SLAM temporel à contraintes multiples

par Datta Ramadasan

Thèse de doctorat en Vision pour la Robotique

Sous la direction de Thierry Chateau.

Soutenue le 15-12-2015

à Clermont-Ferrand 2 , dans le cadre de École doctorale des sciences pour l'ingénieur (Clermont-Ferrand) , en partenariat avec Institut Pascal (Aubière, Puy-de-Dôme) (laboratoire) .

Le président du jury était Lionel Lacassagne.

Le jury était composé de Thierry Chateau, Michel Dhome, Marc Chevaldonné.

Les rapporteurs étaient Éric Marchand, Cédric Demonceaux.


  • Résumé

    Ce mémoire décrit mes travaux de thèse de doctorat menés au sein de l’équipe ComSee (Computers that See) rattachée à l’axe ISPR (Image, Systèmes de Perception et Robotique) de l’Institut Pascal. Celle-ci a été financée par la Région Auvergne et le Fonds Européen de Développement Régional. Les travaux présentés s’inscrivent dans le cadre d’applications de localisation pour la robotique mobile et la Réalité Augmentée. Le framework réalisé au cours de cette thèse est une approche générique pour l’implémentation d’applications de SLAM : Simultaneous Localization And Mapping (algorithme de localisation par rapport à un modèle simultanément reconstruit). L’approche intègre une multitude de contraintes dans les processus de localisation et de reconstruction. Ces contraintes proviennent de données capteurs mais également d’a priori liés au contexte applicatif. Chaque contrainte est utilisée au sein d’un même algorithme d’optimisation afin d’améliorer l’estimation du mouvement ainsi que la précision du modèle reconstruit. Trois problèmes ont été abordés au cours de ce travail. Le premier concerne l’utilisation de contraintes sur le modèle reconstruit pour l’estimation précise d’objets 3D partiellement connus et présents dans l’environnement. La seconde problématique traite de la fusion de données multi-capteurs, donc hétérogènes et asynchrones, en utilisant un unique algorithme d’optimisation. La dernière problématique concerne la génération automatique et efficace d’algorithmes d’optimisation à contraintes multiples. L’objectif est de proposer une solution temps réel 1 aux problèmes de SLAM à contraintes multiples. Une approche générique est utilisée pour concevoir le framework afin de gérer une multitude de configurations liées aux différentes contraintes des problèmes de SLAM. Un intérêt tout particulier a été porté à la faible consommation de ressources (mémoire et CPU) tout en conservant une grande portabilité. De plus, la méta-programmation est utilisée pour générer automatiquement et spécifiquement les parties les plus complexes du code en fonction du problème à résoudre. La bibliothèque d’optimisation LMA qui a été développée au cours de cette thèse est mise à disposition de la communauté en open-source. Des expérimentations sont présentées à la fois sur des données de synthèse et des données réelles. Un comparatif exhaustif met en évidence les performances de la bibliothèque LMA face aux alternatives les plus utilisées de l’état de l’art. De plus, le framework de SLAM est utilisé sur des problèmes impliquant une difficulté et une quantité de contraintes croissantes. Les applications de robotique mobile et de Réalité Augmentée mettent en évidence des performances temps réel et un niveau de précision qui croît avec le nombre de contraintes utilisées.

  • Titre traduit

    Multiple constraints and temporal SLAM


  • Résumé

    This report describes my thesis work conducted within the ComSee (Computers That See) team related to the ISPR axis (ImageS, Perception Systems and Robotics) of Institut Pascal. It was financed by the Auvergne Région and the European Fund of Regional Development. The thesis was motivated by localization issues related to Augmented Reality and autonomous navigation. The framework developed during this thesis is a generic approach to implement SLAM algorithms : Simultaneous Localization And Mapping. The proposed approach use multiple constraints in the localization and mapping processes. Those constraints come from sensors data and also from knowledge given by the application context. Each constraint is used into one optimization algorithm in order to improve the estimation of the motion and the accuracy of the map. Three problems have been tackled. The first deals with constraints on the map to accurately estimate the pose of 3D objects partially known in the environment. The second problem is about merging multiple heterogeneous and asynchronous data coming from different sensors using an optimization algorithm. The last problem is to write an efficient and real-time implementation of the SLAM problem using multiple constraints. A generic approach is used to design the framework and to generate different configurations, according to the constraints, of each SLAM problem. A particular interest has been put in the low computational requirement (in term of memory and CPU) while offering a high portability. Moreover, meta-programming techniques have been used to automatically and specifically generate the more complex parts of the code according to the given problem. The optimization library LMA, developed during this thesis, is made available of the community in open-source. Several experiments were done on synthesis and real data. An exhaustive benchmark shows the performances of the LMA library compared to the most used alternatives of the state of the art. Moreover, the SLAM framework is used on different problems with an increasing difficulty and amount of constraints. Augmented Reality and autonomous navigation applications show the good performances and accuracies in multiple constraints context.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Clermont Auvergne. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.