Thèse soutenue

Modèle pour la conception immersive et intuitive : application à l’industrie automobile

FR  |  
EN
Auteur / Autrice : Pierre Martin
Direction : Patrick Bourdot
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 07/07/2014
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Informatique de Paris-Sud
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique pour la mécanique et les sciences de l'ingénieur (Orsay, Essonne ; 1972-2020) - Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur [Orsay] - PSA Peugeot Citroën
Entreprise : Groupe PSA
Jury : Président / Présidente : Jean-Claude Martin
Examinateurs / Examinatrices : Patrick Bourdot, Jean-Claude Martin, Doru Talaba, Umberto Cugini, Indira Thouvenin, Stéphane Masfrand
Rapporteurs / Rapporteuses : Doru Talaba, Umberto Cugini

Résumé

FR  |  
EN

Cette thèse traite de l’utilisation des technologies de Réalité Virtuelle (RV) dans les activités de Conception Assistée par Ordinateur (CAO). Plus précisément, les travaux de recherche portent sur une approche pour la modification directe et interactive d’objets CAO, notamment adaptée aux processus de conception en industrie. Généralement, les logiciels de CAO requièrent des compétences (expérience et connaissance), à la fois sur les fonctionnalités même du logiciel et les représentations utilisées, ainsi que sur les objets CAO concernés (principalement sur leur historique de construction, savoir de quelle façon ils ont été construits). D’un autre coté, la RV apporte de nouveaux paradigmes d’interaction 3d, tels que l’immersion et la perception multi-sensorimotrice (stéréoscopie, audio 3d, haptique, etc.), et il apparaît nécessaire de disposer de middleware intelligents pour gérer les objets CAO dans ces Environnements Virtuels (EV) immersifs. De précédents travaux ont proposé un mécanisme d’édition implicite d’objets CAO permettant la modification du Graphe d’Historique de Construction (GHC) de ces objets à partir de la manipulation de la représentation visuelle 3d de ces objets. Basé sur un processus d’étiquetage des éléments de frontière (B-Rep), et couplé avec un moteur d’inférence, ce mécanisme décrit un chaînage arrière entre ces éléments de frontières et les opérateurs d’un GHC. Cependant, cette approche avait pour limite majeure de proposer un modèle particulier de GHC, ce qui l’empêchait d’être intégrée à des systèmes CAO fermés ou commerciaux tels que ceux utilisés dans l’industrie et en particulier l’industrie automobile. Notre première contribution consiste donc en la proposition d’un modèle et d’une architecture permettant de généraliser ce mécanisme de chaînage arrière à n’importe quel système CAO basé sur les représentations de type B-Rep et GHC. Pour ce faire, nous avons spécifié plusieurs structures d’encapsulation pour la gestion des opérateurs du GHC ainsi que de leurs paramètres, et des composants de B-Rep. Deuxièmement, le précédent étiquetage, désormais attaché à ces structures d’encapsulation et non plus aux éléments de B-Rep directement, a été étendu pour permettre un chaînage arrière multiple. Certains éléments de frontières peuvent en effet être le résultat de plusieurs opérateurs du GHC, être liés à plusieurs éléments "parents", et ainsi plusieurs décisions peuvent être inférées à partir de leur manipulation. Ces avancées rendent possible la modification directe et intuitive d’objets CAO déjà existants (i.e. via le parcours et l’analyse de base de données CAO précédemment créées), en analysant leur GHC et en remplissant nos structures avec les données nécessaires. De plus, le mécanisme de chaînage arrière multiple renforce la capacité du moteur d’inférence, à libérer les utilisateurs, et spécialement les non-experts, de connaissances trop complexes à propos des modèles CAO. Comme preuve de concept de notre modèle, nous présentons un exemple détaillé de notre approche sur le noyau géométrique de CATIA et montrons comment notre modèle permet d’envisager un nouveau concept d’interaction en revue de projet immersive : permettre aux participants de modifier directement les modèles CAO sans quelque interaction sur station de travail.