Ingénierie de métamatériaux thermiques : transformations d'espace et techniques d'homogénéisation appliquées à l'équation de la chaleur
Auteur / Autrice : | David Petiteau |
Direction : | Claude Amra, Myriam Zerrad |
Type : | Thèse de doctorat |
Discipline(s) : | Optique, Photonique et Traitement d'Image |
Date : | Soutenance le 16/10/2015 |
Etablissement(s) : | Aix-Marseille |
Ecole(s) doctorale(s) : | École Doctorale Physique et Sciences de la Matière (Marseille) |
Jury : | Président / Présidente : André de Lustrac |
Examinateurs / Examinatrices : Claude Amra, Sébastien Guenneau, Denis Veynante | |
Rapporteurs / Rapporteuses : Martin Wegener, Richard V. Craster |
Mots clés
Résumé
La communauté des métamatériaux est entrée en effervescence depuis la publication de deux articles de Science en 2006 par Pendry et Leonhardt dans lesquels il est proposé de réaliser des systèmes exotiques tels que les capes d’invisibilité par transformation d’espace. En effet, l’invariance de forme des équations de Maxwell permet une équivalence entre géométrie déformée et présence d’un matériau aux propriétés particulières. Depuis, de nombreux exemples expérimentaux ont montré la faisabilité de tels systèmes transformés. L’invariance de forme se retrouve également dans d’autres phénomènes physiques et les transformations d’espace ont par ailleurs été appliquées à plusieurs disciplines telles que l’acoustique, l’élasto-dynamique ou la propagation d’ondes de surface. Nous présentons ici les transformations d’espace appliquées à l’équation de la chaleur. Au cours de notre étude, nous nous intéressons aux transformations menant aux capes d’invisibilité thermiques et aux concentrateurs thermiques. Ces systèmes sont constitués de matériaux anisotropes et hétérogènes ce qui les rend difficile à réaliser. Nous utilisons donc la théorie de l’homogénéisation à deux échelles qui permet d’approcher le comportement de ces systèmes par une alternance de couches de matériaux isotropes. Nous suivons une démarche systématique d’évaluation quantitative des performances de nos systèmes approchés dans une optique d’une ingénierie à haut niveau de métamatériaux thermiques. Un modèle de tapis thermique à 50 couches est proposé dont les résultats expérimentaux sont attendus.