Thèse soutenue

Etude d'un nouveau concept d'analyse de front d'onde en plan focal appliqué à l'optique adaptative en astronomie

FR  |  
EN
Auteur / Autrice : Cédric Plantet
Direction : Thierry FuscoSerge Meimon
Type : Thèse de doctorat
Discipline(s) : Astronomie et astrophysique
Date : Soutenance en 2014
Etablissement(s) : Observatoire de Paris (1667-....)
Ecole(s) doctorale(s) : École doctorale Astronomie et astrophysique d'Île-de-France (Meudon, Hauts-de-Seine ; 1992-....)
Jury : Examinateurs / Examinatrices : Thierry Fusco, Serge Meimon, Sylvie Roques, Simone Esposito
Rapporteurs / Rapporteuses : Sylvie Roques, Simone Esposito

Mots clés

FR

Mots clés contrôlés

Résumé

FR  |  
EN

L’avènement des Extremely Large Telescopes (ELT) est imminent. Cette nouvelle génération de télescopes ouvrira la voie vers des observations astronomiques toujours plus fines. Les futurs instruments nécessitent des optiques adaptatives de plus en plus sophistiquées pour corriger les effets de la turbulence et atteindre les performances requises. L’analyse de front d’onde est un élément fondamental de l’optique adaptative. Les analyseurs requièrent un flux relativement élevé pour être efficaces, notamment lors de l'estimation de hauts ordres, qui sont nécessaires pour obtenir une bonne correction. Comme le ciel est pauvre en étoiles brillantes, on utilise souvent des étoiles laser, produites par excitation d’un volume de sodium dans la haute atmosphère. Malheureusement, on ne peut pas estimer correctement un tip/tilt avec ces étoiles artificielles. De plus, le focus mesuré est biaisé à cause de l'instabilité en altitude de la couche de sodium. La mesure de ces trois aberrations doit donc pouvoir être faite sur une étoile naturelle de très faible luminosité. On peut alors se demander quelle stratégie adopter pour l'analyse des bas ordres à faible flux. De manière plus générale, les techniques d'analyse de front d'onde sont en pleine évolution pour répondre aux nouveaux besoins de l'optique adaptative. Il est donc important de comparer les stratégies d'analyse en terme de sensibilité et de dynamique. La thèse s’appuie sur un nouveau concept d’analyseur de surface d’onde : LIFT (LInearized Focal-plane Technique). Cet analyseur permettra d’estimer le tip/tilt et le focus sur une étoile naturelle faible, afin de compléter l’analyse faite sur les étoiles lasers, de façon plus efficace qu’avec les moyens actuels. Le premier but de la thèse est d'optimiser et de valider LIFT expérimentalement. Pour cela, j'ai d'abord étudié les propriétés de convergence de l'algorithme et la propagation du bruit afin de déterminer les paramètres optimaux. J'ai ensuite testé le concept de LIFT en laboratoire sur des phases statiques, puis sur le ciel grâce au système d'optique adaptative du télescope Gemini Sud, GeMS. La linéarité de l'estimation malgré la présence de hauts ordres résiduels, dus à la correction imparfaite de l'optique adaptative, a été validée en boucle ouverte, et nous pouvons maintenant envisager une validation finale en intégrant LIFT dans une boucle fermée. Dans un deuxième temps, j'ai étudié la propagation du bruit dans un analyseur dérivé de LIFT, le Shack-Hartmann LIFTé. Cet analyseur divise la pupille à l'aide de micro-lentilles astigmatiques, et une estimation par LIFT est faite dans chaque sous-pupille. Il permettra une estimation de hauts ordres plus précise qu'avec un Shack-Hartmann classique. Le dernier objectif est de comparer les analyseurs existants, en termes de propagation de bruit, pour l'estimation sur étoile naturelle des bas ordres d'une part, cas d'application de LIFT, et des hauts ordres d'autre part, dans le cas d'une optique adaptative extrême par exemple. Cette étude permet de motiver l'utilisation de LIFT et du Shack-Hartmann LIFTé dans des systèmes d'optique adaptative.