Contributions à la co-optimisation contrôle-dimensionnement sur cycle de vie sous contrainte réseau des houlogénérateurs directs

par Thibaut Kovaltchouk

Thèse de doctorat en Électronique, Électrotechnique et Automatique

Sous la direction de Bernard Multon.

Soutenue le 09-07-2015

à Cachan, Ecole normale supérieure , dans le cadre de École doctorale Sciences pratiques (1998-2015 ; Cachan, Val-de-Marne) , en partenariat avec Systèmes et Applications des Technologies de l'Information et de l'Energie (laboratoire) .


  • Résumé

    Les Energies Marines Renouvelables (EMR) se développent aujourd’hui très vite tant au niveau de la recherche amont que de la R&D, et même des premiers démonstrateurs à la mer. Parmi ces EMR, l'énergie des vagues présente un potentiel particulièrement intéressant. Avec une ressource annuelle brute moyenne estimée à 40 kW/m au large de la côte atlantique, le littoral français est plutôt bien exposé. Mais l’exploitation à grande échelle de cette énergie renouvelable ne sera réalisable et pertinente qu'à condition d'une bonne intégration au réseau électrique (qualité) ainsi que d'une gestion et d'un dimensionnement optimisé au sens du coût sur cycle de vie. Une première solution de génération tout électrique pour un houlogénérateur a d’abord été évaluée dans le cadre de la thèse de Marie RUELLAN menée sur le site de Bretagne du laboratoire SATIE (ENS de Cachan). Ces travaux ont mis en évidence le potentiel de viabilité économique de cette chaîne de conversion et ont permis de poser la question du dimensionnement de l’ensemble convertisseur-machine et de soulever les problèmes associés à la qualité de l’énergie produite. Puis une seconde thèse a été menée par Judicaël AUBRY dans la même équipe de recherche. Elle a consisté, entre autres, en l’étude d’une première solution de traitement des fluctuations de la puissance basée sur un système de stockage par supercondensateurs. Une méthodologie de dimensionnement de l’ensemble convertisseur-machine et de gestion de l’énergie stockée fut également élaborée, mais en découplant le dimensionnement et la gestion de la production d’énergie et de ceux de son système de stockage. Le doctorant devra donc : 1. S’approprier les travaux antérieurs réalisés dans le domaine de la récupération de l’énergie des vagues ainsi que les modèles hydrodynamiques et mécaniques réalisés par notre partenaire : le LHEEA de l’Ecole Centrale de Nantes - 2. Résoudre le problème du couplage entre dimensionnement/gestion de la chaîne de conversion et dimensionnement/gestion du système de stockage. 3. Participer à la réalisation d’un banc test à échelle réduite de la chaine électrique et valider expérimentalement les modèles énergétiques du stockage et des convertisseurs statiques associés - 4. Proposer une méthodologie de dimensionnement de la chaine électrique intégrant le stockage et les lois de contrôle préalablement élaborées 5. Déterminer les gains en termes de capacités de stockage obtenus grâce à la mutualisation de la production (parc de machines) et évaluer l’intérêt d’un stockage centralisé - 6. Analyser l’impact sur le réseau d’une production houlogénérée selon divers scenarii, modèles et outils développés par tous les partenaires dans le cadre du projet QUALIPHE. L’exemple traité sera celui de l’Ile d’Yeu (en collaboration avec le SyDEV.

  • Titre traduit

    Contribution to the sizing-control co-optimization over life cycle under grid constraint for direct-drive wave energy converters


  • Résumé

    The work of this PhD thesis deals with the minimization of the per-kWh cost of direct-drive wave energy converter, crucial to the economic feasibility of this technology. Despite the simplicity of such a chain (that should provide a better reliability compared to indirect chain), the conversion principle uses an oscillating system (a heaving buoy for example) that induces significant power fluctuations on the production. Without precautions, such fluctuations can lead to: a low global efficiency, an accelerated aging of the fragile electrical components and a failure to respect power quality constraints. To solve these issues, we firstly study the optimization of the direct drive wave energy converter control in order to increase the global energy efficiency (from wave to grid), considering conversion losses and the limit s from the sizing of an electrical chain (maximum force and power). The results point out the effect of the prediction horizon or the mechanical energy into the objective function. Production profiles allow the study of the flicker constraint (due to grid voltage fluctuations) linked notably to the grid characteristics at the connection point. Other models have also been developed to quantify the aging of the most fragile and highly stressed components, namely the energy storage system used for power smoothing (with super capacitors or electrochemical batteries Li-ion) and power semiconductors.Finally, these aging models are used to optimize key design parameters using life-cycle analysis. Moreover, the sizing of the storage system is co-optimized with the smoothing management.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : École normale supérieure. Bibliothèque.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.