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Abstract

Let f(q) be a Coleman family of cusp forms of tame level N . Let k0 be

the p-new classical weight of the Coleman family f(q). By the Kohnen-

Shintani correspondence, we associate to every even classical weight k a half-

integral weight form (for k 6= k0) gk =
∑
D>0

c(D, k)qD ∈ S k+1
2

(Γ0(4N)) and

gk0 =
∑
D>0

c(D, k)qD ∈ S k+1
2

(Γ0(4Np)).

We first prove that the Fourier coefficients c(D, k) for k ∈ 2Z>0 can be interpo-

lated by a p-adic analytic function c̃(D,κ) with κ varying in a neighbourhood

of k0 in the p-adic weight space.

Based on the eigenvalue of the Atkin-Lehner operator at p, we partition

the discriminants D appearing in the Fourier expansion,
∑
D>0

c(D, k)qD, into

two types (Type I and Type II). For any Type II discriminant D, we show

that the derivative along the weight at k0,
d
dκ [c̃(D,κ)]k=k0 , is related to certain

algebraic cycles associated to the motive Mk0 attached to the space of cusp

forms of weight k0 on Γ0(Np). These algebraic cycles appear in the theory of

Darmon cycles.
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Chapter 1

Introduction

LetN ≥ 1 be a positive integer. We denote by Sk(Γ0(N)) (resp. S k+1
2

(Γ0(4N)))

the space of cusp forms of weight k (resp. k+1
2 ) on Γ0(N) (resp. Γ0(4N)).

1.1 The Kohnen-Shintani correspondence.

One of the major themes in the study of automorphic forms is Langlands’ prin-

ciple of functoriality which describes the existence of correspondence between

automorphic forms on different reductive groups. The Shimura-Shintani cor-

respondence between integral weight modular forms (automorphic forms on

GL2(Q)) and half integral weight modular forms (automorphic forms on the

metaplectic cover of SL2(Q)) is one of the earliest examples of Langlands’

functoriality. Shimura initiated the study of half integral weight modular

forms in [39] in which he defined suitable Hecke operators and constructed

a Hecke-equivariant correspondence between integral weight and half integral

weight modular forms. Later, in [42], Shintani constructed the inverse corre-

spondence using theta lifts. He showed the existence of a Hecke-equivariant

11



12 CHAPTER 1. INTRODUCTION

C-linear isomorphism

θk : Sk(Γ0(N))→ S k+1
2

(Γ0(4N))

for k ≥ 2 even.

When N is odd square free, W. Kohnen showed the existence of a Hecke

equivariant isomorphism (denoted as D-th Shintani liftings) in [22] between

θN,k : Sk(Γ0(N))new → Snewk+1
2

(Γ0(4N))+

where + denotes the Kohnen + space of newforms of weight k+1
2 , i.e. g =

θD,k(f) ∈ Snewk+1
2

(Γ0(4N))+ =⇒ g(z) has a Fourier expansion, g(z) =
∑
D>0

c(D)qD

where c(D) = 0 unless D∗ := (−1)k/2D ≡ 0, 1(mod4).

The arithmetic significance of the Kohnen-Shintani lifting is given by the

following Waldspurger type formula :-(See Theorem 1 of [44] and Corollary 1

of [22]) .

Let D be a fundamental discriminant such that (D,N) = 1. Then

c(D)2 = λgD
k−1

2 L(f,D∗, k/2) if

(
D∗

`

)
= wl ∀ l|N

where

• L(f,D∗, s) :=
∑
n
a(n)χD∗(n)n−s is the twisted L-function attached to f(z) =∑

a(n)qn and the Dirichlet character χD∗(n) :=
(
D∗

n

)
.

• λg is a non-zero complex number which depends only on the choice of g.

• wl ∈ (±1) are the eigenvalues of the Atkin-Lehner involution Wl acting on

f .
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The twisted L-function admits a functional equation relating the values at

s and k − s (See Section 2.2 of Chapter 2). The sign that appears in this

functional equation is given by

w(f,D∗) := (−1)k/2χD∗(−N)wN

where wN := Πl|Nwl and f ∈ Sk(Γ0(N)).

In particular, the central critical value L(f,D∗, k/2) vanishes when

w(f,D∗) = −1. This also forces c(D) to vanish and one is naturally interested

in studying the central critical derivative L′(f,D∗, k/2). We study the p-adic

variation of this phenomenon and the results obtained are a higher weight /

finite slope analogue of the recent work of Henri Darmon and Gonzalo Tornaria

in [13].

1.2 The Results

Let p be an odd prime integer. Fix an algebraic closure Q of Q and embed-

dings σ∞ : Q → C and σp : Q → Qp. Let N be an odd square free integer

such that p - N and let U be an open affinoid of the p-adic weight space X . A

p-adic analytic family of cuspidal eigenforms over U is a formal q-expansion

f(q) :=
∑
n≥1

anq
n ∈ O(U)[[q]]

such that for all k ∈ U cl := {n ∈ 2Z : n ≥ 0} ∩ U ,

fk(q) =
∑
n≥1

an(k)qn ∈ Sk(Γ0(Np),Q)



14 CHAPTER 1. INTRODUCTION

The p-adic valuation of ap(k) is a constant called the slope of f(q). We

will assume that we are in the finite non-ordinary case (i.e. ap(k) 6= 0 and

vp(ap(k)) > 0) and also that fk is N -new for all k ∈ U cl. Since the slope of f

is constant, there is at most one k0 ∈ U cl such that fk0 is p-new. This happens

exactly when ap(k0) = ±pk0/2−1.

For each k 6= k0 ∈ U cl, there is a newform f#
k ∈ Sk(Γ0(N)) such that fk is

the p-stabilization of f#
k , i.e.

fk(q) = f#
k (q)− pk−1

ap(k)
f#
k (qp)

In particular, the eigenvalues of the Hecke operators, Tl for all l - N , of fk and

f#
k coincide. For convenience, we denote f#

k0
= fk0 ∈ Sk0(Γ0(Np)).

Let gk =
∑
D>0

c(D, k)qD ∈ S k+1
2

(Γ0(4N)) be the Shintani lift of f#
k for all

k 6= k0 ∈ U cl and let gk0 =
∑
D>0

c(D, k0)qD ∈ S k0+1
2

(Γ0(4Np)) correspond to

the lift of fk0 .

The values of D for which c(D, k) need not necessarily vanish for k 6= k0 ∈ U cl

can be classified in two types :

(I) All D > 0 such that χD∗(p) = wp.

(II) All D > 0 such that χD∗(p) = −wp.

Note that for Type II discriminants D, we have w(fk0 , D
∗) = −1 and hence

L(fk0 , D
∗, k0/2) = 0 (therefore c(D, k0) = 0).

By making a suitable normalization of the Fourier coefficients c(D, k), the

function k → c(D, k) extends to a p-adic analytic function c̃(D,κ) in a neigh-

bourhood of k0. For D2 a Type II discriminant and D1 a Type I discriminant

such that c(D1, k0) 6= 0, let D := D∗1.D
∗
2 and K be the real quadratic field

Q(
√
D) (Note that D > 0).
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Let V Np
p be the base change to Qp of the p-adic Galois reprsentation of

Gal(Q/Q) attached to Sk0(Γ0(Np),Q)p−new. Let Mk0 be the motive over Q

associated to Sk0(Γ0(Np)) constructed in [35]. For L any number field, let

CH
k0/2
0 (Mk0⊗L) be the Chow group of algebraic cycles of co-dimension k0/2

on Mk0 base change to L that are homologous to the null cycle. We have a

global p-adic Abel-Jacobi map

cl
k0/2
0,L : CH

k0/2
0 (Mk0 ⊗ L)→ Selst(L, V

Np
p (k0/2))

See Sections 1 - 4 of [30] for a detailed discussion on the Abel - Jacobi map.

The main theorem we prove is

Theorem 1. There exists a global cycle

d
χD∗2
k0
∈ CH

k0/2
0 (Mk0 ⊗Q(

√
D∗2))

χD∗2 ⊂ (Mk0 ⊗Q(
√
D∗2,

√
D∗1))

and a constant sf ∈ K×fk0
such that

d

dk
[c̃(D2, k)]k=k0 =

|D1|
k0−2

4

|D2|
k0−2

4

.sf .expBK
−1(resp(cl

k0/2

0,H+
K

(d
χD∗2
k0

)))(φk0)

where φk0 is the modular symbol attached to fk0 and resp : Selst(H
+
K , V

Np
p (k0/2))→

H1
st(Kp, V

Np
p (k0/2)) is the restriction at p (See Section 3.5 of Chapter 3).

Sketch of the proof:-

• Use Kohnen’s formula to interpret c̃(D2, k) as a p-adic variant of Shintani

periods and relate it to a certain p-adic L-function defined by Seveso in [Sev].

• Use this interpretation to relate the derivative in the weight direction of

c̃(D2, k) to the image of Darmon cycles under a p-adic Abel-Jacobi map.

• Use the Rationality theorem of Seveso to show that these Darmon cycles
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are in fact restriction of global cycles.

1.3 Outline of the thesis

Chapter 2. - In this chapter we recall the basic theory of half-integral weight

forms and then go on to discuss the Kohnen - Shintani lifting and their arith-

metic significance.

Chapter 3. - We recall the theory of Darmon cycles and the construction of

a cohomological p-adic Abel-Jacobi map. The construction is due to Victor

Rotger and Marco Seveso ([33]) and can be thought of as a heigher weight

analogue of Stark - Heegner points.

Chapter 4. - Since the proof of the main theorem involves a systematic study

of various p-adic L-functions, we devote this chapter completely to describe

the construction and properties of these p-adic L-functions.

Chapter 5. - This is the final chapter of the thesis where we prove our main

theorem.

Appendix A. - In this expository appendix, we recall some of the relations

between quadratic forms and quadratic fields.

All the results in Chapters 2, 3 and 4 exist in the literature and

we have provided explicit references to the results that have been

recalled in this text.



Chapter 2

The Kohnen-Shintani

correspondence

2.1 Half-integral weight modular forms

In this section, we recall the basic theory of half-integer weight modular forms.

The exposition is standard and all the material discussed here can be found in

the fundamental papers on the subject - for example [39], [42], [22] and [23].

We first recall the definition of three congruence subgroups of SL2(Z).

Definition 1. Let N ≥ 1 be an integer. Then

Γ(N) :=

{ a b

c d

 ∈ SL2(Z) : a ≡ d ≡ ±1, b ≡ c ≡ 0 mod(N)

}
.

Γ1(N) :=

{ a b

c d

 ∈ SL2(Z) : a ≡ d ≡ 1, c ≡ 0 mod(N)

}
.

17



18 CHAPTER 2. THE KOHNEN-SHINTANI CORRESPONDENCE

and

Γ0(N) :=

{ a b

c d

 ∈ SL2(Z) : c ≡ 0 mod(N)

}
.

For p an odd prime, recall that an integer c is called a quadratic residue

modulo p if there exists an integer x such that c ≡ x2 mod p. Recall the

Legendre Symbol given by

(
c

p

)
=


+1 if c is a quadratic residue modulo p and p - c

−1 if c is not a quadratic residue modulo p

0 if p | c

and for p = 2,

(
c

2

)
=


+1 if c ≡ ±1 mod(8)

−1 if c ≡ ±3 mod(8)

0 if c is even

For n any integer with prime factorization n = upe11 p
e2
2 · · · p

e`
` where u = ±1

and pi’s are primes, the Kronecker symbol is defined as

(
a

n

)
:=

(
a

u

)∏̀
i=1

(
a

pi

)ei

where (
a

1

)
= 1

and (
a

−1

)
=


+1 if a ≥ 0

−1 if a < 0
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When d is an odd integer, define

εd :=


1 if d ≡ 1 mod(4)

√
−1 if d ≡ 3 mod(4)

For all z ∈ C, we will define by
√
z to be the square-root function with

argument in the interval (−π/2, π/2].

Let H := {z ∈ C | Im(z) > 0} be the complex upper half plane and let G

be the group of pairs

G := {(α, φ(z)) | α ∈ GL+
2 (Q), φ(z) : H → C is holomorphic, φ(z)2 = ± cz + d√

detα
}

The group composition on G is given by

(α1, φ1(z)).(α2, φ2(z)) := (α1α2, φ1(α2.z)φ2(z))

where α2.z is the usual fractional liner transformation (See (2.1) below).

Let Π : G→ GL+
2 (Q) be the canonical projection. We can define an action

of G on the space of all complex valued functions on H as follows

f | [g]k/2(z) := f(α.z)φ(z)−k (2.1)

where α.z = α11z+α12
α21z+α22

for α =

 α11 α12

α21 α22

 and g = (α, φ(z)) ∈ G and

f : H → C.



20 CHAPTER 2. THE KOHNEN-SHINTANI CORRESPONDENCE

Fix an integer M divisible by 4. For Γ a congruence subgroup of Γ0(M),

we consider the following subgroup of G

∆ := {γ̃ := (γ, φγ(z)) | γ ∈ Γ}

where φγ(z) =
(
c
d

)
ε−1
d

√
cz + d associated to γ =

a b

c d

 ∈ Γ and εd = 1

(resp.
√
−1) when d ≡ 1 mod (4) (resp. d ≡ 3 mod (4)). When Γ is Γ0(M)

(resp. Γ(M) or Γ1(M)), we denote the corresponding subgroup of G by ∆0(M)

(resp. ∆(M) or ∆1(M)). Let k ≥ 0 be odd and χ a Dirichlet character mod

M .

Definition 2. A modular form of weight k/2, level ∆0(M) and Nebentypus χ

is a holomorphic function f : H → C such that

• f | [γ̃]k/2(z) = χ(d)f(z) ∀ γ =

a b

c d

 ∈ Γ0(M).

• f is holomorphic at the cusps of Γ0(M).

See Pages 2-3 of [45] for a discussion about holomorphicity at the cusps

of a congruence subgroup. We denote the space of modular forms of weight

k/2 on ∆0(M) and Nebentypus χ by Mk/2(Γ0(M), χ). If f(z) vanishes at

the cusps, we call it a cusp form and denote the subspace of cuspforms by

Sk/2(Γ0(M), χ) ⊂Mk/2(Γ0(M), χ).

Example 1. Let θ : H → C be given by θ(z) :=
∑

n∈Z q
n2

where q = e2πiz.

For γ =

a b

c d

 ∈ Γ0(4), we have

(
θ(γ.z)

θ(z)

)2

=
(−1

d

)
(cz + d)

Hence θ(z) ∈M1/2(Γ0(4), χ−1).
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2.1.1 Hecke Operators

Similar to the integral weight case, one can define Hecke operators acting on

Mk/2(Γ).

Definition 3. Recall that two subgroups H,H ′ ⊆ GL+
2 (Q) are said to be

commensurable if

[H : H ∩H ′] <∞ [H ′ : H ∩H ′] <∞

Let γ ∈ GL+
2 (Q) Then ∆1(M) and γ−1∆1(M)γ are commensurable1.

Write ∆1(M)γ∆1(M) =
⋃
α ∆1(M)γα. Define the operator | [∆1(M)γ∆1(M)]k/2

on the space Mk/2(Γ1(M)) as follows

f | [∆1(M)γ∆1(M)]k/2 := det(γ)k/4−1
∑
α

f | [γα]k/2

where f | [γα]k/2 is the action defined in ( 2.1). For m positive, the Hecke

operator Tm is defined to be the restriction of | [∆1(M)γ∆1(M)]k/2 to

Mk/2(Γ0(M), χ) for γ =

( 1 0

0 m

 ,m1/4

)
. By Proposition 1.0 of [39], the

Hecke operator Tm is zero whenever m is not a square.

Now let ∆0(M)γ∆0(M) =
⋃
α ∆0(M)γα. Then Tn2 ∈ End(Mk/2(Γ0(M), χ))

is the operator given by

Tn2(f) := nk/2−2
∑
α

χ(aα)f | [γα]k/2

where aα is the upper left entry of γα.

Theorem 2 (Shimura, Theorem 1.7, [39]). Let f(z) =
∑
n
anq

n ∈Mk/2(Γ0(M), χ).

1We would like to thank Professor Mladen Dimitrov for pointing out this
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For a prime p, Tp2(f)(z) =
∑

n bnq
n where

bn = ap2n + χ(p)
(−1

p

) k−1
2
(n
p

)
p
k−3

2 an + χ(p2)pk−2an/p2

where an/p2 = 0 whenever p2 - n.

When p |M , the Hecke operator will be denoted U(p2). When (m,n) = 1,

Tm2n2 = Tm2Tn2 = Tn2Tm2 (See Proposition 1.6 of [39]).

2.1.2 New forms of half-integral weight

For each prime p | M , we recall the ’Atkin-Lehner’ type involution W (p),

defined by Kohnen in [23], given by

W (p) :=

( p a

4M pb

 ,(−4

p

)−k−1/2
p−k/2−1/4(4Mz + pb)k+1/2

)

where p2b − 4Ma = p. The operator W (p) induces an isomorphism between

Sk+1/2(Γ0(M), χ) and Sk+1/2

(
Γ0(M),

(
.
p

)
χ
)

. Let µ be the conductor of χ -

the Dirichlet character modulo M . Since the conductor µ is a divisor of M ,

we consider the Hecke operator U(µ2). Then:

Proposition 1 (Proposition 3, [23]). Sk+1/2(Γ0(M))
U(µ2)−−−→ Sk+1/2(Γ0(M), χ)

is an isomorphism.

For each p |M , denote by

wNp,k+1/2 := p−k/2+1/4U(p2)W (p)

and

wNp,k+1/2,χ := U(µ2)−1wNp,k+1/2U(µ2)
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Further, for each d |M , let Sk+1/2(Γ0(d), χ) := Sk+1/2(Γ0(d)) | U(µ2).

The space of old forms Sk+1/2(Γ0(M), χ)old is then defined as

∑
d|M,d<M

(
Sk+1/2(Γ0(d), χ) + Sk+1/2(Γ0(d), χ) | U(M2/d2)

)

We have a ’Petersson inner product’ on Sk+1/2(Γ0M) given by

< f, g >:=
1

[SL2(Z) : Γ0(M)]

∫
Γ0(M)/H

f(z)g(z)yk/2−2dxdy

where z = x + iy. The space of newforms Snew
k+1/2(Γ0(M), χ) is defined as

the orthogonal complement of the space of oldforms w.r.t the Petersson inner

product. We will now recall some fundamental results about the space of

newforms.

Theorem 3 (W. Kohnen). For p |M , the endomorphisms U(p2) and wNp,k+1/2,χ

preserve the space Snew
k+1/2(Γ0(M), χ). Further, U(p2) = −pk−1wNp,k+1/2,χ.

Snew
k+1/2(Γ0(M), χ) has an orthogonal basis (with respect to the Petersson in-

ner product) of simultaneous eigenforms for the Hecke operators T (p2) for all

p -M and U(p2) for all p |M . The eigenvalues for U(p2) are given by ±pk−1.

Proof. See Theorem 1 and Theorem 2, Section 5 of [23].

2.2 The Kohnen-Shintani Lifting

Fix f ∈ Sk(Γ0(N)), a cusp form of weight k on Γ0(N). Let Q(x, y) = ax2 +

bxy + cy2 be an integral binary quadratic form (i.e a, b, c ∈ Z). The group

SL2(Z) acts on the right on the space of integral quadratic forms by

(Q | ε)(x, y) := Q(δx− γy,−βx+ αy)
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for ε =

α β

γ δ

. Let D > 0 be an integer such that D∗ := (−1)k/2D is

congruent to 0, 1(mod 4) and D∗ divides ∆ = b2 − 4ac, the discriminant of

Q(x, y). Let ∆ = D∗D′∗. Define

ωD∗,D′∗(Q) :=


(

D′∗

Q(m,n)

)
when gcd(D′∗, Q(m,n)) = 1(

D∗

Q(m,n)

)
when gcd(D∗, Q(m,n)) = 1

.

If there exist r, s ∈ Z such that (D∗, Q(r, s)) = 1, then
(

D∗

Q(r,s)

)
=
(

D∗

Q(m,n)

)
(See Lemma 8 in Appendix A). Hence ωD∗,D′∗ is well-defined. Genus theory

shows that ωD∗,D′∗ is a quadratic character of the class group of integral binary

quadratic forms of discriminant ∆. This character cuts out the bi-quadratic

extension Q(
√
D∗,
√
D′∗). See Appendix A for a discussion of these results on

genus characters.

Let δ be a positive integer such that δ2 ≡ ∆(mod 4N). We will call a

primitive binary quadratic form Q(x, y) = ax2 + bxy + cy2 a Heegner form of

level N if

N | a, and b ≡ δ(modN).

We will denote the set of Heegner forms of discriminant ∆ by F∆. Assume ∆

is not a perfect square and let r + s
√

∆ be the totally positive (i.e. r, s > 0)

fundamental unit in the order O∆ := Z[∆+
√

∆
2 ]. Let

γQ :=

r + sb 2cs

−2as r − sb

 ∈ Γ0(N)

be the generator of the cyclic subgroup ΓQ - the stabilizer of Q in Γ0(N). For

any point τ ∈ H, let CQ be the image in Γ0(N)/H of the geodesic in H of
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complex numbers z = x+ iy such that

a|z|2 + bx+ c = 0.

Let τ ∈ H be any base point. In our case (i.e ∆ is not a perfect square), CQ is

equivalent to the geodesic joining τ and γQτ . To each Q ∈ F∆, we associate

the Shintani period given by

r(f,Q) :=

∫
CQ

f(z)Q(z, 1)k−1dz

Let ∆ = D∗.D′∗ be the factorization such that D,D′ > 0 and D∗, D′∗ =

(−1)k/2Di ≡ 0, 1(mod4) for i = 1, 2. Consider the liner combination

rk,N (f,D∗, D′∗) =
∑

Q∈F∆/Γ0(N)

ωD∗,D′∗(Q)r(f,Q)

Let µ(n) denote the Mobius function which is defined as the sum of the

primitive n-th roots of unity. Then µ(n) ∈ {−1, 0, 1}. Let S+
k+1

2

(Γ0(4N))

denote the Kohnen ’+’ space of half integral weight cusp forms, i.e. forms

that have a Fourier expansion of the form

g(τ) =
∑
D≥1

D∗≡0,1(mod4)

c(D)qD ∈ Sk+1/2(Γ0(4N)).

For m a fudamental discriminant such that m∗ = (−1)k/2m > 0, the m-th

Shintani lifting, g(τ), of f ∈ Sk(Γ0(N)) is defined as

Θk,N,m(f)(q) :=
∑
D≥1

D∗≡0,1(mod4)

(∑
t|N

µ(t)
(m
t

)
t
k−1

2 rk,Nt(f,m, (−1)k/2Dt2)
)
qD

Theorem 4. For every m as above, Θk,N,m : Sk(Γ0(N)) → S+
k+1

2

(Γ0(4N)) is
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an isomorphism. Further if N is odd square free, then Θk,N,m maps Snew
k (Γ0(N))2

isomorphically onto S+,new
k+1

2

(Γ0(4N)).

Proof. See Theorem 2 of [23].

We will now recall a formula of Kohnen which relates the Fourier coeffi-

cients of a Shintani lifting to the Shintani periods.

For any m as above and f ∈ Sk(Γ0(N)), let the Fourier expansion of the m-th

Shintani lifting - g(τ) := Θk,N,m(f)(z) be given by g(τ) =
∑
D≥1

D∗≡0,1(mod4)

c(D)qD

(i.e. c(D) =
∑
t|N

µ(t)
(
m
t

)
t
k−1

2 rk,Nt(f,m, (−1)k/2Dt2)).

Theorem 5. Then

c(D1)c(D2)

< g, g >
=

(−2i)k/22ν(N)

< f, f >
rk,N (f,D∗1, D

∗
2)

where ν(N) is the number of distinct prime divisors of N .

Proof. This is Theorem 3 of [23]3.

Let D > 0 be an integer such that D∗ ≡ 0, 1 mod(4). Recall the twisted

L-series of f :

L(f,D∗, s) :=
∑
n≥1

(D∗
n

)
a(n)n−s; Re(s) >> 0

where f(z) =
∑
n≥1

a(n)qn ∈ Sk(Γ0(N)) and
(
D∗

.

)
is the quadratic Dirichlet

character. This twisted L-function admits a holomorphic continuation to C

given by

Λ(f,D∗, s) = (2π)−s(ND∗,2)s/2Γ(s)L(f,D∗, s)

2See [3] for the theory of newforms of integral weight cusp forms.
3There is an extra factor of 2ν(N) that appears here due to the choice of embeddings. See

Theorem 2.3 of [25]
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and admits a functional equation

Λ(f,D∗, s) = (−1)k/2
( D∗
−N

)
wNΛ(f,D∗, k − s)

where wN :=
∏̀
|N
w` ∈ {±1} is the product of the Atkin-Lehner eigenvalues

indexed by the primes dividing the level. See Theorem 7.7 of [20] for a dis-

cussion about analytic continuation of Automorphic L-functions. At s = k/2,

the critical L-value , L(f,D∗, k), vanishes when (−1)k/2χD∗(−N) = −wN .

We end this chapter with the following result which can be derived from

Theorem 5 above

Corollary 1. Let D be a above such that
(
D∗

`

)
= w`, for all primes ` | N ,

we have

|c(|D|)|2

< g, g >
= 2ν(N) (k/2− 1)!

πk/2
|D|

k−1
2
L(f,D∗, k/2)

< f, f >

with ν(N) being the number of distinct prime divisors of N .

Proof. See Corollary 1 of [22].

Remark 1. By the above Proposition, we know that the vanishing of c(D) is

equivalent to the vanishing of L(f,D∗, k/2).
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Chapter 3

Darmon Cycles

Let p be an odd prime and let N be a square free integer such that p - N .

We fix a real quadratic extension K/Q such that

• All primes dividing N are split in K

• p is inert in K.

Let DK be the discriminant of K. Recall the fixed embeddings

σ∞ : Q→ C σp : Q→ Cp.

Let Γ0 := Γ0(Np) and Γ := Γ0(N) be the congruence subgroups of level Np

and N respectively. Let Γ̃ := Γ[1
p ] and W := Q2

p − (0, 0). Denote by Pk−2(E)

to be the set of homogeneous polynomials of degree k−2 in two variables over

a field E. Let Vk−2(E) be the E-dual of Pk−2(E).

29
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3.1 Bruhat-Tits trees and p-adic upper half planes

3.1.1 Bruhat-Tits trees

Let T denote the Bruhat-Tits tree of Qp whose vertices are given by homothety

classes of Zp-lattices in Q2
p. We denote the set of vertices (resp. edges) of T

by V (resp. E). We will denote a vertex v by [L] where [L] stands for the

homothety class of lattices equivalent to some lattice L ⊂ Q2
p (i.e L′ ∈ [L]

if and only if there exists α ∈ C× such that L′ = αL). There is an edge e

between two vertices v1 and v2 ∈ V if for some lattices L1, L2 ⊂ Q2
p such that

v1 = [L1] and v2 = [L2];

L1 ⊃ L2 ⊃ pL1

If L1 ⊃ L2 ⊃ pL1 then L2 ⊃ pL1 ⊃ pL2 and since [pL1] = [L1] we see that T

is an undirected graph (i.e. we identify the edges v1 → v2 and v2 → v1). In

fact, T is a tree with each vertex v ∈ V having degree p+ 1 (See Proposition

1.3.2 of [14]).

We write < `1, `2 > to denote the lattice L generated by `1 and `2, i.e. L =

Zp`1 + Zp`2. We have a natural left GL2(Qp)-action on T as follows : Let

v = [L] ∈ V and let γ ∈ GL2(Qp). Then :

γ · v = [γ.L :=< γ`1, γ`2 >].

Here we view `i as column vectors in Q2
p and γ`i is the usual matrix multipli-

cation. For λ ∈ Q×p , we know that γ.λL = λγ.L and hence L′ ∼ L =⇒ γ.L′ ∼

γ.L. This shows that the action is well-defined.

Denote the distinguished vertex v∗ := [L∗] where L∗ := Z2
p and by V+ (respec-

tively V−) the set of vertices at even (respectively odd) distance from v∗. We

can define an orientation on T as follows - for every e ∈ E(T ), denote by s(e)
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the source vertex of e and t(e) the target vertex of e. This assigns a direction

to each edge thus making T into a directed graph. Denote by ē to be the edge

such that s(ē) = t(e) and t(ē) = s(e).

3.1.2 The p-adic upper half plane

Definition 4. The p-adic upper half plane Hp is the rigid analytic variety

over Qp whose E-rational points, for E a finite extension of Qp, are given by

Hp(E) := P1(E)− P1(Qp).

Admissible coverings of Hp. To recall the rigid analytic structure on Hp,

we need to define an admissible covering. We will construct a family of affinoid

subdomains obtained by deleting balls around P1(Qp)
1.

Let t = [t0 : t1] ∈ P1(Qp) be such that the homogeneous coordinates [t0 : t1]

are unimodular - i.e. both ti ∈ Zp but p does not divide at least one of the

ti’s. For r ∈ R+, let

B(t, r) := {s ∈ P1(Cp)| ordp(s0t1 − s1t0) ≥ r},

and

B−(t, r) := {s ∈ P1(Cp)| ordp(s0t1 − s1t0) > r}.

where [s0 : s1] is a unimodular representative of s ∈ P1(Cp).

Since we choose unimodular homogeneous coordinates for points in P1(Qp),

we can consider the reduction modulo pn, n ≥ 1. Let Pn be a set of represen-

tatives of P1(Qp) modulo pn.

1For a thorough treatment of affinoids, admissible coverings and rigid spaces, see Chapters
3 and 4 of [16]
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Definition 5. For each n ≥ 1, let Hn be the set

Hn := P1(Cp) \
⋃
t∈Pn

B(t, n)

and H−n ⊂ Hn be

H−n := P1(Cp) \
⋃
t∈Pn

B−(t, n− 1)

Then

Hp =
⋃
n

Hn =
⋃
n

H−n

Proposition 2. {Hn}∞n=1 and {H−n }∞n=1 are admissible coverings of Hp. In

fact, {H−n }∞n=1 is an admissible cover of affinoid subdomains.

Proof. This has been discussed below Lemma 3 in [34].

We will denote by Hurp for Hp(Qur
p ) = P1(Qur

p ) − P1(Qp). Hurp has a

natural left action of GL2(Qp) via fractional linear transformation. Consider

the unique GL2(Qp)-equivariant reduction map (See Proposition 5.1 of [12])

r : Hurp −→ T .

Let Hp,± := r−1(V±) and Hp,v := r−1(v) for v ∈ V.

Definition 6. Let ([L1], [L2], . . . , [Li], . . .) be an infinite, non-retracing se-

quence of adjacent vertices in T . By non-retracing, we mean that @ n ∈ N

such that [Li] = [Li+n] for all i ∈ N. We interpret such a sequence as a ray

starting from the vertex v = [L1] and heading off to ∞. We introduce an

equivalence relation on the set of all such sequences given by :

([L1], [L2], . . . , [Li], . . .) ∼ ([L′1], [L′2], . . . , [L′i], . . .)
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if there exists a fixed m ∈ Z such that [Ln] = [L′n+m] for all n ∈ N. We call

such an equivalence class to be an end in T .

The compact open subsets of P1(Qp) are in one-one correspondence with

the ends in E (See Theorem 5.9 of Chapter 5, [12]). For e ∈ E , we denote by

Ue to be the compact open subset under this correspondence.

For more details and proofs about the p-adic upper half plane and its con-

nection to the Bruhat-Tits tree, see Chapter 5 of [12] and Section 1 of [14].

3.2 p-adic Abel-Jacobi maps : Darmon’s setting

Let us denote by Kp to be the completion of the image of the embedding σp :

K ↪→ Cp. By the hypothesis that p is inert in K, we know that Kp is isomor-

phic to the unramified quadratic extension Qp2 of Qp. For ∗ either empty, ±

or v ∈ V, denote by ∆∗ := (Div(Hurp,∗))
GKurp /Kp and ∆0

∗ := (Div0(Hurp,∗))
GKurp /Kp

where GKur
p /Kp = Gal(Kur

p /Kp) and Div(Hurp,∗) (respectively Div0(Hurp,∗)) de-

notes the set of divisors (respectively set of zero divisors) on Hurp,∗.

We can consider ∆∗(Pk−2) := ∆∗ ⊗Z Pk−2 and ∆0
∗(Pk−2) := ∆0

∗ ⊗Z Pk−2

as left GL2(Qp)-modules (resp. left GL(L)-modules) when ∗ is empty (resp.

∗ = v = [L]) via the usual tensor product action. We have the following exact

sequence:

0→ ∆0
∗(Pk−2)→ ∆∗(Pk−2)

deg−−→ Pk−2 → 0 (3.1)

Recall the set of vertices V and edges E of the Bruhat - Tits tree T . Denote

by C(E , Vk−2) the set of all maps c : E → Vk−2.

Definition 7. A harmonic cocycle is an element in C(E , Vk−2) such that c(ē) =

−c(e) for all e ∈ E and
∑

s(e)=v

c(e) = 0 for every v ∈ V. The space of harmonic
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cocycles is denoted by Char(E , Vk−2) ⊆ C(E , Vk−2).

Recall that W = Q2
p − (0, 0).

Definition 8. We say that a function f : W → Kp is locally analytic if for

all w ∈ W , there exists an open neighbourhood V 3 w such that f |V (x, y) =∑
i,j≥0

aijx
iyj for aij ∈ Kp. Further, we say that f is homogeneous of degree

k − 2 under multiplication by Q×p if for all t ∈ Q×p , f(t(x, y)) = tk−2f(x, y).

Denote by A(W )k−2 be the space of such Kp-valued locally analytic func-

tions on W that are homogeneous of degree k − 2. Let D(W )k−2 be the

continuous Kp-dual of A(W )k−2 equipped with the strong topology. Note

that Pk−2(Kp) ⊂ A(W )k−2. Further, denote by D(W )0
k−2 the subspace of

distributions that are zero on Pk−2(Kp). Consider

θτ2−τ1,P` : W → Cp, θτ2−τ1,P` (x, y) := `

(
y + τ2x

y + τ1x

)
P (x, y)

where ` = log < . > - the Iwasawa logarithm 2 or ordp ; τ1, τ2 ∈ Hurp,∗ and

P ∈ Pk−2(Kp). Since any d ∈ ∆0
∗ is a linear combination of divisors of the form

τ2 − τ1, we can extend by linearity to define θd,Pl for any d ∈ ∆0
∗. For every

t ∈ Q×p ; θd,Pl (t(x, y)) = tk−2θd,Pl (x, y) and hence we have θd,Pl ∈ A(W )k−2. We

denote :

I0
l (µ, d⊗ P ) ∈ Kp := µ(θd,Pl ), µ ∈ D(W )k−2.

Lemma 1 ([17], Lemma 6.1). The pairing

I0
l : D(W )0

k−2 ×∆0
∗(Pk−2)→ Kp

is invariant for the GL2(Qp)-action (resp. GL(L)-action) when ∗ is empty

2We write w ∈ C×p as w = prζ.z where r is a rational number, ζ a root of unity and
|z − 1|p < 1. Then the Iwasawa logarithm log < w > is defined as the p-adic logarithm
logp(z)
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(resp. ∗ = v = [L]).

Let π : W → P1(Qp) be the projection π(x, y) := y/x. Note that π is well

defined since x and y can not be both simultaneously 0.

Lemma 2. The image of the GL2(Qp)-equivariant map

R : D(W )0
k−2 → C(E , Vk−2)

given by R(µ)(e)(P ) := µ(P.χWe), is contained in Char(E , Vk−2).

Proof. Note that W = We ∪ Wē. Hence we can write P (x, y) = P.χWe +

P.χWē . Since µ ∈ D(W )0
k−2, we have µ(P (x, y)) = 0 and hence R(µ)(ē)(P ) =

−R(µ)(e)(P ). Now, for every v ∈ V we have
⋃
s(e)=vWe = W . We write

P (x, y) =
∑

s(e)=v

P.χWe and hence µ(
∑

s(e)=v

P.χWe) = 0 which implies that∑
s(e)=v

R(µ)(e) = 0. Hence R(µ) ∈ Char(E , Vk−2).

For e ∈ E , denote by ρe : Char(E , Vk−2) → Vk−2 the evaluation map. By

Lemma 2, we have:

Re : D(W )0
k−2

R−→ Char(E , Vk−2)
ρe−→ Vk−2

The action of GL2(Qp) on the vertices, V(T ) induces an action on the edges,

E(T ). We choose an edge ē ∈ E such that its stabilizer in Γ̃ is Γ0 = Γ0(Np).

Definition 9. We say that a distribution µ ∈ D(W )0
k−2 is h-admissible if for

all j →∞, i ≥ 0 and all a ∈ Zp, we have

|µ((x− a)i|a+ pjZp)| = o(pj(h−i)).

for all i = 0, 1, . . . , h− 1.
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Denote by D(W )0,h
k−2 ⊂ D(W )0

k−2 to be the set of such h-admissible distri-

butions.

Lemma 3 (Lemma 6.2, [17]). Passing on to cohomology, Rē induces

Rē : H1
(

Γ̃,D(W )0,h
k−2

)
∼= H1(Γ0(Np), Vk−2)p−new.

See Definition 2.7 of [33] for the definition of H1(Γ0(Np), Vk−2)p−new.

Denote by TpNp the Hecke algebra over Qp generated by the Hecke operators

T` for ` - Np and U` for ` | Np.

Definition 10. We say that a Hecke module M admits an Eisenstein/cuspidal

decomposition if we can write M = Me⊕Mc and there exists a Hecke operator

Tl for l - Np such that tl := Tl − lk−1 − 1 is nilpotent on Me and is invertible

on Mc. We call Me (resp. Mc) to be the Eisenstein (resp. cuspidal) part of

M .

Let V be a Γ0(Np)-module and denote by Γ0,c the stabilizer in Γ0(Np)

for c a Γ0(Np)-equivalence class of cusps. We can then define the parabolic

cohomology group to be

H1
par(Γ0(Np), V ) := ker

(
H1(Γ0(Np), V )

res−−→
⊕

cusps c

H1(Γ0,c, V )
)

The Hecke module H1(Γ0(Np), Vk−2)p−new admits an Eisenstein/cuspidal de-

composition with the cuspidal part given by H1
par(Γ0(Np), Vk−2)p−new. which

for brevity we denote by Hk.

The isomorphism of Lemma 3 induces

Rē,c : H1
(

Γ̃,D(W )0,h
k−2

)
c

∼= Hk
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By taking the Γ̃-homology of (3.1), we get

. . .→ H2(Γ̃, Pk−2)
δ−→ H1(Γ̃,∆0(Pk−2)

i−→ H1(Γ̃,∆(Pk−2)→ H1(Γ̃, Pk−2)→ . . .

Now by Lemma 3.10, [33] we know that H1(Γ̃, Pk−2) = 0 and hence we have

the following isomorphism

ī : H1(Γ̃,∆0(Pk−2))/im(δ) ∼= H1(Γ̃,∆(Pk−2)).

Consider the cap product

H1(Γ̃,∆0(Pk−2))⊗H1(Γ̃,D(W )0,h
k−2)→ H0

(
Γ̃,∆0(Pk−2)⊗D(W )0,h

k−2

)

where D(W )0,h
k−2 is the set of h-admissible distributions (See Definition 9). We

know that H0

(
Γ̃,∆0(Pk−2)⊗D(W )0,h

k−2

)
= (∆0(Pk−2)⊗D(W )0,h

k−2)
Γ̃

(the set of

Γ̃ co-invariants.) which is obtained from ∆0(Pk−2)⊗D(W )0,h
k−2 by introducing

the relations γ.(τ⊗P (x, y))⊗µ = (τ⊗P (x, y))⊗µ.γ for τ ∈ ∆0, P (x, y) ∈ Pk−2

and µ ∈ D(W )0,h
k−2. By Lemma 1, the pairing I0

l is in particular Γ̃-invariant

and hence it extends to a pairing on the cap product, i.e. we have

Ĩ0
l : H1(Γ̃,∆0(Pk−2))⊗H1(Γ̃,D(W )0,h

k−2)→ Kp

We now define

AJ0
l : H1(Γ̃,∆0(Pk−2))

Ĩ0
l−→ H1

(
Γ̃,D(W )0,h

k−2

)∨ prc◦R−1
ē−−−−−→ H±,∨k

where prc denotes the projection onto the cuspidal part, H±k denotes the direct

summand of Hk on which W∞ =

−1 0

0 1

 acts with eigenvalue ±1 and ’∨’

denotes Kp-dual.



38 CHAPTER 3. DARMON CYCLES

By the isomorphism of Lemma 3, H1
(

Γ̃,D(W )0,h
k−2

)
inherits an action of TpNp.

We have

Theorem 6 (Corollary 3.13, [33]). There exists a unique L ∈ TpNp such that

Ĩ0
log − LĨ0

ord annihilates im(δ)

Remark 2. The unique element L ∈ TpNp is called the L-invariant associated

to Sk(Γ0(Np)) - the space of weight k cusp forms on Γ0(Np).

Let log AJ0 := AJ0
log − LAJ0

ord. By the above Theorem, we know that

log AJ0 factors through H1(Γ̃,∆0(Pk−2))/im(δ). We then define the cohomo-

logical Abel-Jacobi map to be

log AJ : H1(Γ̃,∆(Pk−2)
ī−1

−−→ H1(Γ̃,∆0(Pk−2))/im(δ)
log AJ0

−−−−→ H±,∨k

3.3 Darmon Cycles

We can view K as a subfield of both R and Cp via the fixed embeddings σ

and σp respectively. For τ ∈ K, we denote by τ the image of the non-trivial

automorphism γ ∈ Gal(K/Q). We can think of the positive square root
√
DK

as an element in Kp. Consider the set of all Q-algebra embeddings of K

into M2(Q), denoted by Emb := Emb(K,M2(Q)). Let R be the Z[1
p ]-order

in M2(Q) which consists of matrices upper triangular modulo N . Note that

Γ̃ = R×1 (the set of invertible matrices of R with determinant 1). For O a

Z[1
p ]-order of conductor c such that (c,DKNp) = 1, denote by Emb(O,R) the

set of Z[1
p ]-embeddings of O into R. We can attach the following data to every

ψ ∈ Emb(O,R)

• the fixed points τψ and τψ ∈ Hp for the action of ψ(K×) on Hp(K)3.

• the fixed vertex vψ ∈ V in the Bruhat-Tits tree for the action of ψ(K×) on

3Since ψ(K×) ⊆M2(Q), it acts on Hp(K) by fractional linear transformation
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V.

• the unique quadratic form

Pψ(x, y) := cx2 + (d− a)xy + by2 ∈ P2(K)

where
(
a b
c d

)
= ψ(

√
DK).

• for u ∈ O×, the fundamental unit (i.e σ(u) > 1) of K, let γψ := ψ(u) and

Γψ be the cyclic group generated by γψ which is also the stabilizer of ψ in Γ̃.

In particular Γψ also fixes Pψ(x, y). Note that Γψ = ψ(K×) ∩ Γ̃.

We say that τ ∈ Hp has positive orientation if redp(τ) ∈ V+. Denote by H+
p

the set of elements of Hp with positive orientation. Say ψ ∈ Emb(O,R) has

positive orientation if τψ, τψ ∈ H+
p . Since V = V+ t V−, we have

Emb(O,R) = Emb+(O,R) t Emb−(O,R)

The group Γ̃ acts on Emb(O,R) by conjugation. Since Γψ is infinite cyclic,

we have

H1(Γψ,∆(Pk−2)) = H0(Γψ,∆(Pk−2)) := (∆(Pk−2))Γψ

(See Example 1, Chapter 3, Page 58 of [7]). Since Γψ acts trivially on τψ ⊗

D
k−2

4
K P

k−2
2

ψ (x, y), we have

Dψ,k := ψ(u)⊗ (τψ ⊗D
k−2

4
K P

k−2
2

ψ (x, y)) ∈ H1(Γψ,∆(Pk−2))

The inclusion Γψ ⊂ Γ̃ induces a co-restriction

H1(Γψ,∆(Pk−2))→ H1(Γ̃,∆(Pk−2))
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Hence, we can consider Dψ,k as an element in H1(Γ̃,∆(Pk−2)).

Lemma 4. The cycle Dψ,k does not depend on the representative of the con-

jugacy class of ψ ∈ Emb(O,R). Hence we have a well defined map

Dk : Γ̃ \ Emb(O,R)→ H1(Γ̃,∆(Pk−2))

given by Dk([ψ]) := Dk,[ψ], where [ψ] denotes the conjugacy class of ψ.

Proof. See Lemma 2.19 of [36].

Definition 11. The Darmon cycle associated to the Γ̃-conjugacy class [ψ] is

the element

Dk,[ψ] := ψ(u)⊗ (τψ ⊗D
k
4
KP

k−2
2

ψ (x, y)) ∈ H1(Γ̃,∆(Pk−2))

Given an embedding ψ ∈ Emb(O,R), we define ψ to be the embedding

given by ψ(τ) := ψ(τ) for τ ∈ K.

Lemma 5. We have

(τψ, Pψ, γψ) = (τψ,−Pψ, γ−1
ψ )

Proof. By definition of ψ, we have τψ = τψ. Now ψ(
√
DK) = ψ(−

√
DK).

Hence ψ(
√
DK) =

(−a −b
−c −d

)
and we get that Pψ(x, y) = −Pψ(x, y). Now since

u is a fundamental unit, we have that u = u−1. Thus γψ = ψ(u) = ψ(u−1) =

γ−1
ψ .

Recall the cohomological Abel-Jacobi map we defined earlier :

log AJ : H1(Γ̃,∆(Pk−2))→ H±,∨k
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Definition 12. The Darmon cohomology class associated to [ψ] ∈ Γ̃/Emb(O,R)

is [jψ] := log AJ(Dk,[ψ]) ∈ H±,∨k

To every I ⊂ K, a free rank two Z[1
p ]-submodule, we associate the order

OI := {λ ∈ K | λ.I ⊂ I}

Definition 13. A fractional O-ideal is a free rank two Z[1
p ]-submodule whose

assoicated order is O. Two such fractional ideals are said to be strictly equiv-

alent if I1 = αI2 for some α ∈ K× with positive norm.

Denote by Pic+(O) the narrow Picard group of strict equivalence class of

fractional O-ideals. By class field theory (See Theorem 4.2 of [31]), we have

the reciprocity isomorphism

rec : Pic+(O) ∼= Gal(H+
O/K)

where H+
O is the narrow ring class field of K associated to the order O.

Proposition 3 (Proposition 5.8, [11]). The sets Γ̃/Emb(O,R) and Pic+(O)

are in bijection.

Hence we have a natural action of Pic+(O) on Γ̃/Emb(O,R). By the

reciprocity isomorphism, we can consider the action of Gal(H+
O/K) on

Γ̃/Emb(O,R).

Let χ : Gal(H+
O/K) → C× be a character. We will consider the following

liner combination

Dχ
k :=

∑
σ∈Gal(H+

O/K)

χ−1(σ)Dσ.[ψ],k ∈ H1(Γ̃,∆(Pk−2))χ
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3.4 Monodromy modules

Recall that p is inert in K and hence Kp is isomorphic to the unramified

quadratic extension of Qp. Let σFrob : Kp → Kp denote the absolute Frobenius

automorphism of Kp. Let Tp be a finite dimensional commutative semisimple

Qp-algebra. We write TKp := Tp ⊗Qp Kp and σKp := Id⊗ σFrob on TKp .

Definition 14. A Tp-monodromy module is a four tuple (D,φ,N, F ) where

D is a free rank two TKp-module, φ : D → D is a σFrob-linear endomorphism

(the Frobenius of D) and N : D → D a TKp-linear nilpotent endomorphism

(the monodromy operator) such that

• As a two dimensional Kp-vector space, D is endowed with a filtration F

0 = F k ⊂ F k−1 ⊂ . . . ⊂ F 0 = D

where F k−1 is a free rank-one TKp-module.

• D N−→ D
N−→ D is exact.

• D = F k−1 ⊕ ker(N(D)) as a TKp-module.

• N ◦ φ = pφ ◦N and ∀ T ∈ TKp, φ ◦ T = σKp(T ) ◦ φ.

The integer k which occurs in the filtration F is called the weight of the

monodromy module D. Usually, we denote the monodromy module simply

by D. When we forget the action of Tp, D is called a filtered Frobenius

monodromy module or a filtered (φ,N)-module over Kp. Let MFKp(φ,N)

denote the category of filtered (φ,N)-modules over Kp. The morphisms in

MFKp(φ,N) are Kp-module homomorphisms which preserve the filtrations

and commute with both the Frobenius and monodromy endomorphisms.
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Let D ∈ MFKp(φ,N). By [46], D admits a canonical slope decomposition:

D =
⊕
α∈Q

Dα

where for α = r
s with r, s ∈ Z such that s > 0, Dα ⊂ D is the largest Kp-

subspace of D which has an OKp-stable lattice Dα,0 such that φs(Dα,0) =

prDα,0. When Dα 6= 0, we call α a slope of D. (D,φ) is called isotypical of

slope α0 if α0 is the only slope of D. Further N(Dα+1) ⊆ Dα (See Section 2

of [19]).

Let V be a p-adic Galois representation of GKp . By Fontaine theory, one

can attach to V a filtered (φ,N) module defined by

Dst(V ) := (V ⊗Bst)GKp

where Bst is Fontaine’s semi-stable ring of periods. Dst(V ) inherits the struc-

ture of a filtered (φ,N) module from Bst. For the definition and properties of

Bst, see [15].

Definition 15. V is called a semi-stable p-adic representation if the canonical

Bst[GKp ]-homomorphism

αst(V ) : Bst ⊗Kp Dst(V )→ Bst ⊗Qp V ; λ⊗ x 7→ λx

is an isomorphism.

Definition 16. D ∈ MFKp(φ,N) is called admissible if there exists some

semi-stable p-adic Galois representation V of GKp such that

D ∼= Dst(V )
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as filtered (φ,N) modules.

Let MFadKp ⊂ MFKp be the full subcategory of admissible filtered (φ,N)-

modules over Kp and let Repst(GKp) be the subcategory of semi-stable p-adic

Galois representations of GKp .

Remark 3. The functor

Dst : Repst(GKp)→ MFadKp

is an equivalence of categories (See [10]).

Now let D be a Tp-monodromy module of rank two. By Lemma 2.3 of

[19], we have a decomposition

D = D(1) ⊕D(2)

where each D(i) is a free rank one TKp-submodule stable under the Frobenius

endomorphism φ. The monodromy endomorphism N : D → D restricts to

an isomorphism N |D(2)
: D(2) → D(1). Such a decomposition is uniquely

determined by these properties. Hence we write D(2)
∼= TKp .e and D(1)

∼=

TKp .N(e)for some e 6= 0 ∈ D(2).

We will now recall the definitions of two important invariants associated to

a TKp-monodromy module D.

Definition 17. The L-invariant of a Tp-monodromy module (D,F, φ,N) is

the unique element LD in TKp such that

x− LDN(x) ∈ F k−1 ∀x ∈ D(2)
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For the existence and uniqueness (and other properties) of the L-invariant,

see Pierre Colmez’s survey [9].

Definition 18. UD is defined to be the element in TKp such that φN(e) =

UDN(e). UD exists and is well-defined since D(1) is stabe under φ and D(1) =

TKpN(e).

A two-dimensional Tp-monodromy module is completely determined up to

isomorphism by the invariants LD, UD and the weight k = kD.

Proposition 4. Given an integer k ∈ Z and elements LD, UD ∈ TKp, there

exists D, a Tp-monodromy module of dimension two over Kp, such that k is

its weight, LD its L-invariant and UD its U -invariant

Proof. See Proposition 4.6 of [33].

Let T := Tp−newΓ0(Np) be the quotient of the Hecke algebra over Q of level

Np that acts faithfully on the space Sk0(Γ0(Np))p−new and let Tp := T ⊗

Qp. Let Vk0(Np)p−new be the p-adic Galois representation of GQ associated

to Sk(Γ0(Np))p−new. Let V Np
p denote the restriction of Vk0(Np)p−new to a

decomposition group at p.

Proposition 5. The local p-adic Galois representation V Np
p is semistable but

not crystalline.

Proof. This is Corollary 7.5 of [19].

Fontaine and Mazur attach to V Np
p the admissible monodromy module

DFM := Dst(V
Np
p )

Let LFM be the L-invariant of DFM.



46 CHAPTER 3. DARMON CYCLES

Recall the Tp-module H±k = H1
par(Γ0(Np), Vk−2(Qp)

p-new,± which is free of

rank one over Tp. Let

Dk := H±,∨k ⊕H±,∨k

We define a filtration FDk on Dk as follows :-

0 = F k ⊂ F k−1 ⊂ . . . ⊂ F 0 = Dk

where F i = {(−LFMx, x) : x ∈ H±,∨k } for all 1 ≤ i ≤ k − 1. By Proposition 5,

Dk along with the filtration FDk is a Tp-monodromy module over Qp.

Theorem 7. We have a Tp-monodromy module isomorphism

DFM ∼= Dk0 := H±,∨k0
⊕H±,∨k0

Further the isomorphism is stable under base change to Kp and the following

diagram commutes

H±k0
(Kp)

∨ ⊕H±k0
(Kp)

∨ −→ DFM ⊗Kp

↓ ↓

H±k0
(Kp)

∨ −→ DFM⊗Kp
Fk0/2(DFM⊗Kp)

where the vertical arrow is (x, y) 7→ x+ LFMy.

Proof. See Proposition 4.6 and Theorem 4.7 of [33].

Remark 4. In Theorem 2 and Theorem 3 of [37], Marco Seveso shows that

the L-invariant of Remark 2 coincides with LFM .

By composing with the isomorphism of Theorem 7, we can consider the
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cohomological Abel Jacobi map as

log AJ : H1(Γ̃,∆(Pk0−2))→ H±k0
(Kp)

∨ ∼−→ DFM ⊗Kp

F k0/2(DFM ⊗Kp)

We will also simultaneously refer to the above map as the p-adic Abel-Jacobi

map.

3.5 Rationality of Darmon cycles - I

3.5.1 Bloch-Kato exponential

Recall the semi-stable p-adic local Galois representation V Np
p associated to

Sk(Γ0(Np))p-new. Let L be a number field in which p is unramified. For every

place v of L, we define

H1
st(Lv, V

Np
p ) := ker

(
H1(Lv, V

Np
p )→


H1(Lunrv , V Np

p ) if v - p

H1(Lv, Bst ⊗Qp V
Np
p ) if v | p

)

The semi-stable Selmer group associated to V Np
p is then

Selst(L, V
Np) := ker

(
H1(L, V Np)

∏
resv−−−−→

∏
v

H1(Lv, V
Np
p )

H1
st(Lv, V

Np
p )

)

Since the local Galois representation V Np
p is semi-stable, the Bloch-Kato iso-

morphism (See Section 3 of [6]) induces

expBK :
DFM ⊗Qp Kp

F k0/2(DFM ⊗Qp Kp)

∼=−→ H1
st(Kp, V

Np
p (k0/2))
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Composing the p-adic Abel-Jacobi map with the above Bloch-Kato exponen-

tial along with the isomorphism of Theorem 7 we have :

AJ : H1(Γ̃,∆(Pk0−2))→ H1
st(Kp, V

Np
p (k0/2))

where AJ := log AJ ◦ expBK .

We consider the image of Darmon cycles under of this map as cohomology

classes

sψ ∈ H1
st(Kp, V

Np
p (k0/2)), sχ ∈ H1

st(Kp(χ), V Np
p (k0/2))

Since p is inert in K, it splits completely in the narrow Hilbert class field H+
K .

Hence the embedding σp induces an inclusion σp : H+
K ↪→ Kp. Therefore we

have

resp : Selst(H
+
K , V

Np
p (k0/2))→ H1

st(Kp, V
Np
p (k0/2))

Conjecture 1 (Conjecture 5.7, [33]). (1) For [ψ] ∈ Γ̃/Emb(O,R), there exists

a global cycle Sψ ∈ Selst(H
+
K , V

Np
p (k0/2)) such that

resp(Sψ) = AJ(D[ψ],k0
)

(2) For χ : Gal(H+
K/K)→ C× a character, there exists Sχ ∈ Selst(Hχ, V

Np
p (k0/2))χ,

where Hχ ⊆ H+
K is the extension of K cut out by χ, such that

resp(Sχ) = AJ(Dχ
k0

)

The conjecture is known to be true when χ is a genus character of K. This

will be discussed in the following chapters.



Chapter 4

p-adic L-functions

Denote by TN the Hecke algebra over Q generated by T` for ` - N and U`

for ` | N . Then by Theorem 3.51 of [38], dimQTN = dimCSk(Γ0(N)) where

Sk(Γ0(N)) is the space of cusp forms of weight k on Γ0(N). For f ∈ Sk(Γ0(N)),

let Kf be the number field generated by its Fourier coefficients.

4.1 Modular symbols

Let Pk−2(E) denote the space of homogeneous polynomials of degree k − 2 in

two variables over a field E. The group SL2(Z) acts on the right on Pk−2(E)

by

(P | γ)(x, y) := P ((x, y).γ−1) = P (dx− cy,−bx+ ay)

for γ =

a b

c d

 ∈ SL2(Z). The dual space Vk−2(E) := HomE(Pk−2(E), E))

is endowed with the natural dual left action.

Let ∆ := Div(P1(Q) (resp. ∆0 := Div0(P1(Q)) denote the space of divisors

(resp. divisors of degree zero) over P1(Q). ∆ and ∆0 are endowed with a

natural left action of SL2(Z) acting via fractional linear transformations. The

49
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space Hom(∆0, Vk−2) has an induced right action of SL2(Z) given by

φ | γ(D) := φ(γ.D) | γ

where γ ∈ GL2(Q) and φ : ∆0 → Vk−2. For Γ a congruence subgroup of

SL2(Z) (usually Γ0(N) or Γ1(N)), let SymbΓ(Vk−2) ⊂ Hom(∆0, Vk−2) be the

sub-module invariant under the action of Γ. We call SymbΓ(Vk−2) to be the

space of modular symbols on Γ. The matrix W∞ :=

−1 0

0 1

 acts as an

involution on Vk−2(E) (assuming 2 - char(E)). We will denote by V w∞
k−2 to be

the direct summand of Vk−2 = V +
k−2⊕V

−
k−2 on which W∞ acts by w∞ ∈ {±1}.

Consider the GL+
2 (Q)-equivariant map

φ̃ : Sk(Γ0(N),C)→ SymbΓ0(N)(Vk−2(C))

φ̃f{x− y}(P ) := 2πi

y∫
x

f(z)P (z, 1)dz ∈ C

for P (x, y) ∈ Pk−2(C). Since ∆0 is generated by divisors of the form {x− y}

for x, y ∈ P1(Q), we extend the map φ by linearity to all of ∆0.

Remark 5. Note that the map φ is similar to the Shintani periods we defined

in Chapter 2.

By Proposition 4.2 of [1], we know that

SymbΓ0(N)(Vk−2) ∼= H1
c (Γ0(N), Vk−2)

where H1
c denotes the subspace of compactly supported cohomology. See

Chapter 8 of [38] for more details about cohomology with compact support

H1
c .
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We have a natural map H1
c (Γ0(N), Vk−2) → H1(Γ0(N), Vk−2) which sends

a modular symbol φ to the 1-cocycle [γ 7→ φ(γ.x0 − x0)]. By Proposition 2,

Appendix of [18], the parabolic cohomology group H1
par(Γ0(N), Vk−2) is the

image of H1
c (Γ0(N), Vk−2) in H1(Γ0(N), Vk−2).

Theorem 8 (Eichler-Shimura). The map φ induces an isomorphism

φ̃ : Sk(Γ0(N),C)⊕ Sk(Γ0(N),C) ∼= H1
par(Γ0(N), Vk−2(C))

Proof. See Theorem 8.4 of [38].

We can write φ̃f = φ̃+
f + φ̃−f where φ̃f

±
∈ SymbΓ(Vk−2(C)±).

Theorem 9 (Shimura). If f is a newform on Γ0(N), then there exists complex

periods Ω± ∈ C such that

φ±f :=
φ̃f
±

Ω±
∈ SymbΓ0(N)(Vk−2(Kf )±)

The periods Ω± can be chosen to satisfy

Ω+Ω− =< f, f >

Proof. This is Theorem 1 (ii) of [40].

Usually we will fix a choice of w∞ ∈ {±1} and consider φf := φw∞f .

4.1.1 Overconvergent modular symbols

Let X denote the rigid analytic p-adic weight space over Qp. For a finite

extension E/Qp, the rational points are given by X (E) = Homcont(Z×p , E×).

We have a natural inclusion, Z ⊂ X , given by k → [t 7→ tk−2]. We can write

every t ∈ Z×p in the form t = [t] < t > where [t] ∈ (Z/p)× and < t >∈ 1 +pZp.
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Let U ⊂ X be an open affinoid defined over E. Every κ ∈ U(E) can be written

uniquely in the form

κ(t) = ε(t)χ(t) < t >s

for ε, χ : Z×p → E× characters of order p − 1 and p respectively and s ∈ OE .

An integer k corresponds to the character k(t) = [t]k−2 < t >k−2. We will

restrict to a neighbourhood U of k0 such that ε(t) = [t]k0−2 and χ = 1 for all

κ ∈ U(K). Note that for all k ∈ U , [t]k−2 = [t]k0−2 =⇒ k ≡ k0 mod (p− 1).

Denote the set of non-zero vectors in Q2
p by W and consider the natural

projection to P1(Qp) which is continuous for the p-adic topology

π : W = Q2
p − (0, 0)→ P1(Qp)

π(x, y) :=
x

y

Let L ⊂ Q2
p be a Zp-lattice. Denote by L′ := L − pL - its set of primitive

(not divisible by p) vectors and by |L| := pordp(detγ) where γ is any Zp-basis

of L written as a 2 x 2 matrix. As in Chapter 3, let L∗ := Zp ⊕ Zp and

L∞ := Zp ⊕ pZp be its neighbour in the Bruhat-Tits tree T . Recall from

Definition 5, Chapter 3 that to each edge e ∈ E(T ), we can associate open

compact subsets in W and P1(Qp) by

We := L′s(e) ∩ L
′
t(e) & Ue := π(We)

Let e∞ be the edge between v∗ = [L∗] and v∞ = [L∞]. Further denote by W∞

to be the set We∞ .

Let Y be an open compact subset of either W or P1(Qp) and denote by A(Y )

to be the space of Qp-valued locally analytic functions on Y (See Definiton
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7, Chapter 3). Let D(Y ) be the continuous Qp-dual of A(Y ) which will be

called the space of locally analytic distributions on Y . For µ ∈ D(Y ) and

F ∈ A(Y ), we denote µ(F ) by the measure theoretic notation -
∫
Y

Fdµ. Further

for any X ⊂ Y compact open, write
∫
X

Fdµ to denote µ(F.χX) where χX is

the characteristic function on X.

Consider the left action of GL2(Q) on Q2
p (This is given by matrix multipli-

cation by viewing elements of Q2
p as column vectors). This induces an action

of GL2(Zp) on L′ for any lattice L. Further let Z∗p act on the left on L′ by

multiplication (t.(x, y) := (tx, ty)). D(Z∗p) acts on D(Y ) as follows

D(Z∗p)×D(Y )→ D(Y ) (r, µ) 7→ rµ

where rµ is defined as the distribution

∫
L′∗

F (x, y)d(rµ)(x, y) :=

∫
Z×p

(∫
L′∗

F (tx, ty)dµ(x, y)
)
dr(t)

Let k ∈ Z≥0 and let Uk ⊂ X be an affinoid neighborhood of k. The associ-

ated affinoid algebra A(Uk) has a natural D(Z×p )-algebra as follows

µ 7→

[
κ 7→

∫
Z×p

κ(t)dµ(t)

]

Hence we can consider the completed tensor product over D(Z×p ),

DUk := A(Uk)⊗̂D(Z×p )D(L′∗)

Coleman families. Recall that N is an odd square-free integer such that

p - N . A Coleman family of modular forms on U ⊂ X of tamle level Γ0(N) is
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given by a formal q-expansion

f(q) =
∑
n≥1

an(κ)qn ∈ O(U)[[q]]

such that for all (even integral) classical weights

k ∈ U cl := {n ∈ 2Z≥0} ∩ U

the weight k-specialization, fk(q) :=
∑
n≥1

an(k)qn ∈ Sk(Γ0(Np)). We will make

an assumption that fk(q) is N -new for all k ∈ U cl. By Atkin-Lehner-Li-Miyake

theory and by the constancy of the slope of f(q) - ordp(ap(k)), there is exactly

one classical point k0 for which fk0 is p-new. This happens when ap(k0) =

±p
k0−2

2 . For every k 6= k0 ∈ U cl, there exists an eigenform f#
k0
∈ Sk(Γ0(N))new

such that

fk(q) = f#
k (q)− pk−1

ap(k)
f#
k (qp) (4.1)

See Section 1.3 of [4] for a summary about Coleman families.

To each f#
k (resp. fk) (k 6= k0) we can attach a modular symbol, φ̃#

k ∈

SymbΓ0(N)(C) (resp. φ̃k ∈ SymbΓ0(Np)(C)). Upon fixing w∞ ∈ {±1} and a

period Ω#,w∞ , we define

φ#
k = φ#,w∞

k =
φ̃k

#,w∞

Ω#,w∞
∈ Symbw∞Γ0(N)(Kfk)

Under the Eichler-Shimura isomorphism, (4.1) translates as

φk{r → s}(P ) = φ#
k {r → s}(P )− pk/2−1

ap(k)
φ#
k {r/p→ s/p}(P (x, y/p)) (4.2)

Finally, let f#
k0

= fk0 .
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Definition 19. The space of overconvergent modular symbols for Γ is defined

as the space of modular symbols with coefficients in DU = A(U)⊗̂D(Z×p )D(L′∗).

We will denote it by SymbΓ(DU ).

For every k ∈ U cl, we can define a weight k-specialization map

ρk : SymbΓ0(N)(DU )→ SymbΓ0(Np)(Vk−2(Qp))

ρk(I){r → s}(P ) :=

∫
W∞

P (x, y)dI{r → s}(x, y)

Theorem 10 (G. Stevens). There exists Φ∗ ∈ SymbΓ0(N)(DU (W∞)) such

that

• for any k ∈ U cl, the weight k-specialization, ρk(Φ∗) = λ(k)φk for some

constant λ(k) ∈ Qp
×

.

• ρk0(Φ∗) = φk0

Proof. See Theorem 6.4.1 of [2].

We can define a family of distributions {ΦL} ∈ SymbΓ0(N)(DU ), indexed

by lattices L ⊂ Q2
p, as follows : for all F ∈ A(L′)

ΦL∗ := Φ∗; ΦL{r → s}(F ) := ΦL∗{γr → γs}(F | γ−1)

where γ.L = L∗. We can now describe (4.2) in terms of Φ∗.

Corollary 2. For every k ∈ U cl and P ∈ Pk−2

ρk(Φ∗){r → s}(P ) = λ(k)

(
1− pk−2

ap(k)2

)
φ#
k {r → s}(P ).

Proof. This is Corollary 4.6 in [36].



56 CHAPTER 4. P -ADIC L-FUNCTIONS

4.2 The Stevens - Mazur - Kitagawa p-adic L-function

In this section, we recall the construction and interpolation property of the

two variable Stevens - Mazur - Kitagawa p-adic L-function. The original con-

struction of Mazur and Kitagawa ([21]) was only for the ordinary case (Hida

families) and was extended by G. Stevens to the finite slope case using over-

convergent modular symbols in [43].

Let g ∈ Sk(Γ0(N)) be a cusp form and let φg ∈ Symbw∞Γ0(N)(Kg) be the

modular symbol attached to g. For n ∈ Z>0, define

φg,n : Pk−2(Kg)× Z/nZ→ Kg

φg,n(P, a) := φg{∞ → a/n}(P )

Since 1 1

0 1


1 −a

0 n

 =

1 −a+ n

0 n



and that φg is invariant under the action of

1 1

0 1

 ∈ Γ0(N), φg,n depends

only on the class of a ∈ Z/n.

Let

τ(χ) :=
∑

a∈Z/nZ

χ(a)e2πia/n

be the Gauss sum associated to χ - a primitive Dirichlet character mod n. For

L̃(g, χ, j) :=
(j − 1)!τ(χ)

(−2πi)j−1Ωg
L(g, χ, j)
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the ’algebraic part’ of L(g, χ, j) and Pj,a :=
(
x − a

ny
)j−1

yk−j−1 ∈ Pk−2(Kg),

we have the following results :

Proposition 6. For every integer 1 ≤ j ≤ k−1 such that χ(−1) = (−1)j−1w∞,

we have ∑
a∈Z/nZ

χ(a)φg,n(Pj,a, a) = L̃(g, χ, j)

Proof. This is a straight forward calculation relating L-values and modular

symbols. This has been shown in Sect. 7 of [28]. The relevant calculation for

the twisted L-values is in Sect. 8 of [28].

Remark 6. The proposition shows that L̃(g, χ, j) belongs to Kg(χ). In par-

ticular these quantities are algebraic and hence can be seen as p-adic numbers

thus making it possible to interpolate them p-adically. In the thesis, we deal

with square free level and quadratic twists which implies that Kg is a totally

real field and that L̃(g, χ, j) ∈ R.

Let (x, y) ∈ Z×p × Z×p and let p - n. Then we have

x− pa

n
y ∈ Z×p + pZp ⊂ Z×p

Hence, for κ ∈ U , the locally analytic function

Fs,pa :=
(
x− pa

n
y
)s−1

yκ−s−1 ∈ AU (L′∗)

Definition 20. Let f(q) be the Coleman family of tame level N and let χ :

Z/nZ→ C× be a Dirichlet character of conductor n such that p - n. We define

the Stevens - Mazur- Kitagawa p-adic L-function as follows :

LSMK
p (f, χ, κ, s) : U × Zp → Cp
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(κ, s) 7→ LSMK
p (f, χ, κ, s)

LSMK
p (f, χ, κ, s) :=

∑
a∈Z/nZ

χ(ap)

∫
Z×p ×Z×p

Fs,padΦ∗{∞ →
pa

n
}

where Φ∗ is the big modular symbol from Theorem 10.

Interpolation of special values. We now recall an important result about

the interpolation of classical L-values by the Stevens - Mazur- Kitagawa p-adic

L-function LSMK
p .

Theorem 11. Let k ∈ U cl be a classical weight and χ a primitive character.

For all integers 1 ≤ j ≤ k − 1 such that χ(−1) = (−1)j−1w∞ we have

LSMK
p (f , χ, k, j) = λ(k)

(
1− χ(p)

pj−1

ap(k)

)
L̃(fk, χ, j)

Proof. The interpolation property of the two variable p-adic L-function follows

from Proposition 3.23 in [4] along with Theorem 10 , due to G. Stevens, stated

above.

We will be particularly interested in the specialization of LSMK
p to the

central line j = k/2. Since we are working with the newforms f#
k , the following

relation between the L-values of fk and f#
k will be useful

L̃(fk, χ, j) =

(
1− χ(p)

pk−j−1

ap(k)

)
L̃(f#

k , χ, j) (4.3)

Corollary 3. For k 6= k0 ∈ U cl, suppose χ(−1) = (−1)
k−2

2 w∞. Then we have

LSMK
p (f , χ, k, k/2) = λ(k)

(
1− χ(p)

p
k−2

2

ap(k)

)2

L̃(f#
k , χ, k/2)
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For k = k0,

LSMK
p (f , χ, k0, k0/2) =

(
1− χ(p)

p
k0−2

2

ap(k)

)
L̃(f#

k0
, χ, k0/2)

where f#
k0

= fk0.

Proof. This follows from Theorem 11 and equation (4.3).

4.3 p-adic L-functions attached to real quadratic

fields

4.3.1 p is inert in K.

In this section we will recall the construction and interpolation properties of

a p-adic L-function attached to real quadratic fields due to M. Seveso in [36].

Recall that K/Q is a real quadratic field such that

• All the primes dividing N split in K while

• p is inert in K.

Recall the set Emb+(O,R) introduced in Chapter 3. Let Ψ ∈ Emb+(O,R)

have conductor prime to DK and Np (i.e. the order O has conductor prime

to DK and Np). Consider the triple (τΨ, PΨ, γΨ) associated to Ψ and a lattice

LΨ ⊂ Q2
p such that vΨ = [LΨ].

Definition 21. Let s ∈ P1(Q) be an arbitrary base point. For f(q) the Cole-

man family and Ψ ∈ Emb+(O,R), we define the partial p-adic L-function

LSev
p (f/K,Ψ,−) : U → Cp as follows

LSev
p (f/K,Ψ, κ) := |Lψ|−

k0−2
2

∫
L′Ψ

< PΨ(x, y) >
κ−k0

2 P
k0−2

2
Ψ (x, y)dΦLΨ

{s→ γΨs}.
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For χ : Gal(H+
O/K)→ C× a character, we define

LSev
p (f/K, χ, κ) :=

∑
σ∈Gal(H+

O/K)

χ−1(σ)LSev
p (f/K, σΨ, κ).

The p-adic L-function LSevp (f/K, χ,−) : U → Cp is then defined as

LSevp (f/K, χ, κ) = LSev
p (f/K, χ, κ)2.

Remark 7. Unlike the Stevens - Mazur- Kitagawa p-adic L-function, the

definition of LSevp depends on the class of the embedding Ψ ∈ Γ̃/Emb+(O,R).

We make a suitable choice for LΨ as follows : choose γ ∈ Γ̃ such that γvΨ =

v∗. This is possible since Γ̃ acts transitively on V+. Thus v∗ = vγΨγ−1 and

L∗ = LγΨγ−1 is associated to the embedding γΨγ−1 ∈ [Ψ] and the choice of

the modular symbols ΦLΨ
can be taken to be the big modular symbol Φ∗. This

will allow us to compare LSev
p with the Stevens - Mazur- Kitagawa p-adic L

function.

Recall that a genus character χ : Gal(H+
K/K) → C× corresponds to a

biquadratic extension Q(
√
D1,
√
D2) of Q where DK = D = D1.D2 is a factor-

ization into coprime factors of the discriminant of K = Q(
√
D) (See Appendix

A).

Let χDi denote the Dirichlet character associated to Q(
√
Di).

Then χD = χD1 .χD2 and since K is real quadratic, we have

1 = χD(−1) = χD1(−1)χD2(−1)

Since p is inert in K, DK ∈ Z×p and D
k−2

2
K extends to the analytic func-

tion on U , < DK >
κ−2

2 . We now state the result about the factorization of
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LSev
p (f/K, χ, κ).

Theorem 12. Suppose χ(−1) = (−1)
k0−2

2 w∞. Then

LSevp (f/K, χ, κ) = D
κ−2

2
K LSMK

p (f, χD1 , κ, κ/2)LSMK
p (f, χD2 , κ, κ/2)

Proof. This is Theorem 5.9 of [36].

4.3.2 p is split in K.

Only in this section (4.3.2) we assume that K is a real quadratic field that

satisfies the Heegner hypothesis, i.e. :

• All primes dividing Np are split in K.

Let Ψ ∈ Emb+(O,R) be as above and let

e1 :=

τΨ

1

 e2 :=

τΨ

1


Note that (e1, e2) is a Zp-basis for LΨ. Let L′′Ψ := Z×p e1 ⊕ Z×p e2. We will

now recall the construction of a p-adic L-function due to Greenberg - Seveso

- Shahabi in this setting (See Section 5.1 of [17]).

Definition 22. For s ∈ P1(Q) an arbitrary base point and Ψ ∈ Emb+(O,R),

we define the partial p-adic L-function LGSS
p (f/K,Ψ,−) : U → Cp as follows

LGSS
p (f/K,Ψ, κ) := |Lψ|−

k0−2
2

∫
L′′Ψ

< PΨ(x, y) >
κ−k0

2 P
k0−2

2
Ψ (x, y)dΦLΨ

{s→ γΨs}.

For χ : Gal(H+
O/K)→ C× a character, we define

LGSS
p (f/K, χ, κ) :=

∑
σ∈Gal(H+

O/K)

χ−1(σ)LGSS
p (f/K, σΨ, κ).
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We then define the p-adic L-function LGSS
p (f/K, χ,−) : U → Cp to be

LGSS
p (f/K, χ, κ) = LGSS

p (f/K, χ, κ)2.

4.4 Derivative of LSev
p and Darmon cycles

We are now back to the case when K is a real quadratic field in which p is

split. Recall the cohomological Abel-Jacobi map from Chapter 3

log AJ : H1(Γ̃,∆(Pk−2))→ Hw∞,∨
k

Let D[Ψ],k be the Darmon cycle associated to the class of the embedding

[Ψ]. By the Eichler-Shimura isomorphism, log AJ(D[Ψ],k) can be considered

as element in SymbΓ0(Np)(Vk−2)∨. We can consider the derivative of the partial

p-adic L-function along the weight direction, i.e d
dκ [LSev

p (f/K,Ψ, κ)]. We have

the following result of M. Seveso:

Theorem 13.

d

dκ
[LSev
p (f/K,Ψ, κ)]κ=k0 =

1

2
D

k0−2
4

K

(
log AJ(D[Ψ],k0

)(φk0)

+ (−1)k0/2log AJ(D[Ψ],k0
)(φk0)

)
(4.4)

Let χ : Gal(HO/K) → ±1 be the genus character corresponding to a

factorization D = D1.D2. Since all primes dividing N split in K, we have

1 = χD(N) = χD1(N)χD2(N)

Since χD1(−1) = χD2(−1), we have χD1(−N) = χD2(−N) which we will

simply write as χDi(−N).



4.4. DERIVATIVE OF LSEV
P AND DARMON CYCLES 63

Corollary 4.

d

dκ
[LSev
p (f/K, χ, κ)]κ=k0 =

1

2
D

k0−2
4

K

(
1+(−1)k0/2wNχDi(−N)

)
log AJ(Dχ

k0
)(φk0)

Remark 8. Since p is inert in K, we have that χD(p) = −1. This implies

that χD1(−p) = −χD2(−p).



64 CHAPTER 4. P -ADIC L-FUNCTIONS



Chapter 5

Main Theorem

5.1 Rationality of Darmon cycles - II

Recall that in the end of Chapter 3, we discussed about the Rationality

Conjecture of Darmon cycles. Here we will state some known results towards

this conjecture which are relevant to the case we are interested in. Let Mk0

be the motive over Q associated to the space of cusp forms Sk0(Γ0(Np),Q).

See [35] for the construction. For any number field L/Q, let Mk0 ⊗ L be the

base change to L. Let CH
k0/2
0 (Mk0 ⊗ L) be the Chow group of co-dimension

k0/2 cycles that are homologous to the zero cycle. By [30], we have a global

p-adic Abel-Jacobi map

cl
k0/2
0,L : CH

k0/2
0 (Mk0 ⊗ L)→ Selst(L, V

Np
p (k0/2))

For a discussion about the motive Mk0 and the Abel-Jacobi map cl
k0/2
0,L , see

Sections 1 - 4 of [30].

Let D > 0 be an odd square free integer. Let H+
K denote the narrow

ring class field (See Appendix A for the definition) of the real quadratic field

65
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K = Q(
√
D). Recall from Chapter 3 the Abel-Jacobi map

AJ : H1(Γ̃,∆(Pk0−2))→ H1
st(Kp, V

Np
p (k0/2)).

Denote the image of Darmon cycles AJ(D[Ψ],k0
) (resp. AJ(Dχ

k0
)) by sΨ ∈

H1
st(Kp, V

Np
p (k0/2)) (resp. sχ ∈ H1

st(Kp(χ), V Np
p (k0/2)). Recall that we have

the restriction at p, resp : Selst(H
+,χ
K , V Np

p (k0/2))→ H1
st(Kp(χ), V Np

p (k0/2)).

Let χ : Gal(H+
K/K) → C× be the genus character of K corresponding

to the factorization D = D∗1.D
∗
2. Note that we have χD∗1 (−N) = χD∗2 (−N)

while χD∗1 (−p) = −χD∗2 (−p). We now recall the main results concerning the

rationality of Darmon cycles:

Theorem 14. Assume (−1)k0/2wNχD∗i (−N) = 1 for i ∈ {1, 2}. Then, there

exists a global cycle

d
χD∗2
k0
∈ CH

k0/2
0 (Mk0 ⊗Q(

√
D∗2))

χD∗2 ⊂ (Mk0 ⊗Q(
√
D∗2,

√
D∗1))

and a constant sf ∈ K×fk0
such that

resp(cl
k0/2

0,H+
K

(d
χD∗2
k0

)) = sfAJ(Dχ
k0

)

Proof. This is Theorem 6.2 of [36]. The notation used here is different from

loc cit. but it is similar to Theorem 6.11 of [17] which is a generalization of

the above theorem to the general quaternionic setting.

Remark 9. Note that the global algebraic cycle d
χD∗2
k0

depends only on D2 and

not on D1.
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5.2 Normalized Fourier coefficients c̃(D, k)

Recall the Coleman family of cusp forms of tame level Γ0(N)

f(q) =
∑
n≥1

an(κ)qn ∈ O(U)[[q]]

and the classical cusp forms f#
k , for k ∈ U cl. Note that f#

k ∈ Sk(Γ0(N))new

for k 6= k0 while f#
k0

= fk0 ∈ Sk0(Γ0(Np))p−new.

Recall from Theorem 4, Chapter 2 that the map Θk,N,m is a Hecke-equivariant

isomorphism between Snewk (Γ0(Np)) (resp. Snewk (Γ0(N))) and S+,new
k+1

2

(Γ0(4Np))

(resp. S+,new
k+1

2

(Γ0(4N))). In this chapter, we denote Θk,N,m just by θ for

brevity.

For all k 6= k0 ∈ U cl, let

gk :=
∑
D>0

c(D, k)qD ∈ S+,new
k+1

2

(Γ0(4N))

be the Shintani lifting of f#
k and

gk0 :=
∑
D>0

c(D, k0)qD ∈ S+,new
k0+1

2

(Γ0(4Np))

be the Shintani lifting of fk0 = f#
k0

.

In view of Proposition 2 of Chapter 2, the values of the discriminant D for

which c(D, k) need not necessarily vanish can be classified into two types -

viz. Type I and Type II.

Type I : All D > 0 such that χD∗(p) = wp .

Type II : All D > 0 such that χD∗(p) = −wp.
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Remark 10. For D a Type II discriminant, L(fk0 , D
∗, k0/2) = 0 since the

sign in the function equation w(fk0 , D
∗) = −1 and hence c(D, k0) = 0. On the

other hand, by the non-vanishing results for quadratic twists of Modular L-

functions due to Waldspurger (See Theorem 1.1 of [29]), there exists infinitely

many fundamental discriminants D1 of Type I such that L(f, χD∗1 , k0/2) 6= 0

and consequently c(D1, k0) 6= 0.

We fix a Type I discriminant D1 such that c(D1, k0) 6= 0.

Lemma 6. Upto further shrinking of U , c(D1, k) is non - vanishing for all

k ∈ U cl.

Proof. This is Lemma 3.2 of [25] and has been reproduced here. By Proposi-

tion 2, Chapter 2

c(D1, k) 6= 0⇔ L(f#
k , χD∗1 , k/2) 6= 0

Recall the algebraic part of the central L-value

L̃(f#
k , χD∗1 , k/2) :=

(k/2− 1)!τ(χD∗1 )

(−2πi)k/2−1Ω
f#
k

L(f#
k , χ, k/2)

By the fixed embedding Q ↪→ Qp, we can look at L̃(f#
k , χD∗1 , k/2) as p-

adic numbers. It suffices to show the non-vanishing of L̃(f#
k , χD∗1 , k/2) in a

neighbourhood of k0. Fix the choice of w∞ such that χD∗1 (−1) = (−1)
k0−2

2 w∞.

By the interpolation property of the Stevens - Mazur - Kitagawa p-adic L-

function attached to f(q) (Corollary 2, Chapter 4), we have

LSMK
p (f , χD∗1 , k0, k0/2) =

(
1− χD∗1 (p)

p
k0−2

2

ap(k0)

)
L̃(f#

k0
, χD∗1 , k0/2)
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Note that ap(k0) = −wpp
k0−2

2 . SinceD1 is a Type I discriminant, χD∗1 (p) = wp.

Hence the Euler like factor
(

1−χD∗1 (p)p
k0−2

2

ap(k0)

)
is non-zero. This establishes the

non-vanishing of LSMK
p at (k0, k0/2). Since the Stevens - Mazur - Kitagawa

p-adic L-function is a non-zero p-adic analytic function, upto shrinking U , we

have the non-vanishing of LSMK
p . Thus the non-vanishing result for c(D1, k)

follows.

We would like to interpolate the Fourier coefficients c(D, k), for k ∈ U cl,

by a p-adic analytic function over U . We now introduce a normalization of

the Fourier coefficients c(D, k) (See Proposition 1.3 of [13] and Proposition

3.3 of [25]). For D∗ a fundamental discriminant of either Type and for every

k ∈ U cl, define the normalized Fourier coefficient as follows :

c̃(D, k) :=

(
1− χD∗(p)p

k−2
2

ap(k)

)
c(D, k)(

1− χD∗1 (p)p
k−2

2

ap(k)

)
c(D1, k)

Proposition 7. Up to shrinking, the normalized coefficients c̃(D, k) extends

to a p-adic analytic function in a neighbourhood of k0.

Proof. The proof is a higher weight analogue of Proposition 3.3 of [25]. We

write

c(D, k)

c(D1, k)
=
c(D, k)c(D1, k)

| c(D1, k) |2

Assuming D is relatively prime to D1, from Theorem 5 and Proposition 2 of

Chapter 2, we can interpret the right hand side as

πk/2(−2i)k/22ν(N)rk,N (f#
k , D

∗
1, D

∗)

2ν(N)(k/2− 1)!|D1|
k−1

2 L(f#
k , D

∗
1, k/2)
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which simplifies as

(−2πi)k/2rk,N (f#
k , D

∗
1, D

∗)

(k/2− 1)!|D1|
k−1

2 L(f#
k , D

∗
1, k/2)

Expressing the central L-value in terms of its ’algebraic part’

L(f#
k , χD∗1 , k/2) =

(−2πi)
k−2

2 Ω
f#
k

(k/2− 1)!τ(χD1)
L̃(f#

k , χD∗1 , k/2)

we have

c(D, k)

c(D1, k)
=
−τ(χD∗1 )(2πi)rk,N (f#

k , D
∗, D∗1)

|D1|
k−1

2 L̃(f#
k , D

∗
1, k/2)Ω

f#
k

Using the interpolation formula for the Stevens - Mazur - Kitagawa p-adic

L-function and that |τ(χD∗1 )| = D
1/2
1 , we have

c̃(D, k) =
λ(k)(2πi)

(
1− χD∗(p)p

k−2
2

ap(k)

)(
1− χD∗1 (p)p

k−2
2

ap(k)

)
rk,N (f#

k , D
∗, D∗1)

|D1|
k−2

2 LSMK
p (f , χD∗1 , k, k/2)Ω

f#
k

Now, suppose D is of Type II.

Then, χD∗(p) = −χD∗1 (p). Hence

(
1− χD∗(p)

p
k−2

2

ap(k)

)
.
(
1− χD∗1 (p)

p
k−2

2

ap(k)

)
= 1− pk−2

ap(k)2
.

Since the primes dividing N split in the real quadratic field Q(
√
D∗D∗1) while

p is inert, we can write

λ(k).
(
1− pk−2

ap(k)2

)
.(2πi).rk,N (f#

k , D
∗, D∗1)

Ω
f#
k

= LSev
p (f/Q(

√
D∗D∗1), χD∗D∗1 , k/2).

This calculation is shown in detail in the paragraph after Lemma 7. Plugging



5.2. NORMALIZED FOURIER COEFFICIENTS C̃(D,K) 71

it back, we have

c̃(D, k) =
LSev
p (f/Q(

√
D∗D∗1))

|D1|
k−2

2 LSMK
p (f , χD∗1 , k, k/2)

.

up to some constant. Since c̃(D, k) is the ratio of p-adic analytic functions

on some neighbourhood of k0, we conclude the same about the normalized

coefficients.

Now suppose D is also of Type I and (D,D1) = 1. Note that in this case, all

the primes dividing Np split in the real quadratic field Q(
√
D∗D∗1). This is

the Heegner hypothesis. Also

(
1− χD∗(p)

p
k−2

2

ap(k)

)
.
(

1− χD∗1 (p)
p
k−2

2

ap(k)

)
=
(

1− χD∗1 (p)
pk−2

ap(k)2

)2
.

In this case,

λ(k).
(
1− χD∗1 (p) pk−2

ap(k)2

)2
.(2πi)rk,N (f#

k , D
∗, D∗1)

Ω
f#
k

=

LGSS
p (f/Q(

√
D∗D∗1), χD∗D∗1 , k/2). (5.1)

When (D,D1) 6= 1, choose a Type I discriminant D′1, prime to both D1

and D, such that c(D′1, k0) 6= 0. Then we can write

c̃(D, k)

c̃(D1, k)
=
( c̃(D, k)

c̃(D′1, k)

)
.
( c̃(D′1, k)

c̃(D1, k)

)

and we repeat the same as above for each individual factor in the product.
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5.3 Proof of the Main Theorem

Let D2 be a Type II discriminant relatively prime to D1. Let D := D∗1.D
∗
2

and K = Q(
√
D) be the real quadratic field of discriminant DK = D.

Note that we have a bijection between FD/Γ0(N), GD and Gal(H+
K/K)

where FD is the set of Heegner forms of level N of discriminant D, GD is

the SL2(Z)-equivalence class of primitive integral binary quadratic forms of

discriminant D and H+
K is the narrow Hilbert class field of K (See Appendix

A). The last isomorphism comes from class field theory.

Since D2 is of Type II and relatively prime to D1, by Proposition 8 we have

c̃(D2, k) =
λ(k)(2πi)

(
1− p

k−2
2

ap(k)2

)
rk,N (f#

k , D
∗
2, D

∗
1)

|D1|
k−2

2 LSMK
p (f , χD∗1 , k, k/2)Ω

f#
k

(5.2)

Let Ψ∗ ∈ Emb+(OK ,R) be the optimal embedding such that vΨ∗ = v∗ = [Z2
p].

Note that

rk,N (f#
k , D

∗
1, D

∗
2) =

∑
Q∈FD/Γ0(N)

ωD∗1 ,D∗2 (Q)r(f#
k , Q)

where ωD∗1 ,D∗2 is the genus character corresponding to the bi-quadratic exten-

sion Q(
√
D∗1,

√
D∗2) of K. By Proposition 9 of Appendix A, we will consider

the character ωD∗1 ,D∗2 as χD∗1 ,D∗2 : Gal(H+
K/K)→ {±1}. Hence we re-write

rk,N (f#
k , D

∗
1, D

∗
2) =

∑
σ∈Gal(H+

K/K)

χD∗1 ,D∗2 (σ)r(f#
k , Pσ.[Ψ∗](x, y))

Since D is not a perfect square, for all Ψ ∈ Emb+(OK ,R), we have :

(2πi)r(f#
k , PΨ(x, y)) = φ̃#

k {r → γΨ.r}(P k/2−1
Ψ (x, y))
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Hence we re-write equation (5.2) as

|D1|
k−2

2 LSMK
p (f , χD∗1 , k, k/2)c̃(D2, k) = (1− ap(k)−2pk−2)∑

σ∈Gal(H+
K/K)

χD∗1 ,D∗2 (σ)φ
f#
k

(P
k/2−1
σ.[Ψ∗]

(x, y)){r → γΨ∗ .r} (5.3)

where φ̃#
k /Ωf#

k
= φ#

k .

Lemma 7. For all k ∈ U cl and P (x, y) ∈ Pk−2,

∫
(Z2
p)′

P (x, y)dΦ∗{r → s} = λ(k)(1− ap(k)−2pk−2)φ
f#
k
{r → s}(P (x, y))

Proof. See Corollary 4.6 of [36] and Proposition 2.4 of [5].

Now since PΨ∗(x, y) ∈ Z×p for all (x, y) ∈ (Z2
p)
′, we have by Lemma 4.1 of

[36]

P
k−2

2
Ψ∗

(x, y) = P
k−k0

2
Ψ∗

(x, y).P
k0−2

2
Ψ∗

(x, y) =< PΨ∗(x, y) >
k−k0

2 P
k0−2

2
Ψ∗

By (5.3) and Lemma 7, we have

|D1|
k−2

2 LSMK
p (f , χD∗1 , k, k/2)c̃(D2, k) =

∑
σ∈Gal(H+

K/K)

χD∗1 ,D∗2 (σ)

∫
(Z′p)2

< PΨ∗(x, y) >
k−k0

2 P
k0−2

2
Ψ∗

dΦ∗{r → γΨ∗ .r} (5.4)

Since ΦLΨ∗ = Φ∗, the integral above is the value of the partial p-adic L-function

LSevp at k ∈ U cl. Hence we have

c̃(D2, k) =
LSevp (f/K, χD∗1 ,D∗2 , k)

|D1|
k−2

2 LSMK
p (f , χD∗1 , k, k/2)

(5.5)
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We will now compute the derivative of the analytic function c̃(D2, κ) along

the weight direction around a neighbourhood of k0.

Theorem 15. There exists a global cycle

d
χD∗2
k0
∈ CH

k0/2
0 (Mk0 ⊗Q(

√
D∗2))

χD∗2 ⊂ (Mk0 ⊗Q(
√
D∗2,

√
D∗1))

and a constant sf ∈ K×fk0
such that

d

dk
[c̃(D2, k)]k=k0 =

|D1|
k0−2

4

|D2|
k0−2

4

.sf .expBK
−1(resp(cl

k0/2

0,H+
K

(d
χD∗2
k0

)))(φk0)

Proof. Taking the derivative w.r.t κ on both sides of (5.5), we have

d

dκ
c̃(D2, κ) =

|D1|κ/2−1LSMK
p (f , χD∗1 , κ, κ/2) d

dκ [LSevp (f/K, χD∗1 ,D∗2 , κ)]

|D1|κ−2LSMK
p (f , χD∗1 , κ, κ/2)2

+
LSevp (f/K, χD∗1 ,D∗2 , κ) d

dκ [|D1|κ/2−1LSMK
p (f , χD∗1 , κ, κ/2)]

|D1|κ−2LSMK
p (f , χD∗1 , κ, κ/2)2

(5.6)

At κ = k0, we know that LSevp (f/K, χD∗1 ,D∗2 , k0) = 0 (See Proposition 5.7 of

[36]). Hence (5.6) can be simplified as

d

dκ
[c̃(D2, κ)]κ=k0 =

d
dκ [LSevp (f/K, χD∗1 ,D∗2 , κ)]κ=k0

|D1|
k0−2

2 LSMK
p (f , χD∗1 , k0, k0/2)

(5.7)

By Corollary 3 (See Chapter 4, p. 64), we write (5.7) as

d

dκ
[c̃(D2, κ)]κ=k0 =

D
k0−2

4 log AJ(Dχ
k0

)(φk0)

|D1|
k0−2

2 2L̃(fk0 , χD∗1 , k0, k0/2)

Since D = |D1|.|D2| and that 2L̃(fk0 , χD∗1 , k0/2) ∈ K×fk0
, the theorem follows

from Theorem 14 on the rationality of Darmon cycles.

Remark 11. The additional factor of |D2|
|D1|

k0−2
4 is 1 in [13] since they consider
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the k0 = 2 case.

5.4 Future directions

5.4.1 Kohnen-Shintani correspondence for Shimura curves

A natural extension of our result would be to study the case of eigenforms on a

Shimura curve attached to a quaternion algebra B/Q. Shimura in [41] proved

the existence of a Shimura-Shintani correspondence in this case. We would

like to construct a p-adic lifting in this case. We hope to use the Jacquet-

Langlands correspondence (which is compatible with the formation of finite

slope p-adic families) to construct the Kohnen-Shimura-Shintani lifting for p-

adic families of modular forms over B. We remark that a Λ-adic lifting in the

quaternionic setting is given in [26].

5.4.2 Darmon cycles over Shimura curves

We hope to prove an analogue of Kohnen’s theorem. In the quaternion case,

rationality results about Darmon cycles have been established in [17] and we

hope to use these results to prove an analogue of Theorem 15 in this scenario.
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Appendix A

Quadratic forms and

Quadratic fields

In this appendix, we briefly recall the relation between quadratic forms and

quadratic fields. Let

Q(x, y) := ax2 + bxy + cy2

be an integral (i.e. a, b, c ∈ Z) primitive ((a, b, c) = 1) quadratic form. Assume

that D := b2 − 4ac, the discriminant of Q(x, y), is positive and square-free.

The set of quadratic forms of discriminant D are related to the (fractional

ideals of) real quadratic field K = Q(
√
D).

Since D is a square free discriminant, we have

OK ' Z⊕ Z[
1 +
√
D

2
]

Definition 23. A fractional ideal, b, of K is a finitely generated OK-submodule

of K.

Remark 12. It follows that every fractional ideal a is generated by at most

77
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two elements of K.

The set of fractional ideals JK are a monoid under multiplication. Let P+
K

be the set of principal fractional ideals generated by totally positive elements,

i.e.

P+
K := {(γ) : γ = r/s; r, s ∈ OK γ, γσ > 0}

where σ is the non-trivial element in Gal(K/Q).

The quotient C`+(K) := JK/P+
K is a group under multiplication, called the

narrow ideal class group.

Definition 24. A genus character of K is a quadratic character of C`+(K).

Definition 25. The maximal abelian extension of K unramified at all finite

places of K is called the narrow Hilbert class field, denoted by H+
K .

Remark 13. By Class field theory, we have the following isomorphism (See

Theorem 4.2 of [31]) :

rec+ : C`+(K) ' Gal(H+
K/K)

Hence we can alternatively consider a genus character as a quadratic character

of Gal(H+
K/K).

Corresponding to each factorisation D = D∗1.D
∗
2, we define a genus char-

acter χD∗1 ,D∗2 : C`+K → C× by defining on prime ideals:

χD∗1 ,D∗2 (p) :=


(

D∗1
(N(p)

)
if p - D1(

D∗2
N(p)

)
if p - D2

and extending multiplicatively to C`+K . We exclude the trivial factorisa-

tion D = D.1. The genus character χD∗1 ,D∗2 cuts out the bi-quadratic field
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Q(
√
D∗1,

√
D∗2) (See Section 2 of [13]).

We say that a fractional ideal a = (a1, a2) has a normalized basis if a1a
σ
2 −

a2a
σ
1 > 0. Note that either (a1, a2) or (a2, a1) is a normalized basis. To each

fractional ideal with a normalized basis a = (a1, a2), we attach a quadratic

form by

Qa(x, y) := N(a)−1NK/Q(a1x+ a2y)

where N denotes norm.

Lemma 8. A positive integer Γ is represented by Qa if and only if Γ is the

norm of an integral ideal b in the ideal class of a.

Proof. Let Γ = N(b) where b = (γ)a is integral and γ is totally positive.

Then bσ = (γσN(a)a−1. Hence Γ = N(b) = N(α)N(a−1), where α = γσN(a)

is totally positive. Since N(a) divides NK/Q(α), we have α ∈ a. Therefore Γ =

N(a)−1.NK/Q(a1x + a2y) = Qa(x, y) for some x, y ∈ Z.

Conversely, let Γ = Qa(x, y) = N(a)−1.NK/Q(α) for some α ∈ a. Then

Γ = N((α)a−1) > 0 and hence (α)a ∈ OK is an integral ideal.

Theorem 16. The map Θ : a 7→ Qa(x, y) is a bijection between GD - the

set of SL2(Z)-equivalence classes of binary quadratic forms of discriminant D

and C`+K .

Proof. A nice discussion can be found in Sections 5.1 and 5.2 of [8].

Recall that we had defined the character ωD∗1 ,D∗2 on GD as

ωD∗1 ,D∗2 (Q) :=


(

D∗1
Q(m,n)

)
when gcd(D∗2, Q(m,n)) = 1(

D∗1
Q(m,n)

)
when gcd(D∗2, Q(m,n)) = 1

.
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Proposition 8.

χD∗1 ,D∗2 = Θ ◦ ωD∗1 ,D∗2

Proof. By the Lemma above, there exists an integral ideal b in the class of a

such that N(b) = Γ = Qa(m,n). Note that Qa ∼ Qb. Hence we re - write

ωD∗1 ,D∗2 (Qb) :=


(

D∗2
N(b)

)
when (D∗2, N(b)) = 1(

D∗1
N(b)

)
when gcd(D∗1, N(b)) = 1

.

Now the proof follows by the multiplicative property of the Kronecker symbol(
D∗

N(p)

)
over the prime ideals p dividing b.
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