Thèse soutenue

Transport des phonons dans les nanostructures de silicium

FR  |  
EN
Auteur / Autrice : Jérémie Maire
Direction : Christian SeassalMasahiro Nomura
Type : Thèse de doctorat
Discipline(s) : Electronique, microélectronique, optique et lasers, optoélectronique, microondes, robotique
Date : Soutenance le 11/12/2015
Etablissement(s) : Ecully, Ecole centrale de Lyon
Ecole(s) doctorale(s) : École doctorale Électronique, électrotechnique, automatique (Lyon)
Partenaire(s) de recherche : Laboratoire : Institut des Nanotechnologies de Lyon (Ecully, Rhône)
Jury : Président / Présidente : Karl Joulain
Examinateurs / Examinatrices : Stefan Dilhaire, Sebastian Volz
Rapporteurs / Rapporteuses : Ilari Maasilta, Olivier Bourgeois

Résumé

FR  |  
EN

Lors de deux dernières décennies, la nano-structuration a permis une augmentation conséquente des performances thermoélectriques. Bien qu’à l’ origine le silicium (Si) ait une faible efficacité thermoélectrique, son efficacité sous forme de nanostructure, et notamment de nanofils, a provoqué un regain d’intérêt envers la conduction thermique au sein de ces nanostructures de Si. Bien que la conductivité thermique y ait été réduite de deux ordres de grandeur, les mécanismes de conduction thermique y demeurent flous. Une meilleure compréhension de ces mécanismes permettrait non seulement d’augmenter l’efficacité thermoélectrique mais aussi d’ouvrir la voie à un contrôle des phonons thermiques, de manière similaire à ce qui se fait pour les photons. L’objectif de ce travail de thèse était donc de développer une plateforme de caractérisation, d’étudier le transport thermique au sein de différentes nanostructures de Si et enfin de mettre en exergue la contribution du transport cohérent de phonons à la conduction thermique. Dans un premier temps, nous avons développé un système de mesure allant de pair avec une procédure de fabrication en salle blanche. La fabrication se déroule sur le site de l’institut de Sciences Industrielles et combine des manipulations chimiques, de la lithographie électronique, de la gravure plasma et du dépôt métallique. Le système de mesure est base sur la thermoreflectance : un changement de réflectivité d’un métal a une longueur d’onde particulière traduit un changement de température proportionnel. Nous avons dans un premier temps étudié le transport thermique au sein de simples membranes suspendues, suivi par des nanofils, le tout étant en accord avec les valeurs obtenues dans la littérature. Le transport thermique au sein des nanofils est bien diffus, à l’exception de fils de moins de 4 μm de long a la température de 4 K ou un régime partiellement balistique apparait. Une étude similaire au sein de structures périodiques 1D a démontré l’impact de la géométrie et l’aspect partiellement spéculaire des réflexions de phonons a basse température. Une étude sur des cristaux phononiques (PnCs) 2D a ensuite montré que même si la conduction est dominée par le rapport surface sur vole (S/V), la distance inter-trous devient cruciale lorsqu’elle est suffisamment petite. Enfin, il nous a été possible d’observer dans des PnCs 2D un ajustement de la conductivité thermique base entièrement sur la nature ondulatoire des phonons, réalisant par-là l’objectif de ce travail.