Thèse soutenue

Transitions de phases dans des oxydes complexes de structure pérovskite : cas du système (1-x)Na0,5Bi0,5TiO3 - xCaTiO3

FR  |  
EN
Auteur / Autrice : Roy Roukos
Direction : Frédéric BernardJean-Claude Niepce
Type : Thèse de doctorat
Discipline(s) : Chimie - physique
Date : Soutenance le 16/07/2015
Etablissement(s) : Dijon
Ecole(s) doctorale(s) : École doctorale Carnot-Pasteur (Besançon ; Dijon ; 2012-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) (Dijon)
Jury : Président / Présidente : Hans Rudolf Jauslin
Examinateurs / Examinatrices : Mario Maglione
Rapporteurs / Rapporteuses : Sylvain Marinel, Gianguido Baldinozzi

Résumé

FR  |  
EN

Les solutions solides (1-x)Na0,5Bi0,5TiO3 (NBT) – xCaTiO3 (CT) ont été étudiées par diffraction des rayons X, spectroscopie Raman, microscopie électronique à balayage, spectroscopie d’impédance et DSC. Ce sont des matériaux présentant la structure cristalline pérovskite. L’étude révèle la complexité mais aussi la richesse des phénomènes physiques dans cette famille de composés : les séquences des transitions de phases, l’influence du dopant Ca2+ sur les propriétés physico-chimiques du matériau, la relation étroite entre propriétés diélectriques et caractéristiques structurales. Des solutions solides (1-x)NBT – xCT, avec 0 ≤ x ≤ 1,00, ont été synthétisées par voie solide classique puis frittées selon une procédure spécifique dans un milieu confiné pour éviter toute perte de sodium et de bismuth. Les caractéristiques cristallines des solides obtenus imposent clairement de distinguer trois domaines suivant les valeurs de x. En effet, pour les valeurs croissantes de x et à la température ambiante, on observe un premier domaine (Région I, pour x ≤ 0,07) dans lequel le solide obtenu est une solution solide de structure cristalline, de groupe d’espace R3c, identique à celle de NBT pur. Pour les valeurs les plus élevées de x (Région II, pour x ≥ 0,15), le solide obtenu est une solution solide de structure cristalline, de groupe d’espace Pnma, identique à celle de CT pur. Enfin, entre ces deux domaines (Région III, 0,09 ≤ x ≤ 0,13), les solides obtenus sont biphasés, R3c + Pnma, en se limitant aux appellations des groupes d’espacé des phases formées. Dans la région I, lors du chauffage, la séquence des transitions de phases R3c → P4bm → Pm3m est mise en évidence; les températures des transitions se déplacent vers les plus basses températures quand la concentration en Ca2+ augmente. Les solides sont ferroélectriques à l’ambiante puis développent un caractère relaxeur, par coexistence de deux phases, avec l’augmentation de la température. Dans la région II, les solides révèlent un comportement relaxeur dès l’ambiante. Une transition de phase diffuse au sein de la phase orthorhombique Pnma est toutefois mise en évidence ; le solide passe d’un état relaxeur à un état paraélectrique tout en conservant, a priori, la même structure cristalline. Le phénomène de relaxation dans ces composés est expliqué par la formation de micros ou nanorégions polaires. La région III, quant à elle, est caractérisée par l’apparition d’une hystérésis thermique mise en évidence pour la première fois ; elle est expliquée par la relation entre la microstructure cristalline et les propriétés diélectriques. Enfin, l’ensemble de nos résultats a été regroupé dans un diagramme de phase original en composition et en température.