Modélisation et simulation multi échelle des effets de taille et des couplages électromécaniques dans les nanostructures - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2014

Multi-scale modeling of size effects and electromechanical couplings in nanostructures

Modélisation et simulation multi échelle des effets de taille et des couplages électromécaniques dans les nanostructures

Résumé

Nanostructures, and more specifically semiconductor nanowires, have drawn special attention in recent years for many applications such as energy harvesting systems or sensors of very high precision. Many recent experiments and theoretical ab-initio calculations have evidenced size effects, which can significantly modify the electromechanical properties of nanowires for diameters below 10 nm. The objective of this thesis is to provide multi-scale modeling of electromechanical properties of nanostructures, such as ionic nanowires and laminated nanocomposites, to reproduce the size effects associated with nanoscale in a continuum model, based on ab-initio calculations to identify and validate the models. In a first part, the surface effects in isolated homogeneous piezoelectric nanowires are modeled. A multi-scale approach is developed, including continuous nanowires modeling taking into account an additional surface energy in the piezoelectric laminates where the associated parameters are identified by ab-initio calculations. For this, a procedure based on slabs is developed, allowing through first-principles calculations on successive slabs thicknesses to isolate the surface energy and to deduce the surface elastic and piezoelectric coefficients. The equations of the continuous model are then solved by a finite element method including appropriate surface elements. The continuous multi-scale model is compared with ab-initio calculations involving full atomistic models of nanowires with different diameters (from 0.6 to 3.9 nm) to validate model regarding size effects of electromechanical properties. In the second part, multi-scale models are constructed to describe the size effects for heterogeneous nanostructures. These structures include coated nanowires or laminated nanocomposites. For nanowires with radial heterogeneity, the previously developed approach is extended to the case of coated surfaces, and involves a continuous surface energy incorporating the effects of the coating. For laminated AlN/GaN nanocomposites, size effects observed by ab-initio calculations are caused by the presence of the interfaces and induce size-dependent elastic properties with respect to the layer thickness. A continuum model based on an imperfect interface is proposed to describe the size dependent effective elastic properties of the overall composite, which are identified by ab-initio calculations. In the last part, nanogenerators system based on nanowires are modeled, involving nanowires arrays aligned in polymer substrates with graphene electrode. The previously developed finite element models are used to simulate the electromechanical properties of such systems
Les nanostructures, et en particulier les nanofils semi-conducteurs, ont suscité ces dernières années un très grand intérêt pour de nombreuses applications comme les systèmes de récupération d'énergie ou les capteurs de très haute précision. Dans de telles structures des expérimentations et des calculs théoriques ab-initio ont mis en évidence des effets de taille, pouvant modifier significativement les propriétés électromécaniques pour des diamètres de fils en dessous de 10 nm. L'objectif de ce travail de thèse est de proposer des modélisations multi échelle des nanostructures électromécaniques, telles que les nanofils ioniques et des nanocomposites stratifiés, permettant de reproduire les effets de taille associés à l'échelle nanométrique dans un cadre continu, en se basant sur des calculs ab-initio pour identifier et valider les modèles. Dans une première partie, les effets de surface dans des nanofils piézoélectriques isolés homogènes sont modélisés. Une approche multi échelle est développée, incluant une modélisation continue des nanofils en prenant en compte une énergie de surface supplémentaire dans un cadre piézoélectrique, dont les paramètres associés sont identifiés par calculs ab-initio. Pour cela, une procédure basée sur un modèle de films minces est développée, permettant au travers de calculs ab-initio sur des films d'épaisseurs successives d'isoler l'énergie volumique et de surface, et d'en déduire les coefficients élastiques et piézoélectriques de surface. Les équations du modèle continu sont ensuite résolues par une méthode d'éléments finis incluant des éléments de surface adaptés. Le modèle multi échelle continu est comparé à des calculs ab-initio impliquant des modèles atomistiques complets de nanofils de différents diamètres (de 0,6 à 3,9 nm) pour valider les effets de taille des propriétés électromécaniques. Dans une deuxième partie, des modèles multi échelles sont construits en vue de modéliser les effets de taille pour des nanostructures hétérogènes. Ces structures incluent des nanofils revêtus, ou des nanocomposites stratifiés. Pour les nanofils avec hétérogénéités radiales, l'approche précédemment développée est étendue au cas des surfaces revêtues, et le modèle continu fait intervenir une énergie de surface incluant les effets du revêtement. Pour les nanocomposites stratifiés AlN/GaN, les effets de taille observés par calculs ab-initio sont dus à des effets d'interface et induisent des propriétés élastiques dépendantes des épaisseurs des couches. Un modèle de matériau homogénéisé continu est proposé, incluant un modèle d'interface imparfaite, permettant d'inclure les effets de taille, identifié par calculs ab-initio. Dans une dernière partie, des applications à des systèmes de nanogénérateurs à base de nanofils sont proposées, faisant intervenir des ensembles de nanofils alignés dans une matrice polymère et surmontés par une feuille de graphène. Les approches précédemment développées sont utilisées pour modéliser ces structures par éléments finis
Fichier principal
Vignette du fichier
2014PEST1074.pdf (7.41 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01126843 , version 1 (06-03-2015)

Identifiants

  • HAL Id : tel-01126843 , version 1

Citer

Minh Tuan Hoang. Modélisation et simulation multi échelle des effets de taille et des couplages électromécaniques dans les nanostructures. Autre. Université Paris-Est, 2014. Français. ⟨NNT : 2014PEST1074⟩. ⟨tel-01126843⟩
407 Consultations
455 Téléchargements

Partager

Gmail Facebook X LinkedIn More