).

Lemma 1.2.2. Let u ∈ L2(νn), then

ε+In(u⊗n) = In(u⊗n) + nuIn−1(u⊗n−1).
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Lemma 1.2.2 shows that if u is elementary, to add a mass at point x0 to M(dx)
adds nu(x0)In−1(u⊗n−1) to In(u⊗n). Now for any function fn ∈ L̃2(νn), we obtain
by a density argument

(ε+ − I)In(fn) = nIn−1(fn) P× ν − a.s,

where I represents the indentity operator, and the mutiple integral on the right hand
side acts only on the n − 1 first arguments of fn. Thanks to this relation, (1.2.9)
can be rewritten as

Dt,zF =
∞∑
n=0

(ε+(t,z) − I)In(fn) = (ε+(t,z) − I)
∞∑
n=0

In(fn) = (ε+(t,z) − I)F. (1.2.11)

This equality gives a sense to the Malliavin derivative: taking Malliavin derivative
of the random variable F at (t, z) is to measure the sensitivity of F when adding a
particle (t, z) (adding a jump of size z at time t).

1.2.4 Chain rule and product rule

Theorem 1.2.2. (Chain rule) Let F ∈ D1,2 and let φ be a real continuous function
on R. Suppose that φ(F ) ∈ L2(P) and φ(F +Dt,zF ) ∈ L2(P× ν). Then φ(F ) ∈ D1,2

and

Dt,zφ(F ) = φ(F +Dt,zF )− φ(F ).

Proof. By applying (1.2.11), we obtain

Dt,zφ(F ) = (ε+(t,z)−I)φ(F ) = ε+(t,z)φ(F )−φ(F ) = φ(ε+(t,z)F )−φ(F ) = φ(F+Dt,zF )−φ(F ).

Similarly, we obtain the product rule for Malliavin derivative:

Theorem 1.2.3. Let F,G ∈ D1,2. Then FG ∈ D1,2 and

Dt,z(FG) = FDt,zG+GDt,zF +Dt,zFDt,zG.

Proof. By applying (1.2.11), we have

Dt,z(FG) = (ε+(t,z) − I)(FG) = ε+(t,z)(FG)− FG = (ε+(t,z)F )(ε+(t,z)G)− FG
= (F +Dt,zF )(G+Dt,zG)− FG = FDt,zG+GDt,zF +Dt,zFDt,zG.

The rest of this section is a recall from Di Nunno, Øksendal, and Proske (2008).



30 CHAPTER 1. PRELIMINARIES

1.2.5 Malliavin derivative and Skorohod Integral

Definition 1.2.6. (Skorohod integral) Let X = X(t, z), 0 ≤ t ≤ T, z ∈ R0, be an
stochastic process such that X(t, z) is an FT -measurable random variable for all
(t, z) ∈ [0, T ]× R0 and

E
[∫ T

0

∫
R0

X2(t, z)ν(dz)dt

]
<∞, ∀(t, z) ∈ [0, T ]× R0. (1.2.12)

Then for each (t, z), the random variable X(t, z) has an expansion of the form

X(t, z) =

∞∑
n=0

In(fn(., t, z)), where fn(., t, z) ∈ L̃2(νn). (1.2.13)

Let f̃n(t1, z1, · · · , tn, zn, tn+1, zn+1) be the symmetrization of f(t1, z1, · · · , tn, zn, t, z)
as a function of the n + 1 pairs (t1, z1), · · · , (tn, zn), (t, z) = (tn+1, zn+1). Suppose
that

∞∑
n=0

(n+ 1)!||f̃n||2L2(νn+1) <∞. (1.2.14)

Then we say that X is Skorohod integrable, write X ∈ Dom(δ). We define the
Skohorod integral δ(X) of X with respect to M̃ by

δ(X) =

∫ T

0

∫
R0

X(t, z)M̃(δt, dz) :=
∞∑
n=0

In+1(f̃n). (1.2.15)

The Skorohod integral defined as above is an extension of the Itô integral in the
sense that if X is predictable process satisfying (1.2.12), then X is both Itô and
Skorohod integrable with respect to M̃ and these two integrals are equal.

Theorem 1.2.4. (Duality formula) Let X(t, z), t ∈ [0, T ], z ∈ R be Skorohod
integrable and F ∈ D1,2. Then

E
[∫ T

0

∫
R0

X(t, z)Dt,zFν(dz)dt

]
= E

[
F

∫ T

0

∫
R0

X(t, z)M̃(δt, dz)

]
.

Theorem 1.2.5. (Integration by parts) Let X(t, z), t ∈ [0, T ], z ∈ R be a Skorohod
integrable stochastic process and F ∈ D1,2 such that the product X(t, z)εt,zF , t ∈
[0, T ], z ∈ R is Skorohod integrable. Then

F

∫ T

0

∫
R0

X(t, z)M̃(δt, dz) =

∫ T

0

∫
R0

X(t, z)εt,zFM̃(δt, dz)+

∫ T

0

∫
R0

X(t, z)Dt,zFν(dz)dt.

By using this integration by part formula, the closability of the Skorohod integral
is obvious.

1.2.6 The Clark-Ocone formula

Theorem 1.2.6. Let F ∈ D1,2. Then

F = E[F ] +

∫ T

0

∫
R0

E[Dt,zF |Ft]M̃(dt, dz) (1.2.16)

where we have chosen a predictable version of the conditional expectation process
E[Dt,zF |Ft], t ≥ 0.
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1.3 Malliavin calculus by perturbations of time

In addition to the Malliavin calculus introduced in Section 1.2, which based on a
different finite operator, there are other ways to construct a Malliavin-type calculus
for a Poisson random measure on R+ × Z, where Z is a measured space, with
compensator dt × dν. The idea is to define a “real” derivation operator called the
“gradient” which allow to be able to prove the existence of densities for functionals
and also to define an analog of the Skorohod integral. In general, there are two main
ways to do so.

If Z is an open subset of Rd and ν is the Lebesgue measure, the popular way is to
“differentiate” with respect to the size of jumps (see Bichteler, Gravereaux and Jacod
(1987)). But when the space of jump size is not rich enough to take the derivation,
for example, when Z is discrete like the case of Poisson process, we are obliged to
“differentiate” with respect to the jump times as did Carlen and Pardoux (1990)
for the Poisson space and then Denis (2000) generalize for Poisson random measure
thanks to the construction of a Dirichlet structure related to the Poisson random
measure. For the purpose of our work, that is to generalize Malliavin calculus for
Markov chains of finite state, we recall here some main ideas in Carlen and Pardoux
(1990) and Denis (2000).

Let (Nt)t≥0 be a Poisson process in its configuration space (Ω,F ,P) with natural
filtration (Ft)t≥0. So Ω is the set of all maps ω : [0, 1]→ N such that ω(0) = 0, ω is
increasing and right continuous, and has finitely many jumps of size one. We have
the sequence of jump times

0 < T1(ω) < T2(ω) < · · · < Tn(ω) < · · · .

Let H be the subspace of L2([0, 1]) orthogonal to the constant functions. For a fixed
bounded function m ∈ H and ε > 0 small enough, we define a reparametrization of
[0, 1] by τε(t) = t + ε

∫ t
0 msds. This reparametrization does not change the number

and the order of jump times in [0, 1]. We denote Tε is the transformation (Tε(w))(t) =
w(τε(t)) and Pε is the image of P through this transformation. As shown in Carlen
and Pardoux (1990), Pε is absolutely continuous with respect to P with density

dPε

dP
=

N1∏
i=1

(1 + εm(Ti)).

Next, the directional derivative is defined by the sensitivity of random variables
with respect to this reparametrization of time. More precisely, we define

D0
m = {F ∈ L2(Ω) : L2(Ω)− lim

ε→0

1

ε
(TεF − F ) exists}.

Then, for F ∈ D0
m, we define DmF as the above limit. For example, Ti ∈ D0

m

and DmTi = −
∫ Ti

0 m(t)dt. As a consequence, D0
m contains the class S of “smooth”

functions on L2(Ω). A random variable F belongs to S if there exists a ∈ R, m ∈ N∗
and for any n ∈ {1, · · · ,m}, a smooth function with bounded derivatives of any
order fn : Rn → R such that

F = a1{N1=0} +

m∑
n=1

fn(T1, · · · , Tn)1{N1=n}.
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Thanks to the definition of “real derivative” type, the operator Dm maintains prop-
erties of a real derivative, such as product rule and chain rule, etc. Moreover, Dm

is a closed operator, so we can densely extend it to its closed extension.
The gradient operator D : L2(Ω) → L2(Ω;H) is defined compatibly with the

directional derivatives defined above. That means∫ 1

0
DtFm(t)dt = DmF.

For F ∈ S, F = f(T1, · · · , Tn), we have DtF = −
∑n

j=1

∂f

∂tj
(T1, · · · , Tn)(1[0,Tj ](t)−

Tj). Again, D is a closable densely defined operator from L2(Ω) to L2(Ω;H).
Let δ denote the adjoint of D. Then we have the integration by part formula

which comes from the duality between δ and D:

E[δ(u)F ] = E
∫ 1

0
utDtFdt,∀F ∈ D1,2.

In particularly when u is predictable, the divergence operator δ coincides with the
Skohorod integral:

δ(u) =

∫ 1

0
utdNt.

Next, we can infer the existence of a density from the non-degeneracy of the Malliavin
covariance matrix: Let F ∈ D1,2 and B ⊂ N − {0} be such that

∫
−01|DtF |2dt > 0

a.s. on A = {N1 ∈ B} then (1AP)F−1, the image by F of the restriction of P to A,
is absolutely continuous with respect to the Lebesgue measure on R.

Denis (2000) proposed another criterion for the existence of the density with
respect to the Lebesgue measure, by introducing a Dirichlet structure with the
“carré du champ” operator and the Dirichlet form firstly defined on S by

γ(F ) =
m∑
n=1

1{N1=n}

n∑
i=1

(
∂

∂ti
fn(T1, · · · , Tn)

)2

,

e(F ) = E[γ(F )],

and then densely extend to its closure to d to obtain a local Dirichlet form with
the “carré du champ” γ. By the energy image density property, for all F ∈ d,
F ∗ (γ(F ).P), the image of γ(F ).P by F , is absolutely continuous with respect to the
Lebesgue measure.

This approach gives also a criterion of the existence of density in multidimen-
sional case and then is extended for Poisson random measure. However, this ap-
proach does not base on a real derivative, so one can not develop an extension of
Itô’s integral and calculus as the case of Carlen and Pardoux (1990) or Bichteler,
Gravereaux and Jacod (1987).

1.4 Continuous-time Markov chains

The aim for study Markov chains in our work is to study portfolio credit risk mod-
els, so we recall here some basic properties of Markov chains in the view of these
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applications. The main reference for this section is Bielecki, Crépey, and Herberts-
son (2009). Given C = (Ct)t≥0 be a Markov chain in an underlying probability
space (Ω,P, (Ft)t≥0) with a finite state space K = {k1, k2, · · · , kl}, where (Ft)t≥0

is the natural filtration of the Markov chain (Ct)t≥0. Then each path of C is a
right-continuous function from [0,∞) to K.

A two-parameter family P(t, s) = (pij(t, s))1≤i,j≤l, t, s ∈ R+, t ≤ s, of stochastic
matrices is called the family of transition probability matrices of the Markov chain
C under P if, for every t, s ∈ R+, t ≤ s,

P(Cs = kj |Ct = ki) = pij(t, s), ∀1 ≤ i, j ≤ l.

In particlular, we have P(t, t) = Id for every t ∈ R+.
Under some regularity conditions for the family P(t, s), t, s ∈ R+, t ≤ s, we

can define the time-dependent transition intensity matrix (or infinitesimal generator
matrix) Λ(t) = (λij(t))1≤i,j≤l through the formula

λij(t) = lim
h↓0

pij(t, t+ h)− δij
h

. (1.4.17)

It is obvious by the definition that λij(t) ≥ 0 for arbitrary i 6= j, and

λii(t) = lim
h↓0

pij(t, t+ h)− 1

h
= − lim

h↓0

∑l
j=1,j 6=i pij(t, t+ h)

h
= −

l∑
j=1,j 6=i

λij(t).

(1.4.18)
For every 1 ≤ i 6= j ≤ l, the term λij(t) defined by (1.4.17) gives the intensity
that the Markov chain move from state ki to state kj at t. From (1.4.18), the term
−λii(t) is nothing but the intensity of the Markov chain move to another state at
time t.

In case of a time-homogeneous Markov chain C, the family of transition prob-
ability matrix does not depend on the starting point t, but only depends on the
difference s − t, so we can define the family of transition probability matrix as the
one-parameter family P(t) = (pij(t))1≤i,j≤l := P(0, t), t ∈ R+. Then we have

P(Cs+t = kj |Cs = ki) = pij(t), ∀1 ≤ i, j ≤ l.

This family satisfies the Chapman-Kolmogorov equation, namely,

P(t+ s) = P(t)P(s) = P(s)P(t), ∀s, t ∈ R+.

Let u0 = (u0(i))1≤i≤l := (P(C0 = ki))1≤i≤l denote the initial probability distribution
for the Markov chain under P. Likewise, let ut = (ut(i))1≤i≤l := (P(Ct = ki))1≤i≤l
be the probability distribution of C at time t ∈ R+. We have

ut+s = u0P(t+ s) = utP(s) = usP(t), ∀s, t ∈ R+.

Next, if we impose that the family P(.) is right-continuous at time t = 0, which
implies also the differentiability of the family at t = 0, then the Markov chain C
admits an infinitesimal generator matrix (which, in this case, does not depend on
time) Λ = (λij)1≤i,j≤l, where each λij represents the intensity of transition from
the state ki to the state kj . The infinitesimal generator matrix Λ is also called
the intensity matrix of the Markov chain C. This matrix uniquely determines all
relevant probabilistic properties of a time-homogeneous Markov chain and moreover,
Ct −

∫ t
0

∑l
j=1 jλCujdu is an Ft-martingale.
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Chapter 2

Malliavin calculus for Markov
chains using perturbations of
time

2.1 Introduction

The aim of this chapter is to construct a Dirichlet structure associated to a time-
homogeneous Markov chain with finite state space in the spirit of Carlen and Par-
doux (1990) who obtained criteria of density for stochastic differential equations
(SDEs) driven by a Poisson process. More precisely, we develop a Malliavin calculus
on the canonical space by “derivating” with respect to the jump times of the Markov
chain, the main difficulty is that the times of jumps of Markov chain we consider
are no more distributed according to an homogeneous Poisson process.
Extensions of Malliavin calculus to the case of SDEs with jumps have been soon
proposed and gave rise to an extensive literature. The approach is either dealing
with local operators acting on the size of the jumps (cf Bichteler, Gravereaux and
Jacod (1987), Coquio (1993), Ma and Röckner (2000) etc.) or acting on the instants
of the jumps (cf Carlen and Pardoux (1990), Denis (2000)) or based on the Fock
space representation of the Poisson space and finite difference operators (cf Nualart
and Vives (1990), Picard (1996), Ishikawa and Kunita (2006) etc.). Let us mention
that developping a Malliavin Calculus or a Dirichlet structure on the Poisson space
is not the only way to prove the absolutely continuity of the law of the solution of
SDE’s driven by a Lévy process, see for example Nourdin and Simon (2006), or the
recent works of Bally and Clément (2011) who consider a very general case.
In this chapter we consider a Markov chain and we construct “explicitly” a gradient
operator and a local Dirichlet form. With respect to the Malliavin analysis or the
integration by part formula approach , what brings the Dirichlet forms approach is
threefold: a) The arguments hold under only Lipschitz hypotheses, e.g. for density
of solutions of stochastic differential equations cf Bouleau and Hirsch (1991), this
is due to the celebrated property that contractions operate on Dirichlet forms and
Émile Picard’s iteration scheme may be performed under the Dirichlet norm. b)
A general criterion exists, the energy image density property (EID), proved on the
Wiener space for the Ornstein-Uhlenbeck form, and in several other cases (but still
a conjecture in general since 1986 cf Bouleau and Hirsch (1986)), which provides an

35
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efficient tool for obtaining existence of densities in stochastic calculus. c) Dirichlet
forms are easy to construct in the infinite dimensional frameworks encountered in
probability theory (cf Bouleau and Hirsch (1991) Chap.V) and this yields a theory
of error propagation, especially for finance and physics cf Bouleau (2003).
Moreover, since the gradient operator may be calculated easily, this permits to make
numerical simulations, for example in order to compute greeks of an asset in a mar-
ket with jumps.
The plan of the chapter is as follows. In Section 2, we describe the probabilistic
framework and introduce the Markov chain. Then in Section 3, we introduce the
directional derivative w.r.t. an element of the Cameron-Martin space and give some
basic properties. The next section is devoted to the construction of the local Dirich-
let structure and the associated operators namely the gradient and divergence, and
also to the establishment of an integration by parts formula. In Section 5, we prove
that this Dirichlet form satisfies the Energy Image Density (EID) property that we
apply in Section 6 to get a criterion of density for solution of SDEs involving the
Markov chain. In the last section, we show that this Malliavin calculus may be
applied to compute some greeks in finance.

2.2 Probability space

Let C = (Ct)t≥0 be a time-homogeneous Markov chain, with finite state space
K = {k1, k2, · · · , kl}. The one-step transition probability matrix is P = (pij)1≤i,j≤l,
and the infinitesimal generator matrix Λ = (λij)1≤i,j≤l. We assume that (Ct)t≥0 has
a finite number of jumps over a bounded horizon of time so that we consider that
it is defined on the canonical probability space (Ω,P, (Ft)t≥0) where Ω is the set of
K-valued right continuous maps w : [0,∞)→ K starting at w(0) = c0 ∈ K such that
there exists sequences c1, c2, · · · ∈ K and 0 = t0 < t1 < · · · with

w(t) =
∞∑
i=0

ci1[ti,ti+1[(t). (2.2.1)

The filtration (Ft)t≥0 we consider is the natural filtration of the Markov chain (Ct)t≥0

satisfying the usual hypotheses.
Let (Tn)n∈N denote the sequence of successive jump times of C and Zn denote the
position of C at time Tn. More explicitly, for any n ∈ N, the random variables Tn
and Zn are defined as follow{

T0 = 0, Z0 = c0,
Tn = inf{t > Tn−1 : Ct 6= Zn−1}, Zn = CTn .

We have 0 = T0 < T1 < T2 < · · · , and Tn → ∞ when n → ∞ almost surely. These
are two well-known properties:

1. P(Tn − Tn−1 > t|Zn−1 = ki) = eλiit.

2. P(Zn = j|Zn−1 = ki) = pij = −λij
λii

.
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Let un = (uin)1≤i≤l be the distribution of Zn, i.e., uin = P(Zn = ki), i = 1, · · · , l.
From the second property and the law of total probability we have

ujn =

l∑
i=1

P(Zn = kj |Zn−1 = ki)P(Zn−1 = ki) =

l∑
i=1

piju
i
n−1.

Hence, un = Pun−1 = P2un−2 = · · · = Pnu0. The first property means that con-
ditionally on the position Zn−1 = ki at the jump time Tn−1, the random time
that elapses until the next jump has an exponential probability law with parameter
−λii > 0. So conditionally on the positions Z1 = c1, · · · , Zn−1 = cn−1, the incre-
ments τ1 = T1, τ2 = T2 − T1, · · · , τn = Tn − Tn−1 are independently exponential
distributed with parameters λ1 = −λc0c0 , · · · , λn = −λcn−1cn−1 . Moreover, we have
the following proposition:

Proposition 2.2.1. Conditionally to Z1 = c1, · · · , Zn−1 = cn−1, (T1, T2, · · · , Tn)
has a probability density function on Rn given by

n∏
i=1

λie
−λi(ti−ti−1)1{0<t1<···<tn}(t1, · · · , tn).

Proof. For every bounded measurable function f : Rn → R, we have

E[f(T1, T2, · · · , Tn)|Z1 = c1, Z2 = c2, · · · , Zn−1 = cn−1]

= E[f(τ1, τ1 + τ2, · · · , τ1 + τ2 + · · ·+ τn)|Z1 = c1, Z2 = c2, · · · , Zn−1 = cn−1]

=

∫∫
ti>0

f(t1, t1 + t2, · · · , t1 + t2 + · · ·+ tn)

n∏
i=1

λie
−λitidt1dt2 · · · dtn

=

∫∫
0<t1<t2<···<tn

f(t1, t2, · · · , tn)

n∏
i=1

λie
−λi(ti−ti−1)dt1dt2 · · · dtn.

We can also compute the law of τn = Tn − Tn−1 in the same way as Zn

P(τn > t) =

l∑
i=1

P(Tn − Tn−1 > t|Zn−1 = ki)P(Zn−1 = ki) =

l∑
i=1

eλiituin−1. (2.2.2)

Let (Nt)t≥0 be the process that counts the number of jumps of the Markov chain
(Ct)t≥0 up to t

Nt =
∑
n≥1

1{Tn≤t}. (2.2.3)

With some abuse of notation, we define the function λ : K → R such that λ(ki) =
−λii, ∀1 ≤ i ≤ l. Then the process λ(Ct) =

∑
n≥0 λ(Zn)1{Tn≤t<Tn+1} is the intensity

of (Nt)t≥0. The three processes (Ct)t≥0, (Nt)t≥0 and (λ(Ct))t≥0 have the same jump
times. More importantly, the compensated process defined by

Ñt = Nt −
∫ t

0
λ(Cu)du (2.2.4)
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is an Ft-martingale. Indeed, conditionally on the positions Z1, Z2, · · · , Zn−1,∫ t∧Tn
0 λ(Cu)du is the compensator of the process Nt∧Tn . Hence for every 0 ≤ s ≤ t,

E[Nt∧Tn −Ns∧Tn −
∫ t∧Tn

s∧Tn
λ(Cu)du|Fs, Z1 = c1, · · · , Zn−1 = cn−1] = 0,

which deduces

E[Nt∧Tn −Ns∧Tn −
∫ t∧Tn

s∧Tn
λ(u)du|Fs] =

∑
c1,··· ,cn−1∈K

P(Z1 = c1, · · · , Zn−1 = cn−1)

× E[Nt∧Tn −Ns∧Tn −
∫ t∧Tn

s∧Tn
λ(u)du|Fs, Z1 = c1, · · · , Zn−1 = cn−1] = 0.

Let n tend to +∞ we receive E[Nt−Ns−
∫ t
s λ(u)du|Fs] = 0, so the process (Ñt)t≥0

is an Ft-martingale.

2.3 Directional differentiation

In this section, we will consider the Markov chain (Ct) defined on the filtered proba-
bility space (Ω,P,F , {Ft}0≤t≤T ) where F = FT for a fixed time horizon 0 < T <∞.
We apply the same approach as in Carlen and Pardoux (1990) to define the direc-
tional derivative using the reparametrization of time with respect to a function in a
Cameron-Martin space.
Let H be the closed subspace of L2([0, T ]) orthogonal to the constant functions, i.e.,

H = {m ∈ L2([0, T ]) such that

∫ T

0
m(s)ds = 0}.

We denote m̂ =
∫ .

0 m(s)ds for every m ∈ H, then m̂(0) = m̂(T ) = 0. In a natural
way , H inherits the Hilbert structure of L2([0, T ]) and we denote by ‖ ‖H and 〈·, ·〉H
the norm and the scalar product on it. From now on in this section, we fix a function
m ∈ H. The condition

∫ T
0 m(s)ds = 0 ensures that the change of intensity that we

are about to define simply shifts the jump times without affecting the total number
of jumps. Let define

m̃ε(s) =


−1
3ε if m(s) ≤ −1

3ε ,
m(s) if −1

3ε ≤ m(s) ≤ 1
3ε ,

1
3ε if m(s) ≥ 1

3ε ,

and mε ∈ H such that mε(s) = m̃ε(s) − 1
T

∫ T
0 m̃ε(s)ds. Then we have again∫ T

0 mε(s)ds = 0, and 1
3 ≤ 1 + εmε(s) ≤ 5

3 (since − 1
3ε ≤ m̃ε(s) ≤ 1

3ε). Moreover,
||m−mε||H → 0 as ε→ 0. We define the reparametrization of time with respect to
mε as follow

τε(s) = s+ εm̂ε(s), s ≥ 0.

Notice that τε(0) = 0, τε(T ) = T , and ∂τε
∂s (s) = 1 + εmε(s) > 0, so the number and

the order of jump times between 0 and T remain unchanged. Let Tε : Ω→ Ω be the
map defined by

(Tε(w))(s) = w(τε(s)) for all w ∈ Ω,
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TεF = F ◦ Tε for every F ∈ L2(Ω), and Pε be the probability measure PT −1
ε . We

denote

D0
m = {F ∈ L2(Ω) :

∂TεF
∂ε
|ε=0 = lim

ε→0

1

ε
(TεF − F ) in L2(Ω) exists}.

For F ∈ D0
m, DmF is defined as the above limit.

Example 2.3.4. Now we give some examples of random variables whose directional
derivatives can be computed directly from the definition.

1. The random variables Zi do not change under Tε, so Zi ∈ D0
m and DmZi = 0.

2. Let w ∈ Ω have the form (2.2.1). Then

(Tε(w))(s) = w(τε(s)) =
∞∑
i=0

ci1[ti,ti+1[(τε(s)) =
∞∑
i=0

ci1[τ−1
ε (ti),τ

−1
ε (ti+1)[(s),

(2.3.5)
which deduces TεTi(w) = Ti(Tε(w)) = τ−1

ε (ti) = τ−1
ε (Ti(w)). Hence TεTi =

τ−1
ε ◦Ti = Ui where Ui is the random variable satisfying τε◦Ui = Ui+εm̂ε(Ui) =
Ti. We define the random variables T̄i = Ti ∧ T , Ūi = Ui ∧ T . Then we also
have TεT̄i = τ−1

ε ◦ T̄i = Ūi and τε ◦ Ūi = Ūi + εm̂ε(Ūi) = T̄i. Hence,

1

ε
(TεT̄i − T̄i) =

1

ε
(Ūi − (Ūi + εm̂ε(Ūi))) = −m̂ε(Ūi).

Reminding that mε → m in H as ε → 0, we can expect that Ūi → T̄i and
m̂ε(Ūi)→ m̂(T̄i) in L2(Ω) as ε→ 0. Indeed,∣∣∣∣1ε (TεT̄i − T̄i) + m̂(T̄i)

∣∣∣∣ ≤ ∣∣−m̂ε(Ūi) + m̂ε(T̄i)
∣∣+
∣∣m̂(T̄i)− m̂ε(T̄i)

∣∣
≤

∣∣∣∣∣
∫ T̄i

Ūi

mε(s)ds

∣∣∣∣∣+

∫ T̄i

0
|m(s)−mε(s)|ds

≤
(
|T̄i − Ūi|

∫ T

0
m2
ε (s)ds

) 1
2

+

(
T̄i

∫ T

0
(m(s)−mε(s))

2ds

) 1
2

≤

(
ε

∣∣∣∣∣
∫ Ūi

0
mε(s)ds

∣∣∣∣∣
) 1

2

||mε||H + T
1
2 ||mε −m||H

≤

ε(Ūi ∫ T

0
m2
ε (s)ds

) 1
2

 1
2

||mε||H + ||mε −m||H

≤ ε
1
2T

1
4 ||mε||

3
2
H + T

1
2 ||mε −m||H → 0 as ε→ 0.

Therefore, T̄i ∈ D0
m, and DmT̄i = −m̂(T̄i).

3. Since the number of jumps of (Ct)t∈[0,T ] does not change after the reparametriza-
tion of time, we have TεNT = NT . Hence NT ∈ D0

m, and DmNT = 0.
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Remark 2.3.1. If the assumption
∫ T

0 m(s)ds = 0 was relaxed, the number of
jumps in [0, T ] would change, which does not ensure that NT ∈ D0

m. Indeed, by
using (2.3.5), we have

TεNT (w) = NT (Tε(w)) =
∑
i≥1

1{τ−1
ε (ti)≤T} =

∑
i≥1

1{ti≤τε(T )}, (2.3.6)

so TεNT =
∑

i≥1 1{Ti≤τε(T )}. Put λ̄ = max1≤i≤lλii, then from (2.2.2) and notice

that λ̄ < 0, we have

P(Tn − Tn−1 ≤ t) = 1−
l∑

i=1

eλiituin−1 ≥ 1− eλ̄t > 0 for every n ≥ 1, t > 0. (2.3.7)

Without loss of generality, we can assume that
∫ T

0 m(s)ds > 0. Then τε(T ) > T for
ε > 0. From (2.3.6) and (2.3.7), we obtain

E
[

1

ε
(TεNT −NT )

]2

=
1

ε2
E
[
(TεNT −NT )2

]
≥ 1

ε2
E
[
(TεNT −NT )2|TεNT −NT ≥ 1

]
P(TεNT −NT ≥ 1)

≥ 1

ε2
P(TNT+1 − TNT ≤ τε(T )− T ) ≥ 1

ε2

(
1− eλ̄(τε(T )−T )

)
→∞ as ε ↓ 0.

Thus, in this case we would have NT /∈ D0
m. This explains why we need the assump-

tion
∫ T

0 m(s)ds = 0 in our construction.

Let define the set S of “smooth” functions. A map F : Ω → R belongs to S if
and only if there exists a ∈ R, d ∈ N∗ and for any n ∈ {1, · · · , d}, c1, · · · , cn ∈ K,
there exists a function f c1,··· ,cnn : Rn → R such that

1. F = a1{NT=0} +
∑d

n=1

∑
c1,··· ,cn∈K f

c1,··· ,cn
n (T1, · · · , Tn)1{NT=n,Z1=c1,··· ,Zn=cn};

2. for any n ∈ {1, · · · , d}, any c1, · · · , cn ∈ K, f c1,··· ,cnn is smooth with bounded
derivatives of any order.

It is known that S is dense in L2(Ω,F ,P). Here are some basic properties of direc-
tional derivatives on S.

Proposition 2.3.2. S ⊂ D0
m and for any smooth function f : Rn → R,

Dmf(T̄1, T̄2, · · · , T̄n) = −
n∑
j=1

∂f

∂tj
(T̄1, T̄2, · · · , T̄n) m̂(T̄j).

Proof. By the definition of Dm we have

Dmf(T̄1, T̄2, · · · , T̄n) =
∂Tεf(T̄1, T̄2, · · · , T̄n)

∂ε
|ε=0 =

∂

∂ε
f(TεT̄1, TεT̄2, · · · , TεT̄n)|ε=0

=
n∑
j=1

∂f

∂tj

∂

∂ε
TεT̄i|ε=0 =

n∑
j=1

∂f

∂tj
DmT̄i = −

n∑
j=1

∂f

∂tj
(T̄1, T̄2, · · · , T̄n) m̂(T̄j).
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Proposition 2.3.3. (Functional calculus properties)

1. If F,G ∈ S then FG ∈ S and Dm(FG) = (DmF )G+ F (DmG).

2. If F1, F2, · · · , Fn ∈ S and Φ : Rn → R is a smooth function then Φ(F1, F2, · · · , Fn) ∈
S and

DmΦ(F1, F2, · · · , Fn) =
n∑
j=1

∂Φ

∂xj
(F1, F2, · · · , Fn)DmFj .

Now we study the absolute continuity of Pε with respect to P. Let Eε be the
expectation taken under the probability Pε. For every n ∈ N, c1, · · · , cn ∈ K,
λ1, · · · , λn as in Proposition 2.2.1, and every measurable function f : Rn → R, we
have

Eε[f(T1, · · · , Tn)1{NT=n}|Z1 = c1, · · · , Zn = cn]

= E[f(U1, · · · , Un)1{NT=n}|Z1 = c1, · · · , Zn = cn]

= E[(f ◦ Φ−1)(T1, · · · , Tn)1{Tn≤T<Tn+1}|Z1 = c1, · · · , Zn = cn]

=

∫∫
0<t1<···<tn≤T<tn+1

(f ◦ Φ−1)(t1, · · · , tn)

n+1∏
i=1

λie
−λi(ti−ti−1)dt1 · · · dtn+1

=

∫∫
0<t1<···<tn≤T

(f ◦ Φ−1)

n∏
i=1

λie
−λi(ti−ti−1)eλn+1tndt1 · · · dtn

×
∫ ∞
T

λn+1e
−λn+1tn+1dtn+1

=

∫∫
0<t1<···<tn≤T

(f ◦ Φ−1)(t1, · · · , tn)ϕ(t1, · · · , tn)dt1 · · · dtn

=

∫∫
0<u1<···<un≤T

f(u1, · · · , un)(ϕ ◦ Φ)(u1, · · · , un)|detJΦ|du1 · · · dun

=

∫∫
0<u1<···<un≤T

fϕe
ε(λn+1

∫ un
0 mε(s)ds−

∑n
i=1 λi

∫ ui
ui−1

mε(s)ds)

×
n∏
i=1

(1 + εmε(ui))du1 · · · dun

= E
[
f(T1, · · · , Tn)1{NT=n}pn|Z1 = c1, · · · , Zn = cn

]
, where

Φ(u1, · · · , un) = (u1 + εm̂ε(u1), · · · , un + εm̂ε(un))

ϕ(t1, · · · , tn) = e−λn+1(T−tn)
n∏
i=1

λie
−λi(ti−ti−1)

pn = e
ε(λn+1

∫ Tn
0 mε(s)ds−

∑n
i=1 λi

∫ Ti
Ti−1

mε(s)ds)
n∏
i=1

(1 + εmε(Ti)).

Notice that
∫ Tn

0 mε(s)ds = −
∫ T
Tn
mε(s)ds, so conditionally to NT = n,

n∑
i=1

λi

∫ Ti

Ti−1

mεds+ λn+1

∫ T

Tn

mεds =

∫ T

0
λ(Cs)mε(s)ds,
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and we can rewrite

pn = e−ε
∫ T
0 λ(Cs)mε(s)ds

n∏
i=1

(1 + εmε(Ti))

Proposition 2.3.4. Pε is absolutely continuous with respect to P with density

dPε

dP
= e−ε

∫ T
0 λ(Cs)mε(s)ds

NT∏
i=1

(1 + εmε(Ti)) := Gε.

In case of Poisson process λi = 1, so
∫ T

0 λ(Cs)mε(s)ds = 0. Hence we have again
the result obtained in Carlen and Pardoux (1990) for standard Poisson processes

dPε

dP
=

NT∏
i=1

(1 + εmε(Ti)).

2.4 Gradient and divergence

For any h ∈ H, we define δ̂(h) =
∫ T

0 h(s)dÑs, where the compensated process Ñ is

defined in (2.2.4). More precisely, δ̂(h) is defined as

∫ T

0
h(s)dNs−

∫ T

0
λ(Cs)h(s)ds =

NT∑
i=1

h(Ti)−λNT+1

∫ T

TNT

h(s)ds−
NT∑
i=1

λi

∫ Ti

Ti−1

h(s)ds,

(2.4.8)
with convention that

∑0
i=1 = 0. If we assume that h ∈ H∩C1([0, T ]), by taking the

directional derivative of (2.4.8), we obtain Dmδ̂(h) is equal to

NT∑
i=1

ḣ(Ti)DmTi + λNT+1h(TNT )DmTNT −
NT∑
i=1

λi(h(Ti)DmTi − h(Ti−1)DmTi−1)

= −
NT∑
i=1

ḣ(Ti)m̂(Ti)−
NT∑
i=0

λi+1h(Ti)m̂(Ti) +

NT∑
i=1

λih(Ti)m̂(Ti)

= −
∫ T

0
ḣ(s)m̂(s)dNs −

∫ T

0
λ(Cs)h(s)m̂(s)dNs +

∫ T

0
λ(Cs−)h(s)m̂(s)dNs

= −
∫ T

0
ḣ(s)m̂(s)dNs −

∫ T

0
(λ(Cs)− λ(Cs−))h(s)m̂(s)dNs (2.4.9)

By applying Itô formula for the process λ(Cs)h(s)m̂(s) in [0, T ], we have

0 =

∫ T

0
λ(Cs)[ḣ(s)m̂(s) + h(s)m(s)]ds+

∑
n≥1,Tn≤T

(λ(Tn)− λ(Tn−))h(Tn)m̂(Tn)

=

∫ T

0
λ(Cs)ḣ(s)m̂(s)ds+

∫ T

0
λ(Cs)h(s)m(s)ds+

∫ T

0
(λ(Cs)− λ(Cs−))h(s)m̂(s)dNs.

(2.4.10)
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From (2.4.9) and (2.4.10), we obtain

Dmδ̂(h) = −
∫ T

0
ḣ(s)m̂(s)dNs +

∫ T

0
λ(Cs)ḣ(s)m̂(s)ds+

∫ T

0
λ(Cs)h(s)m(s)ds

= −
∫ T

0
ḣ(s)m̂(s)dÑs +

∫ T

0
λ(Cs)h(s)m(s)ds. (2.4.11)

By taking expectation, we obtain

E[Dmδ̂(h)] = E
[∫ T

0
λ(Cs)h(s)m(s)ds

]
. (2.4.12)

2.4.1 Integration by part formula by Bismut’s way

In this section, we will establish an integration by part formula directly from the
perturbation of measure as Bismut’s way (c.f. Bichteler, Gravereaux and Jacod
(1987)).

Proposition 2.4.5. For all F ∈ D0
m and m in H,

E[DmF ] = E[δ̂(m)F ].

Proof. By the definitions of Tε and Pε, we have

E[TεF ] = Eε[F ] = E [GεF ] . (2.4.13)

Indeed, for every Borel set A ⊂ R,

Pε(F ∈ A) = P(T −1
ε ({w ∈ Ω : F (w) ∈ A})) = P({w ∈ Ω : F (Tε(w)) ∈ A}) = P(TεF ∈ A).

By taking the derivation in both sides of (2.4.13) with respect to ε at ε = 0, we
obtain

E[DmF ] = E
[
∂Gε

∂ε
|ε=0F

]
.

Notice that

∂Gε

∂ε
|ε=0 = −

∫ T

0
λ(Cs)m(s)ds+

NT∑
i=1

m(Ti) = δ̂(m)

we have the integration by part formula of the form E[DmF ] = E[δ̂(m)F ].

Remark 2.4.2. We can also retrieve the equality (2.4.12) by using Proposition 2.4.5
for F = δ̂(h) as follow

E[Dmδ̂(h)] = E[δ̂(m)δ̂(h)] = E
[∫ T

0
m(s)dÑs

∫ T

0
h(s)dÑs

]
= E

[∫ T

0
λ(Cs)h(s)m(s)ds

]
.

Corollary 2.4.1. For all F,G ∈ D0
m such that FG ∈ D0

m and m in H,

E[GDmF ] = E[F (δ̂(m)G−DmG)].

Proof. The result is direct by applying Proposition 2.4.5 for FG.
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Corollary 2.4.2. Let ψ ∈ D0
m, Φ = (φ1, · · · , φd) with φi ∈ D0

m, i = 1, · · · , d, and
f ∈ C1(Rd). Then

E[ψDm(f ◦ Φ)] = E[ψ

d∑
i=1

∂f

∂xi
(Φ)Dmφi] = E[f(Φ)(δ̂(m)ψ −Dmψ)].

Proof. By applying Proposition 2.4.5 for F = ψf(Φ), we obtain

E[Dm(ψf(Φ))] = E[δ̂(m)ψf(Φ)].

But Dm(ψf(Φ)) = Dmψf(Φ) + ψDmf(Φ) = Dmψf(Φ) + ψ
∑d

i=1

∂f

∂xi
(Φ)Dmφi.

Hence,

E[ψ
d∑
i=1

∂f

∂xi
(Φ)Dmφi] = E[δ̂(m)ψf(Φ)]− E[Dmψf(Φ)] = E[f(Φ)(δ̂(m)ψ −Dmψ)].

Proposition 2.4.6. (Closability of Dm) For any m ∈ H, Dm is closable.

Proof. To prove that Dm is closable, we have to prove that if (Fk)k∈N ⊂ S satisfying
Fk → 0 and DmFk → u in L2(Ω) then u = 0 P a.s.. From Corollary 2.4.1 we have

E[GDmFk] = E[Fk(δ̂(m)G−DmG)].

Let k tend to infinite we get E[Gu] = 0 for every G ∈ S. This is also true for
G ∈ L2(Ω) since S is dense in L2(Ω), so we can take G = u and receive u = 0 P
a.s.

We shall identify Dm with its closed extension and denote by D1,2
m its domain,

i.e.,

D1,2
m = {F ∈ L2(Ω) : ∃(Fk)k∈N ⊂ S s.t (Fk)k∈N → F, (DmFk)k∈N converges in L2(Ω)}.

Obviously, S ⊂ D1,2
m . For every F ∈ D1,2

m , we define DmF = limk→∞DmFk. Thanks
to Proposition 2.4.6, this limit does not depend on the choice of the sequence (Fk)k∈N,
so DmF is well-defined and coincides with the already defined DmF in case F ∈ S.
For every F ∈ D1,2

m , we have

||F ||2D1,2
m

= ||F ||2L2(Ω) + ||DmF ||2L2(Ω) < +∞.

2.4.2 Local Dirichlet form

Next we would like to define an operator D from L2(Ω) into L2(Ω;H) which play
the role of stochastic derivative, i.e., for every F in its domain which should belong
to every domain D1,2

m , this equality should be satisfied

DmF = 〈DF,m〉H =

∫ T

0
DsFm(s)ds.
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Let (mk)k∈N be an orthonormal basis of the space H. Then every function m ∈ H
can be expressed as m =

∑+∞
k=1〈m,mk〉Hmk.

We now follow the construction of Bouleau and Hirsch (1991). We set

D1,2 = {X ∈
+∞⋂
k=1

D1,2
mk

:
+∞∑
k=1

‖ DmkX ‖
2
L2(Ω)< +∞}, and

∀X,Y ∈ D1,2, E [X,Y ] =

+∞∑
k=1

E[DmkXDmkY ].

We denote E [X] := E [X,X] for convenience. The next proposition defines the local
Dirichlet form. Concerning the definition of local Dirichlet forms, our reference is
Bouleau and Hirsch (1991).

Proposition 2.4.7. The bilinear form (D1,2, E) is a local Dirichlet admitting a
gradient, D, and a carré du champ, Γ, given respectively by the following formulas:

∀X ∈ D1,2, DX =

+∞∑
k=1

DmkXmk ∈ L2(Ω;H),

∀X,Y ∈ D1,2, Γ[X,Y ] = 〈DX,DY 〉H.

As a consequence D1,2 is a Hilbert space equipped with the norm:

∀X ∈ D1,2, ‖ X ‖2D1,2= ||X||2L2(Ω) + E(X).

Proof. The proof is obvious and uses the same arguments as the proof of Proposition
4.2.1 in (Bouleau and Hirsch 1991, Chapter II). Let us remark that the locality
property is a direct consequence of the functional calculus, see Proposition 2.3.3 in
(Bouleau and Hirsch 1991, Chapter II).

Example 2.4.5. By using the result in Example 2.3.4, for any i we have

1. DZi =
∑+∞

k=1〈DZi,mk〉Hmk =
∑+∞

k=1DmkZimk = 0. Similarly, DNT = 0.

2. In the same way,

DT̄i =
∑
k

〈DT̄i,mk〉Hmk =
∑
k

Dmk T̄imk = −
∑
k

m̂k(T̄i)mk

= −
∑
k

mk

∫ T

0
mk(s)1[0,T̄i]

(s)ds =
∑
k

mk

∫ T

0
mk(s)

(
T̄i
T
− 1[0,T̄i]

(s)

)
ds

=
∑
k

〈mk,
T̄i
T
− 1[0,T̄i]

〉Hmk =
T̄i
T
− 1[0,T̄i]

.

Moreover, as a consequence of the functional calculus specific to local Dirichlet
forms (see Bouleau and Hirsch (1991), Section I.6) the set of smooth function S is
dense in D1,2 and if F ∈ S, F = f(T̄1, T̄2, · · · , T̄n) where f is smooth with bounded
derivatives of any order, then

DF =

n∑
i=1

∂f

∂ti

(
T̄i
T
− 1[0,T̄i]

)
.
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Remark 2.4.3. The expression of the gradient operator D above prove that nor the
Dirichlet form (D1,2, E) nor the gradient D depend on the choice of the orthonormal
basis (mk)k∈N of H.

2.4.3 Divergence operator

Let δ : L2(Ω;H)→ L2(Ω) be the adjoint operator of D. Its domain, Dom(δ), is the
set of u ∈ L2(Ω;H) such that there exists c > 0 satisfying∣∣∣∣E [∫ T

0
DsFusds

]∣∣∣∣ ≤ c||F ||D1,2 , ∀F ∈ D1,2.

It follows from the properties of D that δ is also a closed densely defined operator.
We have the integral by part formula by the duality:

E[δ(u)F ] = E[〈u,DF 〉H] = E
[∫ T

0
usDsFds

]
, ∀F ∈ D1,2, u ∈ Dom(δ).

Proposition 2.4.8. For every u ∈ D1,2 ⊗H, we have u ∈ Dom(δ) and

δ(u) =

∫ T

0
usdÑs −

∫ T

0
Dsusds.

Proof. First of all, if u = mG with m ∈ H, G ∈ D1,2 then

E
[∫ T

0
usDsFds

]
= E

[
G

∫ T

0
m(s)DsFdt

]
= E[GDmF ] = E[F (δ̂(m)G−DmG)]

for every F ∈ D1,2. From the uniqueness of δ, we have

δ(u) = δ̂(m)G−DmG = G

∫ T

0
m(s)dÑs−

∫ T

0
DsGm(s)ds =

∫ T

0
usdÑs−

∫ T

0
Dsusds.

By linearity, this is true for every function in

{u ∈ D1,2 ⊗H : u =
n∑
i=1

miGi,mi ∈ H, Gi ∈ D1,2}.

The result of the proposition follows since this set is dense in D1,2 ⊗H.

Remark 2.4.4. If u ∈ H, then Dsus = 0 for every s ∈ [0, T ], so the divergence
operator δ coincides with the integral w.r.t. the compensated Poisson process δ̂.
From the proof of Proposition 2.4.8, we can retain that

1. δ(mG) = δ(m)G−DmG for every m ∈ H, G ∈ D1,2.

2. E[GDmF ] = E[Fδ(mG)] for every m ∈ H, F,G ∈ D1,2.

Corollary 2.4.3. If u ∈ D1,2 ⊗H is an adapted process then

δ(u) =

∫ T

0
usdÑs.
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Proof. We have

Dsus =
∑
Ti≤T

∂us
∂Ti

DsTi =
∑
Ti≤T

∂us
∂Ti

(
Ti
T
− 1[0,Ti](s)

)
, where

∫ T

0

∂us
∂Ti

Ti
T
dt =

Ti
T

∂

∂Ti

∫ T

0
usds = 0, so

∫ T

0
Dsusds = −

∑
Ti≤T

∫ Ti

0

∂us
∂Ti

ds.

If u is adapted,
∂us
∂Ti

= 0 for all t < Ti, so
∫ T

0 Dsusds = 0.

Corollary 2.4.4. If u ∈ L2(Ω;H) is an adapted process then

δ(u) =

∫ T

0
usdÑs.

Proof. The result follows from Corollary 2.4.3 by approximating u by a sequence of
adapted processes in D1,2 ⊗H.

The next proposition is an important property of the operator δ, which follows
from the fact that D is a derivative.

Proposition 2.4.9. Let F ∈ D1,2, X ∈ Dom(δ) such that Fδ(X)−
∫ T

0 DsFXsds ∈
L2(Ω), then FX ∈ Dom(δ), and

δ(FX) = Fδ(X)−
∫ T

0
DsFXsds.

Proof. For every G ∈ S, by the integration by parts formula, we have

E[δ(FX)G] = E
[∫ T

0
FXsDsGds

]
= E

[∫ T

0
Xs(Ds(GF )−GDsF )ds

]
= E

[
G(Fδ(X)−

∫ T

0
DsFXsds)

]
.

Corollary 2.4.5. Let m ∈ H and F ∈ D1,2, then mF ∈ Dom(δ), and

δ(mF ) = F

∫ T

0
m(s)dÑs −DmF.

Proof. We obtain the result by applying Proposition 2.4.9 for X = m, δ(m) =∫ T
0 m(s)dÑs and

∫ T
0 DsFm(s)ds = DmF .

Remark 2.4.5. In this approach, the Clark-Ocone formula (cf. Theorem 1.2.6)
does not hold. For example, we have already shown that DmNT = 0, ∀m ∈ H, so
DsNT = 0,∀s ∈ [0, T ], but we do not have NT = E[NT ].
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2.5 An absolute continuity criterion

In this section, we denote

1. A0 = {NT = 0}, p0 = P(A0).

2. Ac1,··· ,cnn = {NT = n,Z1 = c1, · · · , Zn = cn}, and pc1,··· ,cnn = P(Ac1,··· ,cnn ), for
every n ∈ N∗, c1, · · · , cn ∈ K.

Lemma 2.5.3. Let ∆n = {t = (t1, · · · , tn) : 0 < t1 < · · · < tn < T}. The
distribution of (T1, · · · , Tn) conditionally to Ac1,··· ,cnn has a density

kc1,··· ,cnn : Rn → R+

t = (t1, · · · , tn) 7→ kc1,··· ,cnn (t) = n! 1∆n(t)
n∏

i=1,λi+1 6=λi

(λi+1 − λi)eti(λi+1−λi)

e(λi+1−λi)T − 1

with respect to the Lebesgue measure νn on Rn, where λi = −λcici , i = 1, · · · , n.

Proof. Let f be a measureable function on Rn. Then

E[f(T1, · · · , Tn)|Ac1,··· ,cnn ] = E[1Ac1,··· ,cnn
f(T1, · · · , Tn)]/pc1,··· ,cnn

=
E[f(T1, · · · , Tn)1{NT=n}1{Z1=c1,··· ,Zn=cn}]

E[1{NT=n}1{Z1=c1,··· ,Zn=cn}]

=
E[f(T1, · · · , Tn)1{NT=n}|1{Z1=c1,··· ,Zn=cn}]E[1{Z1=c1,··· ,Zn=cn}]

E[1{NT=n}|1{Z1=c1,··· ,Zn=cn}]E[1{Z1=c1,··· ,Zn=cn}]

=
E[f(T1, · · · , Tn)1{Tn≤T<Tn+1}|1{Z1=c1,··· ,Zn=cn}]

E[1{Tn≤T<Tn+1}|1{Z1=c1,··· ,Zn=cn}]

=

∫∫
0<t1<···<tn≤T<tn+1

f(t1, · · · , tn)
∏n+1
i=1 λie

−λi(ti−ti−1)dt1 · · · dtn+1∫∫
0<t1<···<tn≤T<tn+1

∏n+1
i=1 λie

−λi(ti−ti−1)dt1 · · · dtn+1

=

∫∫
∆n

f
∏n
i=1 λie

−λi(ti−ti−1)eλn+1tndt1 · · · dtn
∫∞
T λn+1e

−λn+1tn+1dtn+1∫∫
∆n

∏n
i=1 λie

−λi(ti−ti−1)eλn+1tndt1 · · · dtn
∫∞
T λn+1e−λn+1tn+1dtn+1

=

∫∫
∆n

fϕ(t1, · · · , tn)dt1 · · · dtn∫∫
∆n

ϕ(t1, · · · , tn)dt1 · · · dtn
, where

ϕ(t1, · · · , tn) = e−λn+1(T−tn)
n∏
i=1

λie
−λi(ti−ti−1) = e−λn+1T

n∏
i=1

λie
ti(λi+1−λi),

∫∫
∆n

ϕ(t1, · · · , tn)dt1 · · · dtn =
1

n!

∫∫
[0,T ]n

e−λn+1T
n∏
i=1

λie
ti(λi+1−λi)dt1 · · · dtn

=
e−λn+1T

n!

n∏
i=1

λi

n∏
i=1,λi+1 6=λi

e(λi+1−λi)T − 1

λi+1 − λi
.

Remark 2.5.6. kc1,··· ,cnn is a positive function of class C∞ on ∆n. Particularly, in
case C is a homogeneous Poisson process, λ1 = · · · = λn, so kc1,··· ,cnn (t1, · · · , tn) =
n! 1∆n(t) which means (T1, · · · , Tn) has uniform distribution on ∆n conditionnally
to Ac1,··· ,cnn .
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Now fixe n, c1, · · · , cn, we consider dc1,··· ,cnn the set of B(Rn)-measurable functions u
in L2(kc1,··· ,cnn dt) such that for any i ∈ {1, · · · , n}, and νn−1-almost all

t̄ = (t1, · · · , ti−1, ti+1, · · · , tn) ∈ Rn−1, u
(i)
t̄

= u(t1, · · · , ti−1, ., ti+1, · · · , tn) has an

absolute continuous version ũ
(i)
t̄

on {ti : (t1, · · · , tn) ∈ ∆n} such that

n∑
i,j=1

∂u

∂ti

∂u

∂tj

(
ti ∧ tj −

titj
T

)
∈ L1(kc1,··· ,cnn dt),

where
∂u

∂ti
=
∂ũ

(i)
t̄

∂s
. We consider the following quadratic form on dc1,··· ,cnn

ec1,··· ,cnn [u, v] =
1

2

∫
Rn

n∑
i,j=1

∂u

∂ti

∂v

∂tj

(
ti ∧ tj −

titj
T

)
kc1,··· ,cnn dt,∀u, v ∈ dc1,··· ,cnn .

As usual, we denote e[u, u] by e[u].

Proposition 2.5.10. 1. (dc1,··· ,cnn , ec1,··· ,cnn ) is a local Dirichlet form on L2(kc1,··· ,cnn dt)
which admits a “carré du champ” operator γn and a gradient operator D̃n given
by

γn[u, v](t) =
n∑

i,j=1

∂u

∂ti

∂v

∂tj

(
ti ∧ tj −

titj
T

)
, D̃n

s u(t) =
n∑
i=1

∂u

∂ti

(
ti
T
− 1[0,ti](s)

)
for all u, v ∈ dc1,··· ,cnn , t = (t1, · · · , tn) ∈ Rn, s ∈ [0, T ].

2. The structure (Rn,B(Rn), kc1,··· ,cnn dt,dc1,··· ,cnn , γn) satisfies the EID property,
i.e., for every d ∈ N∗, ∀u = (u1, · · · , ud) ∈ (dc1,··· ,cnn )d, we have

u∗[(detγn[u]).kc1,··· ,cnn νn]� νd,

where γn[u] denotes the matrix (γn[ui, uj ])1≤i,j≤d.

Proof. The results are obtained by applying Proposition 1 and Theorem 2 in Bouleau
and Denis (2009) (see also Example 1.1.3) for d = dc1,··· ,cnn , k = kc1,··· ,cnn and ξij(t) =

ti ∧ tj − titj
T ,∀1 ≤ i, j ≤ n, t = (t1, · · · , tn). We only have to prove that ξ is locally

elliptic on ∆n. Indeed, for every α = (α1, · · · , αn) ∈ Rn, t = (t1, · · · , tn) ∈ ∆n, we
have

α∗ξ(t)α =
n∑

i,j=1

αiαj

(
ti ∧ tj −

titj
T

)
=

∫ T

0

(
n∑
i=1

αi

(
1[0,ti](s)−

ti
T

))2

ds ≥ 0.

α∗ξ(t)α = 0 if and only if
∑n

i=1 αi
(
1[0,ti](s)−

ti
T

)
= 0, ∀s ∈ [0, T ]. By taking

tn < s < T , we obtain
∑n

i=1 αiti = 0, so
∑n

i=1 αi1[0,ti](s) = 0, ∀s ∈ [0, T ]. By taking

tn−1 < s < tn, we obtain αn = 0, so
∑n−1

i=1 αi1[0,ti](s) = 0,∀s ∈ [0, T ]. Continue this
process and finally we obtain αi = 0, ∀i = 1, · · · , n.

Remark 2.5.7. Since the density function kc1,··· ,cnn is bounded in ∆n both below
and above by positive constants, we have Lp(kc1,··· ,cnn dt) = Lp(dt), so the domain
dc1,··· ,cnn does not depend on c1, · · · , cn.
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For every measurable random variable F : Ω→ R, there exists a constant a ∈ R
and measurable functions f c1,··· ,cnn : Rn → R,∀n ∈ N∗, c1, · · · , cn ∈ K such that

F = a1A0 +
∞∑
n=1

∑
c1,··· ,cn∈K

1Ac1,··· ,cnn
f c1,··· ,cnn (T1, · · · , Tn) P− a.s.. (2.5.14)

From now on, we will write
∑

n,c instead of
∑∞

n=1

∑
c1,··· ,cn∈K for simplicity.

Proposition 2.5.11. For every measurable random variable F of the form (2.5.14),
we have F ∈ D1,2 if and only if f c1,··· ,cnn ∈ dc1,··· ,cnn ,∀n ∈ N∗, ∀c1, · · · , cn ∈ K and∑

n,c

pc1,··· ,cnn ||f c1,··· ,cnn ||2
d
c1,··· ,cn
n

<∞.

Moreover, if F ∈ D1,2 then

||F ||2D1,2 = a2p0 +
∑
n,c

pc1,··· ,cnn ||f c1,··· ,cnn ||2
d
c1,··· ,cn
n

. (2.5.15)

Proof. For every F of the form (2.5.14), we have

||F ||2L2(Ω) = E[F 2] = a2p0 +
∑
n,c

E
[
1Ac1,··· ,cnn

(f c1,··· ,cnn (T1, · · · , Tn))2
]

= a2p0 +
∑
n,c

pc1,··· ,cnn E
[
(f c1,··· ,cnn (T1, · · · , Tn))2 |Ac1,··· ,cnn

]
= a2p0 +

∑
n,c

pc1,··· ,cnn

∫
Rn

(f c1,··· ,cnn (t))2 kc1,··· ,cnn (t)dt

= a2p0 +
∑
n,c

pc1,··· ,cnn ||f c1,··· ,cnn ||2
L2(k

c1,··· ,cn
n dt)

, and

DsF =
∑
n,c

1Ac1,··· ,cnn

(
n∑
i=1

∂f c1,··· ,cnn

∂ti
(T1, · · · , Tn)

(
Ti
T
− 1[0,Ti](s)

))
=

∑
n,c

1Ac1,··· ,cnn
D̃n
s f

c1,··· ,cn
n (T1, · · · , Tn) . Hence,

||DF ||2L2(Ω;H) =

∫ T

0
E[(DsF )2]ds

=
∑
n,c

∫ T

0
E
[
1Ac1,··· ,cnn

(
D̃n
s f

c1,··· ,cn
n (T1, · · · , Tn)

)2
]
ds

=
∑
n,c

∫ T

0
pc1,··· ,cnn E

[(
D̃n
s f

c1,··· ,cn
n (T1, · · · , Tn)

)2
|Ac1,··· ,cnn

]
ds

=
∑
n,c

pc1,··· ,cnn

∫ T

0

∫
Rn

(
D̃n
s f

c1,··· ,cn
n (t)

)2
kc1,··· ,cnn (t)dtds

=
∑
n,c

pc1,··· ,cnn ||D̃nf c1,··· ,cnn ||2
L2((Rn,kc1,··· ,cnn dt);H)

=

∞∑
n=1

∑
c1,··· ,cn∈K

pc1,··· ,cnn ec1,··· ,cnn [f c1,··· ,cnn ].
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Therefore,

||F ||2L2(Ω) + ||DF ||2L2(Ω;H) =
∑
n,c

pc1,··· ,cnn ||f c1,··· ,cnn ||2
d
c1,··· ,cn
n

.

From here we obtain the condition for F ∈ D1,2. The equation (2.5.15) is obvious
since the fact that ||F ||2D1,2 = ||F ||2L2(Ω) + E [F ] = ||F ||2L2(Ω) + ||DF ||2L2(Ω;H).

Remark 2.5.8. In summary, we have the following relations between the Dirichlet
structure (Rn,B(Rn), kc1,··· ,cnn dt,dc1,··· ,cnn , γn) and the Dirichlet structures
(Ω,F ,P,D1,2,Γ): for every F ∈ D1,2 having the form (2.5.14),

1. ||F ||2L2(Ω) = a2p0 +
∑

n,c p
c1,··· ,cn
n ||f c1,··· ,cnn ||2

L2(k
c1,··· ,cn
n dt)

.

2. DsF =
∑

n,c 1Ac1,··· ,cnn
D̃n
s f

c1,··· ,cn
n (T1, · · · , Tn) , ∀s ∈ [0, T ].

3. Γ[F ] =
∑

n,c 1Ac1,··· ,cnn
γn[f c1,··· ,cnn ] (T1, · · · , Tn)

4. E(F ) =
∑

n,c p
c1,··· ,cn
n ec1,··· ,cnn [f c1,··· ,cnn ].

5. ||F ||2D1,2 = a2p0 +
∑

n,c p
c1,··· ,cn
n ||f c1,··· ,cnn ||2

d
c1,··· ,cn
n

.

Now let d ∈ N∗ and F = (F1, · · · , Fd) ∈ (D1,2)d, we denote by Γ[F ] the d × d
symmetric matrix (Γ[Fi, Fj ])1≤i,j≤d.

Theorem 2.5.7. (Energy image density property)
If F ∈ (D1,2)d, then F∗[(detΓ[F ]).P] is absolutely continuous with respect to the
Lebesgue measure νd on Rd.

Proof. Let B ⊂ Rd such that νd(B) = 0. We have to prove that

F∗[(detΓ[F ]).P](B) = 0 or equivalently, E[1B(F )detΓ[F ]] = 0.

Thanks to Proposition 2.5.11, we can write

F = a1A0 +

∞∑
n=1

∑
c1,··· ,cn∈K

1Ac1,··· ,cnn
f c1,··· ,cnn (T1, · · · , Tn),

with f c1,··· ,cnn ∈ (dc1,··· ,cnn )d,∀n ∈ N∗, ∀c1, · · · , cn ∈ K. Then

Γ[F, F ] =
∑
n,c

1Ac1,··· ,cnn
γn[f c1,··· ,cnn ] (T1, · · · , Tn) , and

E[1B(F )detΓ[F ]] =
∑
n,c

pc1,··· ,cnn

∫
Rn

1Bdetγn[f c1,··· ,cnn ]kc1,··· ,cnn dt.

By applying the part 2 of Proposition 2.5.10 for u = f c1,··· ,cnn , we obtain∫
Rn

1Bdetγn[f c1,··· ,cnn ]kc1,··· ,cnn dt = 0,∀n ∈ N∗.

Hence E[1B(F )detΓ[F ]] = 0.
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2.6 Application to SDEs involving the Markov chain

Reminding that the original works on Malliavin calculus aimed to study the existence
and the smoothness of densities of solutions to stochastic differential equations, this
section is contributed to infer the existence in some sense of a density from the
non-degeneracy of the Malliavin covariance matrix and deduce a simple result for
Markov chain driven stochastic differential equations.

First notice that every random variable F in Ω can not have a density nor the
Malliavin variance

∫ T
0 |DsF |2ds be a.s strictly positive. Indeed, from the decompo-

sition

F = a1A0 +
∞∑
n=1

∑
c1,··· ,cn∈K

1Ac1,··· ,cnn
f c1,··· ,cnn (T1, · · · , Tn)

we deduce that the law of F has a point mass at a (since P(F = a) ≥ P(NT = 0) =

P(T1 > T ) = e−λ1T > 0), and
∫ T

0 |DsF |2ds = 0 on {NT = 0}. Therefore, we shall
rather give conditions under which (1{NT≥1}P)F−1 has a density.
Now we will study the regularity of the solution of a stochastic differential equation
driven by the Markov chain (Ct). Let d ∈ N∗ and consider the SDE

Xt = x0 +

∫ t

0
f(s,Xs, Cs)ds+

∫ t

0
g(s,Xs−, Cs)dNs, (2.6.16)

or in the differential form

dXt = f(t,Xt, Ct)dt+ g(t,Xt−, Ct)dNt, X0 = x0.

where x0 ∈ Rd fixed, (Nt) is the process of culmulative of jumps of (Ct) defined by
(2.2.3) and the functions f, g : R+ × Rd ×K → Rd are measurable and satisfy

1. ∀t ∈ R+, ∀c ∈ K, the maps x 7→ f(t, x, c), x 7→ g(t, x, c) are C1.

2. sup(t,x,c) |∇xf(t, x, c)|+ |∇xg(t, x, c)| < +∞.

Remark 2.6.9. Here, the term g(s,Xs− , Cs) is not predictable but it is not a real
problem since N is of finite variation so that that this equation may be solved
pathwise. By adapting the proofs in Bichteler, Gravereaux and Jacod (1987), Jacod
(1979) or using the explicit expression of the solution given below, it is clear that
the equation (2.6.16) admits a unique solution, X, such that

∀T > 0, sup
t∈[0,T ]

|Xt| ∈
⋂
p≥1

Lp(Ω)

We would like to apply Theorem 2.5.7 to F = XT . For each k ∈ K, let {Φs,t(x, k), t ≥
s} denote the deterministic flow defined by

Φs,t(x, k) = x+

∫ t

s
f(u,Φs,u(x, k), k)du, or,

∂tΦs,t(x, k) = f(t,Φs,t(x, k), k), Φs,s(x, k) = x. (2.6.17)

We can see that Φs,t(x, k) exists and unique for every x ∈ Rd, k ∈ K. On the set
{Nt = 0}, Xs, 0 ≤ s ≤ t is the solution of

dXs = f(s,Xs, Z0)ds, X0 = x0.
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Hence we have Xs = Φ0,s(x0, Z0), 0 ≤ s ≤ t, and particularly Xt = Φ0,t(x0, Z0). In
case Nt ≥ 1, we have the following result:

Proposition 2.6.12. Let Ψ is the map: (t, x, k) ∈ R+ × Rd × K 7→ Ψ(t, x, k) =
x+ g(t, x, k). Then for any t ≥ 0 and i ∈ N∗,

Xt = ΦTi,t(., Zi)◦Ψ(Ti, ., Zi)◦· · ·◦ΦT1,T2(., Z1)◦Ψ(T1, ., Z1)◦Φ0,T1(x0, Z0) (2.6.18)

P a.e. on the set {Nt = i}.

Proof. We will prove (2.6.18) by induction. On the set {Nt = 1}, the process (Nt)
has a jump at T1. The equation remain unchanged for 0 ≤ s < T1, so Xs =
Φ0,s(x0, Z0), 0 ≤ s < T1. For T1 ≤ s ≤ t, Xs satisfies the following equation

dXs = f(s,Xs, Z1)ds, XT1 = Ψ(T1, XT1−, Z1).

We obtain Xs = ΦT1,s(XT1 , Z1) = ΦT1,s(Ψ(T1,Φ0,T1(x0, Z0), Z1), Z1), T1 ≤ s ≤ t.
Particularly,

Xt = ΦT1,t(XT1 , Z1) = ΦT1,t(., Z1) ◦Ψ(T1, ., Z1) ◦ Φ0,T1(x0, Z0).

Now suppose that (2.6.18) holds until i. Let consider the set {Nt = i+ 1}, i.e., the
set of trajectories of the Markov chain having i+ 1 jumps up to t. For Ti+1 ≤ s ≤ t,
Xs satisfies the following equation

dXs = f(s,Xs, Zi+1)ds, XTi+1 = Ψ(Ti+1, XTi+1−, Zi+1).

Hence Xs = ΦTi+1,s(Ψ(Ti+1, XTi+1−, Zi+1), Zi+1)). We obtain the formula for {Nt =
i+ 1} by using the induction assumption

XTi+1− = ΦTi,Ti+1(., Zi) ◦Ψ(Ti, ., Zi) ◦ · · · ◦ΦT1,T2(., Z1) ◦Ψ(T1, ., Z1) ◦Φ0,T1(x0, Z0).

From Equation (2.6.17), the process ∂tΦs,t(x, k) satisfies

∂t (∂tΦs,t(x, k)) = ∇xf(t,Φs,t(x, k), k)∂tΦs,t(x, k), ∂tΦs,s(x, k) = f(s, x, k),

which deduces

∂tΦs,t(x, k) = f(s, x, k)exp

(∫ t

s
∇xf(u,Φs,u(x, k), k)du

)
.

Similarly, the processes ∇xΦs,t(x, k) satisfies

∂t(∇xΦs,t(x, k)) = ∇xf(t,Φs,t(x, k), k)∇xΦs,t(x, k), ∇xΦs,s(x, k) = Id.

Hence,

∇xΦs,t(x, k) = exp

(∫ t

s
∇xf(u,Φs,u(x, k), k)du

)
.

We define

Kt(x) = ∇xXt(x), Ks
t (x) = (∇xXs

t ) (Xs(x)), ∀t ≥ s ≥ 0,
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where (Xs
t (x))t≥s is the solution of

Xs
t = x+

∫ t

s
f(u,Xs

u, Cu)du+

∫ t

s
g(u,Xs

u−, Cu)dNu. (2.6.19)

(Kt) satisfies the following SDE

Kt = Id +

∫ t

0
∇xf(s,Xs, Cs)Ksds+

∫ t

0
∇xg(s,Xs−, Cs)Ks−dNs. (2.6.20)

Suppose that det[Id + ∇g(., x, .)] 6= 0 and let (K̄t) be the solution of the following
SDE

K̄t = Id−
∫ t

0
∇xf(s,Xs, Cs)K̄sds−

∫ t

0
(Id+∇xg(s,Xs−, Cs))

−1∇xg(s,Xs−, Cs)K̄s−dNs.

(2.6.21)

Proposition 2.6.13. KtK̄t = 1, ∀t ≥ 0.

Proof. Indeed, the process Yt = KtK̄t satisfies Y0 = Id, and

dYt = K̄t−dKt +Kt−dK̄t + d[K, K̄]t

= Yt−(∇xf(t,Xt, Ct)dt+∇xg(t,Xt−, Ct)dNt)

+Yt−(−∇xf(t,Xt, Ct)dt− (Id +∇xg(t,Xt−, Ct))
−1∇xg(t,Xt−, Ct)dNt)

−Yt−(∇xg(t,Xt−, Ct))
2(Id +∇xg(t,Xt−, Ct))

−1dNt = 0.

From Equations (2.6.20) and (2.6.21), we obtain the recurrence property of Kt

and K̄t

KTi = (Id +∇xg(Ti, XTi−, Zi))KTi−

K̄Ti = (Id +∇xg(Ti, XTi−, Zi))
−1K̄Ti−.

Proposition 2.6.14. Ks
t (x) = Kt(x)K̄s(x), ∀t ≥ s ≥ 0.

Proof. We fix s ≥ 0. From Equation (2.6.19), we deduce the SDE satisfied by Ks
t

Ks
t = Id+

∫ t

s
∇xf(u,Xs

u(Xs(x)), Cu)Ks
udu+

∫ t

s
∇xg(u,Xs

u−(Xs(x)), Cu)Ks
u−dNu, or,

Ks
t = Id +

∫ t

s
∇xf(u,Xu, Cu)Ks

udu+

∫ t

s
∇xg(u,Xu−, Cu)Ks

u−dNu,∀t ≥ s.

In addition, Kt satisfies

Kt = Ks+

∫ t

s
∇xf(u,Xu, Cu)Kudu+

∫ t

s
∇xg(u,Xu−, Cu)Ku−dNu,∀t ≥ s. (2.6.22)

Therefore, Kt = Ks
tKs.
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Now we study the relationship between the Malliavin derivative and the deriva-
tive of flow of (Xt). In the Brownian case, we have (cf. Bouleau and Denis (2015))

DsXt = f(s,Xs, Cs)K
s
t , ∀0 ≤ s ≤ t.

In our case, the result is follow

Proposition 2.6.15. Let ϕ : R+×Rd×K → Rd defined by: ∀(t, x, k) ∈ R+×Rd×K,

ϕ(t, x, k) = f(t, x+ g(t, x, k), k)− (Id +∇xg(t, x, k))f(t, x, k)− ∂tg(t, x, k).

Then we have

1. DsXT = −
∫ T

0 Kt
Tϕ(t,Xt−, Ct)

(
t
T − 1[0,t](s)

)
dNt.

2. Γ[XT ] =
∫ T

0

∫ T
0 Kt

Tϕ(t,Xt−, Ct)ϕ
∗(u,Xu−, Cu)(Ku

T )∗
(
u ∧ t− ut

T

)
dNtdNu.

Proof. On the set {NT = i}, we have, for every 0 ≤ j ≤ i,

X
Tj
T (x) = ΦTi,T (., Zi) ◦Ψ(Ti, ., Zi) ◦ · · · ◦Ψ(Tj+1, ., Zj+1) ◦ ΦTj ,Tj+1(x, Zj)

= F (ΦTj ,Tj+1(x, Zj)),

where F = ΦTi,T (., Zi) ◦Ψ(Ti, ., Zi) ◦ · · · ◦Ψ(Tj+1, ., Zj+1). We will prove that

∂TjX
Tj
T (x) = −∇xX

Tj
T (x)f(Tj , x, Zj). (2.6.23)

Indeed, the left hand side equals to

−F ′(ΦTj ,Tj+1(x, Zj))∂tΦTj ,Tj+1(x, Zj),

and the right hand side equals to

−F ′(ΦTj ,Tj+1(x, Zj))∇xΦTj ,Tj+1(x, Zj)f(Tj , x, Zj).

The equation (2.6.23) is obtained by using the result

∂tΦTj ,Tj+1(x, Zj) = ∇xΦTj ,Tj+1(x, Zj)f(Tj , x, Zj).

We have

XTj−(x) = ΦTj−1,Tj (., Zj−1) ◦Ψ(Tj−1, ., Zj−1) ◦ · · · ◦Ψ(T1, ., Z1) ◦ Φ0,T1(x, Z0),

which deduces

∂TjXTj−(x) = ∂tΦTj−1,Tj (., Zj−1) (Ψ(Tj−1, ., Zj−1) ◦ · · · ◦Ψ(T1, ., Z1) ◦ Φ0,T1(x, Z0))

= f(Tj , XTj−(x), Zj).

Moreover, XTj (x) = Ψ(Tj , XTj−(x), Zj), so

∂TjXTj (x) = ∂tΨ(Tj , XTj−(x), Zj) +∇xΨ(Tj , XTj−(x), Zj)∂TjXTj−(x)

= ∂tΨ(Tj , XTj−(x), Zj) +∇xΨ(Tj , XTj−(x), Zj)f(Tj , XTj−(x), Zj).
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As XT (x) = X
Tj
T (XTj (x)), by using Equation (2.6.23) we deduce

∂TjXT (x) = ∂TjX
Tj
T (XTj (x)) +∇xX

Tj
T (XTj (x))∂TjXTj (x)

= −KTj
T (x)ϕ(Tj , XTj−(x), Zj).

Hence,

DsXT =

i∑
j=1

∂XT

∂Tj
DsTj = −

i∑
j=1

K
Tj
T ϕ(Tj , XTj−, Zj)DsTj

= −
i∑

j=1

K
Tj
T ϕ(Tj , XTj−, Zj)

(
Tj
T
− 1[0,Tj ](s)

)

= −
∫ T

0
Kt
Tϕ(t,Xt−, Ct)

(
t

T
− 1[0,t](s)

)
dNt.

And the second statement follows as

Γ[XT ] =

∫ T

0
DsXT (DsXT )∗ds

=

∫ T

0
ds
(∫ T

0
Kt
Tϕ(t,Xt−, Ct)

(
t

T
− 1[0,t](s)

)
dNt

×
∫ T

0
ϕ∗(u,Xu−, Cu)(Ku

T )∗
( u
T
− 1[0,u](s)

)
dNu

)
=

∫ T

0

∫ T

0
Kt
Tϕ(t,Xt−, Ct)ϕ

∗(u,Xu−, Cu)(Ku
T )∗

×
(∫ T

0

(
t

T
− 1[0,t](s)

)( u
T
− 1[0,u](s)

)
ds

)
dNtdNu

=

∫ T

0

∫ T

0
Kt
Tϕ(t,Xt−, Ct)ϕ

∗(u,Xu−, Cu)(Ku
T )∗

(
u ∧ t− ut

T

)
dNtdNu.

Now we can use the criterion of density in D1,2. We define

C = {det
(∫ T

0

∫ T

0
Kt
Tϕ(t,Xt−, Ct)ϕ

∗(u,Xu−, Cu)(Ku
T )∗

(
u ∧ t− ut

T

)
dNtdNu

)
> 0}.

As a consequence of Theorem 2.5.7, we have

Proposition 2.6.16. (Existence of density of XT ) If P(C) > 0 then the conditional
law of XT (x) given C is absolutely continuous with respect to the Lebesgue measure
on Rd.

Now we consider the case d = 1. For each subset A of K, we denote by NA
t the

number of times that the Markov chain (Ct) passes through A up to t.

Proposition 2.6.17. Assume that there exists a subset A of K such that for every
k ∈ A and every t ∈ R+, x ∈ Rd, ϕ(t, x, k) 6= 0. Then the conditional law of XT (x)
given {NA

T ≥ 1} is absolutely continuous with respect to Lebesgue measure on R.



2.7. COMPUTATION OF GREEKS 57

Proof. The results is obtained by using Proposition 2.6.16 and

Γ[XT ] =

∫ T

0

(∫ T

0
Kt
Tϕ(t,Xt−, Ct)

(
t

T
− 1[0,t](s)

)
dNt

)2

ds ≥ 0.

By using the same argument as Proposition 2.5.10, Γ[XT ] = 0 deduces that

Kt
Tϕ(t,Xt−, Ct) = 0, a.s. ∀t ∈ [0, T ].

This can not happen since Kt
T 6= 0 a.s.∀t ∈ [0, T ] and ϕ(t,Xt−, Ct) 6= 0 a.s. when

Ct ∈ A.

In case the functions f and g do not depend on t, we can see that the function ϕ
vanishes when g(x, k) = −x and f(0, k) = 0. In this case, the solution jumps to 0 at
the first jump and then stays there. In the next proposition, we will give a sufficient
condition for which the condition in Proposition 2.6.17 will be satisfied.

Theorem 2.6.8. A sufficient condition for the measure (1{NT≥1}P)X−1
T to be ab-

solutely continuous with respect to one dimensional Lebesgue measure is that:

|W (g, f)(x, k)| > 1

2
||f ′′(., k)||∞||g(., k)||2∞, ∀x ∈ R, k ∈ K,

where W (g, f)(x, k) = g′(x, k)f(x, k)− f ′(x, k)g(x, k) is the Wronskian of f and g,
and all the derivatives are with respect to x.

Proof. By applying Taylor expansion for f(x, k) on x, we have

ϕ(x, k) = f(x+ g(x, k), k)− f(x, k)− g′(x, k)f(x, k)

= g(x, k)f ′(x, k) +
1

2
f ′′(ξx, k)g2(x, k)− g′(x, k)f(x, k)

=
1

2
f ′′(ξx, k)g2(x, k)−W (g, f)(x, k),

for some ξx between x and x+ g(x, k).

2.7 Computation of Greeks

In this section, we would like to use the same technique as the classical Malliavin
calculus for the case of Markov chain to compute greeks by using the integration by
part formula. We start with a technical lemma.

Lemma 2.7.4. Let (a, b) be an open interval of R. Let (F x)x∈(a,b) and (Gx)x∈(a,b) be
two families of random variables, continuously differentiable in Dom(D) depending
on the parameter x ∈ (a, b). Let m ∈ H satisfy

DmF
x 6= 0, a.s on {∂xF x 6= 0}, x ∈ (a, b),

and such that mGx∂xF
x/DmF

x is continuous in x in Dom(δ). We have

∂

∂x
E[Gxf(F x)] = E

[
f(F x)δ

(
Gxm

∂xF
x

DmF x

)]
+ E[∂xG

xf(F x)]

where f is a function such that f(F x) ∈ L2(Ω), x ∈ (a, b).
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Proof. We first prove Lemma with f ∈ C∞b (R).

∂

∂x
E[Gxf(F x)] = E[Gxf ′(F x)∂xF

x] + E[∂xG
xf(F x)].

= E
[
Gx

Dmf(F x)

DmF x
∂xF

x

]
+ E[∂xG

xf(F x)]

= E
[
Gx

∂xF
x

DmF x
Dmf(F x)

]
+ E[∂xG

xf(F x)]

= E
[
f(F x)δ

(
Gxm

∂xF
x

DmF x

)]
+ E[∂xG

xf(F x)].

The last equation follows from Remark 2.4.4. For an arbitrary function f such that
f(F x) ∈ L2(Ω), x ∈ (a, b), we can aprroximate f by a sequence (fn)n∈N of smooth
functions. We have

∂

∂x
E[Gxfn(F x)] = E

[
fn(F x)δ

(
Gxm

∂xF
x

DmF x

)]
+ E[∂xG

xfn(F x)],

so ∣∣∣∣E [f(F x)δ

(
Gxm

∂xF
x

DmF x

)]
+ E[∂xG

xf(F x)]− ∂

∂x
E[Gxfn(F x)]

∣∣∣∣
=

∣∣∣∣E [(f(F x)− fn(F x))

(
δ

(
Gxm

∂xF
x

DmF x

)
+ ∂xG

x

)]∣∣∣∣
≤ ||f(F x)− fn(F x)||L2(Ω)

∣∣∣∣∣∣∣∣δ(Gxm ∂xF
x

DmF x

)
+ ∂xG

x

∣∣∣∣∣∣∣∣
L2(Ω)

→ 0 as n→∞.

We obtain the result for f by using the closability and the fact that

E[Gxfn(F x)]→ E[Gxf(F x)] as n→∞.

Again, by Remark 2.4.4, the weight δ

(
Gxm

∂xF
x

DmF x

)
can be computed as

δ

(
Gxm

∂xF
x

DmF x

)
= Gx

∂xF
x

DmF x
δ(m)−Dm

(
Gx

∂xF
x

DmF x

)
= Gx

∂xF
x

DmF x

∫ T

0
m(t)dÑt −Gx

Dm∂xF
x

DmF x
+Gx

∂xF
x

(DmF x)2
D2
m2F

x −DmG
x ∂xF

x

DmF x
.

2.7.1 First derivatives

For first derivatives, we have Gx = 1, so

∂

∂x
E[f(F x)] = E

[
f(F x)δ

(
m
∂xF

x

DmF x

)]
with

δ1 = δ

(
m
∂xF

x

DmF x

)
=

∂xF
x

DmF x
δ(m)− Dm∂xF

x

DmF x
+

∂xF
x

(DmF x)2
D2
m2F

x.
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Linear case

In the linear case, we have F x = xF . Hence the weight for first derivatives is

δ1 = δ

(
m
∂xF

x

DmF x

)
=

1

x

(
F

DmF
δ(m)− 1 +

F

(DmF )2
D2
m2F

)
. (2.7.24)

2.7.2 Second derivatives

For second derivatives, by assuming that m ∈ C2
c ([0, T ]) and applying the technical

lemma for Gx = δ1 we have

∂2

∂x2
E[f(F x)] =

∂

∂x
E
[
f(F x)δ1

]
= E

[
f(F x)δ

(
δ1m

∂xF
x

DmF x

)]
+ E

[
∂xδ

1f(F x)
]
,

where

δ

(
δ1m

∂xF
x

DmF x

)
= δ1 ∂xF

x

DmF x
δ(m)−Dm

(
δ1 ∂xF

x

DmF x

)
= δ1 ∂xF

x

DmF x
δ(m)−Dmδ

1 ∂xF
x

DmF x
− δ1

(
Dm∂xF

x

DmF x
− ∂xF

x

(DmF x)2
D2
m2F

x

)
.

Linear case

In the linear case, the weight for second derivatives is then

δ2 = ∂xδ
1 + δ

(
δ1m

∂xF
x

DmF x

)
=
−δ1

x
+

1

x

(
δ1 F

DmF
δ(m)−Dmδ

1 F

DmF
− δ1

(
1− F

(DmF )2
D2
m2F

))
.

Now we compute Dmδ
1. From Equation (2.7.24), we have

xDmδ
1 = Dm

F

DmF
δ(m) +

F

DmF
Dmδ(m) +Dm

F

(DmF )2
D2
m2F +

F

(DmF )2
D3
m3F

=

(
1− F

(DmF )2
D2
m2F

)
δ(m)− F

DmF

(∫ T

0
ṁ(s)m̂(s)dÑs −

∫ T

0
λ(Cs)m

2(s)ds

)
+

(
1− 2F

(DmF )2
D2
m2F

)
D2
m2F

DmF
+

F

(DmF )2
D3
m3F.

where Dmδ(m) is defined by (2.4.11).

2.7.3 Fundamental computations

Let F : R+ × N × Ω → R such that for every t ∈ R+, k ∈ N, F (t, k) is a random
variable in L2(Ω). The partial finite difference operator ∇k is defined as

∇kF (t, k) = F (t, k)− F (t, k − 1).

We are now interested in the derivation of the quantities
∫ T

0 F (t,Nt)dt and
∫ T

0 F (t,Nt)dNt,
which usually appear in the solutions of stochastic differential equations.
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Proposition 2.7.18. Let m ∈ H and assume that F (t, k) ∈ D1,2
m for every t ∈

R+, k ∈ N. We have

Dm

∫ T

0
F (t,Nt)dt =

∫ T

0
∇kF (t,Nt)m̂(t)dNt +

∫ T

0
[DmF ](t,Nt)dt.

Proof.

Dm

∫ T

0
F (t,Nt)dt = Dm

NT−1∑
k=0

∫ Tk+1

Tk

F (t, k)dt+Dm

∫ T

TNT

F (t,NT )dt

=

NT−1∑
k=0

(
F (Tk+1, k)DmTk+1 − F (Tk, k)DmTk +

∫ Tk+1

Tk

[DmF ](t, k)dt

)

−F (TNT , NT )DmTNT +

∫ T

TNT

[DmF ](t,NT )dt

=

NT∑
k=1

DmTk(F (Tk, k − 1)− F (Tk, k)) +

∫ T

0
[DmF ](t,Nt)dt

= −
NT∑
k=1

DmTk∇kF (Tk, k) +

∫ T

0
[DmF ](t,Nt)dt

=

∫ T

0
∇kF (t,Nt)m̂(t)dNt +

∫ T

0
[DmF ](t,Nt)dt.

Proposition 2.7.19. Let m ∈ H and assume that F (t, k) ∈ D1,2
m for every t ∈

R+, k ∈ N, F (., k) ∈ C1
c ([0, T ]) for every k ∈ N. We have

Dm

∫ T

0
F (t,Nt)dNt = −

∫ T

0
∂tF (t,Nt)m̂(t)dNt +

∫ T

0
[DmF ](t,Nt)dNt

Proof. We have

Dm

∫ T

0
F (t,Nt)dNt = Dm

NT∑
k=0

F (Tk, k) =

NT∑
k=0

∂tF (Tk, k)DmTk + [DmF ](Tk, k)

= −
∫ T

0
∂tF (t,Nt)m̂(t)dNt +

∫ T

0
[DmF ](t,Nt)dNt.

Corollary 2.7.6. Let m,u ∈ H and assume that F (t, k) ∈ D1,2
m for every t ∈ R+, k ∈

N, F (., k) ∈ C1
c ([0, T ]) a.s. for every k ∈ N. We have

D2
um

∫ T

0
F (t,Nt)dt = −

∫ T

0

(
m(t)∇kF (t,Nt) + [∂t∇kF ](t,Nt)m̂(t)

)
û(t)dNt

+

∫ T

0

(
[Du∇kF ](t,Nt)m̂(t) +∇k[DmF ](t,Nt)û(t)

)
dNt +

∫ T

0
[D2

umF ](t,Nt)dt.
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Proof. By applying Proposition 2.7.18, we have

D2
um

∫ T

0
F (t,Nt)dt = Du

∫ T

0
∇kF (t,Nt)m̂(t)dNt +Du

∫ T

0
[DmF ](t,Nt)dt.

Again, by Proposition 2.7.18, the second term on the right hand side is equal to∫ T

0
∇k[DmF ](t,Nt)û(t)dNt +

∫ T

0
[D2

umF ](t,Nt)dt.

The first term on the right hand side is equal to, by Proposition 2.7.19,

−
∫ T

0
∂t

(
∇kF (t,Nt)m̂(t)

)
û(t)dNt +

∫ T

0
Du

(
∇kF (t,Nt)m̂(t)

)
dNt

= −
∫ T

0

(
m(t)∇kF (t,Nt) + [∂t∇kF ](t,Nt)m̂(t)

)
û(t)dNt

+

∫ T

0
[Du∇kF ](t,Nt)m̂(t)dNt.

Corollary 2.7.7. Assume that F (t, k) does not depend on the jump times of (Nt),
i.e., [DmF ](t, k) = 0, ∀t ∈ [0, T ], k ∈ N, m ∈ H, and that F (., k) ∈ C2

c ([0, T ]) a.s.
for every k ∈ N. Then for every u, v ∈ H and m ∈ C1

c ([0, T ]), we have

D3
vum

∫ T

0
F (t,Nt)dt =

∫ T

0

(
(mu+ ṁû)∇kF+(2mû+ um̂) ∂t∇kF+m̂û∂2

t∇kF
)
v̂ dNt.

Proof. As F (t, k) does not depend on the jump times of (Nt), so these terms
[Du∇kF ](t,Nt), [∇kDuF ](t,Nt), ∇k[DmF ](t,Nt), [D2

umF ](t,Nt) are all equal to 0.
By using Corollary 2.7.6, we obtain

D2
um

∫ T

0
F (t,Nt)dt = −

∫ T

0
(m∇kF (t,Nt) + [∂t∇kF ](t,Nt)m̂) ûdNt.

By taking the directional derivative with respect to v in both sides and using Propo-
sition 2.7.19, D3

vum

∫ T
0 F (t,Nt)dt is equal to∫ T

0
∂t [(m∇kF + ∂t∇kFm̂) û] v̂dNt −

∫ T

0
Dv [(m∇kF + ∂t∇kFm̂) û] dNt,

where the second integral is equal to 0 by assumption, and the first integral is equal
to ∫ T

0

( (
ṁ∇kF +m∂t∇kF +m∂t∇kF + ∂2

t∇kFm̂
)
û
)
v̂dNt

+

∫ T

0

(
(m∇kF + ∂t∇kFm̂)u

)
v̂dNt

=

∫ T

0

(
(mu+ ṁû)∇kF + (2mû+ um̂) ∂t∇kF + m̂û ∂2

t∇kF
)
v̂ dNt.
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2.7.4 Market model

In this section we assume that the underlying asset price under the risk-neutral
probability follows the following SDE

dSxt = r(t, Ct)S
x
t dt+ σ(t, Ct)S

x
t−dÑt, S

x
0 = x, (2.7.25)

where r, σ are deterministic function and Ñt = Nt −
∫ t

0 λ(Cs)ds. Put

α(t, k) = r(t, k)− λ(k)σ(t, k), k ∈ K,

Equation (2.7.25) can be rewritten as

dSxt = α(t, Ct)S
x
t dt+ σ(t, Ct)S

x
t−dNt, S

x
0 = x.

Now we are in the framework of Equation (2.6.16) with f(t, x, k) = α(t, k)x, g(t, x, k) =
σ(t, k)x. Let {Φs,t(x, k), t ≥ s} be the solution of

∂tΦs,t(x, k) = α(t, k)Φs,t(x, k), Φs,s(x, k) = x.

Therefore,

Φs,t(x, k) = x exp

(∫ t

s
α(u, k)du

)
.

By applying Proposition 2.6.12, we obtain

Sxt = ΦTi,t(., Zi) ◦Ψ(Ti, ., Zi) ◦ · · · ◦ ΦT1,T2(., Z1) ◦Ψ(T1, ., Z1) ◦ Φ0,T1(x, Z0),

on the set {Nt = i} for any t ≥ 0 and i ∈ N∗, where Ψ(t, x, k) = x(1 + σ(t, k)),
n ≥ 1. Hence,

Sxt = xS(t,Nt), where S(t, k) = exp

(∫ t

0
α(u,Cu)du

) k∏
j=1

(1 + σ(Tj , Zj)).

For every k ∈ K, t ≥ 0, we have

∇kS(t, k) = e
∫ t
0 α(u,Cu)du

k∏
j=1

(1 + σ(Tj , Zj))− e
∫ t
0 α(u,Cu)du

k−1∏
j=1

(1 + σ(Tj , Zj))

= S(t, k − 1)σ(Tk, Zk).

[DmS] (t, k) = S(t, k)

Dm

∫ t

0
α(u,Cu)du+

k∑
j=1

∂tσ(Tj , Zj)

1 + σ(Tj , Zj)
DmTj


= S(t, k)

k∑
j=1

(
α(Tj , Zj−1)− α(Tj , Zj) +

∂tσ(Tj , Zj)

1 + σ(Tj , Zj)

)
DmTj .

In our numerical implementation, we choose r(t, k) = r ∈ R+, σ(t, k) = k, then
α(t, k) = r − λ(k)k does not depend on t, and

∇kS(t, k) = S(t, k − 1)Zk,

[DmS] (t, k) = S(t, k)Dmα̂(t) = S(t, k)
k∑
j=1

(αj−1 − αj)DmTj ,
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where α̂(t) =
∫ t

0 α(u,Cu)du, αi = r − Ziλ(Zi). By applying Proposition 2.7.18,
Proposition 2.7.19, Corollaries 2.7.6 and 2.7.7, we have

Dm

∫ T

0
S(t,Nt)dt =

∫ T

0
S(t,Nt − 1)Ctm̂(t)dNt +

∫ T

0
S(t,Nt)Dmα̂(t)dt

D2
m2

∫ T

0
S(t,Nt)dt = −

∫ T

0

(
m(t)∇kS(t,Nt) + [∂t∇kS](t,Nt)m̂(t)

)
m̂(t)dNt

+

∫ T

0

(
[Dm∇kS](t,Nt)m̂(t) +∇k[DmS](t,Nt)m̂(t)

)
dNt +

∫ T

0
[D2

m2S](t,Nt)dt

= −
∫ T

0

(
m(t)S(t,Nt − 1)Ct + ∂tS(t,Nt − 1)Ctm̂(t)

)
m̂(t)dNt

+

∫ T

0

(
[DmS](t,Nt − 1)Ctm̂(t) +∇kS(t,Nt)Dmα̂(t)m̂(t)

)
dNt +

∫ T

0
[D2

m2S](t,Nt)dt

= −
∫ T

0

(
m(t) + α(t, Ct)m̂(t)

)
S(t,Nt − 1)Ctm̂(t)dNt,

+ 2

∫ T

0

(
S(t,Nt − 1)CtDmα̂(t)m̂(t)

)
dNt +

∫ T

0
[D2

m2S](t,Nt)dt.

for every m ∈ C1
c ([0, T ]). The last term [D2

m2S](t,Nt) is equal to

DmS(t,Nt)Dmα̂(t) + S(t,Nt)D
2
m2α̂(t) = S(t,Nt)

(
(Dmα̂(t))2 +D2

m2α̂(t)
)
,

where D2
m2α̂(t) is equal to

Nt∑
j=1

(αj−1 − αj)D2
m2Tj =

Nt∑
j=1

(αj−1 − αj)m(Tj)DmTj .

2.7.5 Simulation

In this section, we will compute the delta by two methods, Malliavin calculus and
the finite difference method, for a binary (resp. standard) asian call with payoff

1[K,∞[(
1
T

∫ T
0 Sxt dt) (resp. ( 1

T

∫ T
0 Sxt dt−K)+), where K is the strike price. The call

price is computed as P (x) = E[f(F x)], where F x = xF , F =
∫ T

0 S(t,Nt)dt with
f(u) = e−rT 1[K,∞[(

u
T ) (resp. f(u) = e−rT ( uT − K)+). With the convention that

T0 = 0, TNT+1 = T and
∏0
i=1(1 + Zi) = 1, we have

F =

∫ T

0
S(t,Nt)dt =

∫ T

0
e
∫ t
0 α(u,Cu)du

Nt∏
i=1

(1 + Zi)dt

=

NT∑
j=0

j∏
i=1

(1 + Zi)

∫ Tj+1

Tj

e
∫ t
0 α(u,Cu)dudt

=

NT∑
j=0

j∏
i=1

(1 + Zi)e
∫ Tj
0 α(u,Cu)du e

αj(Tj+1−Tj) − 1

αj
.
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By using the formula of DmF,D
2
m2F,D

3
m3F computed in the previous section, we

receive the first and second derivatives. More precisely,

DmF =

NT∑
j=1

STj−Zjm̂(Tj) +

NT∑
j=0

Dmα̂(Tj)

j∏
i=1

(1 + Zi)e
∫ Tj
0 α(u,Cu)du e

αj(Tj+1−Tj) − 1

αj
,

D2
m2F = −

NT∑
j=1

(m(Tj) + αjm̂(Tj))STj−Zjm̂(Tj) + 2

NT∑
j=1

STj−ZjDmα̂(Tj)m̂(Tj)

+

NT∑
j=0

(
(Dmα̂(Tj))

2 +D2
m2α̂(Tj)

) j∏
i=1

(1 + Zi)e
∫ Tj
0 α(u,Cu)du e

αj(Tj+1−Tj) − 1

αj
.

where ST−j
:= S(Tj , j−1) = e

∫ Tj
0 α(u,Cu)dt

∏j−1
i=1 (1+Zi) = e

∑j−1
i=0 αi(Ti+1−Ti)∏j−1

i=1 (1+

Zi). For numerical simulation, we consider a Markov chain of two states K =
{0.1, 0.2} with corresponding intensities λ(1) = 2.5, and λ(2) = 1.5. We take T = 2
(years), x = 10, r = 0, m̂(t) = sin(πt/T ), m(t) = π/Tcos(πt/T ). Hence,

δ(m) =

∫ T

0
m(t)dÑt =

∫ T

0
m(t)dNt −

∫ T

0
m(t)λ(Ct)dt

=

NT∑
i=1

m(Ti)− λ(Zi−1)

∫ Ti

Ti−1

m(t)dt− λ(ZNT )

∫ T

TNT

m(t)dt

=

NT∑
i=1

m(Ti) + (λ(Zi)− λ(Zi−1))m̂(Ti).

Remind that the finite difference method gives delta as

delta =
P (x+ ε)− P (x− ε)

2ε
,

where ε is taken small enough. We choose ε = 0, 001.
Figure 2.1 compares the convergence of the delta computed by the finite dif-

ference method and the Malliavin method for at the money binary Asian call and
standard Asian call. The Mallavin method is more stable than the finite difference
method for binary Asian calls and vice versa for the standard Asian calls. Table 2.1
shows more details for different strikes. We observe that the finite difference method
converges rapidly for standard Asian calls but explodes for binary Asian calls (the
relative standard errors are extremely high). Contrarily, the Malliavin method con-
verges more slowly for standard Asian calls but it works stably for two kinds of call
since the Malliavin method uses same weights for every payoff.
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Figure 2.1: Comparison the convergence of the delta computed by the finite differ-
ence method and the Malliavin method in case K = 10 for binary Asian call (left)
and standard Asian call (right) with 106 simulations.

Method delta 95% CI Rel. SE
FD 0.454 [−0.50, 1.41] 104.8 %
M 0.238 [0.13, 0.34] 21.9%

Method delta 95% CI Rel. SE
FD 0.875 [0.85, 0.90] 1.7%
M 0.869 [0.68, 1.06] 10.8%

Method delta 95% CI Rel. SE
FD 0.266 [−0.46, 0.99] 137.1 %
M 0.246 [0.19, 0.30] 11.5%

Method delta 95% CI Rel. SE
FD 0.624 [0.59, 0.66] 3.0%
M 0.623 [0.48, 0.76] 11.1%

Method delta 95% CI Rel. SE
FD 0.212 [−0.44, 0.86] 153.5%
M 0.209 [0.16, 0.26] 11.2%

Method delta 95% CI Rel. SE
FD 0.390 [0.35, 0.43] 4.8%
M 0.386 [0.29, 0.49] 12.8%

Table 2.1: Comparison of deltas (value, 95% confidence interval, and relative stan-
dard error) computed by the finite difference (FD) method and the Malliavin (M)
method for binary Asian call (left) and standard Asian call (right) with 106 simula-
tions for different strikes: (top) K = 9, (middle) K = 10, (bottom) K = 11.
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Chapter 3

Malliavin calculus for Markov
chains using chaos
decomposition

3.1 Fully homogeneous Markov chain

Let consider a time-continuous homogeneous Markov chain Ĉ = (Ĉt)t∈[0,T ] on a fil-

tered probability space (Ω̂, F̂ , (F̂t)t∈[0,T ], P̂) where (F̂t)t∈[0,T ] is the natural filtration

of Ĉ, with a finite state space K of l elements, which we shall, for algebraic purpose,
identify with Z/lZ = {0̄, 1̄, · · · , l − 1}. Moreover, we assume that Ĉ admits the
associated infinitesimal generator matrix

Λ =


−(l − 1) 1 · · · 1

1 −(l − 1) · · · 1
...

...
. . .

...
1 1 · · · −(l − 1)

 . (3.1.1)

That means at any time 0 ≤ t ≤ T , the intensity of jump of Ĉt is l − 1, and the
probability that the Markov chain jump to any other state is equal to 1

l−1 . We
call a Markov chain with such a generator matrix a “fully homogeneous Markov
chain”. We refer to Section 1.4 and Bielecki, Crépey, and Herbertsson (2009) for
more properties of Ĉ and Λ.

3.1.1 Fundamental martingales

For any k ∈ K∗ = K\{0̄}, let the counting process Nk
t denote the number of times

that the Markov chain Ĉ jumps with size k up to time t, i.e., Nk
t =

∑
s≤t 1{Ĉs=Ĉs−+k}

where the sum takes over only a finite number of terms. Then Nk
t is a homogeneous

Poisson process with intensity 1, and for k 6= k′, the processes (Nk
t ) and (Nk′

t )
are independent since they never jump together. The compensated martingales
(N̂k)k∈K∗ are defined by

dN̂k
t = dNk

t − dt, N̂k
0 = 0.

67
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The family of martingales (N̂k)k∈K∗ together with the initial state of Ĉ (normally
starts at 0) give us the total information about the Markov chain Ĉ, which is the
reason why we call (N̂k)k∈K∗ the fundamental martingales of the model.

Let also Nt be the number of jumps of Ĉ up to time t

Nt =
∑
k∈K∗

Nk
t =

∑
s≤t

1{Ĉs 6=Ĉs−}. (3.1.2)

Nt is the sum of l − 1 homogeneous Poisson processes with intensity 1 which are
mutually independent (since they never jump together), so it is also a homogeneous
Poisson process with intensity l − 1 with compensated martingale is defined by

dN̂t = dNt − (l − 1)dt, N̂0 = 0.

3.1.2 Poisson random measure interpretation

Let (Zi)i≥1 denote the sequence of successive jump sizes of the Markov chain Ĉ. For
every i ≥ 1, Zi is a random variable with value in K∗ and the Markov chain (Ĉt)
can be represented as follow

Ĉt =

Nt∑
i=1

Zi, (3.1.3)

where Nt is the Poisson process defined by (3.1.2). Since the probability that the
Markov chain jump to any other state is equal, the jump sizes (Zi)i≥0 are i.i.d. with
uniform distribution σ in K∗ and hence, Ĉt is a compound Poisson process.

Let M be the jump measure of Ĉ then M is a Poisson random measure on [0, T ]×
K∗ with intensity measure µ(dt, dz) = (l − 1)dtσ(dz) and compensated measure
M̃(dt, dz) = M(dt, dz) − µ(dt, dz) (see Cont and Tankov (2003)). All results in
Section 1.2 follow for this M̃ measure with R0 = K∗.

Remark 3.1.10. In our case R0 = K∗, the integrals in L2(ν) can be simplified as∫ T

0

∫
K∗

f(t, z)µ(dt, dz) =

∫ T

0

∫
K∗

∑
k∈K∗

f(t, z)1z=k(l−1)dtσ(dz) =

∫ T

0

∑
k∈K∗

f(t, k)dt

for every real function f ∈ L2(ν). Similarly,∫ T

0

∫
K∗
· · ·
∫ T

0

∫
K∗

fn(t1, z1, · · · , tn, zn)µ(dt1, dz1) · · ·µ(dtn, dzn)

=

∫ T

0
· · ·
∫ T

0

∑
ki∈K∗

f(t1, k1, · · · , tn, kn)dt1 · · · dtn

for every real function fn ∈ L2(νn).

3.2 Non-homogeneous Markov chain

Let

Λ(t) =


λ0,0(t) λ0,1(t) · · · λ0,K−1(t)
λ1,0(t) λ1,1(t) · · · λ1,K−1(t)

...
...

. . .
...

λK−1,0(t) λK−1,1(t) · · · λK−1,K−1(t)

 (3.2.4)
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which will play the role of an infinitesimal generator matrix associated with a Markov
chain, where λi,i(t) = −

∑
j 6=i λi,j(t), for every 0 ≤ i ≤ K − 1, 0 ≤ t ≤ T .

3.2.1 Change of measure

In this section, we will show that we can obtain a non-homogeneous Markov chain
with the infinitesimal generator matrix Λ(t) defined by (3.2.4) from a fully homo-
geneous Markov chain Ĉt considered in Section 3.1 having infinitesimal generator
matrix Λ defined by (3.1.1), by a change of measure.

Let Γ be a P̂-martingale defined by Γ0 = 1, and for 0 ≤ t ≤ T ,

dΓt
Γt−

=
∑
k∈K∗

(
λk(t, Ĉt−)− 1

)
dN̂k

t , (3.2.5)

where λk(t, Ĉt−) = λĈt−,Ĉt−+k(t). We deduce

Γt =
∏
k∈K∗

E
(∫ t

0

(
λk(s, Ĉs−)− 1

)
dN̂k

s

)
.

where E signifies the Doléans-Dade exponential.By applying the formula

E(Yt) = eYt−Y0
∏

0≤s≤t
(1 + ∆Ys)e

−∆Ys

for Yt =
∫ t

0

(
λk(s, Ĉs−)− 1

)
dN̂k

s , we have

Γt =
∏
k∈K∗

e∫ t0 (1−λk(s,Ĉs−))ds
∏

τk≤t,Ĉτk=Ĉτk−+k

λk(τk, Ĉτk−)


= e

∑
k∈K∗

∫ t
0 (1−λk(s,Ĉs−))ds

∏
k∈K∗

∏
τk≤t,Ĉτk=Ĉτk−+k

λk(τk, Ĉτk−)

= e
∫ t
0 (λ(s,Ĉs−)+K−1)ds

∏
τ≤t,Ĉτ 6=Ĉτ−

λ(τ, Ĉτ−, Ĉτ ) (3.2.6)

We use Γt as the Radon- Nikodym density to define a measure P satisfying

dP
dP̂

∣∣∣
Ft

= Γt, 0 ≤ t ≤ T. (3.2.7)

We will prove that under the new measure P, the Markov chain Ĉt∈[0,T ] has the in-

finitesimal generator matrix Λ(t), i.e., we have to prove that the processes (Nk
t )t∈[0,T ], k ∈

K∗ defined by
dÑk

t = dNk
t − λk(t, Ĉt−)dt, Ñk

0 = 0

are P-martingales. Indeed, for every k ∈ K∗,

d(Ñk
t Γt) = Ñk

t−dΓt + Γt−dÑ
k
t + d[Γ, Ñk]t

= Ñk
t−dΓt + Γt−(dNk

t − λk(t, Ĉt−)dt) + Γt−

(
λk(t, Ĉt−)− 1

)
dNk

t

= Ñk
t−dΓt + Γt−λ

k(t, Ĉt−)(dNk
t − dt)

= Ñk
t−dΓt + Γt−λ

k(t, Ĉt−)dN̂k
t .



70 CHAPTER 3. MALLIAVIN CALCULUS FOR MC USING CHAOS DECOM.

Hence (Ñk
t Γt)t∈[0,T ]is a P̂-martingale. By the definition of martingale, we have

Ê[Ñk
t Γt|Fs] = Ñk

s Γs, ∀0 ≤ s ≤ t ≤ T. (3.2.8)

From the conditional version of the Bayes formula, we obtain

Ê[Ñk
t Γt|Fs] = ΓsE[Ñk

t |Fs], ∀0 ≤ s ≤ t ≤ T. (3.2.9)

Moreover, we have Γs > 0,P almost surely since

P (Γs = 0) = E[1{Γs=0}] = Ê[ΓT1{Γs=0}] = 0,

combining with (3.2.8) and (3.2.9), we have

E[Ñk
t |Fs] = Ñk

s P a.s.∀0 ≤ s ≤ t ≤ T,

i.e., (Ñk
t )t∈[0,T ] is a P-martingale.

3.3 Application in greeking CDO

CDO tranches are credit derivatives that ensure protection to the buyer against
losses due to the defaults of the names of a pool of reference entities. Though CDO
issuances have become quite rare since the crisis, there is still a huge amount of
outstanding CDO contracts which need to be marked to market and hedged up to
their maturity dates. Therefore, the task of pricing and greeking CDOs and the
credit portfolios in general is still relevant.

We consider a risk neutral pricing model (Ω,F ,P, (Ft)t∈[0,T ]) where T ≥ 0 is a
fixed time horizon and (Ft)t∈[0,T ] is the natural filtration of the Markov chain. We
denote Nn the set of all subsets of {1, 2, · · · , n} where n is the number of obligors
in the underlying credit portfolio.

3.3.1 Homogeneous-group model

In the homogeneous-group model, the n names of the pool are shared into k groups

of ν − 1 =
n

k
homogeneous obligors (taking n as a multiple of k). The cumulative

default processes N l, l = 1, · · · , k in the different groups are jointly modeled as a
continuous-time d-variate Markov chain N = (N1, · · · , Nk) with the components
in Nν = {0, 1, · · · , ν − 1}. So N lives in the state space I = Nkν . Moreover, we
assume no simultaneous default, so the cumulative default processes N l never jump
together.

The homogeneity in the name of the model comes from the fact that at every
time t, knowing the number of defaults in each group, the default intensities of
all survivors in the group are the same and given by some pre-default individual
intensity functions λ̃l : [0, T ]×I → R+. Hence, the intensity of jump in the group l
is given by

λl(t, ı) = (ν − 1− il)λ̃l(t, ı),
where ı = (i1, · · · , ik) ∈ I is the current state of N , and il is the number of defaults
in the lth group. The compensated process

M l
t = N l

t −
∫ t

0
λl(s,Ns)ds
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is an F-martingale under P.

The cumulative default process Nt on a credit risk portfolio is modeled as

Nt = φ(Nt) =

k∑
l=1

N l. (3.3.10)

Given a credit derivative payoff ξ = π(NT ) = π(φ(NT )) = Φ(NT ), where Φ = π ◦ φ.
In case of CDO tranche with attachement point a and detachement point b,

π(Nt) = (Lt − a)+ ∧ (b− a),

where Lt = (1−R)Nt/n represent the relative cumulative porfolio loss process, R is
the recovery rate. We have the corresponding price process, by the Markov property
of N assuming zero risk-free rate for simplicity:

Πt = E[ξ|Ft] = E[Φ(NT )|Ft] = E[Φ(NT )|Nt] = u(t,Nt), for t ∈ [0, T ], (3.3.11)

where u(t, ı), with t ∈ [0, T ] and ı ∈ I defines the pricing function of the credit
derivative. We are interested in the sensitivity of a credit derivative price when
there is one more default in some group k, which can be represented as

δul(t, ı) = u(t, ıl)− u(t, ı),

where ıl is the state obtained from the state ı if there is one more default in the
group l. Here

u(t, ı) = E[Φ(NT )|Nt = ı], and u(t, ıl) = E[Φ(NT )|Nt = ıl].

To compute δul(t, ı), normally we have to simulate the Markov chain conditionally to
Nt = ı, and then resimulate it conditionally to Nt = ıl since the law of (NT |Nt = ı) is
different from the law of of (NT |Nt = ıl). Our aim is looking for some kind of spatial
homogeneity of the Markov chain, so that the law of (NT |Nt = ıl) can be deduced
directly from the law of (NT |Nt = ı), which permits to avoid the resimulation.

3.3.2 Compound Poisson form

Since there is no simultaneous default, our Markov chain N can be represented as

Nt =

Nt∑
i=1

Zi, (3.3.12)

where Nt is the cumulative default process defined by (3.3.10), and (Zi)i≥0 is the
sequence of jump sizes of N living in the set

Z = {01 := (1, 0, · · · , 0), 02 := (0, 1, 0, · · · , 0), · · · , 0k := (0, · · · , 0, 1)} ⊂ Nk.

The process Nt defined by (3.3.12) will become a compound Poisson process if Nt

is a Poisson process and (Zi)i≥1 are i.i.d. random variables.
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3.3.3 Homogeneity in homogeneous-group model

Similarly to Section 3.2, we can construct a Markov chain with intensities λl(t,Nt)
under P from a homogeneous Markov chain by a change of measure. More precisely,
let consider a Markov chain N under a probability measure P̂ where all the counting
processes N l have intensity 1. We define the process (Γt)t∈[0,T ] such that

dΓt
Γt−

=
k∑
l=1

(λl(t,Nt−)− 1)dM̂ l
t , Γ0 = 1, (3.3.13)

where M̂ l
t = N l

t − t is the compensated martingale of the process N l
t under P̂. Hence

Γt is a P̂-martingale playing the role of a Radon-Nikodym density in the change of
measure and can be computed explicitly by Doléan-Dade exponentials:

Γt =
k∏
l=1

E
(∫ t

0
(λl(s,Ns−)− 1)dM̂ l

s

)

=
k∏
l=1

e
∫ t
0 (1−λl(s,Ns))ds

∏
τ l≤t,N l

τl
6=N l

τl−

λl(τ l,Nτ l−) (3.3.14)

= e
∫ t
0 (k−λ(s,Ns))ds

k∏
l=1

∏
τ l≤t,N l

τl
6=N l

τl−

λl(τ l,Nτ l−) (3.3.15)

where λ(s,Ns) =
∑k

l=1 λ
l(s,Ns) is the intensity of jump of N at s. In (3.3.14), for

each l, the second product takes over all jump times of the process N l up to t. And
in (3.3.15), the double product takes over all jump times of the process N up to t.

Remark 3.3.11. Γ is a function of the trajectory of N , so we would have to write
Γ(N )t instead of Γt, but we keep using Γt for simplicity and will point out the
trajectory whenever there may have some risk of confusion.

By defining a change of measure

dP
dP̂

= ΓT ,

we obtain the process N l
t having intensity λl(t,Nt) under P, or equivalently, M l

t is
a P-martingale for every l = 1, · · · , k. Indeed,

d(M l
tΓt) = M l

t−dΓt + Γt−dM
l
t + d[M l,Γ]t

= M l
t−dΓt + Γt−(dN l

t − λl(t,Nt)dt) + Γt−(λl(t,Nt−)− 1)dN l
t

= M l
t−dΓt + Γt−λ

l(t,Nt−)dM̂ l
t .

Both M l and Γ are bounded, so M lΓ is a P̂-martingale which deduces that M l is a
P-martingale.
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3.3.4 Greeking problem via Malliavin calculus

In this model, the martingale representation has the form

Πt = Π0 +
k∑
l=1

∫ t

0
δul(s,Ns−)dM l

s, (3.3.16)

where δul(t,Nt) is the sensitivity of the pricing function with respect to the jump
of the process N l

t , which we would like to evaluate thanks to the homogeneity under
P̂.

Proposition 3.3.20. For every t ∈ [0, T ] such that Γt− 6= 0 and λl(t,Nt−) 6= 0,

δul(t,Nt−) =

(
1

λl(t,Nt−)
E

[
ε+
t,0l

(ΓT ξ)

ΓT

∣∣∣Ft]− E[ξ|Ft]

)
, (3.3.17)

where ε+t,z is the creation operator defined in (1.2.10). In particular,

δul(0,N0) =
1

λl(0,N0)
E

[
ε+
0,0l

(ΓT ξ)

ΓT

]
− E[ξ]. (3.3.18)

Proof. Under the probability P̂, N has the form (3.3.12), where Nt is a homogeneous
Poisson process of intensity k and (Zi)i≥0 are i.i.d. with uniform distribution σ on Z.
Hence, N is a compound Poisson process under P̂. Let M be the jump measure of N
then M is a Poisson random measure on R+×Z with intensity measure µ(dt, dz) =
kdtσ(dz) and the compensated random measure M̃(dt, dz) = M(dt, dz) − µ(dt, dz)
(see Cont and Tankov (2003)). By applying the Clark-Ocone formula for the random
variable ΓT ξ (cf. Theorem 1.2.6) under P̂, we have

ΓT ξ = Ê[ΓT ξ] +

∫ T

0
Ê[Ds,z(ΓT ξ)|Fs]M̃(ds, dz),

where Ds,z(ΓT ξ) is the Malliavin derivative of ΓT ξ at (s, z) (cf. Definition 1.2.5),
and we have chosen a predictable version of the conditional expectation process
Ê[Ds,z(ΓT ξ)|Fs], s ≥ 0. Hence,

ΓtΠt = ΓtE[ξ|Ft] = Ê[ΓT ξ|Ft] = Ê[ΓT ξ] +

∫ t

0
Ê[Ds,z(ΓT ξ)|Fs]M̃(ds, dz),

where the first equality is based on the definition of Πt, the second one is from Bayes’
formula and the third one is from martingale property of M̃ . We deduce

d(ΓtΠt) = Ê[Dt,z(ΓT ξ)|Ft]M̃(dt, dz) =
k∑
l=1

Ê[Dt,0l(ΓT ξ)|Ft]dM̂ l
t . (3.3.19)
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Moreover, from (3.3.13) and (3.3.16), we obtain

d(ΓtΠt) = Γt−dΠt + Πt−dΓt + d[Π,Γ]t

= Γt−

k∑
l=1

δul(t,Nt−)dM l
t + Πt−Γt−

k∑
l=1

(λl(t,Nt−)− 1)dM̂ l
t

+Γt−

k∑
l=1

δul(t,Nt−)(λl(t,Nt−)− 1)dN l
t

= Γt−

k∑
l=1

[δul(t,Nt−)λl(t,Nt−) + Πt−(λl(t,Nt−)− 1)]dM̂ l
t .(3.3.20)

By identifying (3.3.19) and (3.3.20) we get

Γt−[δul(t,Nt−)λl(t,Nt−) + Πt−(λl(t,Nt−)− 1)] = Ê[Dt,0l(ΓT ξ)|Ft].

But applying (1.2.11), we have Dt,0l(ΓT ξ) = ε+
t,0l

(ΓT ξ)− ΓT ξ, and

Ê[Dt,0l(ΓT ξ)|Ft] = Ê[ε+
t,0l

(ΓT ξ)− ΓT ξ|Ft] = Ê[ε+
t,0l

(ΓT ξ)|Ft]− Γt−Πt−,

where a predictable version of the conditional expectation Ê[ε+
t,0l

(ΓT ξ)|Ft] is used.
Therefore,

Γt−λ
l(t,Nt−)[δul(t,Nt−) + Πt−] = Ê[ε+

t,0l
(ΓT ξ)|Ft] = Γt−E

[
ε+
t,0l

(ΓT ξ)

ΓT

∣∣∣Ft] ,
(3.3.21)

(with the convention that the ratio
ε+
t,0l

(ΓT ξ)

ΓT
equals to 0 when ΓT = 0, which deduce

also ε+
t,0l

(ΓT ξ) = 0). In the case Γt− 6= 0 and λl(t,Nt−) 6= 0, we deduce

δul(t,Nt−) + Πt− =
1

λl(t,Nt−)
E

[
ε+
t,0l

(ΓT ξ)

ΓT
|Ft

]
.

Remark 3.3.12. In case the payoff depends only on the final state of the portfolio,
we can obtain (3.3.21) by the Bayes formula and the Markov property. Indeed, by
using the Bayes’ formula and (3.3.11), we have

Γtu(t,Nt) = Ê[ΓT ξ|Ft],

or more precisely,
Γ(N )tu(t,Nt) = Ê[Γ(N )T ξ(NT )|Ft].

By applying this formula for ε+
t,0l
N , noticing that (Γ(ε+

t,0l
N ))t = Γtλ

l(t,Nt) (by

(3.3.15)), we obtain

Γtλ
l(t,Nt)u(t,Nt + 0l) = Ê[ε+

t,0l
(ΓT ξ)|Ft],

and (3.3.21) follows directly since

u(t,Nt + 0l) = u(t,Nt + 0l)− u(t,Nt) + u(t,Nt) = δul(t,Nt) + Πt.
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3.3.5 Min-variance hedging CDO tranches

Now we consider the problem of min-variance hedging an equity or senior tranche
by the index, i.e. the tranche with attachement point a = 0 and detachement point
b = 0. Let Π and P (resp. u and v) denote the cumulative price processes (resp.
pricing functions) of the tranche and of the index. By application of the formula
(67) in Crépey (2013), we can min-variance hedge a tranche by the index and the
riskless constant asset by using the strategy ζ in the index defined by

ζt =

∑d
l=1 λ

l(δul)(δvl)∑d
l=1 λ

l(δvl)2
(t,Nt−) =

d∑
l=1

wl
(
δul

δvl

)
with wl =

(δvl)2∑d
j=1 λ

j(δvj)2
,

(3.3.22)
for t ∈ [0, T ], where δul and δvl can be computed by (3.3.17) and (3.3.18). In case
of a local intensity model (k = 1), the martingale representation (3.3.16) reduces to

dΠt = δu(t,Nt−)dMt, dPt = δv(t,Nt−)dMt.

Therefore,

dΠt = δtdPt, where δt = δ(t,Nt−) =
u(t,Nt)− u(t,Nt−)

v(t,Nt)− v(t,Nt−)
. (3.3.23)

In this case, it is thus possible to replicate the tranche by the index using the strategy
δt defined by (3.3.23), which coincides with the min-variance hedging strategy ζt in
(3.3.22).

3.3.6 Numerical results

We compute the delta and the replication strategy of the equity tranche and the
senior tranche with the same strike k = 20% or k = 45% (this is the detachment point
of the equity tranche and attachment point of the senior tranche, the attachment
point of the equity tranche is 0, the detachment point of the senior tranche is 100%)
by the index with maturity T = 5, the recovery rate R = 0.4 and then compare
with the explicit results computed by matrix exponentiation method. Without loss
of generality, the nominal is set to 1. For the simulation/regression method, we
use m = 4 × 104 simulations, and for Monte-Carlo simulation based on spatial
homogeneity, we use m = 104 or m = 106 simulations.

• Fully-homogeneous model
This is the special case where k = 1. The number of obligors n = 8. This
may be not realistic since a CDO contract usually contains over 100 names.
In general, our method will work similarly but there will be difficulties in
the matrix exponentiation method when we increase the number of groups.
Hence, we restrict in a small number names to better illustrate the results.
The pre-default individual intensity function is given by

λ̃(i) =
1 + i

n
.

Tables 3.1 and 3.2 show the numerical results of deltas by replicating the equity
tranche and the senior tranche by the index.
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k = 45% val δ err δ̂1
1 err δ̂1

s err δ̂2
s

Eq 0.415 0.292 -7.972 -0.090

Sen 0.585 -0.207 5.659 0.064

Table 3.1: Exact values ( column 2) and percentage relative errors for various esti-

mators δ =
δu±0 (0)
δv0(0) by simulation/regression method (column 3) and by simulation

based on spatial homogeneity with m = 104 simulations (column 4) or m = 106 sim-
ulations (column 5) in the fully-homogeneous model (u± = equity or senior pricing
function, v =index pricing function).

k = 20% val δ err δ̂1
1 err δ̂1

s err δ̂2
s

Eq 0.065 0.587 -25.071 -0.611

Sen 0.935 -0.041 1.746 0.043

Table 3.2: Like Table 3.1, but for k = 20%.

• Semi-homogeneous group model
We also consider n = 8 names divided into k = 2 groups. The pre-default
individual intensity function of each group is given by

λ̃l(ı) = l
1 + il
n

.

We keep the other parameters as in the local intensity model. The results of
deltas by hedging the equity tranche and the senior tranche by the index are
shown in tables 3.3 and 3.4.

k = 45% val δ err δ̂1
1 err δ̂1

s err δ̂2
s

Eq1 0.395 0.052 3.223 0.454

Eq2 0.532 -6.330 14.883 0.342

Sen1 0.605 -0.034 -2.100 -0.296

Sen2 0.468 7.188 -16.899 -0.388

Table 3.3: Exact values (column 2) and percentages relative errors for estimators

of δ = δ1u±

δ1v
(0, 0, 0) or δ2u±

δ2v
(0, 0, 0) by simulation/regression method (column 3) and

by simulation based on spatial homogeneity with m = 104 simulations (column 4)
or m = 106 simulations (column 5) in the semi-homogeneous model (u± = equity or
senior pricing function, v =index pricing function).

In tables 3.1 to 3.4, we show the exact deltas and the errors of estimates. δ̂1
1 is

the best simulation/regression estimate obtained in Crépey and Rahal (2013), where
the indices mean that the regression is affine in time and restricted to the scenarios
where the first default takes place before T1 = 1 year. The error of this estimator,
and also of estimators by the simulation/regression method in general, varies a lot
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k = 20% val δ err δ̂1
1 err δ̂1

s err δ̂2
s

Eq1 0.009 4.901 116.482 18.608

Eq2 0.043 1.878 230.300 1.036

Sen1 0.991 -0.044 -1.038 -0.166

Sen2 0.957 -0.084 -10.327 -0.046

Table 3.4: Like Table 3.3, but for k = 20%.

with respect to the parameters of the problem, whereas our estimators δ̂s are quite
robust in the sense that their errors are stable with respect to the parameters of the
problem and, unlike δ̂1

1 , they are unbiased. Therefore, more precise results can be
obtained by increasing the number of simulations as we did with δ̂1

s and δ̂2
s .
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Counterparty risk and
multi-curve modeling

79





Chapter 4

Rational multi-curve models
with counterparty risk valuation
adjustments

.

4.1 Introduction

In this work we endeavour to develop multi-curve interest rate models which extend
to counterparty risk models in a consistent fashion. The aim is the pricing and risk
management of financial instruments with price models capable of discounting at
multiple rates (e.g. OIS and LIBOR) and which allow for corrections in the asset’s
valuation scheme so to adjust for counterparty-risk inclusive of credit, debt, and liq-
uidity risk. We thus propose factor-models for (i) the Overnight Index Swap (OIS)
rate, (ii) the London Interbank Offer Rate (LIBOR), and (iii) the default intensities
of two counterparties involved in bilateral OTC derivative transactions. The three
ingredients are characterised by a feature they share in common: the rate and in-
tensity models are all rational functions of the underlying factor processes. Since
we have in mind the pricing of assets as well as the management of risk exposures,
we also need to work within a setup that maintains price consistency under various
probability measures. We will for instance want to price derivatives by making use
of a risk-neutral measure Q while analysing the statistics of risk exposures under the
real-world measure P. This point is particularly important when we calibrate the
interest rate models to derivatives data, such as implied volatilities, and then apply
the calibrated models to compute counterparty-risk valuation adjustments to com-
ply with regulatory requirements. The presented rational models allow us to develop
a comprehensive framework that begins with an OIS model, evolves to an approach
for constructing the LIBOR process, includes the pricing of fixed-income assets and
model calibration, analyses risk exposures, and concludes with a credit risk model
that leads to the analysis of counterparty-risk valuation adjustments (XVA).

The issue of how to model multi-curve interest rates and incorporate counterparty-
risk valuation adjustments in a pricing framework has motivated much research.
For instance, research on multi-curve interest rate modelling is presented in Kijima,

81
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Tanaka, and Wong (2009), Kenyon (2010), Henrard (2007, 2010, 2014), Bianchetti
(2010), Mercurio (2010b, 2010a, 2010c), Fujii, Shimada, and Takahashi (2011, 2010),
Moreni and Pallavicini (2014), Bianchetti and Morini (2013), Filipović and Trolle
(2013) or Crépey, Grbac, Ngor and Skovmand (2015). On counterparty-risk valu-
ation adjustment, we mention two recent books by Brigo, Morini, and Pallavicini
(2013) and Crépey, Bielecki and Brigo (2014); more references are given as we go
along. Pricing models with rational form have also appeared before. Flesaker and
Hughston (1996) pioneered such pricing models and in particular introduced the so-
called rational log-normal model for discount bond prices. Further related studies
include Rutkowski (1997), Döberlein and Schweizer (2001) and Hunt and Kennedy
(2004), Brody and Hughston (2004), Hughston and Rafailidis (2005), Brody, Hugh-
ston and Mackie (2012), Akahori, Hishida, Teichmann and Tsuchiya (2014), Fil-
ipović, Larsson and Trolle (2014), Macrina and Parbhoo (2014) or Nguyen and
Seifried (2014). However, as far as we know, the present work is the first to ap-
ply rational pricing models in a multi-curve setup, along with Nguyen and Seifried
(2014) who develop a rational multi-curve model in the spirit of Rogers (1997) based
on a multiplicative spread, and it is the only rational pricing work dealing with XVA
computations. We shall see that, despite the simplicity of these models, they perform
surprisingly well when comparing to other, in principle more elaborate, proposals
such as Crépey et al. (2015) or Moreni and Pallavicini (2013, 2014). Other re-
cent related research includes Filipović, Larsson and Trolle (2014), for the study
of unspanned volatility and its regulatory implications, Cuchiero, Keller-Ressel and
Teichmann (2012), for moment computations in financial applications, and Cheng
and Tehranchi (2014), motivated by stochastic volatility modelling.

We give a brief overview of this chapter. In Section 4.2, we introduce the rational
models for multi-curve term structures whereby we derive the forward LIBOR pro-
cess by pricing a forward rate agreement under the real-world probability measure.
In doing so we apply a pricing kernel model. The short rate model arising from
the pricing kernel process is taken as a proxy model for the OIS rate. In view of
derivative pricing in subsequent sections, we also derive the multi-curve interest rate
models by starting with the risk-neutral measure. We call this method “bottom-up
risk-neutral approach”. In Section 4.3, we perform the so-called “clean valuation”
of swaptions written on LIBOR, and analyse three different specifications for the
OIS-LIBOR dynamics. We explain the advantages one gains from the chosen “code-
book” for the LIBOR process, which we model as a rational function where the
denominator is the stochastic discount factor associated with the utilised probabil-
ity measure. In Section 4.4, we calibrate the three specified multi-curve models and
assess them for the quality of fit and on positivity of rates and spread. We conclude
by singling out a two-factor lognormal OIS-LIBOR model for its good tractability
and calibration properties. In Section 4.5, we price a basis swap in closed form
without taking into account counterparty-risk, that is we again perform a “clean
valuation”. In this section we take the opportunity to show the explicit relationship
in our setup between pricing under an equivalent measure and the real-world mea-
sure. We compute the risk exposure associated with holding a basis swap and plot
the quantiles under both probability measures for comparison. As an example, we
apply Lévy random bridges to describe the dynamics of the factor processes under
P. This enables us to interpret the re-weighting of the risk exposure under P as an
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effect that could be related to, e.g., “forward guidance” provided by a central bank.
In the last section, we present default intensity processes with rational form and
compute XVA, that is, the valuation adjustments due to credit, debt, and liquidity
risk.

4.2 Rational multi-curve term structures

We model a financial market by a filtered probability space (Ω,F ,P, {Ft}0≤t), where
P denotes the real probability measure and {Ft}0≤t is the market filtration. The
no-arbitrage pricing formula for a generic (non-dividend-paying) financial asset with
price process {StT }0≤t≤T , which is characterised by a cash flow STT at the fixed
date T , is given by

StT =
1

πt
EP[πTSTT | Ft], (4.2.1)

where {πt}0≤t≤U is the pricing kernel embodying the inter-temporal discounting and
risk-adjustments, see e.g. Hunt and Kennedy (2004). Once the model for the pricing
kernel is specified, the OIS discount bond price process {PtT }0≤t≤T≤U is determined
as a special case of formula (4.2.1) by

PtT =
1

πt
EP[πT | Ft]. (4.2.2)

The associated OIS short rate of interest is obtained by

rt = − (∂T lnPtT ) |T=t, (4.2.3)

where it is assumed that the discount bond system is differentiable in its maturity
parameter T . The rate {rt} is non-negative if the pricing kernel {πt} is a super-
martingale and vice versa. We next go on to infer a pricing formula for financial
derivatives written on LIBOR. In doing so, we also derive a price process (4.2.6)
that we identify as determining the dynamics of the forward LIBOR or, as we shall
call it for brevity, the LIBOR process. It is this formula for the LIBOR process that
reveals the nature of the so-called multi-curve term structure whereby the OIS rate
and the LIBOR rates of different tenors are treated as distinct discount rates.

4.2.1 Generic multi-curve interest rate models

We derive multi-curve pricing models for securities written on the LIBOR by starting
with the valuation of a forward rate agreement (FRA). We consider 0 ≤ t ≤ T0 ≤
T2 ≤ · · · ≤ Ti ≤ · · · ≤ Tn, where T0, Ti, . . . , Tn are fixed dates, and let N be a
notional, K a strike rate and δi = Ti − Ti−1. The fixed leg of the FRA contract
is given by NKδi and the floating leg payable in arrear at time Ti is modelled by
NδiL(Ti;Ti−1, Ti), where the random rate L(Ti;Ti−1, Ti) is FTi−1-measurable. The
net cash flow at the maturity date Ti of the FRA contract reads

HTi = Nδi [K − L(Ti;Ti−1, Ti)] . (4.2.4)
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The FRA price process is then given by an application of (4.2.1), that is, for 0 ≤
t ≤ Ti−1, by

HtTi =
1

πt
EP [πTiHTi

∣∣Ft]
= Nδi [KPtTi − L(t, Ti−1, Ti)] , (4.2.5)

where we define the (forward) LIBOR process by

L(t;Ti−1, Ti) :=
1

πt
EP [πTiL(Ti;Ti−1, Ti)

∣∣Ft] . (4.2.6)

The fair spread of the FRA at time t (the value of K at time t such that HtTi = 0)
is then expressed in terms of L(t;Ti−1, Ti) by

Kt =
L(t;Ti−1, Ti)

PtTi
. (4.2.7)

For times up to and including Ti−1, our LIBOR process can be written in terms
of a conditional expectation of an FTi−1-measurable random variable. In fact, for
t ≤ Ti−1,

EP [πTiL(Ti;Ti−1, Ti)
∣∣Ft] = EP

[
EP [πTiL(Ti;Ti−1, Ti)

∣∣FTi−1

] ∣∣Ft] (4.2.8)

= EP
[
EP [πTi ∣∣FTi−1

]
L(Ti;Ti−1, Ti)

∣∣Ft] ,(4.2.9)

and thus

L(t, Ti−1, Ti) =
1

πt
EP
[
EP [πTi ∣∣FTi−1

]
L(Ti;Ti−1, Ti)

∣∣Ft] . (4.2.10)

The (pre-crisis) classical approach to LIBOR modelling defines the price process
{HtTi} of a FRA by

HtTi = N
[
(1 + δiK)PtTi − PtTi−1

]
, (4.2.11)

see, e.g., Hunt and Kennedy (2004). By equating with (4.2.5), we see that the
classical single-curve LIBOR model is obtained in the special case where

L(t;Ti−1, Ti) =
1

δi

(
PtTi−1 − PtTi

)
. (4.2.12)

Remark 4.2.1. In normal market conditions, one expects the positive-spread rela-

tion L(t;T, T+δi) < L(t;T, T+δj), for tenors δj > δi, to hold. We will return to this

relationship in Section 4.4 where various model specifications are calibrated and the

positivity of the spread is checked. LIBOR tenor spreads play a role in the pricing

of basis swaps, which are contracts that exchange two LIBORs with different tenor

(see Section 4.5). For recent work on multi-curve modelling with focus on spread

modelling, we refer to Cuchiero, Fontana and Gnoatto (2014).
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4.2.2 Multi-curve models with rational form

In order to construct explicit LIBOR processes, the pricing kernel {πt} and the
random variable L(Ti;Ti−1, Ti) need to be specified in the definition (4.2.6). For
reasons that will become apparent as we move forward in this chapter, we opt to
apply the rational pricing models proposed in Macrina (2014). These models bestow
a rational form on the price processes, here intended as a “quotient of summands”
(slightly abusing the terminology that usually refers to a “quotient of polynomials”).
The basic pricing model with rational form for a generic financial asset (for short
“rational pricing model”) that we consider is given by

StT =
S0T + b2(T )A

(2)
t + b3(T )A

(3)
t

P0t + b1(t)A
(1)
t

, (4.2.13)

where S0T is the value of the asset at t = 0. There may be more bA-terms in the
numerator, but two (at most) will be enough for all our purposes in this work. For

0 ≤ t ≤ T and i = 1, 2, 3, bi(t) are deterministic functions and A
(i)
t = Ai(t,X

(i)
t ) are

martingale processes, not necessarily under P but under an equivalent martingale

measure M, which are driven by M-Markov processes {X(i)
t }. The details of how

the expression (4.2.13) is derived from the formula (4.2.1), and in particular how

explicit examples for {A(i)
t } can be constructed, are shown in Macrina (2014). Here

we only give the pricing kernel model associated with the price process (4.2.13), that
is

πt =
π0

M0

[
P0t + b1(t)A

(1)
t

]
Mt, (4.2.14)

where {Mt} is the P-martingale that induces the change of measure from P to an

auxiliary measure M under which the {A(i)
t } are martingales. The deterministic

functions P0t and b1(t) are defined such that P0t + b1(t)A
(1)
t is a non-negative M-

supermartingale (see e.g. Example 4.2.1), and thus in such a way that {πt} is a
non-negative P-supermartingale. By the equations (4.2.2) and (4.2.3), it is straight-
forward to see that

PtT =
P0T + b1(T )A

(1)
t

P0t + b1(t)A
(1)
t

, rt = − Ṗ0t + ḃ1(t)A
(1)
t

P0t + b1(t)A
(1)
t

, (4.2.15)

where the “dot-notation” means differentiation with respect to time t.
Let us return to the modelling of rational multi-curve term structures and in

particular to the definition of the (forward) LIBOR process. Putting equations
(4.2.6) and (4.2.1) in relation, we see that the model (4.2.13) naturally offers itself
as a model for the LIBOR process (4.2.6) in the considered setup. Since (4.2.13)
satisfies (4.2.1) by construction, so does the LIBOR model

L(t;Ti−1, Ti) =
L(0;Ti−1, Ti) + b2(Ti−1, Ti)A

(2)
t + b3(Ti−1, Ti)A

(3)
t

P0t + b1(t)A
(1)
t

(4.2.16)

satisfy the martingale equation (4.2.6) and in particular (4.2.10) for t ≤ Ti−1. In
Macrina (2014) a method based on the use of weighted heat kernels is provided for the

explicit construction of the M-martingales {A(i)
t }i=1,2 and thus in turn for explicit
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LIBOR processes. The method allows for the development of LIBOR processes,
which, if circumstances in financial markets require it, by construction take positive
values at all times.

4.2.3 Bottom-up risk-neutral approach

Since we also deal with counterparty-risk valuation adjustments, we present another
scheme for the construction of the LIBOR models, which we call “bottom-up risk-
neutral approach”. As the name suggests, we model the multi-curve term structure
by making use of the risk-neutral measure (via the auxiliary measure M) while the
connection to the P-dynamics of prices can be reintroduced at a later stage, which is
important for the calculation of risk exposures and their management. “Bottom-up”
refers to the fact that the short interest rate will be modelled first, then followed
by the discount bond price and LIBOR processes. Similarly, in Section 4.6.1, the
default intensity processes will be modelled first, and thereafter the price processes of
counterparty-risky assets will be derived thereof. We utilise the notation E[. . . |Ft] =
Et[. . .]. In the bottom-up setting, we directly model the short risk-free rate {rt} in
the manner of the right-hand side in (4.2.15), i.e.

rt = − ċ1(t) + ḃ1(t)A
(1)
t

c1(t) + b1(t)A
(1)
t

, (4.2.17)

by postulating (i) non-increasing deterministic functions b1(t) and c1(t) with c1(0) =
1 (later c1(t) will be seen to coincide with P0t), and (ii) an ({Ft},M)-martingale

{A(1)
t } with A

(1)
0 = 0 such that

ht = c1(t) + b1(t)A
(1)
t (4.2.18)

is a positive ({Ft},M)-supermartingale for all t > 0.

Example 4.2.1. Let A
(1)
t = S

(1)
t − 1, where {S(1)

t } is a positive M-martingale with

S
(1)
0 = 1, for example a unit-initialised exponential Lévy martingale. Then the

supermartingale (4.2.18) is positive for any given t if 0 < b1(t) ≤ c1(t).

Associated with the supermartingale (4.2.18), we characterise the (risk-neutral) pric-
ing measure Q by the M-density process {µt}0≤t≤T , given by

µt =
dQ
dM

∣∣∣
Ft

= E

(∫ ·
0

b1(t)dA
(1)
t

c1(t) + b1(t)A
(1)
t−

)
, (4.2.19)

which is taken to be a positive ({Ft},M)-martingale. Furthermore, we denote by

Dt = exp
(
−
∫ t

0 rs ds
)

the discount factor associated with the risk-neutral measure

Q.

Lemma 4.2.1. ht = Dt µt.
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Proof. The Ito semimartingale formula applied to ϕ(t, A
(1)
t ) = ln(c1(t)+b1(t)A

(1)
t ) =

ln(ht) and to ln(Dtµt) gives the following relations:

d ln
(
c1(t) + b1(t)A

(1)
t

)
= −rtdt+

b1(t)dA
(1)
t

c1(t) + b1(t)A
(1)
t−
− b21(t)d[A(1), A(1)]ct

2(c1(t) + b1(t)A
(1)
t− )2

+ d
∑
s≤t

(
∆ ln

(
c1(t) + b1(t)A

(1)
t

)
− b1(t)∆A

(1)
t

c1(t) + b1(t)A
(1)
t−

)
,

(4.2.20)

where (4.2.17) was used in the first line, and

d ln(Dtµt) = d lnDt + d lnµt

= −rtdt+
dµt
µt−
− d[µ, µ]ct

2(µt−)2
+ d

∑
s≤t

(
∆ ln(µt)−

∆µt
µt−

)

= −rtdt+
b1(t)dA

(1)
t

c1(t) + b1(t)A
(1)
t−
− b21(t)d[A(1), A(1)]ct

2(c1(t) + b1(t)A
(1)
t− )2

+d
∑
s≤t

(
∆ ln(µt)−

b1(t)∆A
(1)
t

c1(t) + b1(t)A
(1)
t−

)
,(4.2.21)

where

∆ ln (µt) = ln

(
µt
µt−

)
= ln

(
1 +

b1(t)∆A
(1)
t

c1(t) + b1(t)A
(1)
t−

)
= ln

(
c1(t) + b1(t)A

(1)
t

c1(t) + b1(t)A
(1)
t−

)
= ∆ ln

(
c1(t) + b1(t)A

(1)
t

)
.

Therefore, d ln(ht) = d ln(Dtµt). Moreover, h0 = D0µ0 = 1. Hence ht = Dtµt.

It then follows that the price process of the OIS discount bond with maturity T

can be expressed, for 0 ≤ t ≤ T , by

PtT = EQ
t

[
DT

Dt

]
=

1

Dt µt
EM [DT µT | Ft] = EM

t

[
hT
ht

]
=
c1(T ) + b1(T )A

(1)
t

c1(t) + b1(t)A
(1)
t

.(4.2.22)

Thus, the process {ht} plays the role of the pricing kernel associated with the OIS

market under the measure M. In particular, we note that c1(t) = P0t for t ∈ [0, T ]

and rt = − (∂T lnPtT )|T=t . A construction inspired by the above formula for the

OIS bond leads to the rational model for the LIBOR prevailing over the interval

[Ti−1, Ti). The FTi−1-measurable spot LIBOR rate L(Ti;Ti−1, Ti) is modelled in

terms of {A(1)
t } and, in this chapter, at most two other M-martingales {A(2)

t } and

{A(3)
t } evaluated at Ti−1:

L(Ti;Ti−1, Ti) =
L(0;Ti−1, Ti) + b2(Ti−1, Ti)A

(2)
Ti−1

+ b3(Ti−1, Ti)A
(3)
Ti−1

P0Ti + b1(Ti)A
(1)
Ti−1

. (4.2.23)
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The (forward) LIBOR process is then defined by an application of the risk-neutral

valuation formula (which is equivalent to the pricing formula (4.2.1) under P) as

follows. For t ≤ Ti−1 we let

L(t;Ti−1, Ti) =
1

Dt
EQ
t [DTi L(Ti;Ti−1, Ti)] = EM

t

[
DTi µTi
Dt µt

L(Ti;Ti−1, Ti)

]
(4.2.24)

= EM
t

[
EM
Ti−1

[hTi ]L(Ti;Ti−1, Ti)

ht

]
, (4.2.25)

and thus, by applying (4.2.18) and (4.2.23),

L(t;Ti−1, Ti) =
L(0;Ti−1, Ti) + b2(Ti−1, Ti)A

(2)
t + b3(Ti−1, Ti)A

(3)
t

P0t + b1(t)A
(1)
t

. (4.2.26)

Hence, we recover the same model and expression as in (4.2.16). The LIBOR models

(4.2.26) (or (4.2.16)) are compatible with an HJM multi-curve setup where, in the

spirit of Heath, Jarrow and Morton (1992), the initial term structures P0Ti and

L(0;Ti−1, Ti) are fitted by construction.

Example 4.2.2. Let A
(i)
t = S

(i)
t − 1, where S

(i)
t is a positive M-martingale with

S
(i)
0 = 1. For example, one could consider a unit-initialised exponential Lévy mar-

tingale defined in terms of a function of an M-Lévy process {X(i)
t }, for i = 2, 3. Such

a construction produces non-negative LIBOR rates if

0 ≤ b2(Ti−1, Ti) + b3(Ti−1, Ti) ≤ L(0;Ti−1, Ti). (4.2.27)

If this condition is not satisfied, then the LIBOR model may be viewed as a shifted

model, in which the LIBOR rates may become negative with positive probability.

For different kinds of shifts used in the multi-curve term structure literature we refer

to, e.g., Mercurio (2010a) or Moreni and Pallavicini (2014).

4.3 Clean valuation

The next questions we address are centred around the pricing of LIBOR deriva-

tives and their calibration to market data, especially LIBOR swaptions, which are

the most liquidly traded (nonlinear) interest rate derivatives. Since market data

typically reflect prices of fully collaterallised transactions, which are funded at a

remuneration rate of the collateral that is best proxied by the OIS rate, we consider

in this section, from the perspective of model calibration, clean valuation ignoring

counterparty-risk and assume funding at the rate rt.

An interest rate swap (see, e.g., Brigo and Mercurio (2006)) is an agreement be-

tween two counterparties, where one stream of future interest payments is exchanged

for another based on a specified nominal amount N . A popular interest rate swap

is the exchange of a fixed rate (contractual swap spread) against the LIBOR at the

end of successive time intervals [Ti−1, Ti] of length δ. Such a swap can also be viewed
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as a collection of n forward rate agreements. The swap price Swt at time t ≤ T0 is

given by the following model-independent formula:

Swt = Nδ
n∑
i=1

[L(t;Ti−1, Ti)−KPtTi ].

A swaption is an option between two parties to enter a swap at the expiry date Tk
(the maturity date of the option). Its price at time t ≤ Tk is given by the following

M-pricing formula:

SwntTk =
Nδ

ht
EM[hTk(SwTk)+|Ft]

=
Nδ

ht
EM

[
hTk

(
n∑

i=k+1

[L(Tk;Ti−1, Ti)−KPTkTi ]

)+ ∣∣∣Ft]

=
Nδ

P0t + b1A
(1)
t

EM

[( m∑
i=k+1

[
L(0;Ti−1, Ti) + b2(Ti−1, Ti)A

(2)
Tk

+ b3(Ti−1, Ti)A
(3)
Tk

−K(P0Ti + b1(Ti)A
(1)
Tk

)
])+∣∣∣Ft], (4.3.28)

using the formulae (4.2.22) and (4.2.26) for PTkTi and L(Tk;Ti−1, Ti). In particular,

the swaption prices at time t = 0 can be rewritten by use of A
(i)
t = S

(i)
t − 1 so that

Swn0Tk = Nδ EM
[(
c2A

(2)
Tk

+ c3A
(3)
Tk
− c1A

(1)
Tk

+ c0

)+
]

= Nδ EM
[(
c2S

(2)
Tk

+ c3S
(3)
Tk
− c1S

(1)
Tk

+ c̃0

)+
]
,

(4.3.29)

where

c2 =

m∑
i=k+1

b2(Ti−1, Ti), c3 =

m∑
i=k+1

b3(Ti−1, Ti), c1 = K

m∑
i=k+1

b1(Ti),

c0 =

m∑
i=k+1

[L(0;Ti−1, Ti)−KP0Ti ], c̃0 = c0 + c1 − c2 − c3.

As we will see in several instance of interest, these expectations can be computed

efficiently with high accuracy by various numerical schemes.

Remark 4.3.2. The advantages of modelling the LIBOR process {L(t;Ti−1, Ti)}
by a rational function of which denominator is the discount factor (pricing kernel)

associated with the employed pricing measure (in this case M) are: (i) The rational

form of {L(t;Ti−1, Ti)} and also of {PtTi} produces, when multiplied with the dis-

count factor {ht}, a linear expression in the M-martingale drivers {A(i)
t }. This is in

contrast to other akin pricing formulae in which the factors appear as sums of expo-

nentials, see e.g. Crépey et al. (2015), Equation (33). (ii) The dependence structure

between the LIBOR process and the OIS discount factor {ht}—or the pricing kernel



90CHAPTER 4. RAT. MULTI-CURVE MODELS WITH COUNT. RISK VAL. ADJ.

{πt} under the P-measure—is clear-cut. The numerator of {L(t;Ti−1, Ti)} is driven

only by idiosyncratic stochastic factors that influence the dynamics of the LIBOR

process. We may call such drivers the “LIBOR risk factors”. Dependence on the

“OIS risk factors”, in our model example {A(1)
t }, is produced solely by the denomi-

nator of the LIBOR process. (iii) Usually, the FRA process Kt = L(t;Ti−1, Ti)/PtTi
is modelled directly and more commonly applied to develop multi-curve frameworks.

With such models, however, it is not guaranteed that simple pricing formulae like

(4.3.28) can be derived. We think that the “codebook” (4.2.6), and (4.2.26) in the

considered example, is more suitable for the development of consistent, flexible and

tractable multi-curve models.

4.3.1 Univariate Fourier pricing

Since in current markets there are no liquidly-traded OIS derivatives and hence no

useful data is available, a pragmatic simplification is to assume deterministic OIS

rates rt. That is to say A
(1)
t = 0, and hence b1(t) plays no role either, so that it

can be assumed equal to zero. Furthermore, for a start, we assume A
(3)
t = 0 and

b3(t) = 0, and (4.3.29) simplifies to

Swn0Tk = Nδ EM
[(
c2A

(2)
Tk

+ c0

)+
]

= Nδ EM
[(
c2S

(2)
Tk

+c̃0

)+
]
,

where here c̃0 = c0 − c2. For c̃0 > 0 the price is simply Swn0Tk = Nδc0. For c̃0 < 0,

and in the case of an exponential-Lévy martingale model with

S
(2)
t = eX

(2)
t −t ψ2(1),

where {X(2)
t } is a Lévy process with cumulant ψ2 such that

E
[
ezX

(2)
t

]
= exp [tψ2(z)] , (4.3.30)

we have

Swn0Tk =
Nδ

2π

∫
R

c̃ 1−iv−R
0 M

(2)
Tk

(R+ iv)

(R+ iv)(R+ iv − 1)
dv, (4.3.31)

where

M
(2)
Tk

(z) = eTkψ2(z)+z
(

ln(c2)−ψ2(1)
)

and R is an arbitrary constant ensuring finiteness of M
(2)
Tk

(R + iv) for v ∈ R. For

details concerning (4.3.31), we refer to Eberlein, Glau and Papapantoleon (2010).

4.3.2 One-factor lognormal model

In the event that {A(1)
t } = {A(3)

t } = 0 and {A(2)
t } is of the form

A
(2)
t = exp

(
a2X

(2)
t −

1

2
a2

2t

)
− 1, (4.3.32)
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where {X(2)
t } is a standard Brownian motion and a2 is a real constant, it follows

from simple calculations that the swaption price is given, for c̃0 = c0 − c2, by

Swn0Tk =Nδ EM
[(
c2A

(2)
Tk

+c0

)+
]

(4.3.33)

=Nδ

(
c2Φ

(
1
2a

2
2T − ln(c̃0/c2)

a2

√
T

)
+ c̃0Φ

(
−1

2a
2
2T − ln(c̃0/c2)

a2

√
T

))
, (4.3.34)

where Φ(x) is the standard normal distribution function.

4.3.3 Two-factor lognormal model

We return to the price formula (4.3.29) and consider the case where the martingales

{A(i)
t } are given, for i = 1, 2, 3, by

A
(i)
t = exp

(
aiX

(i)
t −

1

2
a2
i t

)
− 1, (4.3.35)

for real constants ai and standard Brownian motions {X(1)
t } = {X(3)

t } and {X(2)
t }

with correlation ρ. Then it follows that

Swn0Tk = EM
[(
c2eX

√
Tka2− 1

2
a22Tk + c3eY

√
Tka3− 1

2
a23Tk − c1eY

√
Tka1− 1

2
a21Tk + c̃0

)+
]
,

(4.3.36)

where X ∼ N (0, 1), Y ∼ N (0, 1), (X|Y ) = y ∼ N (ρy, (1− ρ2)). Hence,

Swn0Tk =

∫ ∞
−∞

∫ ∞
−∞

(c2ex
√
Tka2− 1

2
a22Tk −K(y))+f(x|y)f(y)dxdy

=

∫
K(y)>0

(∫ ∞
−∞

(c2ex
√
Tka2− 1

2
a22Tk −K(y))+f(x|y)dx

)
f(y)dy

+

∫
K(y)<0

(∫ ∞
−∞

(c2ex
√
Tka2− 1

2
a22Tk −K(y))+f(x|y)dx

)
f(y)dy,

where

K(y) = c1(ea1
√
Tky− 1

2
a21Tk − 1)− c3(ea3

√
Tky− 1

2
a23Tk − 1)− c0,

f(y) =
1√
2π

e−
y2

2 ,

f(x|y) =
1√

2π(1− ρ2)
e
−(x−ρy)2

2(1−ρ2) .

This expression can be simplified further to obtain

Swn0Tk

=

∫
K(y)>0

[
c2ea2

√
Tk ρy+ 1

2
a22Tk(1−ρ2)Φ

(
ρy + a2

√
Tk(1− ρ2) + ln(c2)− 1

2a
2
2Tk −K(y)√

1− ρ2

)

−K(y)Φ

(
ρy + ln(c2)− 1

2a
2
2Tk −K(y)√

1− ρ2

)]
f(y)dy

+

∫
K(y)<0

(
c2ea2

√
Tkρ(y− 1

2
a2
√
Tkρ −K(y)

)
f(y)dy.
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The calculation of the swaption price is then reduced to calculating two one-dimensional

integrals. Since the regions of integration are not explicitly known, one has to nu-

merically solve for the roots of K(y), which may have up to two roots. Nevertheless

a full swaption smile can be calculated in a small fraction of a second by means of

this formula.

4.4 Calibration

The counterparty-risk valuation adjustments, abbreviated by XVAs (CVA, DVA,

etc.), can be viewed as long-term options on the underlying contracts. For their

computation, the effects by the volatility smile and term structure matter. Further-

more, for the planned XVA computations regarding the multi-curve product (basis

swap) considered in later sections, it is necessary to calibrate the proposed pricing

model to financial instruments with underlying tenors of δ = 3m and δ = 6m. Sim-

ilar to Crépey et al. (2015), we make use of the following EUR market Bloomberg

data of January 4, 2011 to calibrate our model: EONIA, three-month EURIBOR

and six-month EURIBOR initial term structures on the one hand, and three-month

and six-month tenor swaptions on the other. As in the HJM framework of Crépey

et al. (2015), to which the reader is referred for more details in this regard, the

initial term structures are fitted by construction in our setup. Regarding swaption

calibration, at first, we calibrate the non-maturity/tenor-dependent parameters to

the swaption smile for the 9×1 years swaption with a three-month tenor underly-

ing. The market smile corresponds to a vector of strikes [−200,−100,−50,−25,

0, 25, 50, 100, 200] bp around the underlying swap spread. Then, we make use of at-

the-money swaptions on three and six-month tenor swaps all terminating at exactly

ten years, but with maturities from one to nine years. This co-terminal procedure is

chosen with a view towards the XVA application in Section 4.6, where a basis swap

with a ten-year terminal date is considered.

In particular, in a single factor {A(2)
t } setting:

1. We calibrate the parameters of the driving martingale {A(2)
t } to the smile

of the 9×1 years swaption with tenor δ = 3m. This part of the calibration

procedure gives us also the values of b2(9, 9.25), b2(9.25, 9.5), b2(9.5, 9.75) and

b2(9.75, 10), which we assume to be equal.

2. Next, we consider the co-terminal, ∆ × (10 − ∆), ATM swaptions with ∆ =

1, 2,. . . , 9 years. These are available written on the three and six-month

rates. We calibrate the remaining values of b2 one maturity at a time, going

backwards and starting with the 8×2 years for the three-month tenor and

with the 9×1 years for the six-month tenor. This is done assuming that the

parameters are piecewise constant such that b2(T, T +0.25) = b2(T +0.25, T +

0.5) = b2(T + 0.5, T + 0.75) = b2(T + 0.75, T + 1) for each T = 0, 1, . . . , 8 and

that b2(T, T + 0.5) = b3(T + 0.5, T + 1) hold for each T = 0, 1, . . . , 9.
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4.4.1 Calibration of the one-factor lognormal model

In the one-factor lognormal specification of Section 4.3.2, we calibrate the parameter

a2 and b = b2(9, 9.25) = b2(9.25, 9.5) = b2(9.5, 9.75) = b2(9.75, 10) with Matlab

utilising the procedure “lsqnonlin” based on the pricing formula (4.3.33) (if c̃0 < 0,

otherwise Swn0Tk = Nδc0). This calibration yields:

a2 = 0.0537, b = 0.1107.

Forcing positivity of the underlying LIBOR rates means, in this particular case,

restricting b ≤ L(0; 9.75, 10) = 0.0328 (cf. (4.2.27)). The constrained calibration

yields:

a2 = 0.1864, b = 0.0328.

The two resulting smiles can be found in Figure 4.1, where we can see that the

unconstrained model achieves a reasonably good calibration. However, enforcing

positivity is highly restrictive since the Gaussian model, in this setting, cannot

produce a downward sloping smile.
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Figure 4.1: Lognormal one-factor calibration

Next we calibrate the b2 parameters to the ATM swaption term structures of 3

months and 6 months tenors. The results are shown in Figure 4.2. When positivity

is not enforced the model can be calibrated with no error to the market quotes of

the ATM co-terminal swaptions. However, one can see from the figure that the

positivity constraint does not allow the b2 function to take the necessary values, and

thus a very poor fit to the data is obtained, in particular for shorter maturities.

With this in mind the natural question is whether the positivity constraint is

too restrictive. Informal discussions with market participants reveal that positive

probability for negative rates is not such a critical issue for a model. As long as the

probability mass for negative values is not substantial, it is a feature that can be lived

with. Indeed assigning a small probability to this event may even be realistic. A

broad panel of money market rates have been negative in the last months, including
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DKK (CIBOR), short term EURIBOR and CHF LIBOR. Multiplicatively positive

LIBOR model then pose practical problems for valuing options with nonpositive

strike. In order to investigate the significance of the negative rates and spreads issue

mentioned in Remark 4.2.1, we calculate lower quantiles for spot rates as well as the

spot spread for the model calibrated without the positivity constraint. As Figure 4.3

shows, the lower quantiles for the rates are of no concern. Indeed it can hardly be

considered pathological that rates will be below -14 basis points with 1% probability

on a three year time horizon. Similarly, with regard to the spot spread, the lower

quantile is in fact positive for all time horizons. Further calculations reveal that the

probabilities of the eight year spot spread being negative is 1.1× 10−5 and the nine

year is 0.008 – which again can hardly be deemed pathologically high.

We find that the model performs surprisingly well despite the parsimony of a

one-factor lognormal setup. While positivity of rates and spreads are not achieved,

the model assigns only small probabilities to negative values. However, the ability

of fitting the smile with such a parsimonious model is not satisfactory (cf. Fig. 4.1),

which is our motivation for the next specification.
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Figure 4.3: One-Factor Lognormal calibration. 1% lower quantiles

4.4.2 Calibration of exponential normal inverse Gaussian model

The one-factor model, which is driven by a Gaussian factor {A(2)
t }, is able to capture

the level of the volatility smile. Nevertheless, the model implied skew is slightly

different from the market skew. To overcome this issue, we now consider a one-

factor model driven by a richer family of Lévy processes. The process {A(2)
t } is now

assumed to be the exponential normal inverse Gaussian (NIG) M-martingale

A
(2)
t = exp

(
X

(2)
t − tψ(1)

)
− 1, (4.4.37)



4.4. CALIBRATION 95

Expiry in years
1 2 3 4 5 6 7 8 9

A
T

M
-s

w
a
p
ti
o
n
 i
m

p
lie

d
 v

o
la

ti
lit

y

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27
Calibration to 3m ATM-swaptions - implied volatility

Market vol
Calibrated vol
Calibrated vol - Positivity Constrained

T
1 2 3 4 5 6 7 8 9

V
a
lu

e
 f
o
r 

b
2

0

0.05

0.1

0.15

0.2

0.25
Calibration to 3m ATM-swaptions - b2-parameter

Calibrated b
2
(T,T+0.25)

Calibrated b
2
(T,T+0.25)- Positivity Constrained

Expiry in years
1 2 3 4 5 6 7 8 9

A
T

M
-s

w
a
p
ti
o
n
 i
m

p
lie

d
 v

o
la

ti
lit

y

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26
Calibration to 6m ATM-swaptions - implied volatility

Market vol
Calibrated vol
Calibrated vol - Positivity Constrained

T
1 2 3 4 5 6 7 8 9

V
a
lu

e
 f
o
r 

b
2

0

0.05

0.1

0.15

0.2

0.25
Calibration to 6m ATM-swaptions -  b2-parameter

Calibrated b
2
(T,T+0.5)

Calibrated b
2
(T,T+0.5) - Positivity Constrained

Figure 4.2: One-Factor Lognormal calibration. (Left) Fit to ATM swaption implied

volatility term structures. (Right) Calibrated values of the b2 parameters. (Top)

δ = 3m. (Bottom) δ = 6m.
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where {X(2)
t } is an M-NIG-process with cumulant ψ(z), see (4.3.30), expressed in

terms of the parametrisation1 (ν, θ, σ) from Cont and Tankov (2003) as

ψ(z) = −ν
(√

ν2 − 2zθ − z2σ2 − ν
)
, (4.4.38)

where ν, σ > 0 and θ ∈ R. The parameters that need to be calibrated at first are

ν, θ, σ and b = b2(9, 9.25) = b2(9.25, 9.5) = b2(9.5, 9.75) = b2(9.75, 10). After the

calibration, we obtain

b = 0.0431, ν = 0.2498, θ = −0.0242, σ = 0.1584.

Imposing b ≤ L(0; 9.75, 10) = 0.0328 to get positive rates we obtain instead

b = 0.0291, ν = 0.1354, θ = −0.0802, σ = 0.3048.

The two fits are plotted in Figure 4.4. Here, imposing positivity comes at a much

smaller cost when compared to the one factor Gaussian case. The NIG process has

a richer structure (more parametric freedom) and therefore is able to compensate

for an imposed smaller level of the parameter b2.
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Figure 4.4: Exponential-NIG calibration

We continue with the second part of the calibration of which results are found in

Figure 4.5. Here we see that enforcing positivity may have a small effect on the smile

but it means that the volatility structure cannot be made to match swaptions with

maturity smaller than 7 years. Thus, enforcing positivity in this model produces

limitations which we wish to avoid. In Figure 4.6, we plot lower quantiles for the

rates and spreads as for the one-factor lognormal model. While spot spreads remain

positive, the levels do not, and, as shown, the model assigns an unrealistically high

probability mass to negative values. In fact the model assigns a 1% probability

1The Barndorff-Nielsen (1997) parametrisation is recovered by setting µ = 0, α =

1

σ

√
θ2i
σ2
i

+ ν2i , β =
θi
σ2
i

and δ = σν.
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Figure 4.5: Exponential-NIG calibration. (Left) Fit to ATM swaption implied

volatility term structures. (Right) Calibrated values of the b2 parameters. (Top)

δ = 3m. (Bottom) δ = 6m.
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to rates falling below -12% within 2 years! Thus, the one-factor exponential-NIG

model loses much of its appeal for it cannot, in a realistic manner regarding signs of

interest rates, be made to fit long-term smiles and shorter-term ATM volatilities.
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Figure 4.6: Exponential-NIG calibration calibration. 1% lower quantiles.

4.4.3 Calibration of a two-factor lognormal model

The necessity to produce a better fit to the smile than what can be achieved with the

one-factor Gaussian model, while maintaining realistically positive rates and spreads,

leads us to proposing the two-factor specification presented in Section 4.3.3. This

model is heavily parametrised and the parameters at hand are not all identified by

the considered data. We therefore fix the following parameters:

a1 = 1, a3 = 1.6, (4.4.39)

b3(T, T + 0.25) = 0.15L(0;T ;T + 0.25), T ∈ [9, 9.75], (4.4.40)

b2(T, T + 0.25) = 0.55L(0, T ;T + 0.25), T ∈ [0, 8.75]. (4.4.41)

We assume that b1 is constant, i.e. b1 = b1(T ) for T ∈ [0, 10], and that b3, outside

of the region defined above, is piecewise constant such that b3(T, T + 0.25) = b3(T +

0.25, T + 0.5) = b3(T + 0.5, T + 0.75) = b3(T + 0.75, T + 1) for each T = 0, 1 . . . , 8

and b3(T, T +0.5) = b3(T +0.5, T +1) holds for each T = 0, 1 . . . , 9. We furthermore

assume that b2(T, T + 0.5) = b2(T, T + 0.25), T ∈ [0, 9.5]. These somewhat ad

hoc choices are made with a view towards b2 and b3 being fairly smooth functions

of time. We herewith apply a slightly altered procedure to calibrate the remaining

parameters if compared to the scheme utilised for the one-factor models.

1. We first calibrate to the smile of the 9×1 years swaption which gives us the pa-

rameters a2, ρ, the assumed constant value of b1, and b2(9, 9.25) to b2(9.75, 10)

which are assumed equal to a constant b. Similar to the exponential-NIG

model, we make use of four parameters in total to fit the smile.
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2. The remaining b2 parameters are determined a priori, so what remains is

to calibrate the values of b3. The three-month tenor values b3(T, T + 0.25)

for T ∈ [0, 8.75] are calibrated to ATM, co-terminal swaptions starting from

the 8×2 years and then continuing backwards to the 1×9 years instruments.

For the six-month tenor products, we calibrate b3(T, T + 0.5) for T ∈ [0, 9.5]

starting with 9×1 years and proceed backwards.

These are the values we obtain from the first calibration phase: b1 = 0.2434, b =

0.02, a2 = 0.1888, ρ = 0.9530. The corresponding fit is plotted in the upper left

quadrant of Figure 4.7. In order to check the robustness of the calibrated fit through
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Figure 4.7: Lognormal two-factor calibration.

time, we also calibrate to three alternative dates. The quality of the fit appears quite

satisfactory and comparable to the exponential-NIG model. For all four dates the

calibration is done enforcing the positivity condition b2(T, T + 0.25) + b3(T, T +

0.25) ≤ L(0;T, T + 0.25). However, the procedure yields the exact same parameters

even if the constraint is relaxed. We thus conclude that a better calibration appears

not to be possible for these datasets by allowing negative rates. Note that it is only

for our first data set that the calibrated correlation ρ is as high as 0.9530. In the

other three cases we have ρ = 0.4118, ρ = 0.3964, and ρ = 0.2461. Figure 4.8 shows
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the parameters b2 and b3 obtained at the second phase of the calibration to the data

of 4 January 2011. As with the previous model (cf. the left graphs of Figures 4.2

and 4.5), the volatilities are matched to market data without any error. We add
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Figure 4.8: Two-factor lognormal calibration. (Left) Parameter values fitted to

three-month ATM swaption implied volatility term structures. (Right) Parameter

values fitted to six-month ATM swaption implied volatility term structures.

here that, although not visible from the graphs, the calibrated parameters satisfy

the LIBOR spread positivity discussed in Remark 4.2.1.

In conclusion, we find that the two-factor log-normal has the ability to fit the

swaption smile very well, it can be controlled to generate positive rates and positive

spreads, and it is tractable with numerically-efficient closed-form expressions for the

swaption prices. Given these desirable properties, we discard the one-factor models

and retain the two-factor log-normal model for all the analyses in the remaining part

of the chapter.

4.5 Basis swap

In this section, we prepare the ground for counterparty-risk analysis, which we shall

treat in detail in Section 4.6. A typical multi-curve financial product, i.e. one

that significantly manifests the difference between single-curve and a multi-curve

discounting, is the so-called basis swap. Such an instrument consists of exchanging

two streams of floating payments based on a nominal cash amount N or, more

generally, a floating leg against another floating leg plus a fixed leg. In the classical

single-curve setup, the value of a basis swap (without fixed leg) is zero throughout

its life. Since the onset of the financial crisis in 2007, markets quote positive basis

swap spreads that have to be added to the smaller tenor leg, which is clear evidence

that LIBOR is no longer accepted as an interest rate free of credit and liquidity

risk. We consider a basis swap with a duration of ten years where payments based

on LIBOR of six-month tenor are exchanged against payments based on LIBOR of
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three-month tenor plus a fixed spread. The two payment streams start and end at

the same times T0 = T 1
0 = T 2

0 , T = T 1
n1

= T 2
n2

. The value at time t of the basis swap

with spread K is given, for t ≤ T0, by

BSt = N

 n1∑
i=1

δ6m
i L(t;T 1

i−1, T
1
i )−

n2∑
j=1

δ3m
j (L(t;T 2

j−1, T
2
j ) +KPtT 2

j

 .

After the swap has begun, i.e. for T0 ≤ t < T , the value is given by

BSt = N

(
δ6m
it L(T 1

it−1;T 1
it−1, T

1
it) +

n1∑
i=it+1

δ6m
i L(t;T 1

i−1, T
1
i )

−δ3m
jt

(
L(T 2

jt−1;T 2
jt−1, T

2
jt) +KPtT 2

jt

)
−

n2∑
j=jt+1

δ3m
j

(
L(t;T 2

j−1, T
2
j ) +KPtT 2

j

))
,

where T 1
it

(respectively T 2
jt

) denotes the smallest T 1
i (respectively T 2

i ) that is strictly

greater than t. The spread K is chosen to be the fair basis swap spread at T0 so

that the basis swap has value zero at inception. We have

K =

∑n1
i=1 δ

6m
i L(T0;T 1

i−1, T
1
i )−

∑n2
j=1 δ

3m
j L(T0;T 2

j−1, T
2
j )∑n2

j=1 δ
3m
j PT0T 2

j

.

The price processes on which the numerical illustration in Figure 4.9 have been

obtained was simulated by applying the calibrated two-factor lognormal model de-

veloped in Section 4.4.3. The basis swap is assumed to have a notional cash amount

N = 100 and maturity T = 10 years. In the two-factor lognormal setup, the basis

swap spread at time t = 0 is K = 12 basis points, which is added to the three-month

leg so that the basis swap is incepted at par. The t = 0 value of both legs is then

equal to EUR 27.96. The resulting risk exposure, in the sense of the expectation

and quantiles of the corresponding price process at each point in time, is shown in

the left graphs of Figure 4.9, where the right plots correspond to the P exposure

discussed in Section 4.5.1. Due to the discrete coupon payments, there are two dis-

tinct patterns of the price process exposure, most clearly visible at times preceding

payments of the six-month tenor coupons for the first one and at times preceding

payments of the three-month tenor coupons without the payments of the six-month

tenor coupons for the second one. We show the exposures at such respective dates

on the upper and lower plots in Figure 4.9.
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Figure 4.9: Exposures of a basis swap (price process with mean and quantiles)

in the calibrated two-factor Gaussian model. (Top) Exposure of the basis swap at

t = 5m, 11m, etc. (Bottom) Exposure of the basis swap price at t = 2m, 8m, 14m, etc.

(Left) Exposure under the M-measure. (Right) Exposure under the P-measure with

the prediction that the LIBOR rate L(10.75y; 10.75y, 11y) will be either 2 % with

probability p = 0.7 or 5 % with probability 1− p = 0.3.

4.5.1 Lévy random bridges

The basis swap exposures in Figure 4.9 are computed under the auxiliary M-measure.

The XVAs that are computed in later sections are derived from these M-exposures.

However, exposures are also needed for risk management and as such need to be

evaluated under the real-world measure P. This means that a measure change from

M to P needs to be defined, which requires some thoughts as to what features of a

price dynamics under P one might like to capture through a specific type of measure

change and hence by the induced P-model. In other words, we design a measure

change so as to induce a particular stochastic behaviour of the {At} processes under

P, and in particular of the underlying Markov processes {Xt} driving them.

A special case we consider in what follows is where {Xt} is a Lévy process under

M, while it adopts the law of a corresponding (possibly multivariate, componentwise)
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Lévy random bridge (LRB) under P. Several explicit asset price models driven by

LRBs have been developed in Macrina (2014). The LRB-driven rational pricing

models have a finite time horizon. The LRB is characterised, apart from the type

of underlying Lévy process, by the terminal P-marginal distribution to which it

is pinned at a fixed time horizon U . The terminal distribution can be arbitrarily

chosen, but its specification influences the behaviour of the LRB as time approaches

U . In turn, the properties of a specified LRB influence the behaviour of {At} and

hence the dynamics of the considered price process. We see an advantage in having

the freedom of specifying the P-distribution of the factor process at some fixed future

date. This way, we can implement experts’ opinions (e.g. personal beliefs based on

some expert analysis) in the P-dynamics of the price process as to what level, say,

an interest rate (e.g. OIS, LIBOR) is likely to be centred around at a fixed future

date.

The recipe for the construction of an LRB can be found in Hoyle, Hughston and

Macrina (2011), Definition 3.1, which is extended for the development of a multi-

variate LRB in Macrina (2014). LRBs have the property, as shown in Proposition

3.7 of Hoyle, Hughston and Macrina (2011), that there exists a measure change to

an auxiliary measure with respect to which the LRB has the law of the constituting

Lévy process. That is, we suppose the auxiliary measure is M and we have an LRB

{Xt}0≤t≤U defined on the finite time interval [0, U ] where U is fixed. Under M and

on [0, U), {Xt} has the law of the underlying Lévy process. To illustrate further, let

us assume a univariate LRB; the analogous measure change for multivariate LRBs is

given in Macrina (2014). Under P, which stands in relation with M via the measure

change

ηt =
dP
dM

∣∣∣
Ft

=

∫
R

fU−t(z −Xt)

fU (z)
ν(dz), t < U, (4.5.42)

where ft(x) is the density function of the underlying Lévy process for all t ∈ (0, U ]

and ν is the P-marginal law of the LRB at the terminal date U , the process {Xt} is

an LRB (note that the change of measure is singular at U).

Now, returning to the calibrated two-factor lognormal model of Section 4.4.3,

but similarly also to the other models in Section 4.4, we may model the drivers

{X(1)
t } = {X(3)

t } and {X(2)
t } by two dependent Brownian random bridges under

P. The computed M exposures in Figure 4.9 thus need to be re-weighted by the

corresponding amount ηt in order to obtain the P-exposures of the basis swap. Since

here we employ LRBs, we have the opportunity to include an expert opinion through

the LRB marginals ν as to what level one believes the interest rates will tend to by

time U . The re-weighted P-exposures of the basis swap are plotted in the graphs of

the right-hand side of Figure 4.9. The maximum of the upper quantile curves shown

in the graphs is known as the potential future exposure (PFE) at the level 97.5%2.

Hence, we now have the means to propose a risk-neutral model that can be

calibrated to option data, and which after an explicit measure change can be applied

2In fact, people rather consider the expected positive exposure (expectation of the positive part

of the price rather than the price) in the PFE computation, but the methodology is the same.
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for risk management purposes while offering a way to incorporate economic views

in the dynamic of asset prices. Recalling (4.2.19) and (4.5.42), the Q-to-P measure

change is obtained by
dP
dQ

∣∣∣
Ft

=
ηt
µt
, (4.5.43)

and the pricing formula for financial assets (4.2.1) may be utilised under the various

measures as follows:

StT =
1

Dt
EQ[DT STT | Ft] =

1

Dt µt
EM[DT µT STT | Ft] =

1

ht
EM[hT STT | Ft]

=
ηt

Dt µt
EP
[
DT µT
ηT

STT

∣∣∣Ft] =
1

πt
EP[πT STT | Ft], (4.5.44)

for 0 ≤ t ≤ T < U (since we consider price models driven by LRBs). It follows that

the pricing kernel is given by πt = Dt µt η
−1
t = η−1

t ht. Measure changes from a risk-

neutral to the real-world probability measure are discussed for similar applications

also elsewhere. For a recent study in this area of research, we refer to, e.g., Hull,

Sokol and White (2014).

4.6 Adjustments

So far we have focused on so-called “clean computations”, i.e. ignoring counterparty-

risk and assuming that funding is obtained at the risk-free OIS rate. In reality, con-

tractually specified counterparties at the end of a financial agreement may default,

and funding to enter or honour a financial agreement may come at a higher cost

than at OIS rate. Thus, various valuation adjustments need to be included in the

pricing of a financial position. The price of a counterparty-risky financial contract

is computed as the difference between the clean price, as in previous sections, and

an adjustment accounting for counterparty-risk and funding costs.

4.6.1 Rational credit model

As we shall see below, in addition to their use for the computation of PFE, the

exposures in Section 4.5 can be used to compute various adjustments: CVA (credit

valuation adjustment), DVA (debt valuation adjustment) and LVA (liquidity-funding

valuation adjustment). With this goal in mind, we equip the bottom-up construction

in Section 4.2.3, the notation of which is used henceforth, with a credit component

in the following manner.

We consider {X(i)
t }

i=1,2,...,n
t≥0 , which are assumed to be ({Ft},M)-Markov pro-

cesses. For any multi-index (i1, . . . , id), we write F (i1,...,id)
t =

∨
l=1,...,dFX

(il)

t . The

(market) filtration {Ft} is given by {F (1,...,n)
t }. For the application in the present

section, we fix n = 6. Markov processes {X(1)
t } = {X(3)} and {X(2)

t } are utilised

to drive the OIS and LIBOR models as described in Section 4.2.3, in particular the

zero-initialised ({Ft},M)-martingales {A(i)
t }i=1,2,3. The Markov processes {X(i)

t },
i = 4, 5, 6, which are assumed to be M-independent between them and of the Markov
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processes i = 1, 2, 3, are applied to model {Ft}-adapted processes {γ(i)
t }i=4,5,6 de-

fined by

γ
(i)
t = − ċi(t) + ḃi(t)A

(i)
t

ci(t) + bi(t)A
(i)
t

, (4.6.45)

where bi(t) and ci(t), with ci(0) = 1, are non-increasing deterministic functions, and

where {A(i)
t }i=4,5,6 are zero-initialised ({Ft},M)-martingales of the form A(t,X

(i)
t ).

Comparing with (4.2.17), we see that (4.6.45) is modelled in the same way as the

OIS rate (4.2.17), non-negative in particular, as an intensity should be (see Remark

4.6.3).

In line with the “bottom-up” construction in Section (4.2.3), we now introduce

a density ({Ft},M)-martingale {µtνt}0≤t≤T that induces a measure change from M
to the risk-neutral measure Q:

dQ
dM

∣∣∣
Ft

= µtνt, 0 ≤ t ≤ T,

where {µt} is defined as in Section 4.2.3. Here, we furthermore define νt =
∏
i≥4 ν

(i)
t

where the processes

ν
(i)
t = E

(∫ ·
0

ḃi(t)dA
(i)
t

ċi(t) + ḃi(t)A
(i)
t−

)
are assumed to be positive true ({Ft},M)-martingales.

Lemma 4.6.2. Let ξ denote any non-negative F (1,2,3)
T -measurable random variable

and let χ =
∏
j≥4 χi where, for j = 4, 5, 6, χj is F (j)

T -measurable. Then

ER
t [ξ χ] = ER

t [ξ]
∏
j≥4

ER
t [χi] , (4.6.46)

for R = M or Q and for 0 ≤ t ≤ T .

Proof. Since F (4,5,6)
T is independent of F (1,2,3)

t and of ξ,

EM
[
ξ
∣∣F (1,2,3)

t ∨ F (4,5,6)
T

]
= EM

[
ξ
∣∣F (1,2,3)

t

]
.

Therefore,

EM
t [ξ χ] = EM

[
EM
[
ξ χ
∣∣F (1,2,3)

t ∨ F (4,5,6)
T

] ∣∣F (1,2,3)
t ∨ F (4,5,6)

t

]
= EM

[
EM
[
ξ
∣∣F (1,2,3)

t ∨ F (4,5,6)
T

]
χ
∣∣F (1,2,3)

t ∨ F (4,5,6)
t

]
= EM

[
EM
[
ξ
∣∣F (1,2,3)

t

]
χ
∣∣F (1,2,3)

t ∨ F (4,5,6)
t

]
= EM

[
ξ
∣∣F (1,2,3)

t

]
EM
[
χ
∣∣F (1,2,3)

t ∨ F (4,5,6)
t

]
= EM

t [ξ]EM
t [χ] .

Next, the Girsanov formula in combination with the result for M-conditional expec-

tation yields:

EQ
t [ξχ] = EM

t

[
µT νT ξχ

µtνt

]
= EM

t

[
µT ξ

µt

]
EM
t

[
νTχ

νt

]
= EM

t

[
νTµT ξ

νtµt

]
EM
t

[
µT νTχ

µtνt

]
= EQ

t [ξ]EQ
t [χ] .
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The result remains to be proven for the case ξ = 1, which is done similarly.

For the XVA computations, we shall use a reduced-form counterparty-risk ap-

proach where the default times of a bank “b” (we adopt its point of view) and of its

counterparty “c” are modeled in terms of three Cox times τi defined by

τi = inf

{
t > 0

∣∣ ∫ t

0
γ(i)
s ds ≥ Ei

}
. (4.6.47)

Under Q, the random variables Ei (i = 4, 5, 6) are independent and exponentially

distributed. Furthermore, τc = τ4 ∧ τ6, τb = τ5 ∧ τ6, hence τ = τb ∧ τc = τ4 ∧ τ5 ∧ τ6.

We write

γct = γ
(4)
t + γ

(6)
t , γbt = γ

(5)
t + γ

(6)
t , γt = γ

(4)
t + γ

(5)
t + γ

(6)
t ,

which are the so called ({Ft},Q)-hazard intensity processes of the {Gt} stopping

times τc, τb and τ, where the full model filtration {Gt} is given as the market fil-

tration {Ft}-progressively enlarged by τc and τb (see, e.g., Bielecki, Jeanblanc, and

Rutkowski (2009), Chapter 5). Writing as before Dt = exp(−
∫ t

0 rs ds), we note that

Lemma 4.2.1 still holds in the present setup. That is,

h = c1 + b1A
(1) = Dµ,

an ({Ft},M)-supermartingale, assumed to be positive (e.g. under an exponential

Lévy martingale specification for A(1) as of Example 4.2.2). Further, we introduce

Z
(i)
t = exp(−

∫ t
0 γ

(i)
s ds), for i = 4, 5, 6, and obtain analogously that

k(i) := ci + biA
(i) = Zi ν(i). (4.6.48)

With these observations at hand, the following results follow from Lemma 4.6.2. We

write kt =
∏
i≥4 k

(i) and Zt =
∏
i≥4 Z

(i)
t .

Proposition 4.6.1. The identities (4.2.22) and (4.2.26) still hold in the present

setup, that is

PtT = EQ
t

[
e−

∫ T
t rs ds

]
= EQ

t

[
DT

Dt

]
= EM

t

[
hT
ht

]
=
c1(T ) + b1(T )A

(1)
t

c1(t) + b1(t)A
(1)
t

(4.6.49)

and, for t ≤ Ti−1,

L(t;Ti−1, Ti) =
L(0;Ti−1, Ti) + b2(Ti−1, Ti)A

(2)
t + b3(Ti−1, Ti)A

(3)
t

P0t + b1(t)A
(1)
t

. (4.6.50)

Likewise,

EQ
t

[
e−

∫ T
t γs ds

]
= EQ

t

[
ZT
Zt

]
= EM

t

[
kT
kt

]
=

∏
i=4,5,6

ci(T ) + bi(T )A
(i)
t

ci(t) + bi(t)A
(i)
t

, (4.6.51)
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EQ
t

[
e−

∫ T
t γs ds γcT

]
= −EQ

t

[
Z

(5)
T

Z
(5)
t

]
∂T EQ

t

[
Z

(4)
T Z

(6)
T

Z
(4)
t Z

(6)
t

]

= −EQ
t

[
e−

∫ T
t γs ds

] ∑
i=4,6

ċi(T ) + ḃi(T )A
(i)
t

ci(T ) + bi(T )A
(i)
t

, (4.6.52)

EQ
t

[
e−

∫ T
t (rs+γcs)ds

]
= EQ

t

[
DTZ

(4)
T Z

(6)
T

DtZ
(4)
t Z

(6)
t

]
=

∏
i=1,4,6

ci(T ) + bi(T )A
(i)
t

ci(t) + bi(t)A
(i)
t

. (4.6.53)

Proof. Using Lemma 4.6.2, we compute

EQ
t

[
e−

∫ T
t rsds

]
= EQ

t

[
DT

Dt

]
= EM

t

[
hT νT
htνt

]
= EM

t

[
hT
ht

]
EM
t

[
νT
νt

]
= EM

t

[
hT
ht

]
=
c1(T ) + b1(T )A

(1)
t

c1(t) + b1(t)A
(1)
t

, (4.6.54)

where the last equality holds by Lemma 4.2.1. This proves (4.6.49). The other

identities are proven similarly.

Remark 4.6.3. Equations (4.6.49) and (4.6.51) are similar in nature and appear-

ance. As it is the case for the resulting OIS rate {rt} (4.2.17), the fact that (4.6.48)

is designed to be a supermartingale has as a consequence that the associated inten-

sity (4.6.45) is a non-negative process. This is readily seen by observing that {ν(i)
t }

is a martingale and thus the drift of the supermartingale (4.6.48) is given by the

necessarily non-negative process {γ(i)
t } that drives {Z(i)

t }.

At time t = 0, all the A
(i)
0 = 0, hence only the terms ci(T ) remain in these

formulas. Since the formulas (4.6.49) and (4.6.50) are not affected by the inclusion of

the credit component in this approach, the valuation of the basis swap of Section 4.5

remains unchanged. By making use of the so-called “Key Lemma” of credit risk,

see for instance Bielecki, Jeanblanc, and Rutkowski (2009), the identity (4.6.53) is

the main building block for the pre-default price process of a “clean” CDS on the

counterparty (respectively the bank, substituting τb for τc in (4.6.53)). In particular,

the identities at t = 0

EQ
[
e−

∫ T
0 (rs+γcs)ds

]
= c1(T )c4(T )c6(T ), EQ

[
e−

∫ T
0 (rs+γbs)ds

]
= c1(T )c5(T )c6(T ),(4.6.55)

for T ≥ 0, can be applied to calibrate the functions ci(T ), i = 4, 5, 6, to CDS

curves of the counterparty and the bank, once the dependence on the respective

credit risk factors has been specified. The calibration of the “noisy” credit model

components bi(T )A
(i)
t , i = 4, 5, 6, would require CDS option data or views on CDS

option volatilities. If the entire model is judged underdetermined, more parsimonious

specifications may be obtained by removing the common default component τ6 (just
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letting τc = τ4, τb = τ5) and/or restricting oneself to deterministic default intensities

by settting some of the stochastic terms equal to zero, i.e. bi(T )A
(i)
t = 0, i = 4, 5

and/or 6 (as is the case for the one-factor interest rate models in Section 4.3). The

core building blocks of our multi-curve LIBOR model with counterparty-risk are

the couterparty-risk kernels {k(i)
t }, i = 4, 5, 6, the OIS kernel {ht}, and the LIBOR

kernel given by the numerator of the LIBOR process (4.2.26). We may view all

kernels as defined under the M-measure, a priori. The respective kernels under the

P-measure, e.g. the pricing kernel {πt}, are obtained as explained at the end of

Section 4.5.

4.6.2 XVA analysis

In the above reduced-form counterparty-risk setup, following Bielecki and Crépey

(2014, Part III), given a contract (or portfolio of contracts) with “clean” price process

{Pt} and a time horizon T , the total valuation adjustment (TVA) process {Θt}
accounting for counterparty-risk and funding cost, can be modelled as a solution to

an equation of the form

Θt = EQ
t

[∫ T

t
exp

(
−
∫ s

t
(ru + γu)du

)
fs(Θs)ds

]
, t ∈ [0, T ], (4.6.56)

for some coefficient {ft(ϑ)}. We note that (4.6.56) is a backward stochastic differ-

ential equation (BSDE) for the TVA process {Θt}. For accounts on BSDEs and

their use in mathematical finance in general and counterparty-risk in particular, we

refer to, e.g., El Karoui, Peng, and Quenez (1997), Brigo et al. (2013) and Crépey,

Bielecki and Brigo (2014) or (Bielecki and Crépey 2014, Part III). An analysis in

line with Crépey, Bielecki and Brigo (2014) yields a coefficient of the BSDE (4.6.56)

given, for ϑ ∈ R, by:

ft(ϑ) = γct (1−Rc)(Pt − Γt)
+︸ ︷︷ ︸

CVA coefficient (cvat)

− γbt (1−Rb)(Pt − Γt)
−︸ ︷︷ ︸

DVA coefficient (dvat)

+ b̄tΓ
+
t − btΓ

−
t + λ̃t

(
Pt − ϑ− Γt

)+ − λt(Pt − ϑ− Γt
)−︸ ︷︷ ︸

LVA coefficient (lvat(ϑ))

,
(4.6.57)

where:

– Rb and Rc are the recovery rates of the bank towards the counterparty and

vice versa.

– Γt = Γ+
t − Γ−t , where {Γ+

t } (resp. {Γ−t }) denotes the value process of the

collateral posted by the counterparty to the bank (resp. by the bank to the

counterparty), for instance Γt = 0 (used henceforth unless otherwise stated)

or Γt = Pt.

– The processes {b̄t} and {bt} are the spreads with respect to the OIS short

rate {rt} for the remuneration of the collateral {Γ+
t } and {Γ−t } posted by the

counterparty and the bank to each other.
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– The process {λt} (resp. {λ̃t}) is the liquidity funding (resp. investment) spread

of the bank with respect to {rt}. By liquidity funding spreads we mean that

these are free of credit risk. In particular,

λ̃t = λ̄t − γbt (1− R̄b), (4.6.58)

where {λ̄t} is the all-inclusive funding borrowing spread of the bank and where

R̄b stands for a recovery rate of the bank to its unsecured lender (which is

assumed risk-free, for simplicity, so that in the case of {λt} there is no credit

risk involved in any case).

The data {Γt}, {bt} and b̄t are specified in a credit support annex (CSA) contracted

between the two parties. We note that

EQ
t

[∫ T

t
exp

(
−
∫ s

t
(ru + γu)du

)
fs(Θs)ds

]
= EM

t

[∫ T

t

µsνsDsZs
µsνtDtZt

fs(Θs)ds

]
= EM

t

[∫ T

t

hsks
htkt

fs(Θs)ds

]
.(4.6.59)

Hence, by setting Θ̃t = ht kt Θt, one obtains the following equivalent formulation of

(4.6.56) and (4.6.57) under M:

Θ̃t = EM
t

[∫ T

t
f̃s(Θ̃s)ds

]
, t ∈ [0, T ], (4.6.60)

where

f̃t(ϑ̃)

htkt
= ft

( ϑ̃

htkt

)
= γct (1−Rc)(Pt − Γt)

+ − γbt (1−Rb)(Pt − Γt)
−

+ b̄tΓ
+
t − btΓ

−
t + λ̃t

(
Pt −

ϑ̃

htkt
− Γt

)+

− λt
(
Pt −

ϑ̃

htkt
− Γt

)−
.

(4.6.61)

For the numerical implementations presented in the following section, unless stated

otherwise, we set:

γb = 5%, γc = 7%, γ = 10%,

Rb = Rc = 40%,

b = b̄ = λ = λ̃ = 1.5%.

(4.6.62)

In the simulation grid one time-step corresponds to one month and m = 104 or 105

scenarios are produced. We recall the comments made after (4.6.55) and note that

(i) the counterparty and the bank may default jointly, which is reflected by the fact

that γt < γbt + γct , and (ii) we consider a case where default intensities are assumed

deterministic, that is biA
(i) = 0 (i = 4, 5, 6). In fact, any stochasticity of the default

intensities {γ(i)
t } would be averaged out in all the t = 0 pricing formulas that are

derived below (but it would appear in more general t pricing formulas or in the XVA

Greeks even for t = 0).
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BSDE-based computations

The BSDE (4.6.60)-(4.6.61) can be solved numerically by simulation/regression

schemes similar to those used for the pricing of American-style options, see Crépey,

Gerboud, Grbac, and Ngor (2013), and Crépey et al. (2015). Since in (4.6.62) we

have λt = λ̃t, the coefficients of the terms (Pt− ϑ̃
htkt
−Γt)

± coincide in (4.6.61). This

is the case of a “linear TVA” where the coefficient f̃t depends linearly on ϑ̃. The

results emerging from the numerical BSDE scheme for (4.6.61) can thus be verified

by a standard Monte Carlo computation. Table 4.1 displays the value of the TVA

and its CVA, DVA and LVA components at time zero, where the components are

obtained by substituting for ϑ, in the respective term of (4.6.61), the TVA process

Θ̃t computed by simulation/regression in the first place (see Section 5.2 in Crépey

et al. (2013) for the details of this procedure). The sum of the CVA, DVA and LVA,

which in theory equals the TVA, is shown in the sixth column. Therefore, columns

two, six and seven yield three different estimates for Θ̃0 = Θ0. Table 4.2 displays the

relative differences between these estimates, as well as the Monte Carlo confidence

interval in a comparable scale, which is shown in the last column. The TVA repriced

by the sum of its components is more accurate than the regressed TVA. This obser-

vation is consistent with the better performance of Longstaff and Schwartz (2001)

when compared with Tsitsiklis and Van Roy (2001) in the case of American-style

option pricing by Monte Carlo methods (see, e.g., Chapter 10 in Crépey (2013)).

m Regr TVA CVA DVA LVA Sum MC TVA

104 0.0447 0.0614 -0.0243 0.0067 0.0438 0.0438

105 0.0443 0.0602 -0.0234 0.0067 0.0435 0.0435

Table 4.1: TVA at time zero and its decomposition (all quoted in EUR) computed by

regression for m = 104 or 105 against X
(1)
t and X

(2)
t . Column 2: TVA Θ0. Columns

3 to 5: CVA, DVA, LVA at time zero repriced individually by plugging Θ̃t for ϑ̃ in

the respective term of (4.6.61). Column 6: Sum of the three components. Column

7: TVA computed by a standard Monte Carlo scheme.

m Sum/TVA TVA/MC Sum/MC CI//|MC|
104 -2.0114% 2.0637% 0.0108 % 9.7471%

105 -1.7344 % 1.7386 % -0.0259% 2.9380%

Table 4.2: Relative errors of the TVA at time zero corresponding to the results of

Table 4.1. “A/B” represents the relative difference (A − B)/B. “CI//|MC|”, in

the last column, refers to the half-size of the 95%-Monte Carlo confidence interval

divided by the absolute value of the standard Monte Carlo estimate of the TVA at

time zero.

In Table 4.3, in order to compare alternative CSA specifications, we repeat the
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above numerical implementation in each of the following four cases, with λ̄t set equal

to the constant 4.5% everywhere and all other parameters as in (4.6.62):

1. (R̄b, Rb, Rc) = (100, 40, 40)%, Q = P, Γ = 0,

2. (R̄b, Rb, Rc) = (100, 40, 40)%, Q = P, Γ = Q = P,

3. (R̄b, Rb, Rc) = (40, 40, 40)%, Q = P, Γ = 0,

4. (R̄b, Rb, Rc) = (100, 100, 40)%, Q = P, Γ = 0.

(4.6.63)

Remembering that the t = 0 value of both legs of the basis swap is equal to EUR

Case Regr TVA CVA DVA LVA Sum Sum/TVA

1 0.0776 0.0602 -0.0234 0.0408 0.0776 -0.0464 %

2 0.0095 0.0000 0.0000 0.0092 0.0092 -3.6499%

3 0.0443 0.0602 -0.0234 0.0067 0.0435 -1.7344 %

4 0.0964 0.0602 0.0000 0.0376 0.0978 1.4472%

Table 4.3: TVA at time zero and its decomposition (all quoted in EUR) computed

by regression for m = 105 against X
(1)
t and X

(2)
t . Column 2: TVA Θ0. Columns 3

to 5: CVA, DVA and LVA at time zero, repriced individually by plugging Θ̃t for ϑ̃ in

the respective term of (4.6.60). Column 6: Sum of the three components. Column

7: Relative difference between the second and the sixth columns.

27.96, the numbers in Table 4.3 may seem quite small, but one must also bear in

mind that the toy model that is used here doesn’t account for any wrong-way risk

effect (see Crépey and Song (2015a)). In fact, the most informative conclusion of

the table is the impact of the choice of the parameters on the relative weight of the

different XVA components.

Exposure-based computations

Let’s restrict attention to the case of interest rate derivatives with {Pt} adapted

with respect to {F (1,2,3)
t }. We introduce c(s) =

∏
i≥4 ci(s) and the function of time

EPE(s) := EM [hsP+
s

]
= EQ [DsP

+
s

]
, resp. ENE(s) := EM [hsP−s ] = EQ [DsP

−
s

]
,

called the expected positive exposure, resp. expected negative exposure. For an

interest-rate swap, the EPE and ENE correspond to the mark-to-market of swap-

tions with maturity s written on the swap, which can be recovered analytically if

available in a suitable model specification. In general, the EPE/ENE can be re-

trieved numerically by simulating the exposure.

In view of (4.6.60)-(4.6.61), by the time t = 0 forms of (4.6.51) and (4.6.52), the

noncollateralised CVA at t = 0 satisfies (for Rc 6= 1, otherwise CV A0=0):

1

(1−Rc)
CV A0 = EM

[∫ T

0
hsksγ

c
sP

+
s ds

]
=

∫ T

0
EM [hsP+

s

]
EM [ksγ

c
s] ds

=

∫ T

0
EM [hsP+

s

]
EQ [Zsγ

c
s] ds = −

∫ T

0
EPE(s)

(
ċ6(s)

c6(s)
+
ċ4(s)

c4(s)

)
c(s)ds.
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Similarly, for the DVA (for Rb 6= 1, otherwise DV A0 = 0) we have:

1

(1−Rb)
DV A0 = −

∫ T

0
ENE(s)

(
ċ6(s)

c6(s)
+
ċ4(s)

c4(s)

)
c(s)ds.

For the basis swap of Section 4.5 and the counterparty-risk data (4.6.62), we obtain

by this manner CV A0 = 0.0600 and DV A0 = −0.0234, quite consistent with the

corresponding entries of the second row (i.e. for m = 105) in Table 4.1. As for the

LVA, to simplify its computation, one may be tempted to neglect the nonlinearity

that is inherent to lvat(ϑ) (unless λ̃t = λt), replacing ϑ by 0 in lvat(ϑ). Then,

assuming lvat(0) ∈ X (1,2,3)
t , by (4.6.56)-(4.6.57), one can compute a linearised LVA

at time zero given by

L̂V A0 = EM
[∫ T

0
hsks lvas(0)ds

]
=

∫ T

0
EM [hs lvas(0)]EM [ks] ds =

∫ T

0
EM [hs lvas(0)] c(s)ds,

by (4.6.51) for t = 0. This is based on the expected (linearised) liquidity exposure

EM [hslvas(0)] = EQ [Dslvas(0)] .

In case of no collateralisation (Γt = 0) and of deterministic λ̃t and λt, we have

lvas(0) = λ̃sP
+
s − λsP−s , L̂V A0 =

∫ T

0

(
λ̃sEPE(s)− λsENE(s)

)
c(s)ds.

In case of continuous collateralisation (Γt = Pt) and of deterministic b̄t and bt, the

formulas read

lvas(0) = b̄sP
+
s − bsP−s , L̂V A0 =

∫ T

0

(
b̄sEPE(s)− bsENE(s)

)
c(s)ds.

As for CVA/DVA, the LVA exposure is controlled by the EPE/ENE functions, but

for different “weighting functions”, depending on the CSA. For instance, for the data

(4.6.62), the LVA on the basis swap of Section 4.5 (collateralised or not, since in this

case b̄t = bt = λ̃t = λt = 1.5%), we obtain L̂V A0 = 0.0098, quite different in relative

terms (but these are small numbers) from the exact (as opposed to linearised) value

of 0.0067 in Table 4.1.



Chapter 5

Nonlinear Monte Carlo schemes

for counterparty risk on credit

derivatives

5.1 Introduction

Counterparty risk is a major issue since the global credit crisis and the ongoing

European sovereign debt crisis. In a bilateral counterparty risk setup, counterparty

risk is valued as the so-called credit valuation adjustment (CVA), for the risk of

default of the counterparty, and debt valuation adjustment (DVA), for own default

risk. In such a setup, the classical assumption of a locally risk-free funding as-

set used for both investing and unsecured borrowing is no longer sustainable. The

proper accounting of the funding costs of a position leads to the funding valuation

adjustment (FVA). Moreover, these adjustments are interdependent and must be

computed jointly through a global correction dubbed total valuation adjustment

(TVA). The pricing equation for the TVA is nonlinear due to the funding costs. It

is posed over a random time interval determined by the first default time of the

two counterparties. To deal with the corresponding backward stochastic differen-

tial equation (BSDE), a first reduced-form modeling approach has been proposed

in Crépey (2012b), under a rather standard immersion hypothesis between a ref-

erence (or market) filtration and the full model filtration progressively enlarged by

the default times of the counterparties. This basic immersion setup is fine for stan-

dard applications, such as counterparty risk on interest rate derivatives. But it is

too restrictive for situations of strong dependence between the underlying exposure

and the default risk of the two counterparties, such as counterparty risk on credit

derivatives (which involves strong adverse dependence, called wrong-way risk). For

this reason, an extended reduced-form modeling approach has been recently devel-

oped in Crépey and Song (2014a, 2014b, 2015a, 2015b). With credit derivatives,

the problem is also very high-dimensional. From a numerical point of view, for

high-dimensional nonlinear problems, only purely forward simulation schemes can

113
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be used. In Crépey and Song (2015a), the problem is addressed by the linear Monte

Carlo expansion with randomization of Fujii and Takahashi (2012a,2012b). In the

present work, we assess another scheme, namely the marked branching diffusion

approach of Henry-Labordère (2012), which we compare with the previous one in

terms of applicability and numerical behavior. This is done in two dynamic cop-

ula models of portfolio credit risk: the dynamic Gaussian copula model and where

default dependence stems from joint defaults.

The chapter is organized as follows. Sect. 5.2 and 5.3 provide a summary of the

main pricing and TVA BSDEs that are derived in Crépey and Song (2014a, 2014b,

2015a). Sect. 5.4 exposes two nonlinear Monte Carlo schemes that can be considered

for solving these in high-dimensional models, such as the portfolio credit models of

Sect. 5.5. Comparative numerics in these models are presented in Sect. 5.6. Sect. 5.7

concludes.

5.2 Prices

5.2.1 Setup

We consider a netted portfolio of OTC derivatives between two defaultable coun-

terparties, generally referred to as the contract between a bank, the perspective of

which is taken, and its counterparty. After having bought the contract from its coun-

terparty at time 0, the bank sets-up a hedging, collateralization (or margining) and

funding portfolio. We call the funder of the bank a third party, possibly composed

in practice of several entities or devices, insuring funding of the bank’s strategy. The

funder, assumed default-free for simplicity, plays the role of lender/borrower of last

resort after the exhaustion of the internal sources of funding provided to the bank

through its hedge and collateral.

For notational simplicity we assume no collateralization. All the numerical con-

siderations, our main focus in this work, can be readily extended to the case of

collateralized portfolios using the corresponding developments in Crépey and Song

(2015a). Likewise, we assume hedging in the simplest sense of replication by the

bank and we consider the case of a fully securely funded hedge, so that the the cost

of the hedge of the bank is exactly reflected by the wealth of its hedging and funding

portfolio.

We consider a stochastic basis (Ω,GT ,G,Q), where G = (Gt)t∈[0,T ] is interpreted

as a risk-neutral pricing model on the primary market of the instruments that are

used by the bank for hedging its TVA. The reference filtration F is a subfiltration

of G representing the counterparty risk free filtration, not carrying any direct in-

formation about the defaults of the two counterparties. The relation between these

two filtrations will be pointed out in the condition (C) to be introduced later. We

denote by:

• Et, the conditional expectation under Q given Gt,
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• r, the OIS (risk-free) short rate process, with related discount factor βt =

e−
∫ t
0 rsds,

• T, the maturity of the contract,

• τb and τc, the default time of the bank and of the counterparty, modeled as G
stopping times with (G,Q) intensities γb and γc,

• τ = τb∧τc, the first-to-default time of the two counterparties, also a G stopping

time, with intensity γ such that max(γb, γc) ≤ γ ≤ γb + γc,

• τ̄ = τ ∧T, the effective time horizon of our problem (there is no cashflow after

τ̄),

• D, the contractual dividend process,

• ∆ = D −D−, the jump process of D.

5.2.2 Clean price

We denote by P be the reference (or clean) price of the contract ignoring counter-

party risk and assuming the position of the bank financed at the OIS rate r, i.e. the

G conditional expectation of the future contractual cash-flows discounted at the OIS

risk-free rate r. In particular,

βtPt = Et
[∫ τ̄

t
βsdDs + βτ̄Pτ̄

]
, t ∈ [0, τ̄ ]. (5.2.1)

We also define Qt = Pt + 1{t=τ<T}∆τ , so that Qτ represents the clean value of the

contract inclusive of the promised dividend at default (if any) ∆τ , which also belongs

to the “debt” of the counterparty to the bank (or vice versa depending on the sign

of Qτ ) in case of default of a party. Accordingly, at time τ (if < T ), the close-out

cash-flow of the counterparty to the bank is modeled as

R = 1{τ=τc}
(
RcQ

+
τ −Q−τ

)
− 1{τ=τb}

(
RbQ

−
τ −Q+

τ

)
− 1{τb=τc}Qτ , (5.2.2)

where Rb and Rc are the recovery rates of the bank and of the counterparty to each

other.

5.2.3 All-inclusive price

Let Π be the all-inclusive price of the contract for the bank, including the cost of

counterparty risk and funding costs. Since we assume a securely funded hedge (in

the sense of replication) and no collateralization, the amounts invested and funded

by the bank at time t are respectively given by Π−t− and Π+
t−. The all-inclusive

price Π is the discounted conditional expectation of all effective future cash flows
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including the contractual dividends before τ , the cost of funding the position prior

to time τ and the terminal cash flow at time τ . Hence,

βtΠt = Et
[ ∫ τ̄

t
βs1s<τdDs −

∫ τ̄

t
βsλ̄sΠ

+
s ds+ βτ̄1τ<TR

]
, (5.2.3)

where λ̄ is the funding spread over r of the bank toward the external funder, i.e. the

bank borrows cash from its funder at rate r + λ̄ (and invests cash at the risk-free

rate r). Since the right hand side in (5.2.3) depends also on Π, (5.2.3) is in fact a

backward stochastic differential equation (BSDE). Consistent with the no arbitrage

principle, the gain process on the hedge is a Q martingale, which explains why it

does not appear in (5.2.3).

5.3 TVA BSDEs

The total valuation adjustment (TVA) process Θ is defined as

Θ = Q−Π. (5.3.4)

5.3.1 Full TVA BSDE

By taking the difference between (5.2.1) and (5.2.3), we obtain

βtΘt = Et
[∫ τ̄

t
βsgs(Θs)ds+ βτ̄1τ<T ξ

]
, t ∈ [0, τ̄ ], (5.3.5)

where gt(ϑ) = λ̄t(Pt − ϑ)+ is the funding coefficient and where

ξ = Qτ −R = 1{τ=τc}(1−Rc)(Pτ + ∆τ )+ − 1{τ=τb}(1−Rb)(Pτ + ∆τ )− (5.3.6)

is the exposure at default of the bank. Equivalent to (5.3.5), the “full TVA BSDE”

is written as

Θt = Et
[∫ τ̄

t
fs(Θs)ds+ 1τ<T ξ

]
, 0 ≤ t ≤ τ̄ , (I)

for the coefficient ft(ϑ) = gt(ϑ)− rtϑ.

5.3.2 Partially reduced TVA BSDE

Let ξ̂ be a G predictable process, which exists by Corollary 3.23 2) in He, Wang, and

Yan (1992), such that ξ̂τ = E[ξ|Gτ− ] on τ <∞ and let f̄ be the modified coefficient

such that

f̄t(ϑ) + rtϑ = gt(ϑ) + (rt + γt)ξ̂t. (5.3.7)

As easily shown (cf. Crépey and Song (2014a, Lemma 2.2)), the full TVA BSDE (I)

can be simplified into the “partially reduced BSDE”

Θ̄t = Et
[∫ τ̄

t
f̄s(Θ̄s)ds

]
, 0 ≤ t ≤ τ̄ , (II)
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in the sense that if Θ solves (I), then Θ̄ = Θ1[0,τ) solves (II), whilst if Θ̄ solves (II),

then Θ = Θ̄1[0,τ)+1[τ ]1τ<T ξ solves (I). Note that both BSDEs (I) and (II) are (G,Q)

BSDEs posed over the random time interval [0, τ̄ ], but with the terminal condition

ξ for (I) as opposed to a null terminal condition (and a modified coefficient) for (II).

5.3.3 Fully reduced TVA BSDE

Let

f̂t(ϑ) = f̄t(ϑ)− γtϑ = cdvat + fvat(ϑ)− (rt + γt)ϑ.

Assume the following conditions, which are studied in Crépey and Song (2014a,

2014b, 2015a, 2015b):

Condition (C). There exist:

(C.1) a subfiltration F of G satisfying the usual conditions and such that F semi-

martingales stopped at τ are G semimartingales,

(C.2) a probability measure P equivalent to Q on FT such that any (F ,P) local

martingale stopped at (τ−) is a (G,Q) local martingale on [0, T ],

(C.3) an F progressive “reduction” f̃t(ϑ) of f̂t(ϑ) such that
∫ ·

0 f̂t(ϑ)dt =
∫ ·

0 f̃t(ϑ)dt

on [0, τ̄ ].

Let Ẽt denote the conditional expectation under P given Ft. It is shown in Crépey

and Song (2014a, 2014b, 2015a) that the full TVA BSDE (I) is equivalent to the

following “fully reduced BSDE”:

Θ̃t = Ẽt
[∫ T

t
f̃s(Θ̃s)ds

]
, t ∈ [0, T ], (III)

equivalent in the sense that if Θ solves (I), then the “F optional reduction” Θ̃ of Θ

(F optional process that coincides with Θ before τ) solves (III), whilst if Θ̃ solves

(III), then Θ = Θ̃1[0,τ) + 1[τ ]1τ<T ξ solves (I).

Moreover, under mild assumptions (see e.g. Crépey and Song (2015a, Theorem

4.1)), one can easily check that f̄t(ϑ) in (5.3.7) (resp. f̃t(ϑ)) satisfies the classical

BSDE monotonicity assumption(
f̄t(ϑ)− f̄t(ϑ′)

)
(ϑ− ϑ′) ≤ C(ϑ− ϑ′)2

(and likewise for f̃), for some constant C. Hence, by classical BSDE results nicely

surveyed in Kruse and Popier (2014, Section 2 (resp. 3)), the partially reduced

TVA BSDE (II), hence the equivalent full TVA BSDE (I) (resp. the fully reduced

BSDE (III)), is well-posed in the space of (G,Q) (resp. (F ,P)) square integrable so-

lutions, where well-posedness includes existence, uniqueness, comparison and BSDE

standard estimates.
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5.3.4 Marked default time setup

In order to be able to compute γξ̂ in f̄ , we assume that τ is endowed with a mark

e in a finite set E, in the sense that

τ = min
e∈E

τe, (5.3.8)

where each τe is a stopping time with intensity γet such that Q(τe 6= τe′) = 1, e 6= e′,

and

Gτ = Gτ− ∨ σ(ε),

where ε = argmine∈Eτe yields the “identity” of the mark. Then, by Lemma 5.1 in

Crépey and Song (2015a), there exists G-predictable processes P̃ et and ∆̃e
t such that

Pτ = P̃ eτ and ∆τ = ∆̃e
τ on the event {τ = τe}.

Assuming further that τb = mine∈Eb τe and τc = mine∈Ec τe, where E = Eb∪Ec (not

necessarily a disjoint union), one can then take on [0, τ̄ ]:

γtξ̂t = (1−Rc)
∑
e∈Ec

γet

(
P̃ et + ∆̃e

t

)+
− (1−Rb)

∑
e∈Eb

γet

(
P̃ et + ∆̃e

t

)−
,

where the two terms have clear respective CVA and DVA interpretation. Hence,

(5.3.7) is rewritten, on [0, τ̄ ], as

f̄t(ϑ) + rtϑ = (1−Rc)
∑
e∈Ec

γet

(
P̃ et + ∆̃e

t

)+

︸ ︷︷ ︸
CVA coefficient (cvat)

− (1−Rb)
∑
e∈Eb

γet

(
P̃ et + ∆̃e

t

)−
︸ ︷︷ ︸

DVA coefficient (dvat)

+ λ̄t(Pt − ϑ)+︸ ︷︷ ︸
FVA coefficient (fvat(ϑ)=gt(ϑ))

.

(5.3.9)

If the functions P̃ et and ∆̃e
t above not only exist, but can be computed explicitly (as

will be the case in the concrete models of 5.5.1 and 5.5.2), once stated in a Markov

setup where

f̄t(ϑ) = f̄(t,Xt, ϑ), t ∈ [0, T ], (5.3.10)

for some (G,Q) jump diffusion X, then the partially reduced TVA BSDE (II) can

be tackled numerically. Similarly, once stated in a Markov setup where

f̃t(ϑ) = f̃(t, X̃t, ϑ), t ∈ [0, T ], (5.3.11)

for some (F ,P) jump diffusion X̃, then the fully reduced TVA BSDE (III) can be

tackled numerically.
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5.4 TVA numerical schemes

5.4.1 Linear approximation

Our first TVA approximation is obtained replacing Θs by 0 in the right hand side

of (I), i.e.

Θ0 ≈ E
[∫ τ̄

0
fs(0)ds+ 1τ<T ξ

]
= E

[∫ τ̄

0
λ̄sP

+
s ds+ 1τ<T ξ

]
. (5.4.12)

One we then approximate the TVA by standard Monte-Carlo, with randomization

of the integral to reduce the computation time (at the cost of a small increase in the

variance). Hence, introducing an exponential time ζ of parameter µ, i.e. a random

variable with density φ(s) = 1s≥0 µ e
−µs, we have

E
[∫ τ̄

0
fs(0)ds

]
= E

[∫ τ̄

0
φ(s)

1

µ
eµsfs(0)ds

]
= E

[
1ζ<τ̄

eµζ

µ
fζ(0)

]
. (5.4.13)

We can use the same technic for (II) and (III), which yields:

Θ0 = Θ̄0 ≈ E
[∫ τ̄

0
f̄s(0)ds

]
= E

[
1ζ<τ̄

eµζ

µ
f̄ζ(0)

]
, (5.4.14)

Θ0 = Θ̃0 ≈ Ẽ
[∫ T

0
f̃s(0)ds

]
= Ẽ

[
1ζ<T

eµζ

µ
f̃ζ(0)

]
. (5.4.15)

5.4.2 Linear Expansion and interacting particle implementation

Following Fujii and Takahashi (2012a,2012b), we can introduce a perturbation pa-

rameter ε and the following perturbed form of the fully reduced BSDE (III):

Θ̃ε
t = Ẽt

[∫ T

t
εf̃s(Θ̃

ε
s)ds

]
, t ∈ [0, T ], (5.4.16)

where ε = 1 corresponds to the original BSDE (III). Suppose that the solution of

(5.4.16) can be expanded in a power series of ε:

Θ̃ε
t = Θ̃

(0)
t + εΘ̃

(1)
t + ε2Θ̃

(2)
t + ε3Θ̃

(3)
t + · · · . (5.4.17)

The Taylor expansion of f at Θ̃(0) reads

f̃t(Θ̃
ε
t) = f̃t(Θ̃

(0)
t )+(εΘ̃

(1)
t +ε2Θ̃

(2)
t +· · · )∂ϑf̃t(Θ̃

(0)
t )+

1

2
(εΘ̃

(1)
t +ε2Θ̃

(2)
t +· · · )2∂2

ϑ2 f̃t(Θ̃
(0)
t )+· · ·

Collecting the terms of the same order with respect to ε in (5.4.16), we obtain

Θ̃
(0)
t = 0, due to the null terminal condition of the fully reduced BSDE (III), and

Θ̃
(1)
t = Ẽt

[∫ T

t
f̃s(Θ̃

(0)
s )ds

]
,

Θ̃
(2)
t = Ẽt

[∫ T

t
Θ̃(1)
s ∂ϑf̃s(Θ̃

(0)
s )ds

]
,

Θ̃
(3)
t = Ẽt

[∫ T

t
Θ̃(2)
s ∂ϑf̃s(Θ̃

(0)
s )ds

]
,

(5.4.18)
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where the complete third order term comprises another component based on ∂2
ϑ2 f̃ .

In our case, ∂2
ϑ2 f̃ involves a Dirac measure via the terms (Pt − ϑ)+ in fvat(ϑ), so

that we truncate the expansion to the term Θ̃
(3)
t as above. If the non-linearity in

(III) is sub-dominant, one can expect to obtain a reasonable approximation of the

original equation by setting ε = 1 at the end of the calculation, i.e.

Θ̃0 ≈ Θ̃
(1)
0 + Θ̃

(2)
0 + Θ̃

(3)
0 .

Carrying out a Monte Carlo simulation by an Euler scheme for every time s

in a time grid and integrating to obtain Θ̃
(1)
0 would be quite heavy. Moreover,

this would become completely unpractical for the higher order terms that involve

iterated (multivariate) time integrals. For these reasons, Fujii and Takahashi (2012b)

have introduced a particle interpretation to randomize and compute numerically the

integrals in (5.4.18), which we call the FT scheme. Let η1 be the interaction time of

a particle drawn independently as the first jump time of a Poisson process with an

arbitrary intensity µ > 0 starting from time t ≥ 0, i.e., η1 is a random variable with

density

φ(t, s) = 1s≥t µ e
−µ(s−t). (5.4.19)

From the first line in (5.4.18), we have

Θ̃
(1)
t = Ẽt

[∫ T

t
φ(t, s)

eµ(s−t)

µ
f̃s(Θ̃

(0)
s )ds

]
= Ẽt

[
1η1<T

eµ(η1−t)

µ
f̃η1(Θ̃(0)

η1 )

]
. (5.4.20)

Similarly, the particle representation is available for the higher order. By applying

the same procedure as above, we obtain

Θ̃
(2)
t = Ẽt

[
1η1<T Θ̃(1)

η1

eµ(η1−t)

µ
∂ϑf̃η1(Θ̃(0)

η1 )

]
,

where Θ̃
(1)
η1 can be computed by (5.4.20). Therefore, by using the tower property of

conditional expectations, we obtain

Θ̃
(2)
t = Ẽt

[
1η2<T

eµ(η2−η1)

µ
f̃η2(Θ̃(0)

η2 )
eµ(η1−t)

µ
∂ϑf̃η1(Θ̃(0)

η1 )

]
, (5.4.21)

where η1, η2 are the two consecutive interaction times of a particle randomly drawn

with intensity µ starting from t. Similarly, for the third order, we get

Θ̃
(3)
t = Ẽt

[
1η3<T

eµ(η3−η2)

µ
f̃η3(Θ̃(0)

η3 )
eµ(η2−η1)

µ
∂ϑf̃η2(Θ̃(0)

η2 )
eµ(η1−t)

µ
∂ϑf̃η1(Θ̃(0)

η1 )

]
,

(5.4.22)

where η1, η2, η3 are consecutive interaction times of a particle randomly drawn with

intensity µ starting from t. In case t = 0, (5.4.20), (5.4.21) and (5.4.22) can be
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simplified as

Θ̃
(1)
0 = Ẽ

[
1ζ1<T

eµζ1

µ
f̃ζ1(Θ̃

(0)
ζ1

)

]
Θ̃

(2)
0 = Ẽ

[
1ζ1+ζ2<T

eµζ1

µ
∂ϑf̃ζ1(Θ̃

(0)
ζ1

)
eµζ2

µ
f̃ζ1+ζ2(Θ̃

(0)
ζ1+ζ2

)

]
Θ̃

(3)
0 = Ẽ

[
1ζ1+ζ2+ζ3<T

eµζ1

µ
∂ϑf̃ζ1(Θ̃

(0)
ζ1

)
eµζ2

µ
∂ϑf̃ζ1+ζ2(Θ̃

(0)
ζ1+ζ2

)
eµζ3

µ
f̃ζ1+ζ2+ζ3(Θ̃

(0)
ζ1+ζ2+ζ3

)

]
(5.4.23)

where ζ1, ζ2, ζ3 are the elapsed time from the last interaction until the next inter-

action, which are independent exponential random variables with parameter µ.

Note that the pricing model is originally defined with respect to the full stochastic

basic (G,Q). Even in the case where there exists a stochastic basis (F ,P) satisfying

the condition (C), (F ,P) simulation may be nontrivial. Lemma 8.1 in Crépey and

Song (2015a) allows us to reformulate the P expectations in (5.4.23) as the following

Q expectations, with Θ̄(0) = 0:

Θ̃
(1)
0 = Θ̄

(1)
0 = E

[
1ζ1<τ̄

eµζ1

µ
f̄ζ1(Θ̄

(0)
ζ1

)

]
Θ̃

(2)
0 = Θ̄

(2)
0 = E

[
1ζ1+ζ2<τ̄

eµζ1

µ
∂ϑf̄ζ1(Θ̄

(0)
ζ1

)
eµζ2

µ
f̄ζ1+ζ2(Θ̄

(0)
ζ1+ζ2

)

]
Θ̃

(3)
0 = Θ̄

(3)
0 = E

[
1ζ1+ζ2+ζ3<τ̄

eµζ1

µ
∂ϑf̄ζ1(Θ̄

(0)
ζ1

)
eµζ2

µ
∂ϑf̄ζ1+ζ2(Θ̄

(0)
ζ1+ζ2

)

× eµζ3

µ
f̄ζ1+ζ2+ζ3(Θ̄

(0)
ζ1+ζ2+ζ3

)
]
,

(5.4.24)

which is nothing but the FT scheme applied to the partially reduced BSDE (II).

The tractability of the FT schemes (5.4.23) and (5.4.24) relies on the nullity of the

terminal condition of the related BSDEs (III) and (II), which implies that Θ̄(0) =

Θ̃(0) = 0. By contrast, an FT scheme would not be practical for the full TVA

BSDE (5.3.5) with terminal condition ξ 6= 0. Also note that the first order in the

FT scheme (5.4.23) (resp (5.4.24)) is nothing but the linear approximation (5.4.15)

(resp. (5.4.14)).

5.4.3 Marked branching diffusion approach

Based on an old idea of McKean (1975), the solution u(t0, x0) to a PDE

∂tu+ Lu+ µ(F (u)− u) = 0, u(T, x) = Ψ(x), (5.4.25)

where L is the infinitesimal generator of a strong Markov process X and F (y) =∑d
k=0 aky

k is a polynomial of order d, admits a probabilistic representation in terms

of a random tree T (branching diffusion). The tree starts from a single particle

(“trunk”) born from (t0, x0). Subsequently, every particle born from a node (t, x)

evolves independently according to the generator L of X until it dies at time t′ =

(t + ζ) in a state x′, where ζ is an independent µ-exponential time (one for each



122 CHAPTER 5. COUNTERPARTY RISK ON CREDIT DERIVATIVES

particle). Moreover, in dying, a particle gives birth to an independent number of

k′ new particles starting from the node (t′, x′), where k′ is drawn in the finite set

{0, 1, · · · , d} with some fixed probabilities p0, p1, · · · , pd. The marked branching

diffusion probabilistic representation reads

u(t0, x0) = Et0,x0

 ∏
{inner nodes (t,x,k) of T }

ak
pk

∏
{states x of particles alive at T}

Ψ(x)


= Et0,x0

[
d∏

k=0

(
ak
pk

)nk ν∏
l=1

Ψ(xl)

]
, (5.4.26)

where nk is the number of branching with k descendants up on (0, T ) and ν is the

number of particles alive at T, with corresponding locations x1, . . . , xν .

The marked branching diffusion method of Henry-Labordère (2012) for CVA

computations, dubbed PHL scheme henceforth, is based on the idea that, by ap-

proximating y+ by a well-chosen polynomial F (y), the solution to the PDE

∂tu+ Lu+ µ(u+ − u) = 0, u(T, x) = Ψ(x), (5.4.27)

can be approximated by the solution to the PDE (5.4.25), hence by (5.4.26). We

want to apply this approach to solve the TVA BSDEs (I), (II) or (III) for which,

instead of fixing the approximating polynomial F (y) once for all in the simulations,

we need a state dependent polynomial approximation to gt(y) = (Pt − y)+ (cf.

(5.3.7)) in a suitable range for y. Moreover, (I) and (II) are BSDEs with random

terminal time τ̄ , equivalently written in a Markov setup as Cauchy-Dirichlet PDE

problems, as opposed to the pure Cauchy problem (5.4.27). Hence, some adaptation

of the method is required. We show how to do it for (II), after which we directly

give the algorithm in the similar case of (I) and in the more classical (pure Cauchy)

case of (III). Assuming τ given in terms of a (G,Q) Markov factor process X as

τ = inf{t > 0 : Xt /∈ D} for some domain D, the Cauchy-Dirichlet PDE used for

approximating the partially reduced BSDE (II) reads:

(∂t +A)ū+ µ
(
F̄ (ū)− ū

)
= 0 on [0, T ]×D, ū(t, x) = 0 for t = T or x /∈ D,

(5.4.28)

where A is the generator of X and F̄t,x(y) =
∑d

k=0 āk(t, x)yk is such that

µ(F̄t,x(y)− y) ≈ f̄(t, x, y), i.e. F̄t,x(y) ≈ f̄(t, x, y)

µ
+ y. (5.4.29)

Specifically, in view of (5.3.9), one can set

F̄t,x(y) =
1

µ

(
cdva(t, x) + λ̄pol

(
P (t, x)− y

)
− ry

)
+ y =

d∑
k=0

āk(t, x)yk, (5.4.30)

where pol(r) is a d-order polynomial approximation of r+ in a suitable range for

r. The marked branching diffusion probabilistic representation of ū(t0, x0) ∈ D
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involves a random tree T made of nodes and “particles” between consecutive nodes

as follows. The tree starts from a single particle (trunk) born from the root (t0, x0).

Subsequently, every particle born from a node (t, x) evolves independently according

to the generator A of X until it dies at time t′ = (t+ ζ) in a state x′, where ζ is an

independent µ-exponential time. Moreover, in dying, if its position x′ at time t′ lies

in D, the particle gives birth to an independent number of k′ new particles starting

from the note (t′, x′), where k′ is drawn in the finite set {0, 1, · · · , d} with some fixed

probabilities p0, p1, · · · , pd. Figure 5.1 describes such a random tree in case d = 2.

The first particle starts from the root (t0, x0) and dies at time t1, generating two

new particles. The first one dies at time t11 and generates a new particle, who dies

at time t111 > T without descendant. The second one dies at time t12 and generates

two new particles, where the first one dies at time t121 without descendant and the

second one dies at time t122 outside the domain D, hence also without descendant.

The blue points represent the inner nodes, the red points the outer nodes and the

green points the exit points of the tree out of the time-space domain [0, T ]×D. The

 

D 

root (t0,x0) 

node (t1,x1,2) 

node (t11,x11,1) 

node (t111,x111,0) 

node (t12,x12,2) 

node (t121,x121,0) 

node (t122,x122,0) 

exit point 

T 

0 

exit point 

Figure 5.1: PHL random tree

marked branching diffusion probabilistic representation of ū is written as

ū(t0, x0) = Et0,x0

1T ⊂[0,T ]×D

∏
{inner nodes (t,x,k) of T }

āk(t, x)

pk

 , (t0, x0) ∈ [0, T ]×D.

(5.4.31)

Specifically:

Proposition 5.4.2. Denoting by ū the function defined by the right hand side in

(5.4.31) (assuming integrability of the integrand on the domain [0, T ]×D), the process

Yt = ū(t,Xt), 0 ≤ t ≤ τ̄ , solves the BSDE associated with the Cauchy-Dirichlet PDE
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(5.4.28), namely

Yt = Et
[ ∫ τ̄

t
µ
(
F̄s,Xs(Ys)− Ys

)
ds
]
, t ∈ [0, τ̄ ] (5.4.32)

(which, in view of (5.4.29), approximates the partially reduced BSDE (II), so that

Y ≈ Θ̄ provided Y is square integrable).

Proof. Let (t1, x1, k1) be the first branching point in the tree rooted at (0, X0) and

let T j denote k1 independent trees of the same kind rooted at (t1, x1). By using the

independence and the strong Markov property postulated for X, we obtain

ū(t,Xt) =
d∑

k1=0

Et,Xt
[
1t1<T pk1

ak1(t1, x1)

pk1
×

k1∏
j=1

Et1,x1

1T j⊂[0,T ]×D}

∏
{inner node (s,x,k) of T j}

ak(s, x)

pk


= Et,Xt

1t1<T

d∑
k1=0

ak1(t1, x1)

k1∏
j=1

Et1,x1

1T j⊂[0,T ]×D

∏
{inner node (s,x,k) of T j}

ak(s, x)

pk


= Et,Xt

1t1<T

d∑
k1=0

ak1(t1, x1)

k1∏
j=1

ū(t1, x1)


= Et,Xt

[
1t1<T F̄t1,x1(ū(t,Xt1,x1

t ))
]

= Et,Xt
[∫ τ̄

t
µ(s)e−

∫ s
t µ(u)duF̄s,Xt,x

s
(ū(s,Xt,x

s ))ds

]
, 0 ≤ t ≤ τ̄ ,

i.e. Yt = ū(t,Xt) solves (5.4.32).

If 1τ<T ξ is given as a deterministic function Ψ(τ,Xτ ), then a similar approach

(using the same tree T ) can be applied to the full BSDE (I) in terms of the Cauchy-

Dirichlet PDE

(∂t +A)u+ µ (F (u)− u) = 0 on [0, T ]×D, u(t, x) = Ψ(t, x) for t = T or x /∈ D,
(5.4.33)

where Ft,x(y) =
∑d

k=0 ak(t, x)yk is such that

µ(Ft,x(y)− y) ≈ f(t, x, y), i.e. Ft,x(y) ≈ f(t, x, y)

µ
+ y.

This yields the approximation formula alternative to (5.4.31):

Θ0 ≈ E

 ∏
{inner node (t,x,k) of T }

ak(t, x)

pk

∏
{exit point (t,x) of T }

Ψ(t, x)

 , (5.4.34)

where an exit point of T means a point where a branch of the tree leaves for the first

time the time-space domain [0, T ] × D. Last, regarding the (F ,P) reduced BSDE
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(III), assuming an (F ,P) Markov factor process X̃ with generator Ã and domain D,
we can apply a similar approach in terms of the Cauchy PDE

(∂t + Ã)ũ+ µ
(
F̃t,x(ũ)− ũ

)
= 0 on [0, T ]×D, ũ(t, x) = 0 for t = T or x /∈ D,

(5.4.35)

where F̃t,x(y) =
∑d

k=0 ãk(t, x)yk is such that

µ(F̃t,x(y)− y) ≈ f̃(t, x, y), i.e. F̃t,x(y) ≈ f̃(t, x, y)

µ
+ y.

We obtain

Θ0 = Θ̃0 ≈ Ẽ

1T̃ ⊂[0,T ]×D

∏
inner node (t,x,k) of T̃

ãk(t, x)

pk

 , (5.4.36)

where T̃ is the branching tree associated with the Cauchy PDE (5.4.35) (similar to

T̃ but for the generator Ã.

5.5 TVA models for credit derivative

Our goal is to apply the above approaches to TVA computations on credit derivatives

referencing the names in N? = {1, . . . , n}, for some positive integer n, traded be-

tween the bank and the counterparty respectively labeled as −1 and 0. In this section

we briefly survey two models of the default times τi, i ∈ N = {−1, 0, 1, . . . , n}, that

will be used for that purpose with τb = τ−1 and τc = τ0, namely the dynamic Gaus-

sian copula (DGC) model and the dynamic Marshall-Olkin copula (DMO) model.

For more details the reader is referred to Crépey, Bielecki and Brigo (2014, Chapters

7 and 8) and Crépey and Song (2015a, Sections 6 and 7).

5.5.1 Dynamic Gaussian copula TVA model

Model of Default Times

Let there be given a function ς(·) with unit L2 norm on R+ and a multivariate Brow-

nian motion B = (Bi)i∈N with pairwise constant correlation % ≥ 0 in its own com-

pleted filtration B = (Bt)t≥0. For each i ∈ N, let hi be a continuously differentiable

increasing function from R∗+ to R, with lim0 hi(s) = −∞ and lim+∞ hi(s) = +∞,
and let

τi = h−1
i

(
εi
)
, where εi =

∫ +∞

0
ς(u)dBi

u. (5.5.37)

Thus the (τi)l∈N follow the standard Gaussian copula model of Li (2000), with

correlation parameter % and with marginal survival function Φ ◦ hi of τi, where

Φ is the standard normal survival function. In particular, these τi don’t intersect

each other. In order to make the model dynamic as required by counterparty risk
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applications, the model filtration G is given as the Brownian filtration B progressively

enlarged by the τi, i.e.

Gt = Bt ∨
∨
i∈N

(
σ(τi ∧ t) ∨ σ({τi > t})

)
, t ≥ 0, (5.5.38)

and the reference filtration F is given as B progressively enlarged by the default

times of the reference names, i.e.

Ft = Bt ∨
∨
i∈N?

(
σ(τi ∧ t) ∨ σ({τi > t})

)
, t ≥ 0. (5.5.39)

As shown in Section 6.2 of Crépey and Song (2015a), for the filtrations G and F as

above, there exists a (unique) probability measure P equivalent to Q such that the

condition (C) holds. For every i ∈ N , let

mi
t =

∫ t

0
ς(u)dBi

u, k
i
t = τi1{τi≤t},

and let mt = (mi
t)i∈N , kt = (kit)i∈N , k̃t = (1i∈N?kit)i∈N . The couple Xt = (mt,kt)

(resp. X̃t = (mt, k̃t)) plays the role of a (G,Q) (resp. (F ,P)) Markov factor process

in the dynamic Gaussian copula (DGC) model.

TVA Model

A DGC setup can be used as a TVA model for credit derivatives, with mark i− 1, 0

and Eb = {−1}, Ec = {0}. Since there are no joint defaults in this model, it is

harmless to assume that the contract promises no cash-flow at τ, i.e., ∆τ = 0, so

that Qτ = Pτ . By Crépey, Bielecki and Brigo (2014, Propositions 7.3.1 page 178

and 7.3.3 page 181), in the case of vanilla credit derivatives on the reference names,

namely CDS contracts and CDO tranches (cf. (5.6.47)), there exists a continuous,

explicit function P̃ i such that

Pτ = P̃ i(τ,mτ ,kτ−), (5.5.40)

or P̃ iτ in a shorthand notation, on the event {τ = τi}. Hence, (5.3.9) yields

f̄t(ϑ) + rtϑ = (1−Rc)γ0
t (P̃ 0

t )+ − (1−Rb)γ−1
t (P̃−1

t )− + λ̄t(Pt − ϑ)+, t ∈ [0, τ̄ ].

Assume that the processes r and λ̄ are given before τ as continuous functions of

(t,Xt), which also holds for P in the case of vanilla credit derivatives on names in

N . Then the coefficients f̄ and in turn f̃ are deterministically given in terms of the

corresponding factor processes as

f̄t(ϑ) = f̄(t,Xt, ϑ), f̃t(ϑ) = f̃(t, X̃t, ϑ),

so that we are in the Markovian setup where the FT and the PHL schemes are valid

and, in principle, applicable.
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5.5.2 Dynamic Marshall-Olkin copula TVA model

The above dynamic Gaussian copula model allows dealing with TVA on CDS con-

tracts. But a Gaussian copula dependence structure is not rich enough for ensuring

a proper calibration to CDS and CDO quotes at the same time. If CDO tranches are

also present in a portfolio, a possible alternative is the following dynamic Marshall-

Olkin (DMO) copula model, also known as the “common shock” model.

Model of default times

We define a family Y of “shocks”, i.e. subsets Y ⊆ N of obligors, usually consisting

of the singletons {−1}, {0}, {1}, . . . , {n}, and a few “common shocks” I1, I2, · · · , Im
representing simultaneous defaults. For Y ∈ Y, the shock time’ ηY is defined as an

i.i.d. exponential random variable with parameter γY . The default time of obligor i

in the common shock model is then defined as

τi = min
Y ∈Y,i∈Y

ηY . (5.5.41)

Example 5.5.3. Figure 5.2 shows one possible default path in a common-shock

model with n = 3 and Y = {{−1}, {0}, {1}, {2}, {3}, {2, 3}, {0, 1, 2}, {−1, 0}}. The

inner oval shows which shocks happened and caused the observed default scenarios

at successive default times.
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Figure 5.2: One possible default path in the common-shock model with n = 3 and

Y = {{−1}, {0}, {1}, {2}, {3}, {2, 3}, {0, 1, 2}, {−1, 0}}.

The full model filtration G is defined as

Gt =
∨
Y ∈Y

(
σ(ηY ∧ t) ∨ σ({ηY > t})), t ≥ 0.

Letting Y◦ = {Y ∈ Y; −1, 0 /∈ Y }, the reference filtration F is given as

Ft =
∨
Y ∈Y◦

(
σ(ηY ∧ t) ∨ σ({ηY > t})), t ≥ 0.
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As shown in Section 7.2 of Crépey and Song (2015a), in the DMO model with G and

F as above, the condition (C) holds for P = Q. Let JY = 1[0,ηY ). Similar to (m,k)

(resp. (m, k̃)) in the DGC model, the process

X = I = (JY )Y ∈Y (resp. X̃ = (1Y ∈Y◦J
Y )Y ∈Y) (5.5.42)

plays the role of a (G,Q) (resp. (F ,P)) Markov factor in the DMO model.

TVA model

A DMO setup can be used as a TVA model for credit derivatives, with

Eb = Yb := {Y ∈ Y; −1 ∈ Y }, Ec = Yc := {Y ∈ Y; 0 ∈ Y }, E = Y• := Yb ∪ Yc

and

τb = τ−1 = min
Y ∈Yb

ηY , τc = τ0 = min
Y ∈Yc

ηY ,

hence

τ = min
Y ∈Y•

ηY , γ = 1[0,τ)γ̃ with γ̃ =
∑
Y ∈Y•

γY . (5.5.43)

By Crépey, Bielecki and Brigo (2014, Proposition 8.3.1 page 205), in the case of

CDS contracts and CDO tranches, for every shock Y ∈ Y and process U = P or ∆,

there exists a continuous, explicit function ŨY such that

Uτ = ŨY (τ,Jτ−), (5.5.44)

or ŨYτ in a shorthand notation, on the event {τ = ηY }. The coefficient f̄t(ϑ) in

(5.3.9) is then given, for t ∈ [0, τ̄ ], by

f̄t(ϑ) + rtϑ = (1−Rc)
∑
Y ∈Yc

γYt
(
P̃ Yt + ∆̃Y

t

)+ − (1−Rb)
∑
Y ∈Yb

γYt
(
P̃ Yt + ∆̃Y

t

)−
+ λ̄t(Pt − ϑ)+.

(5.5.45)

Assuming that the processes r and λ̄ are given before τ as continuous functions of

(t,Xt), which also holds for P in case of vanilla credit derivatives on the reference

names, then

f̄t(ϑ) = f̄(t,Xt, ϑ), f̃t(ϑ) = f̄t(ϑ)− γ̃ϑ = f̃(t, X̃t, ϑ) (5.5.46)

(cf. (5.5.43)), so that we are again in a Markovian setup where the FT and the PHL

schemes are valid and, in principle, applicable.

5.5.3 Strong versus weak dynamic copula model

However, one peculiarity of the TVA BSDEs in our credit portfolio models is that,

even though full and reduced Markov structures have been identified, which is re-

quired for justifying the validity of the FT and/or PHL numerical schemes, and the
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corresponding generators A or Ã can be written explicitly (see Crépey and Song

(2015b)), the Markov structures are too heavy for being of any practical use in the

numerics. Instead, fast and exact simulation and clean pricing schemes are available

based on the dynamic copula structures.

Moreover, in the case of the DGC model, we lose the Gaussian copula structure

after a branching point in the PHL scheme. In fact, as visible on Crépey, Bielecki

and Brigo (2014, Formula (7.7) p. 175), the DGC conditional multivariate survival

probability function is stated in terms of a ratio of Gaussian survival probability

functions, which is explicit but does not simplify into a single Gaussian survival

probability function. It’s only in the DMO model that the conditional multivariate

survival probability function, which arises as a ratio of exponential survival proba-

bility functions (see Crépey, Bielecki and Brigo (2014, Formula (8.11) p. 197 and

Section 8.2.1.1)), simplifies into a genuine exponential survival probability function.

Hence, the PHL scheme is not applicable in the DGC model.

The FT scheme based on (III) is not practical either because the Gaussian copula

structure is only under Q and, again, the (full or reduced) Markov structures are

not practical. In the end, the only practical scheme in the DGC model is the FT

scheme based on the partially reduced BSDE (II). Eventually, it’s only in the DMO

model that the FT and the PHL schemes are both practical and can be compared

numerically.

5.6 Numerics

For the numerical implementation, we consider stylized CDS contracts and protec-

tion legs of CDO tranches corresponding to dividend processes D of the respective

form, for 0 ≤ t ≤ T :

Dt = Di
t =

(
(1−Ri)1t≥τi − Si(t ∧ τi)

)
Nomi

Dt = D?
t =

((
(1−R?)

∑
j∈N

1t≥τj − (n+ 2)a
)+ ∧ (n+ 2)(b− a)

)
Nom?,

(5.6.47)

where all the recoveries Ri and R? (resp. nominals Nomi and Nom?) are set to 40%

(resp. to 100). The contractual spreads Si of the CDS contracts are set such that the

corresponding prices are equal to 0 at time 0. Protection legs of CDO tranches, where

the attachment and detachment points a and b are such that 0 ≤ a ≤ b ≤ 100%, can

also be seen as CDO tranches with upfront payment. Note that credit derivatives

traded as swaps or with upfront payment coexist since the crisis. Unless stated

otherwise, the following numerical values are used:

r = 0, Rb = 1, Rc = 40%, λ̄ = 100 bp = 0.01, µ =
2

T
,m = 104.

5.6.1 Numerical results in the DGC model

First we consider DGC random times τi defined by (5.5.37), where the function hi
is chosen so that τi follows an exponential distribution with parameter γ?i (which
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in practice can be calibrated to a related CDS spread or a suitable proxy). More

precisely, let Φ and Ψi be the survival functions of a standard normal distribution

and an exponential distribution with intensity γ?i . We choose hi = Φ−1 ◦Ψi, so that

(cf. (5.5.37))

P(τi≥t) = P
(
Ψ−1
i (Φ (εi))≥t

)
= P

(
Φ (εi) ≤ Ψi(t)

)
= Ψi(t),

for Φ (εi) has a standard uniform distribution. Moreover, we use a function ς(·) in

(5.5.37) constant before a time horizon U > T and null after U , so that ς(0) = 1√
U

(given the constraint that ν2(0) =
∫∞

0 ς2(s)ds = 1) and

ν2(t) =

∫ ∞
t

ς2(s)ds =
U − t
U

, mi
t =

∫ t

0
ς(u)dBi

u =
1√
U
Bi
t,

∫ ∞
0

ς(u)dBi
u =

1√
U
Bi
U .

In the case of the DGC model, the only practical TVA numerical scheme is the FT

scheme (5.4.24) based on the partially reduced BSDE (II), which can be described

by the following steps:

1. Draw an time ζ1 following an exponential law of parameter µ. If ζ1 < T ,

then simulate mζ1 = ( 1√
U
Bi
ζ1

)l∈N ∼ N (0, ζ1U In(1, %)), where In(1, %) is a n× n
matrix with diagonal equal to 1 and all off-diagonal entries equal to %, and go

to Step 2. Otherwise, go to Step 4.

2. Draw a second time ζ2, independent from ζ1, following an exponential law of

parameter µ. If ζ1 +ζ2 < T , then obtain the vector mζ1+ζ2 as mζ1 +(mζ1+ζ2−
mζ1), where mζ1+ζ2 −mζ1 = ( 1√

U
(Bi

ζ1+ζ2
− Bi

ζ1
))l∈N ∼ N (0, ζ2U In(1, %)), and

go to Step 3. Otherwise, go to Step 4.

3. Draw a third time ζ3, independent from ζ1 and ζ2, following an exponential

law of parameter µ. If ζ1 + ζ2 + ζ3 < T , then obtain the vector mζ1+ζ2+ζ3 as

mζ1+ζ2 +(mζ1+ζ2+ζ3−mζ1+ζ2), where mζ1+ζ2+ζ3−mζ1+ζ2 = ( 1√
U

(Bi
ζ1+ζ2+ζ3

−
Bi
ζ1+ζ2

))l∈N ∼ N (0, ζ3U In(1, %)). Go to Step 4.

4. Simulate the vector mU from the last simulated vector mt (t = 0 by default)

as mt+(mU−mt), where mU−mt = ( 1√
U

(Bi
U−Bi

t))i∈N ∼ N (0, U−tU In(1, %)).

Deduce (Bi
U )i∈N , hence τi = Ψ−1

i ◦Φ
(

1√
U
Bi
U

)
, i ∈ N , and in turn the vectors

kζ1 (if ζ1+ζ2+ζ3 < T ), kζ1+ζ2 (if ζ1+ζ2 < T ) and kζ1+ζ2+ζ3 (if ζ1+ζ2+ζ3 < T ).

Eventually compute f̄ζ1 , f̄ζ1+ζ2 , and f̄ζ1+ζ2+ζ3 for the three orders of the FT

scheme.

We perform TVA computations on CDS contracts with maturity T = 10 years,

choosing for that matter U = T + 1 = 11 years, hence ς =
1[0,11]√

11
, for % = 0.6 unless

otherwise stated. Table 5.1 displays the contractual spreads of the CDS contracts

used in these experiments. In Figure 5.3, the left graph shows the TVA on a CDS

on name 1, computed in a DGC model with n = 1 by FT scheme of order 1 to 3, for

different levels of nonlinearity represented by the value of the unsecured borrowing
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i -1 0 1

Si 36 41 47

i −1 0 1 2 3 4 5 6 7 8 9 10

Si 39 40 47 36 41 48 54 54 27 30 36 50

Table 5.1: Time-0 bp CDS spreads of names -1 (the bank), 0 (the counterparty) and

of the reference names 1 to n used when n = 1 (left) and n = 10 (right).

spread λ̄. The right graph shows similar results regarding a portfolio comprising

one CDS contract per name i = 1, . . . , 10. The time-0 clean value of the default

leg of the CDS in case n = 1, respectively the sum of the ten default legs in case

n = 10, is 4.52, respectively 40.78 (of course P0 = 0 in both cases by definition

of fair contractual spreads). Hence, in relative terms, the TVA numbers visible in

Figure 5.3 are quite high, much greater for instance than in the cases of counterparty

risk on interest rate derivatives considered in Crépey, Gerboud, Grbac, and Ngor

(2013). This is explained by the wrong-way risk feature of the DGC model, namely,

the default intensities of the surviving names and the value of the CDS protection

spike at defaults in this model. When λ̄ increases (for λ̄ = 0 that’s a case of linear

TVA where FT higher order terms equal 0), the second (resp. third) FT term may

represent in each case up to 5% to 10% of the first (resp. second) FT term, from

which we conclude that the first FT term can be used as a first order linear estimate

of the TVA, with a nonlinear correction that can be estimated by the second FT

term.
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Figure 5.3: Left: DGC TVA on one CDS computed by FT scheme of order 1 to 3,

for different levels of nonlinearity (unsecured borrowing spread λ̄). Right: Similar

results regarding the portfolio of CDS contracts on ten names.

In Figure 5.4, the left graph shows the TVA on one CDS computed by FT scheme

of order 3 as a function of the DGC correlation parameter %, with other parameters

set as before. The right graph shows the analogous results regarding the portfolio

of ten CDS contracts. In both cases, the TVA numbers increase (roughly linearly)

with %, including for high values of %, as desirable from the financial interpretation

point of view, whereas it has been noted in Brigo and Chourdakis (2008) (see the

blue curve in Figure 1 of the ssrn version of the paper) that for high levels of the



132 CHAPTER 5. COUNTERPARTY RISK ON CREDIT DERIVATIVES

correlation between names, other models may show some pathological behaviours.
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Figure 5.4: Left: TVA on one CDS computed by FT scheme of order 3 as a function

of the DGC correlation parameter %. Right: Similar results regarding a portfolio of

CDS contracts on ten different names.

In Figure 5.5, the left graph shows that the errors, in the sense of the % relative

standard errors (% rel. SE), of the different orders of the FT scheme don’t explode

with the dimension (number of credit names that underlie the CDS contracts). The

middle graph, produced with n = 1, shows that the errors don’t explode with the

level of nonlinearity represented by the unsecured borrowing spread λ̄. Consistent

with the fact that the successive FT terms are computed by purely forward Monte

Carlo schemes, their computation times are essentially linear in the number of names,

as visible in the right graph.
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Figure 5.5: Left: The % relative standard errors of the different orders of the ex-

pansions don’t explode with the number of names (λ̄ = 100 bp). Middle: The %

relative standard errors of the different orders of the expansions don’t explode with

the level of nonlinearity represented by the unsecured borrowing spread λ̄ (n = 1).

Right: Since FT terms are computed by purely forward Monte Carlo schemes, their

computation times are linear in the number of names (λ̄ = 100 bp).
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To conclude this section, we compare the linear approximation (5.4.14) corre-

sponding to the first FT term in (5.4.24) (FT1 in Table 5.2) with the linear approx-

imations (5.4.12)-(5.4.13) (LA in Table 5.2). One can see from Table 5.2 that the

LA and FT1 estimates are consistent (at least in the sense of their 95% confidence

intervals, which always intersect each other). But the LA standard errors are larger

than the FT1 ones. In fact, using the formula for the intensity γ of τ in FT1 can be

viewed as a form of variance reduction with respect to LA, where τ is simulated. Of

course, for λ̄ 6= 0 (case of the right tables where λ̄ = 3%), both linear approximations

are biased as compared with the complete FT estimate (with nonlinear correction,

also shown in Table 5.2), particularly in the high dimensional case with 10 CDS

contracts (see the bottom panels in Table 5.2). Figure 5.6 completes these results

by showing the LA, FT1 and FT standard errors computed for different levels of

nonlinearity and different dimensions.

Summarizing, in the DGC model, the PHL is not practical. The FT scheme based

on the partially reduced TVA BSDE (II) gives an efficient way of estimating the

TVA. The nonlinear correction with respect to the linear approximations (5.4.14) or

(5.4.15) amounts up to 5% in relative terms, depending on the unsecured borrowing

spread λ̄.

Method TVA 95% CI Rel. SE

LA 0.65 [0.57, 0.73] 6.08 %

FT1 0.61 [0.59, 0.63] 1.66%

FT 0.60 [0.58, 0.62] 1.64 %

Method TVA 95% CI Rel. SE

LA 0.66 [0.60, 0.72] 4.39%

FT1 0.62 [0.59, 0.64] 1.96%

FT 0.60 [0.58, 0.63] 1.84%

Method TVA 95% CI Rel. SE

LA 6.17 [5.43, 6.92] 6.03%

FT1 6.24 [5.77, 6.72] 3.78%

FT 6.17 [5.66, 6.68] 4.15%

Method TVA 95% CI Rel. SE

LA 6.81 [6.16, 7.45] 4.76%

FT1 7.82 [7.39, 8.25] 2.73%

FT 6.99 [6.67, 7.31] 2.28%

Table 5.2: LA, FT1 and FT estimates: 1 CDS (top) and 10 CDSs (bottom), with

parameters λ̄ = 0%, % = 0.8 (left) and λ̄ = 3%, % = 0.6 (right).

5.6.2 Numerical results in the DMO model

In the DMO model, the FT scheme (5.4.18) for the fully reduced BSDE (5.4.23) can

be implemented through following steps:

1. Simulate the time ηY of each (individual or joint) shock following an indepen-

dent exponential law of parameter γY , Y ∈ Y, then retrieve the τi through the

formula (5.5.41).

2. Draw a time ζ1 following an exponential law of parameter µ. If ζ1 < T ,

compare the default time of each name with ζ1 to obtain the reduced Markov
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Figure 5.6: The % relative standard errors of the different tranches don’t explode

with the level of nonlinearity represented by the unsecured borrowing spread λ̄. Left:

1 CDS. Middle: 10 CDSs. Right: the % relative standard errors of the different

schemes (LA, FT1, FT in figures) don’t explode with the number of names (λ̄ = 100

bp, % = 0.6).

factor X̃ζ1 as of (5.5.42) and in turn f̃ζ1 as of (5.5.45)-(5.5.46), then go to Step

3. Otherwise stop.

3. Draw a second time ζ2 following an independent exponential law of parameter

µ. If ζ1 + ζ2 < T , compare the default time τi of each name with ζ1 + ζ2 to

obtain the Markov factor X̃ζ1+ζ2 and f̃ζ1+ζ2 then go to Step 4. Otherwise stop.

4. Draw a third time ζ3 following an independent exponential law of parameter

µ. If ζ1 + ζ2 + ζ3 < T , compare the default time of each name with ζ1 + ζ2 + ζ3

to obtain the Markov factor X̃ζ1+ζ2+ζ3 and f̃ζ1+ζ2+ζ3 .

We can also consider the PHL scheme (5.4.31) based on the partially reduced

BSDE (II) with

D = {x = (xY )Y ∈Y ∈ {0, 1}Y such that xY = 1 for Y ∈ Y•}.

To simulate the random tree T in (5.4.31), we follow the approach sketched before

(5.4.31) where, in order to evolve X = J according to the DMO generator A during

a time interval ζ, a particle born from a node x = (jY )Y ∈Y ∈ {0, 1}Y at time t, all

one needs is, for each Y such that jY = 1, draw an independent exponential random

variable θY of parameter γY and then set x′ = (jY 1[0,θY )(ζ))Y ∈Y . Rephrasing in

more algorithmic terms:

1. To simulate the random tree T under the expectation in (5.4.31), we repeat

the following step (generation of particles, or segments between consecutive

nodes of the tree) until a generation of particles dies without children:

For each node (t, x = (jY )Y ∈Y , k) issued from the previous genera-

tion of particles (starting with the root-node (0, X0, k = 1)), for each
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of the k new particles, indexed by l, issued from that node, simulate

an independent exponential random variable ζl and set

(t′l, x
′
l, k
′
l) = (t+ ζl, (jY 1[0,θlY )(ζl))Y ∈Y ,1x′l∈Dνl),

where, for each l, the θlY are independent exponential-γY random

draws and νl is an independent draw in the finite set {0, 1, · · · , d}
with some fixed probabilities p0, p1, . . . , pd.

2. To compute the random variable Φ under the expectation in (5.4.31), we loop

over the nodes of the tree T thus constructed (if T ⊂ [0, T ] × D, otherwise

Φ = 0 in the first place) and we form the product in (5.4.31), where the āk(t, x)

are retrieved as in (5.4.30).

The PHL schemes (5.4.34) based on the full BSDE (I) or (5.4.36) based on the fully

reduced BSDE (III) can be implemented along similar lines.

We perform TVA computations in a DMO model with n = 120, for individual

shock intensities taken as γ{i} = 10−4×(100+i) (increasing from∼ 100 bps to 220 bps

as i increases from 1 to 120) and four nested groups of common shocks I1 ⊂ I2 ⊂ I3 ⊂
I4, respectively consisting of the riskiest 3%, 9%, 21% and 100% (i.e. all) names, with

respective shock intensities γI1 = 20 bp, γI2 = 10 bp, γI3 = 6.67 bp and γI4 = 5 bp.

The counterparty (resp. the bank) is taken as the eleventh (resp. tenth) safest name

in the portfolio. In the model thus specified, we consider CDO tranches with upfront

payment, i.e. credit protection bought by the bank from the counterparty at time

0, with nominal 100 for each obligor, maturity T = 2 years and attachment (resp.

detachment) points are 0%, 3% and 14% (resp. 3%, 14% and 100%). The respective

value of P0 (upfront payment) for the equity, mezzanine and senior tranche is 229.65,

5.68 and 2.99. Accordingly, the ranges of approximation chosen for pol(y) ≈ y+ in

the respective PHL schemes are 250, 200 and 10. We use polynomial approximation

of order d = 4 with (p0, p1, p2, p3, p4) = (0.5, 0.3, 0.1, 0.09, 0.01). We set µ = 0.1 in

all PHL schemes and µ = 2/T = 0.2 in all FT schemes.

Figure 5.7 shows the TVA computed by the FT scheme (5.4.23) based on the

fully reduced BSDE (III), for different levels of nonlinearity (unsecured borrowing

basis λ̄). We observe that, in all cases, the third order term is negligible. Hence,

in further FT computations, we only compute the orders 1 (linear part) and 2

(nonlinear correction).

Table 5.3 compares the results of the above FT scheme (5.4.23) based on the

fully reduced BSDE (III) with those of the PHL schemes (5.4.36) based on (III)

again (P̃HL in the tables), (5.4.31) based on the partially reduced BSDE (II) (PHL

in the tables) and (5.4.34) based on the full BSDE (I) (PHL in the tables), for the

three CDO tranches and two sets of parameters. The three PHL schemes are of

course slightly biased, but the first two, based on the BSDEs with null terminal

condition (III) or (II), exhibit much less variance than the third one, based on the

full BSDE with terminal condition ξ. This is also visible in Figure 5.9 (note the

different scales of the y axes going from left to right in the picture), which also
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Figure 5.7: TVA on CDO tranches with 120 underlying names computed by FT

scheme of order 1 to 3 for different levels of nonlinearity (unsecured borrowing basis

λ̄). Left: Equity tranche. Middle: Mezzanine tranche. Right: Senior Tranche.
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Figure 5.8: Analog of Fig. 5.5 for the CDO tranche of Fig. 5.7 in the DMO model

(λ̄ = 0.01).
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shows that, for any of these schemes, the relative standard errors don’t explode with

the level of nonlinearity or the number of reference names in the CDO (the results

for the PHL scheme are not shown on the figure as very similar to those of the

P̃HL scheme). In comparing the TVA values on the left and the right hand side

of Table 5.3, we see that the intensities of the common shocks, which play a role

similar to the correlation % in the DGC model, have a more important impact on

the higher tranches (mezzanine and senior tranche), whereas the equity tranche is

more sensitive to the level of the unsecured borrowing spread λ̄.

Method TVA 95% CI Rel. SE

FT 3.13 [3.10 , 3.16] 0.48 %

P̃HL 3.07 [2.87 , 3.28] 3.35 %

PHL 3.16 [2.94 , 3.37] 3.37 %

PHL 2.53 [2.13 , 2.94] 8.02%

Method TVA 95% CI Rel. SE

FT 9.08 [ 9.00 , 9.16] 0.46 %

P̃HL 9.05 [ 8.40 , 9.70] 3.58 %

PHL 9.28 [8.63 , 9.94] 3.51 %

PHL 12.59 [6.92 , 18.27] 22.54%

Method TVA 95% CI Rel. SE

FT 6.43 [6.33 , 6.53] 0.75 %

P̃HL 6.34 [5.93 , 6.75 ] 3.22 %

PHL 6.34 [5.93 , 6.75] 3.25 %

PHL 4.86 [2.84 , 6.89] 20.82%

Method TVA 95% CI Rel. SE

FT 2.29 [2.25 , 2.32] 0.77 %

P̃HL 2.51 [2.35 , 2.67] 3.17 %

PHL 2.68 [2.52 , 2.85] 3.12 %

PHL 1.93 [0.79 , 3.08] 29.57%

Method TVA 95% CI Rel. SE

FT 5.32 [5.24 , 5.40] 0.75 %

P̃HL 5.24 [4.90 , 5.58] 3.22 %

PHL 5.25 [4.90 , 5.58] 3.25 %

PHL 4.01 [2.32 , 5.70] 21.03%

Method TVA 95% CI Rel. SE

FT 1.83 [1.80 , 1.86] 0.78 %

P̃HL 1.80 [1.69 , 1.92] 3.13 %

PHL 1.87 [1.75 , 1.99] 3.11 %

PHL 1.36 [0.41 , 2.31] 35.05%

Table 5.3: FT, PHL, PHL and P̃HL schemes applied to the equity (top), mezzanine

(middle) and senior (bottom) tranche, for the parameters λ̄ = 0%, λIj = 60bp/j (left)

or λ̄ = 3%, λIj = 20bp/j (right).

5.7 Conclusion

Under mild assumptions, three equivalent TVA BSDEs are available. The original

“full” BSDE (I) is stated with respect to the full model filtration G and the original

pricing measure Q. It does not involve the intensity γ of the counterparty first-to-

default time τ. The partially reduced BSDE (II) is also stated with respect to (G,Q)

but it involves both τ and γ. The fully reduced BSDE (III) is stated with respect to

a smaller “reference filtration” F and it only involves γ. Hence, in principle, the full

BSDE (I) should be preferred for models with a “simple” τ whereas the fully reduced

BSDE (III) should be preferred for models with a “simple” γ. But, in nonimmersive
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Figure 5.9: Bottom: The % relative standard errors of the different tranches don’t

explode with the number of names (λ̄ = 100 bp). top: The % relative standard errors

of the different tranches don’t explode with the level of nonlinearity represented by

the unsecured borrowing spread λ̄ (n = 120). Left: FT scheme. Middle: P̃HL

scheme. Right: PHL scheme.
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setups, the fully reduced BSDE (III) is stated with respect to a modified probability

measure P. Even though switching from (G,Q) to (F ,P) is transparent in terms of

the generator of related Markov factor processes, this can be an issue in situations

where the Markov structure is important in the theory to guarantee the validity of

the numerical schemes, but is not really practical from an implementation point of

view. This is for instance the case with the credit portfolio models that we use for

illustrative purposes in our numerics, where the Markov structure that emerges from

the dynamic copula model is too heavy and it’s only the copula features that can

be used in the numerics—copula features under the original stochastic basis (G,Q),

which do not necessarily hold under a reduced basis (F ,P) (especially when P 6= Q).

As for the partially reduced BSDE (II), as compared with the full BSDE (I), its

interest is its null terminal condition, which is key for the FT scheme as recalled

below. But of course (II) can only be used when one has an explicit formula for γ.

For nonlinear and very high-dimensional problems such as counterparty risk on

credit derivatives, the only feasible numerical schemes are purely forward simula-

tion schemes, such as the linear Monte Carlo expansion of Fujii and Takahashi

(2012a,2012b) or the branching particles scheme of Henry-Labordère (2012), respec-

tively dubbed “FT scheme” and “PHL scheme” in the chapter. In our setup, the

PHL scheme involves a nontrivial and rather sensitive fine-tuning for finding a poly-

nomial in ϑ that approximates the terms (Pt − ϑ)± in fvat(ϑ) in a suitable range

for ϑ. This fine-tuning requires a preliminary knowledge on the solution obtained

by running another approximation (linear approximation or FT scheme) in the first

place. Another limitation of the PHL scheme in our case is that it is more demand-

ing than the FT scheme in terms of the structural model properties that it requires.

Namely, in our credit portfolio problems, both a Markov structure and a dynamic

copula are required for the PHL scheme. But, whereas a “weak” dynamic copula

structure in the sense of simulation and forward pricing by copula means is sufficient

for the FT scheme, a dynamic copula in the stronger sense that the copula structure

is preserved in the future is required in the case of the PHL scheme. This strong

dynamic copula property is satisfied by our common-shock model but not in the

Gaussian copula model. In conclusion, the FT schemes applied to the partially or

fully reduced BSDEs (II) or (III) (a null terminal condition is required so that the

full BSDE (I) is not eligible for this scheme) appears as the method of choice on

these problems.

An important message of the numerics is that, even for realistically high levels

of nonlinearity, i.e. an unsecured borrowing spread λ̄ = 3%, the third order FT

correction was always found negligible and the second order FT correction less than

5% to 10% of the first order, linear FT term. In conclusion, a first order FT term

can be used for obtaining “the best linear approximation” to our problem, whereas

a nonlinear correction, if wished, can be computed by a second order FT term.
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