La programmation DC et DCA en analyse d'image : acquisition comprimée, segmentation et restauration

par Thi Bich Thuy Nguyen

Thèse de doctorat en Informatique

Sous la direction de Hoai An Lê Thi.

Le président du jury était Tao Pham Dinh.

Le jury était composé de Charles Soussen.

Les rapporteurs étaient Jalal Fadili, Sébastien Lefèvre.


  • Résumé

    L’image est une des informations les plus importantes dans la vie. Avec le développement rapide des dispositifs d’acquisition d’images numériques par exemple les appareils photo numériques, les caméras de téléphones, les appareils d’imagerie médicale ou les dispositifs d’imagerie satellite..., les besoins de traitement et d’analyse des images sont de plus en plus croissants. Ils concernent les problèmes de l’acquisition, du stockage des images, de l’amélioration ou de l’information d’extraction d’une image,... Dans cette thèse, nous étudions le traitement et l’analyse des problèmes: acquisition comprimée, apprentissage de dictionnaire et débruitage d’images, segmentation d’images. La méthode que nous décrivons se base sur les approches d’optimisation déterministe, nommées la programmation DC (Difference of Convex functions) et DCA (Difference of Convex Algorithms), pour la résolution des problèmes d’analyse d’images cités précédemment. 1. Acquisition comprimée: une technique de traitement du signal pour acquérir et reconstruire un signal respectant les limites traditionnelles du théorème d’échantillonnage de Nyquist–Shannon, en trouvant la solution la plus parcimonieuse d’un système linéaire sous-déterminé. Cette méthode apporte la parcimonie ou la compressibilité du signal lorsqu’il est représenté dans une base ou un dictionnaire approprié qui permet au signal entier d’être déterminé à partir de certains mesures relatives. Dans cette thématique, nous nous intéressons à deux problèmes. Le premier est de trouver la représentation parcimonieuse d’un signal. Le second est la récupération du signal à partir de ses mesures compressées sur une base incohérente ou un dictionnaire. Les deux problèmes ci-dessus conduisent à résoudre un problème d’optimisation non convexe. Nous étudions trois modèles avec quatre approximations pour ces problèmes. Des algorithmes appropriés basés sur la programmation DC et DCA sont présentés. 2. Apprentissage du dictionnaire: Nous avons vu la puissance et les avantages de la représentation parcimonieuse des signaux dans l’acquisition comprimée. La représentation parcimonieuse d’un signal entier dépend non seulement des algorithmes de représentation mais aussi de la base ou du dictionnaire qui sont utilisés dans la représentation. Ainsi conduit un problème critique et les autres applications d’une manière naturelle. Au lieu d’utiliser une base fixe, comme wavelets (ondelettes) ou Fourier, on peut apprendre un dictionnaire, la matrice D, pour optimiser la représentation parcimonieuse d’une large classe de signaux donnés. La matrice D est appelée le dictionnaire appris. Pour ce problème, nous avons proposé un algorithme efficace basé sur DCA qui comprend deux étapes: la première étape - codage parcimonieux; le seconde étape - dictionnaire mis à jour. Une application de ce problème, débruitage d’images, est également considérée. 3. Segmentation d’images: il s’agit de partitionner une image numérique en segments multiples (ensembles des pixels). Le but de la segmentation est de simplifier et/ou de modifier la représentation d’une image en une forme qui est plus significative et plus facile à analyser. Nous avons développé une méthode efficace pour la segmentation d’images via le clustering flou avec la pondération de variables. Nous étudions également une application médicale qui est le problème de comptage de cellules. Nous proposons une combinaison de phase de segmentation et des opérations morphologiques pour compter automatiquement le nombre de cellules. Notre approche donne des résultats prometteurs dans la comparaison avec l’analyse manuelle traditionnelle en dépit de la densité cellulaire très élevée

  • Titre traduit

    DC programming and DCA in image processing : compressed sensing, segmentation and restoration


  • Résumé

    Image is one of the most important information in our lives. Along with the rapid development of digital image acquisition devices such as digital cameras, phone cameras, the medical imaging devices or the satellite imaging devices..., the needs of processing and analyzing images is more and more demanding. It concerns with the problem of image acquiring, storing, enhancing or extracting information from an image,... In this thesis, we are considering the image processing and analyzing problems including: compressed sensing, dictionary learning and image denoising, and image segmentation. Our method is based on deterministic optimization approach, named the DC (Difference of Convex) programming and DCA (Difference of Convex Algorithms) for solving some classes of image analysis addressed above. 1. Compressed sensing is a signal processing technique for efficiently acquiring and reconstructing a signal, which is breaking the traditional limits of sampling theory of Nyquist–Shannon by finding solutions to underdetermined linear systems. This takes advantage of the signal’s sparseness or compressibility when it is represented in a suitable basis or dictionary, which allows the entire signal to be determined from few relative measurements. In this problem, we are interested in two aspects phases. The first one is finding the sparse representation of a signal. The other one is recovering the signal from its compressed measurements on an incoherent basis or dictionary. These problems lead to solve a NP–hard nonconvex optimization problem. We investigated three models with four approximations for each model. Appropriate algorithms based on DC programming and DCA are presented. 2. Dictionary learning: we have seen the power and the advantages of the sparse representation of signals in compressed sensing. Finding out the sparsest representation of a set of signals depends not only on the sparse representation algorithms but also on the basis or the dictionary used to represent them. This leads to the critical problems and other applications in a natural way. Instead of using a fixed basis such as wavelets or Fourier, one can learn the dictionary, a matrix D, to optimize the sparsity of the representation for a large class of given signals (data). The matrix D is called the learned dictionary. For this problem, we proposed an efficient DCA based algorithm including two stages: sparse coding and dictionary updating. An application of this problem, image denoising, is also considered. 3. Image segmentation: partitioning a digital image into multiple segments (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into a form that is more meaningful and easier to analyze. We have developed an efficient method for image segmentation via feature weighted fuzzy clustering model. We also study an application of image segmentation for cell counting problem in medicine. We propose a combination of segmentation phase and morphological operations to automatically count the number of cells. Our approach gives promising results in comparison with the traditional manual analysis in despite of the very high cell density


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.