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Foreword

On the need to cluster

Data acquisition has become increasingly easy thanks to the increased perfor-
mance of computing. Therefore, practitioners are facing data sets which are in-
creasingly information-rich but also increasingly abstruse. Indeed, the information
contained in the data sets can be directly unattainable for two main reasons: the
quantity of data and their complexity. Thus, statistical methods are mandatory to
analyze such data sets.

Clustering is an approach which reduces the problem caused by the large quantity
of data. Indeed, its aim is to group the individuals into few speci�c classes. Thus,
it provides a meaningful summary of the data set throughout few characteristic
individuals. The idea of the individual (or object) clustering is natural. For instance:
the living world is divided into two classes: plants and animals; the animals are
split into invertebrate and vertebrate; the vertebrate are classi�ed into �ve classes
(mammals, �shes, birds, amphibians, reptiles)...

The probabilistic methods permit to perform the cluster analysis in a rigorous
context. Among these methods, the �nite mixtures of parametric distributions sum-
marize the data by the few parameters of each class. Moreover, in this context, the
classical probabilistic tools are available to answer the di�cult questions of cluster
analysis like the choice of the number of classes. If the bibliography is proli�c about
continuous data sets, we note a shortage when the data are more complex. In this
context, the aim of this manuscript is to study existing probabilistic methods and
to propose new ones to cluster complex data sets.

The two objectives of this work

We focus on two situations where the data sets are complex : the case where indi-
viduals are described by categorical variables and the case where they are described
by mixed variables (di�erent kinds of variables). Thus, two thematics are studied.

� The model-based clustering for categorical data sets.
� The model-based clustering for mixed data sets.

The categorical variables are di�cult to cluster since they leave the statistician
facing with many combinatorial challenges. This di�culty increases when the vari-
ables are dependent in the same class. Indeed, the models require a large number of
parameters in order to take into account the intra-class dependencies. Thus, the clas-
sical approach assumes the conditional independence between variables. However
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10 Foreword

this approach is biased when the conditional independence assumption is violated.
Many alternative approaches have been proposed but their answers stay incomplete.
Indeed, the combinatorial problem of the model selection is not always solved. More-
over, these methods can su�er from instability or from a lack of interpretability. In
this context, our contribution consists in two parsimonious mixture models which
allow to cluster categorical data presenting intra-class dependencies. The main idea
of these models is to group the variables into conditionally independent blocks. By
setting speci�c distributions for these blocks, both models consider the intra-class
dependencies between the variables. Both models provide few parameters to sum-
marize the data, propose a rigorous approach to perform the model selection and
give a user-friendly visualization of the parameters. The challenge of the categorical
data clustering is motivated by the fact that categorical data are easily accessible.
As they are numerous, the risk to observe intra-class correlated data increases.

The study of the cluster analysis of mixed data sets is the second objective of
this work. This problem is motivated by the fact that the current data sets are often
composed with di�erent kinds of data. A classical approach uses factor analyzers
methods. The interpretation of such a method is often complex since the parameters
are not relative to the variables in their native space. Other classical approaches
consist in applying a speci�c mixture model on these data. The challenge is due to
the lack of classical distributions for mixed variables. We propose two mixture mod-
els to �ll this gap. The �rst one is classical since it is an extension of a well-known
method to cluster categorical data sets. Indeed, the model combines Gaussian dis-
tributions and linear logistic regressions. Thus, this model analyzes data sets with
continuous and categorical variables. The second model is the main contribution of
this thesis since it allows to analyze data sets with any kind of variables admitting
a cumulative distribution function. This model is de�ned as a mixture of Gaus-
sian copulas, thus preserving classical one-dimensional margin distribution for each
variables of each component. Furthermore, this approach modelizes the intra-class
dependencies. Finally, note that a visualization tool is available as a by-product of
this model.

Organization of the manuscript

The manuscript is divided into two main parts corresponding to the two kinds
of data of interest. More precisely, it is organized as follows.

� Chapter 1 is a brief overview of the main clustering methods in a general
framework. It focuses on the di�erent aspects related to �nite mixture mod-
els. It introduces the general notions and algorithms used in the following
chapters.

� Part I: Model-based clustering for categorical data

� Chapter 2 consists in the state of the art of the methods performing the
cluster analysis of categorical data sets.
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� Chapter 3 presents our �rst contribution to the categorical data analysis
framework. The proposed model groups the variables into conditionally
independent blocks. The speci�c distribution of the blocks modelizes the
intra-class dependencies and provides a speci�c coe�cient summarizing
the strength of these dependencies. All these results are part of the ar-
ticle Model-based clustering for conditionally correlated categorical data
[MBV13a].

� Chapter 4 presents our second contribution to the categorical data anal-
ysis framework. This model consists in a mixture model which groups
the variables into conditionally independent blocks. Each block follows
a parsimonious multinomial distribution where the few free parameters
correspond to its modes. All these results are part of the article Finite
mixture model of conditional dependencies modes to cluster categorical
data [MBV14a].

� Chapter 5 illustrates both R packages which perform the inference of
both proposed models. This chapter can also be used as a tutorial of
both packages since it provides a presentation of their main functions and
many scripts allowing to perform the cluster analysis.

� Part II: Model-based clustering for mixed data

� Chapter 6 consists in the state of the art of the methods performing the
cluster analysis of mixed data sets.

� Chapter 7 presents our �rst contribution to the cluster analysis frame-
work of mixed data sets with continuous and categorical variables. The
model is derived from the multilevel latent class model developed to clus-
ter categorical data sets. For this model, the component distributions of
the continuous variables are Gaussian and those of the categorical vari-
ables conditionally on the continuous ones are linear logistic regressions.
The model selection and the parameter estimation are simultaneously per-
formed by a gem algorithm.

� Chapter 8 presents the main contribution of this thesis. It consists in a
mixture model of Gaussian copulas. Thus, the model performs the clus-
ter analysis of data sets composed of any kind of variables admitting a
cumulative distribution function. All these results are part of the article
Model-based clustering of Gaussian copulas for mixed data [MBV14b].





Main abbreviations and notations

Main abbreviations

General

map maximum a posteriori
mape maximum a posteriori estimate
mle maximum likelihood estimate
cdf cumulative distribution function
pdf probability distribution function

Algorithms

em Expectation-Maximization algorithm
gem Generalized Expectation-Maximization algorithm

mcmc Markov chain Monte Carlo
sem Stochastic Expectation-Maximization algorithm

Information criteria

aic Akaike Information Criterion
bic Bayesian Information Criterion
icl Integrate Complete-Likelihood

Main notations

The notations have been de�ned with the following rules:

� The variables are denoted with Arabic letters while the parameters are de-
noted with Greek letters.

� The multidimensional objects are denoted by bold symbols while the unidi-
mensional objects are denoted by thin symbols.
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14 Main abbreviations and notations

Variables and observations

X i set of the e random variables related to individual i
xi observed values of X i

x′i transpose of xi
xci subset of xi composed of the c continuous variables
xdi subset of xi composed of the d discrete variables
mj number of modalities of variable j
Zi random variable of the class membership of the individual i
zi observed values of Zi

yi second latent variable related to individual i (if required)
x n sample x = (x1, . . . ,xn)
z n sample z = (z1, . . . ,zn)
y n sample y = (y1, . . . ,yn)

Parameters

θ whole parameters of the mixture
π vector of proportions
αk parameters related to component k
Γk matrix of the correlation related to component k
ν number of parameters

Important integers

c number of continuous variables
d number of categorical variables
e number of variables, i.e. c+ d = e
g number of classes
n size of the sample
nk size of class k computed on the fuzzy partition
nk size of class k computed on the hard partition

Classical distributions

Dg(.) Dirichlet distribution of size g
G(.) Gamma distribution

Nc(µ,Σ) c-variate Gaussian distribution with mean µ and covariance matrix Σ
Mg(.) multinomial distribution of size g
P(.) Poisson distribution
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Classical tools

p(.; .) probability distribution function
P (.; .) cumulative distribution function

φc(.;µ,Σ) pdf of Nc(µ,Σ)
Φc(.;µ,Σ) cdf of Nc(µ,Σ)

Φ1(.) pdf of N1(0, 1)
KL(f1, f2) Kullback-Leibler divergence from f1 to f2 (f2: reference)

p(x;θ) observed-data likelihood
L(θ;x) observed-data log-likelihood

p(x, z;θ) complete-data likelihood
L(θ;x, z) complete-data log-likelihood

tik(θ) probability that xi is drawn by component k





Chapter 1

Cluster analysis: state of the art

The main purpose of this chapter is to review the liter-
ature about cluster analysis. Note that our aim is not
to be exhaustive, thus we principally focus on the model-
based approaches in order to de�ne the di�erent notions
developed in this manuscript.
Firstly, we present di�erent approaches (geometric and
probabilistic) to cluster the data. Secondly, we review
the frequentist and the Bayesian approaches used to in-
fer the �nite mixture models. Finally, we present some
criteria performing the model selection in a probabilistic
context.
Two toy examples illustrate the di�erent notions and the
algorithms through this chapter, in a continuous case
since it is the easiest one.

The good story lay in half-told things
which must be �lled in out of the

hearer's own experience.
John Steinbeck � Tortilla Flat

1.1 Overview of the clustering approaches

1.1.1 Clustering challenge

Nowadays, practitioners are often facing complex data sets, that we denote in
this manuscript by x = (x1, . . . ,xn), describing n individuals xi = (x1

i , . . . , x
e
i ) by e

variables. This complexity is generally involved by the large number of individuals
overwhelming the practitioners under embedded informations. Furthermore, this
complexity can be increased by the descriptors due to the number of variables or to
their nature (for instance, categorical or mixed variables).

Clustering is a general answer to this problem which increasingly emerges with
the computer development. Indeed, this technique summarizes the data by grouping

17



18 Chapter 1. Cluster analysis: state of the art

the individuals into g classes according to both following principles: the class homo-
geneity (grouping similar individuals into the same class) and the class separability
(two individuals arisen from two di�erent classes are strongly di�erent). Even if
the exact de�nition of a class is speci�c to the clustering method selected by the
practitioner, it is always based on these two principles.

According to these principles, the clustering methods try to determine the latent
vector z = (z1, . . . ,zn) where the vector zi = (zi1, . . . , zig) indicates the class mem-
bership of the individual xi by using a complete disjunctive coding (i.e. zik = 1
if xi is a�liated into class k and zik = 0 otherwise). Note that classes have to be
interpretable for the specialist of the domain where the data come from. Indeed,
a clustering method provides an e�cient summary of the data only if its resulting
classes are meaningful.

The class memberships of the individuals have to be estimated but the number
of classes is generally unknown. Thus, an e�cient clustering method provides tools
to help the practitioner for the selection of the number of classes. The clustering
has three main goals: to estimate the partition, to provide meaningful classes and
to select automatically the number of classes.

For the large data sets (n and e large), practitioners can simultaneously cluster
the individuals and the variables. Two partitions can thus be searched: one among
the individuals and one among the variables. This approach is named co-clustering
[GN08, GN10] but it is not developed in this thesis where we only study the clustering
problem.

The methods performing the cluster analysis are divided into two large families:
the geometric methods based on some distances between individuals and the prob-
abilistic methods modelizing the data generation. In this section, both approaches
are detailed in a general framework. Nevertheless, they are illustrated on a bivariate
continuous data set presented below since it allows to easily visualize the results.
Two speci�c states of the art relative to more complex situations (categorical and
mixed data sets) are given later in the introductions of Part 1 and Part 2.

The Faithful data set [AB90] is available on the R package mass. This
data set contains the waiting time between 272 eruptions and the duration
of the eruptions for the Old Faithful geyser in Yellowstone National Park
(Wyoming, USA) displayed by Figure 1.1. The aim is to provide a meaning-
ful summary of the data set x = (x1, . . . ,xn) where each individual xi ∈ R2.
Thus, in this example n = 272 and e = 2.

Faithful data set 1.1 (Data presentation).
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Figure 1.1 � The Faithful data set.

1.1.2 Geometric approaches

Generalities

Main idea The geometric approaches group the set of the clustering methods
based on the distance measurement between individuals, in order to assign the most
similar individuals into the same class. By exacerbating the class homogeneity con-
cept, an (intractable) objective could be the following: two individuals arising from
the same class have to be more similar than two individuals having a di�erent class
membership. This aim can be expressed by the following mathematical relation:
for a distance D(., .) and for all (i0, i1, i2, i3) such that zi0 = zi1 and zi2 6= zi3 :

D(xi0 ,xi1) ≤ D(xi2 ,xi3).

A NP-hard problem Since such a relation has to be satis�ed by all the quadru-
plets, this objective generally leads to empty set solution (huge number of con-
straints). Furthermore, it is not realizable to perform an exhaustive approach which
computes the objective criterion for all the possible partitions. Indeed, for a sample
of size n = 40 that we cluster in g = 3 classes, the number of the possible partitions
is roughly equal to 2.1018. Thus, a computer performing 109 partitions per second
needs 64000 years to evaluate all the possibilities.

Global criterion In practice, it is advised to optimize a global criterion relating
the class homogeneity. Di�erent criteria, often based on heuristic ideas, have been
also proposed (see the running example). These criteria are easily optimized by an
algorithm avoiding an exhaustive approach which is intractable.

Structure of this section Firstly, we present the three most common criteria
of interest when the variables are continuous. Secondly, we detail the K-means
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algorithm which is the most classical geometric approach to cluster individuals de-
scribed by continuous variables [Ber06]. Finally, this algorithm is illustrated on the
Faithful data set.

Let us introduce the matrix of the whole sample covariance, denoted by T
and de�ned as

T =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)′, (1.1)

where x̄ = 1
n

∑n
i=1 xi is the mean vector of the whole sample. This matrix

can be written as a sum of two matrices

T = W +B, (1.2)

where the intra-class covariance matrixW and where the inter-class covari-
ance matrix B are de�ned by

W =
1

n

g∑
k=1

n∑
i=1

(xi − x̄k)(xi − x̄k)′ and B =
1

n

g∑
k=1

nk(x̄k − x̄)(x̄k − x̄)′,

(1.3)
x̄k = 1

nk

∑n
i=1 zikxi is the mean vector and nk =

∑n
i=1 zik the size of class

k. These matrices characterize both construction's principles of the classes.
Indeed, if classes are homogeneous, then the distances between the individ-
uals assigned to a class and its center are small, so W is �small�, while if
classes are well separated, then the centers of the classes are mutually taken
away, so B is �large�.
Thus, the practitioner can cluster the Faithful data set by optimizing dif-
ferent criteria related to these matrices. Among them, the most classical
are the following: min trace(W ), min det(W ) or max trace(BW−1). We
refer to the book Cluster analysis by B.S. Everitt, S. Landau, M. Leese and
D. Stahl [ELLS11] for more details.

Faithful data set 1.2 (Optimized criteria for continuous variables).

K-means algorithm

Main idea S. Lloyd proposed the K-means algorithm around 1950 and waited
1982 to publish it [Llo82]. Associated to a distance D(., .), this algorithm aims at
minimizing the following inertia

I(z,θ; x) =
n∑
i=1

g∑
k=1

zikD
2(xi,µk), (1.4)

where θ = (µ1, . . . ,µk) and where µk is the center of the class k. Starting from
an initial value of the class centers, the K-means algorithm alternates between two
steps: the assignment of each individual to the class minimizing the distance between
him and the class center, and the computation of the class centers.
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Starting from an initial value θ[0], iteration [r] is written as follows
� Class membership z[r] = argmin

z
I(z,θ[r]; x):

z
[r]
ik =

{
1 if k = argmin

k′
D2(xi,µ

[r]
k′ )

0 otherwise.
(1.5)

� Centroid estimation θ[r+1] = argmin
θ

I(z[r],θ; x):

µ
[r+1]
k =

1

n[r]
k

n∑
i=1

z
[r]
ik xi, (1.6)

where n[r]
k =

∑n
i=1 z

[r]
ik .

Algorithm 1.3 (The K-means algorithm).

As this algorithm converges to a local optimum of I(z,θ; x), it is mandatory
to perform di�erent initializations and to keep the couple (z,θ) minimizing the
objective inertia.

Remark 1.4 (K-means algorithm and optimized criterion). If the K-means algo-
rithm clusters continuous data by using the Euclidean distance, then it optimizes
the criterion min trace(W ).

Extensions of the K-means algorithm Some approaches attempt to reduce
the drawbacks of the K-means algorithm. For instance, the K-means++ algorithm
[AV07] extends the classical one by a randomized seeding technique improving the
speed and the accuracy of the K-means.

How many classes? The selection of the number of classes can not be directly
performed by the inertia criterion de�ned in (1.4) since this latter is decreasing with
the number of classes g. However, the objective criterion reaches a plateau when
g increases. Indeed, when this plateau is reached, the added classes are no more
homogeneous while the class overlapping increases. A heuristic criterion consists in
selecting the �rst number of classes of this plateau. But, it is clear that this kind
of criterion is not very rigorous. In practice, the criterion can be unhelpful when
some plateaus are observed. Other criteria are available, see for instance [Ber06],
but they are based on a heuristic approach.
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We use the K-means algorithm to cluster the Faithful data set. According
to Figure 1.2a drawing the evolution of the inertia for di�erent numbers of
classes (from one to eight), we can select two classes. The partition and
the class centers are displayed by Figure 1.2b. The Faithful data set
is also summarized by two pro�les of eruptions: the eruptions with short
waiting time and duration (center at (2.09, 54.75)) are displayed with black
circles and the eruptions with larger waiting time and duration (center at
(4.30, 80.28)) are displayed with red triangles.

Faithful data set 1.5 (K-means algorithm approach).
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(b) Scatter plot and class centers

Figure 1.2 � Outputs of the Faithful cluster analysis performed by a K-means al-
gorithm. The scatter plot indicates the partition by the colors and the thin symbols,
while the class centers are represented by the bold symbols in the color of their class.

Limits of the geometric approaches

Di�erent authors point out the drawbacks inherent to the geometric approaches
(see for instance the book Data analysis, chapter 9 by G. Govaert [Gov10]) whose
the three main drawbacks are presented here.

Model selection performed by heuristic approaches Even if the geomet-
ric approaches are a possible answer to the clustering challenge, many theoretical
problems may arise [Gov10]. They generally select the number of classes by us-
ing heuristic approaches like the slope of the criterion values. Furthermore, both
choices of the metric and the criterion used are important aspects of these meth-
ods, since they involve many hidden assumptions which are generally ignored by the
practitioners. However, their impact is crucial as they involve di�erent partitions.
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Extension of the conclusions to the whole population If the conclusions of
a cluster analysis based on a sample have to be extended to the whole population,
it is mandatory to understand (so, to modelize) the data generation. The extension
of the conclusions obtained by a geometric method are not allowed. In such a case,
the probabilistic framework is also mandatory.

Dealing with missing values The geometric approaches cannot directly manage
data sets with missing values. Indeed, they have to perform an arbitrary imputa-
tion or they have to ignore individuals with missing values while the probabilistic
approaches are able to rigorously manage such data.

Links between geometric and generative approaches

Many geometric approaches can be interpreted as probabilistic ones revealing
their probabilistic hidden assumptions (some examples are given in this thesis). In
order to have probabilistic tools and to reveal the assumptions made by the clustering
methods, we develop this thesis in a probabilistic framework.

1.1.3 Generative approaches

Generalities

Main idea The mixture models are natural tools to cluster the data by approach-
ing their distributions, because their probabilistic framework explains the data gen-
eration. In this context, the notion of class homogeneity is de�ned by the following
idea: the individuals of the same class arise from the same probability distribution.
If this distribution is generally assumed to be uni-modal, this assumption can be re-
laxed (for instance, the component distribution can be itself a mixture of parametric
distributions to increase the model �exibility [BRC+10]).

Latent variable and class membership The class membership of the individ-
ual i is a qualitative random variable having g modalities and denoted by Zi =
(Zi1, . . . , Zig) by using a disjunctive coding. Thus, the class membership follows a
multinomial distribution

Zi ∼Mg(π1, . . . , πg), (1.7)

where πk denotes the proportion of class k also interpreted as the probability a
priori that an individual arises from class k. The class proportion πk respects
both following constraints 0 < πk ≤ 1 and

∑g
k=1 πk = 1. Note that the clustering

challenge is to estimate the value of the realization zi of the latent variable Zi

conditionally on the observed data xi.

Observed variables Class k is characterized by the distribution of the e-variate
random variable X i = (X1

i , . . . , X
e
i ) de�ned on the space X conditionally on the

realization zi of the random variable Zi. This distribution is denoted by pk(xi)
where k is such that zik = 1 and

X i|Zi = zi ∼ p{k:zik=1}(xi). (1.8)
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Distribution of both observed and latent variables By using this probability
decomposition P (X i,Zi) = P (Zi)P (X i|Zi), the probability distribution function
(pdf) of (xi, zi), denoted by the generic notation p(.), is de�ned as follows

p(xi, zi) =

g∏
k=1

(πkpk(xi))
zik . (1.9)

Since this model is used to cluster, the labels zi are considered as missing values.
Thus, we obtain both de�nitions of the �nite mixture model and its generative
model, by summing the previous equation over all the possible values of Zi.

De�nition 1.6 (Finite mixture model). The �nite mixture model with g compo-
nents de�nes the margin distribution of the random variable X i. Its pdf is written
as

p(xi) =

g∑
k=1

πkpk(xi). (1.10)

Generative model The sampling from the mixture model de�ned by (1.10) is
performed by the following generative model divided into two steps:

� Step 1: the class membership sampling Zi ∼Mg(π1, . . . , πg).
� Step 2: the conditional data sampling X i|Zi = zi ∼ p{k:zik=1}(xi).

Classi�cation rule

Fuzzy and hard partition When the data distribution p(xi) is known, the def-
inition of Zi|X i = xi is straightforward

Zi|X i = xi ∼Mg(ti1, . . . , tig), (1.11)

where tik is the conditional probability that xi is drawn from component k which is
de�ned by

tik =
P (Zik = 1,X i = xi)

P (X i = xi)
=
πkpk(xi)

p(xi)
. (1.12)

Vector ti = (ti1, . . . , tig) also de�nes a fuzzy partition which can be used to compute
the risk associated to the hard partition zi.

Error risk and classi�cation rule From this fuzzy partition, we can de�ne the
classi�cation error e(.) associated to (zi, ti) by

e(zi, ti) = 1−
g∑

k=1

(tik)
zik . (1.13)

The maximum a posteriori rule (map) minimizes the classi�cation error by assigning
an individual into the class having the largest probability. Thus, it de�nes the
classi�cation rule r(.) as follows

∀xi ∈ X , r(xi) = k if ∀k′ tik ≥ tik′ . (1.14)

The evaluation of the risk of the classi�cation error is a great advantage of the prob-
abilistic methods, since the geometric ones cannot quantify the error risk associated
to their classi�cation rule.
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1.2 Generalities on �nite mixture models

Main idea These models assume that the observed individuals are independently
drawn from the same distribution. We now quickly describe the semi-parametric
mixture models which make few assumptions on the component distributions. Then,
we describe the full parametric mixture models which assume that the component
distributions are parametric ones. Note that the model description, presented here,
is based on Finite mixture models by G.J. McLachlan and D. Peel [MP00]. In this
thesis, we focus on the full parametric mixture models since they permit an easier
interpretation of the classes.

1.2.1 Semi-parametric mixture models

Few constraints on the component distributions The semi-parametric ap-
proaches do not assume that the components follow parametric distributions. How-
ever, for reasons of identi�ability, some constraints have to be imposed for the com-
ponents. For instance, distributions have to belong to the family of uni-modal
distributions or symmetric distributions [HWH07].

Inference The estimation of the component distributions can be performed by
algorithms inspired from the em algorithm [BCH09] which uses Kernel approaches
[CHL10]. The R package mixtools [BCH09] allows us to cluster the data by using
a semi-parametric mixture model.

Non-identi�ability risk The semi-parametric mixture models are very �exible,
so they can easily �t the data distribution. However, this �exibility involves an
important risk of non-identi�ability and a large variance of the estimated model.
Furthermore, the class interpretation can be di�cult since the components can not
be summarized by few parameters as in the full parametric mixture models. So,
in this thesis, we only study the parametric mixture models for which the general
properties are now developed.

1.2.2 Full parametric mixture models

Generalities

Main idea These models make the supplementary assumption that each compo-
nent follows a parametric distribution, so pk(xi) = p(xi;αk) where αk groups the
parameters of component k. The individuals are also drawn by a parametric dis-
tribution p(xi) = p(xi;θ) where θ = (π,α) denotes the whole parameter, where
π = (π1, . . . , πg) is the vector of the class proportions and where α = (α1, . . . ,αg)
groups the parameters of the components.

De�nition 1.7 (Finite parametric mixture model). The pdf of the �nite parametric
mixture models with g components is de�ned by

p(xi;θ) =

g∑
k=1

πkp(xi;αk). (1.15)
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Interpretation via the parameters These models are more meaningful than the
semi-parametric approaches since each class can be summarized by its proportion πk
and the parameters of its distribution αk. The probabilities of the class memberships
tik are also parametrized by θ, so they are now denoted by tik(θ) with

tik(θ) =
πkp(xi;αk)∑g

k′=1 πk′p(xi;αk′)
. (1.16)

Components: trade o� between relevance and number This approach is
not really restrictive since a mixture of parametric distributions can approach any
distribution with any precision, if all the distributions (component distributions and
approached distribution) have the same support, just by increasing the number of
components and the sample size (see the following example). Thus, a mixture of
standard distributions can modelize highly complex distributions. However, the
mixture is more meaningful when the number of classes stays small. Furthermore,
as the mixture model is estimated on a �nite sample, the practitioner searches the
model performing the best trade o� between its bias (with the �true� model) and
its variance (caused by the �uctuations of the sampling). Therefore, it is important
that the components follow standard distributions which are adapted to the data.

Example 1.8 (Density estimation and Parzen-Rosenblatt estimator). Let x to be
the sample of size n where each individual xi ∈ R is independently drawn by the
distribution characterized by its pdf f(x). The Parzen-Rosenblatt estimator [Par62]
is de�ned as

p(y;θ) =
n∑
i=1

1

nh
K

(
y − xi
h

)
. (1.17)

Note that (1.17) de�nes a �nite mixture model with n components where each pro-
portion is equal to 1/(nh) and where the distribution of component i is parameterized
by one xi, for i = 1, . . . , n. Under some regularity conditions on the function K(.)
and under some relations between the sample size n and the bandwidth h, the pdf
p(y;θ) converges to the true pdf f(x) (see for instance [ZD12] for more details).
Figure 1.3 illustrates the Parzen-Rosenblatt estimator approaching a pdf by using
the uniform kernel or the Gaussian one

Kuniform(y) =

{
1/2 if |y| < 1

0 otherwise
and KGaussian(y) =

1√
2π
e−

1
2
y2 . (1.18)

Mixture and kind of variables The parametric mixture models can cluster
individuals by approaching the distribution of the variables in their native space.
Obviously, the distributions of the components have to respect the nature of the
variables. Thus, the mixture models are used to analyze di�erent kinds of data sets.
For instance, the mixture of Poisson distributions [KM07] can cluster integer data
while the mixtures of Student distributions [PM00] can cluster the continuous ones,
but the mixture models are also used to cluster networks [LBA10, FRW13], rank
data [JB12] or functional data [JP14]. The case of categorical data is developed in
Part I while Part II is focused on the clustering of mixed data. However, the most
common mixture model is the Gaussian one that we detail now.
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(b) n = 25
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(c) n = 100
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(d) n = 1000

Figure 1.3 � The pdf of the true distribution (black dotted curve), and its estimates
obtained by the uniform kernel (thin blue curve) and by the Gaussian kernel (bold
red curve) where the bandwidth is h = lnn.

Gaussian mixture model

Main idea The Gaussian mixture model was introduced simultaneously to the
parametric mixture model in order to cluster the Pearson's crab data set [Pea94].
It is a powerful tool to cluster continuous data whose success is due to two main
reasons. On the one hand, its elliptical de�nition of a class is in accordance with
the natural de�nition of a class. On the other hand, its computational tractability
permits an easy inference. The Gaussian mixture model assumes that each random
variable X i|Zik = 1 is an e-variate Gaussian variable whose the mean vector is
denoted by µk and whose the covariance matrix is denoted by Σk, so

X i|Zik = 1 ∼ Ne(µk,Σk). (1.19)

Thus, we obtain the following de�nition of the Gaussian mixture model.

De�nition 1.9 (Gaussian mixture model). Let xi ∈ Re be the continuous variable
arisen from a Gaussian mixture model with g components. Its pdf is written as
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follows

p(xi;θ) =

g∑
k=1

πkp(xi;αk) with p(xi;αk) = φe(xi;µk,Σk), (1.20)

where φe(xi;µk,Σk) = 1
(2π)e/2|Σk|1/2

exp
(
−1

2
(xi − µk)′Σ−1

k (xi − µk)
)
and whereαk =

(µk,Σk).

Class interpretation The Gaussian mixture model provides a summary of each
class throughout its central position µk and its dispersion matrix Σk relating its
dependencies between the pairs of variables.

Parsimonious models When the samples are small, the information about the
intra-class dependencies between variables is not present in the data. In general,
the bias/variance trade o� may be better if constraints on the parameter space are
added. The resulting models are called parsimonious models. For instance, based on
the spectral decomposition of Σk proposed in [BR93], fourteen parsimonious models
were built [CG95]. As these models are sensitive to the unit of measurement of the
variables, a new family of Gaussian mixture model, named rtv, was proposed by
C. Biernacki and A. Lourme [BL13]. Finally, note that the spectral decomposition
of Σk can be used to cluster high-dimensional data [BB14].

Softwares Many softwares performing the estimation of the Gaussian mixture
models are available. Their impact in the di�usion of these models was decisive.
Among them, one can cite the three followers: Mclust [FR06], Mixmod [LIL+12]
and Mixtool [BCHY09].

As both variables of Faithful data set are continuous, we estimate a bi-
component Gaussian mixture model.
The histograms of both variables are displayed in Figure 1.4 and the esti-
mated marginal pdf of both components are superimposed.
The model summarizes the data set as follows.

� The majority class (π1 = 0.64) is the class of the strong eruptions
since (µk = (4.29, 80.00)).

� The minority class (π2 = 0.36) is the class of the weak eruptions
since (µk = (2.04, 54.51)).

The class of the strong eruptions is more dispersed than the class of the
weak eruptions since the variance of both variables are larger (respectively
(0.15, 40.90) and (0.10, 57.68)). Even if the variables are positively corre-
lated in both classes, their dependency strength is larger in the minority
class than in the majority one. Indeed, the coe�cient of correlation is equal
to 0.50 in the class of the weak eruptions while it is equal to 0.23 in the
class of the strong eruptions.

Faithful data set 1.10 (Gaussian mixture model clustering).
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Figure 1.4 � Histograms and marginal densities of the bi-component mixture model
for Faithful data set.

We remark that the summary provided by the Gaussian mixture model is
more precise than the suumary obtained by the K-means algorithm. In-
deed, the K-means algorithm does not consider the class proportions, so it
implicitly assumes that both kinds of eruptions are equiprobable. Further-
more, the Gaussian mixture model provides an analysis of the intra-class
dependencies as displayed by Figure 1.5 which draws the scatter plot of the
partition and the ellipses of equiprobability.

Faithful data set 1.11 (Comparison between both clustering results).

1.2.3 Mixture model with conditional independence assump-

tion

Main idea The conditional independence model (cim), also known as naive Bayes
or latent class model, is a mixture model assuming the conditional independence
between variables. So, the conditional probability of the e-variate random variable
X i = (X1

i , . . . , X
e
i ) is written as

P (X i|Zik = 1) =
d∏
j=1

P (Xj
i |Zik = 1). (1.21)

Obviously, this assumption is weaker than the global independence assumption.
Indeed, the dependency between the variables is modelized by the structure in classes
of the distribution.

De�nition 1.12 (cim). The cimmodel is a mixture model assuming the conditional
independence between the variables. Thus, the pdf of the individual xi arisen from
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Figure 1.5 � Outputs of the Faithful cluster analysis performed by a bi-component
Gaussian mixture model. The scatter plot indicates the partition by the colors and
the thin symbols while the intra-class dependencies are depicted by the ellipses of
equiprobability of the Gaussian components: the individuals belonging to the class
of the strong eruptions are displayed with red triangles and those belonging to the
class of the weak eruptions are displayed with black circles.

the cim model is written as

p(xi;θ) =

g∑
k=1

πk

d∏
j=1

p(xji ;αkj), (1.22)

where αkj denotes the margin parameters related to variable j for component k.

Example 1.13 (Correlated data drawn by cim). Figure 1.6 displays a sample drawn
by the cim model with four bivariate Gaussian components. In this example, it is
straightforward that both variables are not independent.

Meaningful results in practice The cim model obtains good results in practice
since it requires few parameters, as discussed by D.J. Hand and K. Yu [HY01].
Thus, it can realize a good trade o� between the bias and the variance. Its sparsity
is a great advantage for the small data sets since the information of the intra-class
dependency is generally not present. The success of the cim model is also explained
by its meaningful aspect. Indeed, when the marginal distributions of the components
are classical (for instance when they belong to the exponential family), each class
can be summarized by the parameters of its margins.

Bias of the intra-class correlated data When the conditional independence
assumption is violated, the cim model su�ers from severe biases. In such a case,
if the class number is known then the partition becomes biased, while if the class
number is unknown then the cim model overestimates it to better �t the data (see
for instance the application presented in [VHH09]).
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4
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Example 1.14 (Biased partition). Let the bi-components homoscedastic Gaussian
mixture model, whose the pdf of xi ∈ R2 is denoted by f(xi) = 1

3
φ2(xi;µ1,Σ) +

2
3
φ2(xi;µ2,Σ) where Σ =

(
1 ρ
ρ 1

)
and ρ 6= 0. The optimal classi�cation rules

(minimizing the Bayes' error) is

rBayes(xi) : zik =

{
1 if (xi − µk)′Σ−1(xi − µk) < (xi − µ`)′Σ−1(xi − µ`) with ` = 2− k
0 otherwise.

Let the cim model having the same one-dimensional margin distributions than the
model de�ned by f(xi). The pdf of this cim model is written as

p(xi;θ) =
1

3
φ2(xi;µ1,Γ) +

2

3
φ2(xi;µ2,Γ) with Γ =

(
1 0
0 1

)
.

The classi�cation rules associated to this model is

rcim(xi) : zik =

{
1 if (xi − µk)′(xi − µk) < (xi − µ`)′(xi − µ`) with ` = 2− k
0 otherwise.

Thus, the partition estimated by the cim model is biased since the set Ω which groups
the individuals where the classi�cation rules disagree has not a measure equals to zero

Ω = {xi ∈ R2 : rBayes(xi) 6= rcim(xi)}.

1.2.4 The identi�ability of the mixture models

Essential condition The classes provided by a cluster analysis are interpreted
throughout the parameters of the components. It is also crucial that the parameters
are unique for a �x distribution. Thus, two models having the same distribution
must have the same parameters, we also refer to the identi�ability of the model.
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De�nition 1.15 (Identi�ability). Let two mixture models having the same nature
for all the components and respectively parametrized by θ and θ′, then the model
is identi�able if

∀xi ∈ X p(xi;θ) = p(xi;θ
′)⇔ θ = θ′. (1.23)

Problem due to the relabeling of the components Obviously, the mixture
models are not strictly identi�able but only up to label swapping, since the classes
can be relabeled as illustrated by the following example. However, this case of non
identi�ability is not a severe drawback since the interpretation of the partition stays
identical.

Example 1.16 (Relabeling of the components). Let the bi-component mixture mod-
els parametrized by θ = (π1, π2,α1,α2) and θ′ = (π2, π1,α2,α1), then both parame-
ter sets de�ne the same distribution:

∀xi ∈ X , p(xi;θ) = π1p(xi;α1) + π2p(xi;α2)

= π2p(xi;α2) + π1p(xi;α1)

= p(xi;θ
′).

Relabeling of the components and inference Note that this condition of non
identi�ability does not disturb the em algorithm (see next section) but, in a Bayesian
framework, it can involve the label switching phenomenon [Ste00a].

Weakly identi�able mixture models In order to avoid the problem due to
the component relabeling, the notion of weak identi�ability was introduced for the
mixture models [Tei63].

De�nition 1.17 (Weak identi�ability). The mixture model having p(xi;θ) as pdf
is weakly identi�able when

∀xi ∈ X p(xi;θ) = p(xi;θ
′)⇔ θ and θ′ are equivalent. (1.24)

Many mixture models are weakly identi�able, among them one can cite the �nite
mixtures of Gaussian distributions, the �nite mixtures of Gamma distributions and
the �nite mixtures of Poisson distributions. Three main articles study the identi�-
ability of the mixture models [Tei63, Tei67, YS68]. In order to give an idea of their
reasoning, we present the theorem of H. Teicher [Tei63] which demonstrates the
weak identi�ability of some univariate mixture models (for instance the univariate
Gaussian mixture model).

Theorem 1.18 (Conditions of weak identi�ability [Tei63]). Let P = {P} be a family
of one-dimensional cumulative distribution functions with transforms ψ(t) de�ned
for t ∈ Sψ (the domain of de�nition of ψ) such that the mapping M : P 7→ ψ
is linear and one-to-one. Suppose that there exists a total ordering (�) of P such
that F1 ≺ F2 implies (i) Sψ1 ⊆ Sψ2, (ii) the existence of some t1 ∈ S̄ψ1 (t1 being
independent of ψ2) such that lim

t→t1
ψ2(t)/ψ1(t) = 0. Then, the class of all �nite

mixtures of P is weakly identi�able.
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Proposition 1.19 (Identi�ability of the univariate Gaussian mixture model [Tei63]).
The class of all �nite mixtures of univariate Gaussian distributions is weakly iden-
ti�able.

Proof. Let Φ1(.;µ, σ2) denote the Gaussian cumulative distribution function with
mean µ and variance σ2 > 0. Its bilateral Laplace transform is given by ψ(t) =
exp(σ2t2/2−µt). Order the family lexicographically by Φ1(xi;µ1, σ

2
1) ≺ Φ1(xi;µ2, σ

2
2)

if σ1 > σ2 or if σ1 = σ2 but µ1 < µ2. Then, Theorem 1.18 applies with Sψ =
(−∞,∞) and t1 = +∞.

However, some mixture models are not identi�able but are of interest since they
provide meaningful results in practice and since their parameters seem identi�able.

Generic identi�ability As the identi�ability condition could be too stringent, a
less restrictive condition, named generic identi�ability, was introduced.

De�nition 1.20 (Generic identi�ability). A model is generically identi�able when
the parameter space, where the model is not identi�able up to the component rela-
beling, has a measure equal to zero.

Based on the conditional independence assumption, E.S Allman, C. Matias and
J.A. Rhodes [AMR09] �nd a su�cient condition of the generic identi�ability for
the mixture of multinomial distributions. This model is studied in Part I, where
details on the proof of its generic identi�ability are given. However, some mixture
models are not generically identi�able, so their parameters cannot be interpreted as
illustrated by the following example.

Example 1.21 (Non-generic identi�ability of the mixture of uniform distributions).
Let xi ∈ [a1; b2] drawn by the bi-component mixture model of uniform distributions
whose the pdf is

p(xi;θ) = πU [a1, b1] + (1− π)U [a2, b2], (1.25)

where θ = (π, a1, b1, a2, b2), U [., .] denotes the pdf of a uniform distribution and
where a1 < b1, a2 < b2, a1 < a2, b1 < b2 and a2 < b1. This model is equivalent to
the following tri-component mixture model of uniform distributions whose the pdf is

p(xi;θ
′) = ε1U [a1, a2] + ε2U [a2, b1] + (1− ε1 − ε2)U [b1, b2], (1.26)

where θ′ = (ε1, ε2, a1, a2, b1, b2), ε1 = π a2−a1
b1−a1 and ε2 = π b1−a2

b1−a1 + (1− π) b1−a2
b2−a2 . Thus,

the distribution of xi can be modelized with two di�erent parametrizations θ and θ′.

1.3 Parameter estimation

Structure of this section The clustering of a data set by a �nite mixture model
requires the estimation of the model parameters. In this section, we present the
two most popular estimates in the mixture model context: the maximum likelihood
estimate (further denoted by mle) and the maximum a posteriori estimate (further
denoted by mape). For both estimates, we present the estimation algorithms and
their features speci�c to the mixture models.



34 Chapter 1. Cluster analysis: state of the art

Running example In this section, de�nitions and algorithms are given in a gen-
eralize case and they are illustrated by the following running example extracted from
the article Bayesian Modelling and Inference on Mixtures of Distributions of J.M.
Marin, K. Mengersen and C.P. Robert [MMR05].

Let xi ∈ R and let the bi-component univariate Gaussian mixture model
whose the pdf is written as

p(xi;θ) =
2∑

k=1

πkφ1(xi;µk, σ
2
k), (1.27)

where θ = (π1, µ1, σ
2
1, π2, µ2, σ

2
2) and where φ1(.;µk, σ

2
k) denotes the pdf of

the univariate Gaussian variable N1(µk, σ
2
k).

Running example 1.22 (Bi-component univariate Gaussian mixture).

1.3.1 Maximum likelihood estimation

In this section, we de�ne the likelihood function and the estimate of the maximum
likelihood whose we describe the main properties. Then, we introduce the notion
of complete-data and the likelihood function associated to it, named complete-data
likelihood function.

Maximum likelihood estimate

Main idea The likelihood function holds the whole information contained in the
data set. However, as it is more comfortable to work with the logarithm of this
function, we present the de�nitions of both functions.

De�nition 1.23 (Likelihood function). For an i.i.d. sample x, this function com-
puted at the point θ is de�ned by p(x;θ) =

∏n
i=1 p(xi;θ).

De�nition 1.24 (Log-likelihood function). The log-likelihood function computed
from the i.i.d. sample x and evaluated on the point θ is de�ned by

L(θ; x) =
n∑
i=1

ln p(xi;θ). (1.28)

For an i.i.d. sample x composed with n individuals xi ∈ R, then the likeli-
hood and the log-likelihood functions are de�ned as

p(x;θ) =
n∏
i=1

2∑
k=1

πkφ1(xi;µk, σ
2
k) and L(θ; x) =

n∑
i=1

ln
2∑

k=1

πkφ1(xi;µk, σ
2
k).

(1.29)

Running example 1.25 (Likelihood and log-likelihood functions).
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In a frequentist framework, we want to infer according to the information given
by the data. So, a natural approach is to search the maximum likelihood estimate
(mle), denoted by θ̂.

De�nition 1.26 (mle). The maximum likelihood estimate is de�ned by

θ̂ = argmax
θ

L(θ; x). (1.30)

Thus, if the log-likelihood function (or similarly the likelihood function) is twice
di�erentiable � this condition is generally veri�ed for the mixture models �, the
mle is obtained by solving the equations which annul of the gradient and which
give a non positive de�nite Hessian matrix

∇L(θ; x) = 0. (1.31)

Properties of the mle The mle is a popular estimate since it has � under few
restrictive conditions � good properties:

� It is unique with a probability tending to 1 as the sample size grows to in�nity.
� It is consistent.
� It is asymptotically unbiased.
� It is asymptotically Gaussian.
� It asymptotically minimizes the Kullback-Leibler divergence.

Details on the conditions involving these properties are given in Theory of Point
Estimation, chapter 6 by E.L. Lehmann and G. Casella [LC98]. As the mle has
good properties, it is natural to study its existence and, if it exists, the methods
performing its estimation.

Degeneracy The existence and the uniqueness of the mle is not guarantee for
the mixture models. Indeed, the log-likelihood function can be not upper bounded
(see the running example). In such a case, the likelihood function can tend to the
in�nity. This situation, named degeneracy [Bie07], involves inconsistent estimators.
In such a case, the estimator verifying (1.31) and involving a �nite log-likelihood is
also searched.

We want to �t a bi-component univariate Gaussian mixture model on the
sample x. If we assume that µ1 = x1, we observe a model degeneracy since

lim
σ2

1 → 0
σ2

2 > 0

L(θ; x) =∞. (1.32)

Running example 1.27 (Degeneracy).

De�nition 1.28 (mle and unbounded log-likelihood). When the log-likelihood
function is not upper bounded, the mle is de�ned as

θ̂ = argmax
θ∈{θ:L(θ;x)<+∞ and ∇L(θ;x)=0}

L(θ; x). (1.33)
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Note that the log-likelihood function has generally several local optima which
increase the di�culty in �nding the mle. This phenomenon is now illustrated on
the running example.

We generate a sample of size 150 from the bi-component univariate mixture
model whose the parameters are de�ned as follows

π1 = 1/3, π2 = 2/3, µ1 = −1, µ2 = 3.5 and σ2
1 = σ2

2 = 1. (1.34)

We assume that the proportions and the variances are known and we want
to estimate the means by maximum likelihood. Figure 1.7 displays the log-
likelihood function according to the values on both parameters. One can
observe that this function has two optima. The global one is located around
(−1, 3.5) while the local one is located around (3.5,−1).

Running example 1.29 (Log-likelihood optima with unknown means).
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Figure 1.7 � Log-likelihood values for the sample of size 150 according to the values
of (µ1, µ2).

No explicit solution For the mixture models, the search of the mle involves
to solve equations having no analytical solution. The direct computation of the
mle is not easy because of the speci�c form of the log-likelihood function (sum of
logarithms of sums of pdf). So, some iterative procedures have also be used, like
the Newton-Raphson algorithm detailed, for instance, in Numerical optimization:
theoretical and practical aspects by J.F. Bonnans, J.C. Gilbert, C. Lemarechal and
C.A. Sagastizabal [BGLS06]. However, its implementation is often complex since it
involves the computation of the derivatives of the likelihood.
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The mixture models have been disseminated because of the invention of the em
algorithm whose the implementation is simple since no derivative of the likelihood
is involved. As this algorithm is specialized for the missing data, we �rstly de�ne
the notion of complete-data for the mixture model, and we secondly detail it.

Observed data and complete-data For a sample x, the generative models as-
sume that the drawing of each individual xi involves the preliminary sampling of
zi (see Paragraph Generative model in Section 1.1.3). As vector z is unobserved,
it is considered as a missing value. Thus, x is named the observed data while the
couple (x, z) is named the complete-data. In the same way, the log-likelihood func-
tion computed on (x, z) is named the complete-data log-likelihood function and it is
written as follows

L(θ; x, z) =
n∑
i=1

ln p(xi, zi;θ)

=
n∑
i=1

ln

(
g∏

k=1

(πkp(xi;αk))
zik

)

=
n∑
i=1

g∑
k=1

zik ln (πkp(xi;αk)) , (1.35)

By starting from the relation between the pdf p(xi;θ)p(zi|xi;θ) = p(xi, zi;θ), one
can deduce the following relation

L(θ; x) = L(θ; x, z) + e(z,x;θ). (1.36)

where e(z,x;θ) = −
∑n

i=1

∑g
k=1 zik ln tik(θ). Thus, L(θ; x) ≥ L(θ; x, z) since tik(θ)

is a probability.

For the bi-component univariate Gaussian mixture model, the complete-
data log-likelihood function computed on θ for the sample x and the parti-
tion z is de�ned as

L(θ; x, z) =
2∑

k=1

nk ln
πk
σk
− 1

2

2∑
k=1

n∑
i=1

zik
(xi − µk)2

σ2
k

− n ln
√

2π. (1.37)

Running example 1.30 (Complete-data log-likelihood).

1.3.2 Algorithms for a maximum likelihood estimation

The mle of the mixture models is generally obtained via an em algorithm. This
section is devoted to the presentation of this algorithm and of its extensions.
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The em algorithm

Presentation of the em algorithm The Expectation-Maximization algorithm
(further denoted by em) was proposed by Dempster, Laird, and Rubin in 1977
[DLR77]. Its domains of application are vaster than the mixture models since it
is specialized in the case of missing values. In the context of the mixture models,
the class memberships of the individuals are interpreted as missing values. Note
that this algorithm allows to cluster a data set with missing values by making
weakly restrictive assumptions. The main advantage of this algorithm is its sim-
plicity since it optimizes the likelihood function without computing its derivatives.
Furthermore, since its implementation can be parallelized, it stays e�cient when its
is confronted with large data sets. This section is just an overview of this algorithm,
the reader needing more details could refer to The EM algorithm and Extensions by
G.J. McLachlan and T. Krishnan [MK97].

De�nition of the em algorithm The em algorithm is an iterative one, starting
from an initial value of the parameter which alternates between the two follow-
ing steps: the computation of the expectation of the complete-data log-likelihood
(e step) and its maximization (m step).

Starting from an initial value θ[0], iteration [r] is written as
� E step: calculate Q(θ;θ[r]) where

Q(θ;θ[r]) = Eθ[r] [L(θ; x, z)] , (1.38)

� M step: select θ[r+1] such as

θ[r+1] = argmax
θ

Q(θ;θ[r]). (1.39)

Algorithm 1.31 (The em algorithm).

Stopping criteria Two criteria are generally used. The most common one consists
in stopping the algorithm when the increase of the log-likelihood is lower than the
threshold ε chosen by the user, so when

L(θ[r+1]; x)− L(θ[r]; x) < ε. (1.40)

The second one �xes in advance the number of iterations performed by the algorithm.

EM avoids the di�culties inherent to the mixture structure The estima-
tion of the parameters is doable for a mixture model (without constraint between
classes) if the inference of such a model can be made when the class memberships of
the individuals are known. Thus, a mixture model whose the estimate is tractable in
the discriminant analysis �so, when the labels are known� can always be inferred
in a clustering problem (for instance all the mixture models whose the component
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distributions belong to the exponential family and having no constraint together can
be explicitly computed).

We consider the classical Gaussian mixture model whose the components
are de�ned by (1.20). Iteration [r] of the em algorithm is written as

� E step: calculate conditional probabilities

tik(θ
[r]) =

π
[r]
k p(xi;α

[r]
k )

p(xi;θ
[r])

. (1.41)

� M step: maximization of the expectation of the complete-data log-
likelihood

π
[r+1]
k =

n
[r]
k

n
, µ

[r+1]
k =

1

n
[r]
k

n∑
i=1

tik(θ
[r])xi,

σ
2[r+1]
k =

1

n
[r]
k

n∑
i=1

tik(θ
[r])(xi − µ[r+1]

k )2, (1.42)

where n[r]
k =

∑n
i=1 tik(θ

[r]).

Running example 1.32 (em algorithm).

Properties of the em algorithm Under few restrictive assumptions [Wu83], the
em algorithm provides a sequence of estimates θ[r] which converges to a local opti-
mum of the log-likelihood function. This optimum only depends on the initialization
θ[0]. Indeed, the likelihood function increases at each iteration of the em algorithm

∀[r], L(θ[r+1]; x) ≥ L(θ[r]; x). (1.43)

This algorithm converges to a local optimum. So, it is mandatory to perform several
di�erent initializations in order to hope to get the mle. An other drawback of the
em algorithm is its speed of convergence. Indeed, this algorithm can converge slowly,
especially when the classes are overlapped. Thus, many authors have been interested
in the acceleration of the em algorithm (see for instance [VR08, BR12]). After the
description of the em algorithm applied on the Gaussian mixture models, we present
three of its extensions reducing its drawbacks.
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We consider the bi-component univariate Gaussian mixture model with
known proportions and variances. In such a case, the m step only con-
sists in computing µ[r+1]

k since the other parameters are known. Figure 1.8
displays the values of the likelihood computed at each iterations of two
runs of the em algorithm. The run printed with triangles is initialized at
(−1,−1/2) and converges to the mle while the run printed with squares
is initialized at (3.5, 3) and converges to a local maximum of the likelihood
function.

Running example 1.33 (Naive example and em algorithm).
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Figure 1.8 � Log-likelihood values associated with two sequences of parameters pro-
viding by an em algorithm.

Extensions of the EM algorithm

GEM algorithm Sometimes, the solution of the m step is not explicit. In such a
case, the Generalized-em (gem) algorithm can be used. The m step is also replaced
by a gm one which only requires the increase of the expectation of the complete-
data log-likelihood. Thus, at iteration [r], the e step is unchanged while the gm
step determines θ[r+1] such as

Q(θ[r+1];θ[r]) ≥ Q(θ[r];θ[r]). (1.44)

The gem algorithm keeps the monotonic property of the increase of the likelihood
function for each iteration which is inherited from the em algorithm. However, this
algorithm requires more iterations than the em since its convergence is slower.
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SEM and SAEM algorithms In order to overcome the three main drawbacks
of the em algorithm (i.e. strong dependency with the initialization point, local op-
timum convergence and slow convergence), the Stochastic-em (sem) algorithm was
proposed [CD+87]. The algorithm incorporates a stochastic step (s step) between
the e step and the m step directed by the random imputation principle. The se-
quence generated by the sem algorithm converges to a unique stationary distribution
close to p(θ|x).

Starting from an initial value θ[0], iteration [r] is written as
� E step: calculate the conditional probabilities

tik(θ
[r]) =

π
[r]
k p(xi;α

[r]
k )

p(xi;θ
[r])

. (1.45)

� S step: sample the class membership such as

z
[r]
i ∼M(ti1(θ[r]), . . . , tig(θ

[r])). (1.46)

� M step: select θ[r+1] such as

θ[r+1] = argmax
θ

L(θ; x, z[r]). (1.47)

Algorithm 1.34 (The sem algorithm for the mixture models).

The algorithm is stopped after a number of iterations chosen by the user. Note
that, another version of this algorithm, named saem, provides an almost surely
convergence to the unique stationary distribution [CD92]. It is a trade o� between a
version simulated annealing-like em algorithm and the sem algorithm. Indeed, the
a step (annealing) is introduced after the s step in order to reduce the impact of the
random perturbations performed by the s step. This reduction increases with the
number of iterations. Thus, when the saem starts, it works like the sem algorithm
then it tends to the em algorithm when the number of iterations increases.

CEM algorithm The Classi�cation-em (cem) algorithm [CG92] is a general al-
gorithm to compute the estimate and to �nd the partition under the classi�cation
approach. Thus, it provides the couple (θ, z) maximizing the complete-data log-
likelihood

argmax
(θ,z)

L(θ; x, z). (1.48)

Even if the estimate of the maximum complete-data is biased and inconsistent
[Gov10], its results can be better than those of the mle when the sample size is
small and when the classes are well separated. Furthermore, the cem algorithm
converges faster than the em algorithm. The cem algorithm incorporates a clas-
si�cation step between the e step and the m step according to the map principle.
Thus, its convergence speed is expected to be faster than the convergence speed of
the em algorithm.
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Starting from an initial value θ[0], its iteration [r] is written as
� E step: calculate Q(θ;θ[r]) where

tik(θ
[r]) =

π
[r]
k p(xi;α

[r]
k )

p(xi;θ
[r])

. (1.49)

� C step: minimize e(z,x;θ[r]) so

z
[r]
ik =

{
1 if tik(θ

[r]) ≥ ti`(θ
[r]) ∀` = 1, . . . , g

0 otherwise.
(1.50)

� M step: select θ[r+1] such as

θ[r+1] = argmax
θ

L(θ; x, z[r]). (1.51)

Algorithm 1.35 (The cem algorithm for the mixture models).

Remark 1.36 (cem for the spherical Gaussian mixture model and K-means algo-
rithm). The K-means algorithm is equivalent to the cem one when the model at
hand is the spherical Gaussian mixture model with equal proportions [CG91].

Drawbacks of the maximum likelihood approaches Even if the extensions
of the em algorithm reduce its main drawbacks, three problems stay inherent to the
maximum likelihood approach applied on mixture models.

� The �rst one is the di�culty to �nd the global maximum of the likelihood
function. Note that this problem is more present when the samples are small
since the likelihood function can be very lumpy.

� The second one is due to the upper-bound of the likelihood function. In-
deed, if this function is upper-bounded for categorical data, it can be upper-
unbounded in other situations (see for instance the heteroscedastic Gaussian
mixture model). Thus, the estimate returned by the algorithm can be on the
degeneracy way. In such a case, this estimate is also biased and inconsistent.

� The third one is about the regularity conditions which are often violated for
the small data sets. Thus, the estimation can involve an over-�tting.

1.3.3 Maximum a posteriori estimation

Bayesian framework In the Bayesian framework, the parameter θ is assumed to
be itself a random variable whose the prior distribution is denoted by p(θ). This
distribution contains the information on θ given by an expert. Thus, the term
prior can be interpreted as before to observe the data. There are di�erent prior
distributions and their impact on the inference can be not negligible, especially for
the small data sets. These distributions are presented in The Bayesian choice by
C.P. Robert [Rob07] giving large details on the Bayesian framework. If the prior
distribution contains the information given by an expert, the distribution from which
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inferences are made is the posterior one. The posterior distribution contains the
prior information given by the expert (p(θ)) and by the data (x). Thus, the term
posterior can be interpreted as after to observe the data.

Posterior distribution and likelihood function The Bayes' rule involves that
the posterior distribution p(θ|x) is de�ned as

p(θ|x) =
p(x|θ)p(θ)

p(x)
. (1.52)

Note that the information given by the data is related to the likelihood function
p(x|θ). Thus, the de�nition of the likelihood function is crucial since this function
contains all the informations given by the data, in both frequentist and Bayesian
frameworks. This function is also a common base for both communities. Since
p(x) is a constant according to θ, the following relation is used when p(x) is not
computable

p(θ|x) ∝ p(x|θ)p(θ). (1.53)

Main advantages of the Bayesian approach The Bayesian approaches for
the mixture model are detailed in Finite Mixture and Markov Switching Models by
S. Frühwirth-Schnatter [FS08] from where one can extract the four following main
qualities:

� The prior gives a smooth e�ect avoiding the problems of the degenerate so-
lution.

� These methods take into account the parameter uncertainty.
� They stay valid in case where regularity conditions are violated (small data

set, mixture with small component proportions) since they do not rely an
asymptotic normality.

� Their implementation is not complex when the component distributions be-
long to the exponential family. Indeed, in such case, the conjugate prior
distributions provide explicit posterior distributions [Rob07].

We consider the bi-component univariate Gaussian mixture model with
known proportions and variances. In this case θ = (µ1, µ2), we assume
independence between the prior distributions and we use the Je�reys non
informative ones, so

p(θ) = p(µ1)p(µ2) with µ1 ∼ N (ξ, κ) and µ2 ∼ N (ξ, κ), (1.54)

where ξ and κ are hyper-parameters. Figure 1.9 displays the values of the
prior and of the posterior distributions computed on a sample of size 150.

Running example 1.37 (Bayesian framework).
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(b) posterior distribution

Figure 1.9 � Prior and posterior distributions for a bi-component univariate mixture
model with ξ = 1 and κ = 9.

Smooth e�ect and degenerate solution The Bayesian framework can avoid
some degeneracy problems by using prior distributions which provides a smooth
e�ect as illustrated below.

From the sample x arisen from the bi-component univariate Gaussian mix-
ture model with known proportions with µ1 = 0 and µ2 = x1, the aim is
to infer the parameter θ = (σ2

1, σ
2
2). The frequentist way can su�er from

degeneracy solution as illustrated in Running example 1.27. In a Bayesian
way, classical independence assumption between prior distributions associ-
ated with conjugate prior distributions, involves that

p(θ) = p(σ2
1)p(σ2

2) where 1/σ2
1 ∼ G (c0, C0) and 1/σ2

2 ∼ G (c0, C0) . (1.55)

Since the posterior distribution p(θ|x) =
∑

z∈Z p(θ|x, z)p(z|x), where Z =
{1, 2}n, then this distribution is upper-bounded by

p(θ|x) ≤
∑
z∈Z

p(θ|x, z) and p(θ|x, z) = p(σ2
1|x, z)p(σ2

2|x, z). (1.56)

Since 1/σ2
k|x, z ∼ G

(
c0 + nk

2
, C0 +

∑
{i:zik=1}

(xi−µk)2

2

)
and since the mode

of a G(α, β) is α−1
β

when α ≤ 1, then

p(θ|x) < +∞ ∀θ. (1.57)

Running example 1.38 (Smooth e�ect and degenerate solution).

Note that the conjugate prior distributions are often used since they signi�cantly
simplify the inference. However, the choice of the hyper-parameters (parameters of
the prior distribution) can be delicate when the Je�ery's non informative prior is
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not available. A solution is also to �x the hyper-parameters by using an empirical
Bayesian approach which determines the hyper-parameters according to the data
(see for instance [Raf96] for the Gaussian mixture model).

Bayesian inference The Bayesian approaches often need simulation methods like
Markov chain Monte Carlo (mcmc) to be inferred. So, their development was recent
because it is related to the computational power. Since the posterior distribution
contains the whole information about θ (information given by the expert and by the
data), any inference on θ are based on this distribution. It is also natural to adopt
the approach similar to the one used in the frequentist framework. So, we want to
obtain the estimate of the maximum a posteriori estimate (mape) denoted by θ̃.

De�nition 1.39 (Maximum a posteriori estimate). The maximum a posteriori
estimate is de�ned by

θ̃ = argmax
θ

p(θ|x) = argmax
θ

p(x|θ)p(θ). (1.58)

Remark 1.40 (Link between the mle and mape). Note that if the prior follows a
uniform distribution, then p(x|θ) ∝ p(θ|x). In such a case, the mle is also equal to
the mape.

Thus, the mape is a reasonable estimate but it can be di�cult to obtain. It
can be also replaced by the mean or the median of the posterior distribution. Both
latter estimates are more easily obtained via mcmc algorithms. We now detail the
main algorithms performing the Bayesian inference on θ.

1.3.4 Algorithms for a maximum a posteriori estimation

EM algorithm for Bayesian estimation

Main idea The em algorithm can be modi�ed to provide the mape or the estimate
of the maximum penalized likelihood [Gre90]. This objective is achieved by using the
following relation obtained by applying the Bayes' rule and by using the logarithm
function

argmax
θ

p(θ|x) = argmax
θ

L(θ; x) + ln p(θ). (1.59)

To obtain the mape, the m step of the em algorithm consists in the maximization
of the expectation of the complete data posterior distribution p(θ|x, z). At iteration
[r], the m step determines the parameter θ[r+1] as such that

θ[r+1] = argmax
θ

Q(θ;θ[r]) + ln p(θ). (1.60)
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Let bi-component univariate Gaussian mixture model whose only the means
are unknown. The prior distribution of the parameters is de�ned in (1.54),
so the m step is written as

µ
[r+1]
k =

σ2
kξ + κ

∑n
i=1 tik(θ

[r])xi

σ2
k + κn

[r]
k

. (1.61)

Running example 1.41 (Bayesian estimation of Gaussian mixture).

MCMC algorithms and Bayesian estimation

Structure of this section We now present a short overview of three main al-
gorithms used to infer the parameters of a mixture model: the Gibbs sampler,
the Metropolis-Hastings algorithm and the Metropolis-within-Gibbs sampler. The
reader wanting more details can report on Monte Carlo Statistical Methods by
C.P. Robert [RC04]. These algorithms are mcmc ones whose the Markov chain
has the posterior distribution p(θ, z|x) as the stationary distribution. Thus, they
sample a sequence of parameters according to their posterior distribution since this
approach allows us to perform the Bayesian inference.

Remark 1.42 (Almost-absorbing states involving di�erent initializations of the
algorithms). Even if the mcmc algorithms having an irreducible and ergodic Markov
chain are not, theoretically, sensitive to the local optima, their behavior is not so
perfect in practice (see for instance [MMR05]). Indeed, there are trapping states
which are almost-absorbing states requiring a so large number of iterations to escape
from them that the algorithm is generally stopped before.

The Gibbs sampler

Main idea The Gibbs sampler is the most popular approach to perform the
Bayesian inference of a mixture model since it uses the latent structure of the data.
This algorithm is built on full conditional distributions from which it is easy to
sample.

Gibbs sampler and mixture models The Gibbs sampler is an iterative algo-
rithm whose one iteration is split in two main steps for the mixture model framework.
Indeed, this algorithm alternatively samples the class memberships conditionally on
the parameters and on the data, and the parameters conditionally on the class mem-
berships and on the data. Thus, its stationary distribution is p(θ, z|x), therefore the
sequences of the generated parameters are sampled from their posterior distribution
p(θ|x).
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This algorithm, having p(θ|x) as marginal stationary distribution, starts
from an initial value θ[0] then alternates between two steps. At iteration
[r], it performs the two following steps

z[r] ∼ z|θ[r],x (1.62)

θ[r+1] ∼ θ|z[r],x. (1.63)

Algorithm 1.43 (The Gibbs sampler for the mixture models).

Sampling of the class membership Independence between individuals allows
to easily sample the vector z since p(z|θ[r],x) =

∏n
i=1 p(zi|θ

[r],xi). Indeed, each z
[r]
i

is sampled from the following multinomial distribution

z
[r]
i |θ

[r],xi ∼M(ti1(θ[r]), . . . , tig(θ
[r])). (1.64)

Sampling of the parameters When there is no constraint between the param-
eters of di�erent classes, the following decomposition is used to sample θ[r+1]

p(θ[r+1]|z[r],x) = p(π[r+1]|z[r])

g∏
k=1

p(α
[r+1]
k |z[r],x). (1.65)

Note that π is independent of the data conditionally on the class memberships. The
usual prior of π is the conjugate Je�rey's non informative prior. In such a case, the
prior and the posterior distributions of the class proportions are respectively de�ned
by

π ∼ Dg
(

1

2
, . . . ,

1

2

)
and π|z[r] ∼ Dg

(
1

2
+ n[r]

1 , . . . ,
1

2
+ n[r]

g

)
, (1.66)

where we remind that n[r]
k =

∑n
i=1 z

[r]
ik . We now illustrate this algorithm with the

running example.
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We assume that the prior of σ2
k is G−1(c0, C0) and that the prior of µk

conditionally on σ2
k is N1(b0, B

−1
0 σ2

k). Iteration [r] of the Gibbs sampler
having p(θ|x) as stationary distribution is written as follows

∀i = 1, . . . , n z
[r]
i |xi,θ

[r] ∼M2(ti1(θ[r]), ti2(θ[r])) (1.67)

π[r+1]|z[r] ∼ D2

(
1

2
+ n

[r]
1 ,

1

2
+ n

[r]
2

)
(1.68)

∀k = 1, 2 µ
[r+1]
k |x, z[r], σ

2[r]
k ∼ N1(b

[r]
k , B

[r]
k ) (1.69)

∀k = 1, 2 σ
2[r+1]
k |x, z[r], µ

[r+1]
k ∼ G−1(c

[r]
k , C

[r]
k ), (1.70)

where b[r]
k =

B0b0+
∑n
i=1 z

[r]
ik xi

B0+n
[r]
k

, B[r]
k =

σ
2[r]
k

B0+n
[r]
k

, c[r]
k = c0 +

n
[r]
k +1

2
and C

[r]
k =

C0 + 1
2
(
∑n

i=1 z
[r]
ik (xi − µ[r+1]

k ) +B0(µ
[r+1]
k − b0)2).

Running example 1.44 (Gibbs sampler).

Simple sampling condition As the Gibbs sampler has to perform a huge number
of iterations, it is absolutely necessary that each step involves a small sampling time.
If the full conditional distributions of z[r]

i and π[r+1] are explicit, the sampling of
α[r+1] can be more complicated. The conjugate prior distributions are also generally
used since they provide classical posterior distribution. Thus, the sampling of α[r+1]

is easy when there is no constraint between the parameters. In the case where the
simulation of p(α[r+1]

k |z[r],x) is too much time consuming, another approach than
the Gibbs sampler has to be used.

The Metropolis-Hastings algorithm

Main idea The aim of the Metropolis-Hastings algorithm is to sample a sequence
of θ according to its posterior distribution p(θ|x). This algorithm requires an in-
strumental distribution, denoted by q(.;θ), de�ned with respect to the dominating
measure of the model. At iteration [r], the instrumental distribution generates a can-
didate θ? conditionally on the current value of θ. Then, the candidate is accepted
with a probability λ[r] de�ned by

λ[r] = min

{
p(θ?|x)q(θ[r];θ?)

p(θ[r]|x)q(θ?;θ[r])
; 1

}
. (1.71)
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This algorithm has p(θ|x) as stationary distribution. Starting from an
initial value θ[0], its iteration [r] is written as

θ? ∼ q(θ;θ[r]) (1.72)

θ[r+1] =

{
θ? with probability λ[r]

θ[r] with probability 1− λ[r].
(1.73)

Algorithm 1.45 (The Metropolis-Hastings algorithm).

The hybrid MCMC

Main idea When a step of a Gibbs sampler is di�cult to perform, the hybrid
mcmc algorithms are often used. The most popular approach is to sample a sequence
of θ according to a Metropolis-within-Gibbs sampler. In this approach, the di�cult
steps of the Gibbs sampler are replaced by one iteration of a Metropolis-Hastings
algorithm. However, the stationary distribution of the Markov chain stays equal to
p(θ, z|x).

This algorithm, performing the inference for the mixture models, has p(θ|x)
as marginal stationary distribution. Starting from an initial value θ[0], its
iteration [r] is written as

z[r] ∼ z|θ[r],x (1.74)

θ? ∼ q(θ;θ[r]) (1.75)

θ[r+1] =

{
θ? with probability λ[r]

θ[r] with probability 1− λ[r],
(1.76)

where q(.;θ) is the instrumental distribution of the Metropolis-Hastings step
and where λ[r] is its acceptance probability de�ned by

λ[r] = min

{
p(θ?|z[r],x)q(θ[r];θ?)

p(θ[r]|z[r],x)q(θ?;θ[r])
; 1

}
. (1.77)

Algorithm 1.46 (The Metropolis-within-Gibbs sampler).

We now illustrate this algorithm with the running example.
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Iteration [r] of this algorithm is written as

z[r] ∼ z|θ[r],x (1.78)

π[r+1] ∼ π|z[r] (1.79)

α? ∼ q(α;α[r]) (1.80)

α[r+1] =

{
α? with probability λ[r]

α[r] with probability 1− λ[r],
(1.81)

where q(.; .) is the instrumental distribution of the Metropolis-Hastings step
and where λ[r] is its acceptance probability de�ned by

λ[r] = min

{
p(α?|z[r],x)q(α[r];α?)

p(α[r]|z[r],x)q(α?;α[r])
; 1

}
. (1.82)

Running example 1.47 (The Metropolis-within-Gibbs sampler).

1.4 Model selection

1.4.1 On the model selection challenge

De�nition 1.48 (Model). Let us consider the general �nite mixture model

p(xi;θ) =

g∑
k=1

πkp(xi;αk), (1.83)

θ ∈ Θ, where the parameter space Θ is de�ned by the number of components and
the nature of each component. The model m groups the set of the distributions
de�ned by (1.83), so

m = {p(xi;θ) : θ ∈ Θ}. (1.84)

Aim The model m de�nes the nature of the component distributions and the
number of components. As it is generally unknown, the model has to be inferred
according to the data. Thus, we de�ne ∆ as the set of the models considered by
the practitioner and the aim is to �nd the �best� model among ∆.

Log-likelihood function and embedded models The likelihood function gen-
erally allows to estimate the �best� model according to the data. However, this
approach can not be directly applied in the mixture model context. Indeed, in such
a case, a lot of models are embedded (for instance a Gaussian mixture model with
three components always obtains a best likelihood values than the Gaussian models
with two components). Thus, the �best� model is the model which makes the best
trade o� between its quality of adjustment to the data (given by its likelihood value)
and its complexity (number of parameters).
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Information criteria We saw, in Section 1.1.2, that heuristic criteria (like the
slope of the likelihood function) can be used to select the number of classes especially
for the geometric clustering methods. If these approaches can be used to select the
model of probabilistic method, it is more convenient to use information criteria (ic)
proposed by the probabilistic framework. These criteria, further detailed, rigorously
perform the model selection according to an objective of a data adjustment (aic,
bic criteria) or an objective of classi�cation (icl criterion). Generally, these criteria
require the mle related to each model in ∆, since they can often be written as a
penalization of the log-likelihood function

icm = L(θ̂; x)− h(νm), (1.85)

where θ̂ is the mle of the model m, where νm is the parameters number of the
model m and where h(.) is a function de�ned by the criterion. Note that a quality
which could be wanted for the information criterion is the consistency in dimension
assuring a good asymptotic behavior.

De�nition 1.49 (Consistency in dimension for a criterion). A criterion is consistent
in dimension if it selects the simplest true model with a probability one when the
sample size tends to the in�nity.

1.4.2 Information criteria for the data adjustment

This section is devoted to the model selection which stays a di�cult problem (see
[FS08] Chapter 4) for the mixture models (especially the selection of the class num-
ber) principally since the models are embedded and since the information criteria
are only asymptotically true.

Frequentist criterion

In a frequentist framework, the aim is to �nd the model minimizing the Kullback-
Leibler (kl) divergence [KL51] of the �true� distribution relative to the estimated
one.

De�nition 1.50 (Kullback-Leibler divergence). Let xi ∈ Re, the Kullback-Leibler
(kl) divergence of the pdf f(xi) relative to the pdf g(xi) is

kl(f, g) =

∫
xi∈X

f(xi) ln f(xi)dxi −
∫
xi∈X

f(xi) ln g(xi)dxi. (1.86)

Let f(xi) be the pdf of the true model, �nd the model minimizing kl is equivalent
to �nd the model minimizing the term on left-hand side of the previous equation.
Thus, for a model m, the aim is to compute

η(xi; f,m, θ̂) =

∫
xi∈X

f(xi) ln p(xi; θ̂)dxi, (1.87)

where p(xi; θ̂) is the pdf of the model m parametrized in its mle θ̂. As the distri-
bution f is unknown, we use the natural estimator of η(xi; f,m, θ̂) de�ned by

η̂(xi; f̂ ,m, θ̂) =
1

n
L(θ̂;xi). (1.88)
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However, this estimator su�ers from the following bias

b = Ef
[
η̂(xi; f̂ ,m, θ̂)− η(xi; f,m, θ̂)

]
. (1.89)

Thus, the best model among ∆ maximizes the correct log-likelihood

argmax
m∈∆

L(θ̂; x)− b. (1.90)

Akaike [Aka73] showed that the corrected term is asymptotically equal to the number
of parameters.

De�nition 1.51 (The aic criterion). The Akaike Information Criterion (aic) is
de�ned as

aic(m) = L(θ̂; x)− ν, (1.91)

where θ̂ is the mle of the model m and ν its number of parameters.

Thus, the aic criterion is an estimator of the expectation of the mean of the log-
likelihood. A study of the aic criterion properties (and of its extension) is available
in [Boz87]. However, the behavior of the aic criterion can be inconsistent.

Proposition 1.52 (aic is not consistent). aic is not consistent in dimension when
models with the same number of components are embedded.

Proof. Let a modelm0 whose the mle of dimension ν0 is denoted by θ̂0 and letm1

whose the mle of dimension ν1 is denoted by θ̂1 such asm0 is the true number,m0

and m1 are embedded models with the same number of components and ν0 < ν1.
Then,

2 (aic(m1)− aic(m0)) = 2
(
L(x; θ̂1)− L(x; θ̂0)

)
− 2(ν1 − ν0)

D→ χ2
ν1−ν0 − 2(ν1 − ν0). (1.92)

Thus, the aic criterion is not consistent (i.e. lim
n→∞

P (aic(m1) > aic(m0)) > 0)

since P (χ2
ν1−ν0 > 2(ν1 − ν0)) > 0. Note that the demonstration can not be per-

formed to select the number of classes. Indeed, in such case, the convergence to the
likelihood ratio is unknown since it involves a Taylor's development on the border
of the parameters space. However, it has often been observed that the aic criterion
selects more complicated models, even if the true one is in the list of the models
[BCG00].

Bayesian criterion

Let p(m) the prior distribution of m ∈∆, the posterior distribution of interest
is de�ned by using the Bayes' rule as follows

p(m|x) =
p(x|m)p(m)

p(x)
. (1.93)
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Indeed, in a Bayesian point of view, the �best� model m? maximizes the posterior
distribution

m? = argmax
m∈∆

p(m|x) = argmax
m∈∆

p(x|m)p(m). (1.94)

Thus, the quantity performing the model selection is the integrated likelihood also
named marginal likelihood or evidence de�ned by

p(x|m) =

∫
θ∈Θ

p(x,θ|m)p(θ|m)dθ, (1.95)

where the parameter space Θ depends on m. If this quantity can be approached
via many methods (see the review of [FW12]), the most classical one is to use
the bic approximation [Sch78] which approximates ln p(x|m) by using a Laplace
approximation and by replacing the mape by the mle.

De�nition 1.53 (The bic criterion). The Bayesian Information Criterion (bic) is
de�ned as

bic(m) = L(θ̂; x)− ν

2
lnn, (1.96)

where θ̂ is the mle of the modelm and where ν denotes its number of parameters.

This criterion assumes regularity conditions on the pdf which may be not veri�ed
by the mixture models. Furthermore, this approximation is only asymptotically true.

Proposition 1.54 (bic is consistent). The bic criterion is consistent in dimension
when models with the same number of components are embedded.

Proof. Let a modelm0 whose the mle of dimension ν0 is denoted by θ̂0 and letm1

whose the mle of dimension ν1 is denoted by θ̂1 such asm0 is the true number,m0

and m1 are embedded models with the same number of components and ν0 < ν1.
Then,

2 (bic(m1)− bic(m0)) = 2
(
L(x; θ̂1)− L(x; θ̂0)

)
− 2(ν1 − ν0) lnn

D→ χ2
ν1−ν0 − 2(ν1 − ν0) lnn. (1.97)

By using the notation ∆ν = ν1− ν0, the following result is obtained by applying the
Tchebychev's inequality when n is large

P (bic(m1) > bic(m0)) ≤ P (|χ2
∆ν
−∆ν | > ∆ν(−1 + lnn)) (1.98)

≤ 2∆ν

(∆ν(−1 + lnn))2

n→∞→ 0, (1.99)

since E[χ2
∆ν

] = ∆ν and Var(χ2
∆ν

) = 2∆ν . Thus, the bic criterion is consistent
in dimension when models with the same number of components are embedded.
Note that the demonstration can not be performed to select the number of classes.
Indeed, in such case, the convergence to the likelihood ratio is unknown since it
involves a Taylor's development on the border of the parameters space. However, if
the bic criterion is more robust than the aic one, it can overestimates the number
of components when the �true� model is not in ∆ [BCG00].

Note that, by using a locally conic parametrization, [Ker00] shows that the bic
criterion is a consistent estimator of the correct number of components in the dis-
tribution.
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Reversible jump If ∆ is large or if the estimation of the parameters is complex,
then the exhaustive approach is not doable. Indeed, this approach consists in a
computation of an information criterion for all the models, so it is time consuming.
Furthermore, the practitioner only uses the estimate associated to the best model.
Thus, all the other estimates are not used for the data analysis. This drawback is
avoided by the approach of the reversible jump [Gre95, RG97] where the model and
the parameters are simultaneously estimated. Unfortunately, this approach involves
the computation of the probabilities of the model transition which can be complex.
However, this objective consists in avoiding the estimation of the parameters of all
the models in ∆ what can become mandatory when the model space becomes huge
(see Part I).

1.4.3 Information criterion for the partition adjustment

Main idea Paradoxically, the consistency of the information criterion can be a
drawback. Indeed, as all the models are wrong, the bic criterion asymptotically
overestimates the number of components according to the class separation. So, C.
Biernacki, G. Celeux and G. Govaert [BCG00] propose to include a classi�cation
objective in the information criterion. In such case, the best model maximizes the
integrated complete-data likelihood. As the vector z is unknown, it is replaced by
its mape, denoted by ẑ, evaluated with the mle.

De�nition 1.55 (icl exact). The Integrated Complete-data Likelihood (icl) asses
a model with a classi�cation aim. It is de�ned as

iclex(m) = ln p(x, ẑ|m) (1.100)

= ln

∫
θ∈Θ

p(x, ẑ|m,θ)p(θ|m)dθ. (1.101)

However, even if the integral can be explicit (see for instance the study in
[BCG10] for the cim of multinomial distributions), it is not generally the case.
Thus, an approximated version of this criterion is available

De�nition 1.56 (icl-bic). The Integrated Complete-data Likelihood (icl) can be
approximated by

iclbic(m) = ln p(x, ẑ|m, θ̂)− ν

2
lnn. (1.102)
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1.4.4 Application on real data set of the information criteria

We give an example of the using of the information criteria on the Faith-
ful data set. For di�erent numbers of classes, the fourteen parsimonious
Gaussian mixture models [CG95] compose the set of the considered mod-
els. Figure 1.10 displays the values of the information criteria for di�erent
numbers of classes.
The log-likelihood function is increasing with the class number. The aic
criterion selects four classes while the bic criterion selects three classes.
However, both criteria hesitate to select the number of classes. Thus, the
practitioner using aic (respectively bic) can also analyse the partition in
three classes (respectively two classes). Finally, the icl criterion strongly
selects the partition in two classes. This partition seems realistic according
to the scatter plot.

Faithful data set 1.57 (Model selection by information criteria).
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Figure 1.10 � Criterion values for the best of the fourteen Gaussian mixture models
for di�erent number of classes to cluster the Faithful data set.

1.5 Conclusion

This bibliographical chapter has presented the general framework of the mix-
ture models and has been illustrated by the bi-component Gaussian mixture model.
Thus, it has pointed-out that the general cim model allows to easily cluster com-
plex data (categorical or mixed data), but with a risk of bias when the data are
intra-class correlated.

Both estimation methods (frequentist and Bayesian) have been presented. In this
thesis, we favor the frequentist approach to infer the parameters since it does not
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require some information a priori. However, if the mle is intractable, we perform
the inference in the Bayesian framework. In such a case, we favor the conjugate prior
distributions in order to easily estimate the parameters. The hyper-parameters of
the prior distributions are selected to be weakly informative.

The model selection is performed by using the bic criterion is the most common
information criterion for the mixture models.

The purpose of the following chapters is to study and to propose new mixture
models allowing to cluster complex data without assuming the conditional indepen-
dence between the variables. We now focus on the categorical data set clustering.



Part I

Model-based clustering for

categorical data
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This part, devoted to the cluster analysis of categorical
data, is split into four chapters.
The �rst one presents an overview of the clustering ap-
proaches devoted to the categorical data sets. We mainly
focus on three main model-based approaches: the log-
linear mixture models, the mixtures of trees and the mul-
tilevel latent class models. These models are illustrated
on a small real data set.
The second and the third chapters present our contribu-
tions to this framework. We present two new mixture
models which are extensions of the classical latent class
model. For such models, the variables are grouped into
conditionally independent blocks. The speci�c distribu-
tions of the blocks modelize the intra-class dependencies.
These results are part of two submitted articles.
The last chapter is devoted to proposed model compari-
son illustrated on the example of the overview chapter.
The second purpose of this chapter is to present our
R packages performing the inference of both proposed
models.

Those lonely �shermen who believed
that the �sh bite at high tide left their
rocks, and their places were taken by
others, who were convinced that the

�sh bite at low tide.
John Steinbeck � Tortilla �at
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Chapter 2

Cluster analysis of categorical data

sets: state of the art

The purpose of this chapter is to present the main ap-
proaches to cluster categorical data sets.
The �rst section is devoted to the geometric methods
and, more precisely, to the K-means-like ones. The
other sections describe the three main model-based
methods. More precisely, the second section focuses
on the log-linear mixture models. It also details the
classical latent class model which is a speci�c model
of the log-linear mixture one assuming the conditional
independence between the variables. This model is of
interest for us since the proposed models introduced in
the two following chapters consist in two extensions
of this model. The third section is devoted to the pre-
sentation of the tree mixture models. The last section
presents the multilevel latent class models.
These models are illustrated on a real data set through-
out this chapter.

Always do sober what you said you'd
do drunk. That will teach you to keep

your mouth shut.
Ernest Hemingway � The Short
Happy Life of Francis Macomber

2.1 Challenge of cluster analysis for categorical data

Introduction The categorical variables are often present in the data sets since
they are easily accessible. The di�culty involved by such variables is double. Firstly,
it is not convenient to visualize categorical data in their native space. So, this lack
has to be counterbalanced by an easy interpretation of the partition. Secondly, the

63
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combinatorial problems are ubiquitous when some intra-class dependencies have to
be modelized (huge number of parameters and huge number of models in competi-
tion). Thus, it appears important for us that the models used to cluster respect the
two following objectives.

Two crucial objectives Based on the models presented in this bibliographic
chapter, we put the light on the following crucial objectives:

1. Models have to provide few meaningful parameters to counterbalance the lack
of visualization.

2. Models have to take into account the intra-class dependencies by limiting the
combinatorial problems related to both of the number of parameters and of
the model selection.

The data Throughout this part, we consider the d-variate vector of categorical
variables denoted by xi = (x1

i , . . . ,x
d
i ) and de�ned in space X . Each categorical

variable xji = (xjhi ;h = 1, . . . ,mj) hasmj modalities and uses a complete disjunctive
coding as such xjhi = 1 if individual i takes modality h for variable j and xjhi = 0
otherwise.

Structure of this chapter Section 2.2 focuses on the geometric methods permit-
ting to cluster categorical data sets. The other sections are devoted to probabilistic
methods. Indeed, Section 2.3 presents the log-linear mixture model which is the ref-
erence to cluster categorical data in a probabilistic framework. Section 2.4 presents
the mixture of dependency trees while Section 2.5 presents the multilevel latent
models.

Running example During this chapter, the di�erent methods allowing to cluster
categorical data sets are illustrated on the Handelman's Dentistry data [EH89] which
is a classical categorical data set.

This binary data set, presented in Table 2.1, consists in the diagnoses given
by �ve dentists for 3869 premolars and molars. The aim is to characterize
the behavior of the dentists according to their diagnoses.

Running example 2.1 (The dentistry data set).

2.2 Geometric approaches

2.2.1 Methods on the native space

K-means algorithm for categorical data

Main idea The K-means algorithm for categorical data, proposed by H. Ralam-
bondrainy [Ral95], uses the complete disjunctive coding of the categorical variables.
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Dentist Dentist
1 2 3 4 5 Frequency 1 2 3 4 5 Frequency
S S S S S 1880 C S S S S 22
S S S S C 789 C S S S C 26
S S S C S 43 C S S C S 6
S S S C C 75 C S S C C 14
S S C S S 23 C S C S S 1
S S C S C 63 C S C S C 20
S S C C S 8 C S C C S 2
S S C C C 22 C S C C C 17
S C S S S 188 C C S S S 2
S C S S C 191 C C S S C 20
S C S C S 17 C C S C S 6
S C S C C 67 C C S C C 27
S C C S S 15 C C C S S 3
S C C S C 85 C C C S C 72
S C C C S 8 C C C C S 1
S C C C C 56 C C C C C 100

Table 2.1 � Radiographic cross-diagnosis of 3869 molars and premolars by �ve den-
tists [EH89]. Teeth are diagnosed as sound (S) or carious (C).

Indeed, for such approach each xjhi is considered as a binary variable. The distance
used to cluster is the chi-square one that we below detail.

Chi-square distance The chi-square distance takes into account the weight of
each modality in the distance computed by giving more importance to the rare
modalities than to the most common ones.

De�nition 2.2 (Chi-square distance). Let x = (x1, . . . ,xn) to be the sample com-
posed by n individuals xi described by d categorical variables. The chi-square dis-
tance between xi1 and xi2 , with 1 ≤ i1, i2 ≤ n, is de�ned by

Dχ2(xi1 ;xi2) =
d∑
j=1

mj∑
h=1

(xjhi1 − x
jh
i2

)2

njh
, (2.1)

where njh =
∑n

i=1 x
jh
i .

Comments The main drawback of this approach is that the vector of the class
means�real values between zero and one�does not indicate the characteristics of
the classes. The obtained partition is also weakly interpretable.

K-modes algorithm for categorical data

Main idea The K-modes algorithm has been proposed by Z. Huang [Hua98] to
avoid the problem related to the cluster analysis of large categorical data sets. This
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algorithm extends the K-means one by using a simple matching dissimilarity measure
for categorical variables. At each iteration, it updates the modes by a frequency
based method in order to minimize a cost function.

Dissimilarity and modes

De�nition 2.3 (Matching dissimilarity). Let two d-variate categorical variables xi1
and xi2 . The matching dissimilarity counts the mismatches between both xi1 and
xi2 . This dissimilarity is de�ned by

D1(xi1 ,xi2) =
d∑
j=1

δ(xji1 ,x
j
i2

) with δ(xji1 ,x
j
i2

) =

{
1 if xji1 6= xji2
0 if xji1 = xji2 .

(2.2)

De�nition 2.4 (Mode [Hua98]). A mode of the sample x = (x1, . . . ,xn) is a vector
µ ∈ X , as such µ = (µjh; j = 1, . . . , d;h = 1, . . . ,mj), which minimizes

D(x;µ) =
n∑
i=1

D1(xi;µ). (2.3)

Note that µ is not necessarily an element of x and that it is not necessarily unique.

Optimized criterion When the dissimilarity de�ned by De�nition 2.3 is used,
then the K-modes algorithm optimizes the following criterion

I(z,θ;x) =
n∑
i=1

g∑
k=1

d∑
j=1

δ(xji ,µ
j
k), (2.4)

where θ = (µ1, . . . ,µg) and where µk is the mode of class k.

The algorithm

Starting from an initial value θ[0], its iteration [r] is written
� Class membership z[r] = argmin

z
I(z,θ[r]; x):

z
[r]
ik =

{
1 if k = argmin

k′
D1(xi,µ

[r]
k′ )

0 otherwise.

� Centroid estimation θ[r+1] = argmin
θ

I(z[r],θ; x):

µ
[r+1]
k = argmin

µk

n∑
i=1

z
[r]
ikD1(xi;µk).

Algorithm 2.5 (The K-modes algorithm).
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Comments The K-modes algorithm, like the K-means one, converges to a local
minimum of the function I(z,θ;x). It is also mandatory to perform di�erent initial-
izations in order to hope to get the global minimum of this function. Finally, note
that the centroid estimation step is facilitated by the de�nition of D1(., .). Indeed,
this optimization is performed coordinates by coordinates.

Approach Based on the criterion values computed for di�erent numbers
of classes, two partitions could be of interest.

Interpretation The �rst one splits the data into two classes whose the
modes are de�ned by both most present diagnoses (all dentists claim that
the tooth is sound and all dentists claim that the tooth is sound except the
last dentist). The second one splits the data into three classes. It adds,
at the two previous modes, the diagnosis where all dentists claim that the
tooth is carious except the �rst dentist. Basically, the K-modes approach
does not allow to really understand this data set.

Running example 2.6 (K-modes clustering).

2.2.2 Methods on the factorial space

Main idea When many variables are correlated, they provide some redundant in-
formation. Thus, it can be e�cient to perform a selection of variables or a reduction
of the space dimension. When the variables are categorical, a Multiple Correspon-
dence Analysis (MCA) can be used in order to reduce the space dimension. Indeed,
this method provides numerical coordinates for each individual. Therefore, it is
possible to use classical geometric approach to cluster numerical data like the K-
means algorithm. We present the method of H. Hwang, W.R. Dillon and Y. Takane
[HDT06] which combines MCA and K-means algorithm in a uni�ed framework.

Notations We remind that the sample x = (xi; i = 1, . . . , n) is composed with
individuals described by d categorical variables which use a disjunctive coding. Let
f denoting the matrix of size n× d where d ≤ mj corresponds to the d-dimensional
representation of the d categorical variables. Let wj the matrix of weights of size
mj × d. We consider z as the matrix of size n× g where the rows correspond to the
individuals and the column to the class. We denote by θ the matrix of the centroid
values of the cluster in the factorial space.

Optimized criterion The aim is to combine MCA and K-means algorithm, so
the problem is equivalent to the minimization of the following criterion

Iα1,α2(z,θ;x) = α1

d∑
j=1

SS(f − xjwj) + α2SS(f − zθ), (2.5)
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where α1 > 0, α2 > 0, α1 + α2 = 1, where xj is the matrix where the element (i, h)
is equal to one if individual i takes modality h for variable j and is equal to zero
otherwise, and where SS(f) = trace(f ′f).

Remark 2.7 (On the couple (α1, α2)). When α1 = 1, the criterion de�ned by (2.5) is
the standard one for MCA. When α2 = 1, the criterion de�ned by (2.5) is equivalent
to the standard one for the K-means algorithm. Thus, for others values of (α1, α2),
this criterion performs a trade-o� between the MCA and the K-means objectives.

The algorithm The estimation of (f ,wj, z,θ) is performed by the alternating
least squares algorithm proposed by [HDT06]. This algorithm converges to a lo-
cal minimum of the function Iα1,α2(z,θ;x). So, several di�erent initializations of
this algorithm have to be done in order to obtain the estimators minimizing this
criterion.

Starting from an initial value θ[0], its iteration [r] is written
� Weight matrix and centroids optimization

wj[r] = (xj
′
xj)−1xj

′
f and θ[r] = (z[r]′z[r])−1z[r]′f . (2.6)

� Factorial space optimization

f [r+1] = argmax
f

trace

(
f ′

[
α1

d∑
j=1

xj(xj
′
xj)−1xj

′
+ α2z

[r](z[r]′z[r])−1z[r]′
]
f

)
.

(2.7)
� Partition optimization

z[r+1] = argmin
z

SS(f [r+1] − zθ[r]). (2.8)

Algorithm 2.8 (Algorithm minimizing Iα1,α2(z,θ;x) [HDT06]).

Comments In addition to the classical limits of the geometric approaches, three
problems are rised by this method.

� The �rst problem is about the parameters (α1, α2) which are �xed by the
user. Indeed, there is no rule which e�ciently determines them while their
impacts on the partition are signi�cant.

� The second problem is about the size of the factorial space. Indeed, the space
dimension d is arbitrary �xed by the user with a risk of loosing information.

� The last problem is about the class interpretation which is complex. Indeed,
the classes are summarized by the centroids which are not de�ned in the
native space but in the factorial space created by combinations of the original
variables.
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2.3 Log-linear mixture models

Main idea We have seen in Chapter 1 that the Gaussian model can be used
as component distribution when the variables are numeric. In the same way, the
log-linear model (see Categorical Data Analysis by A. Agresti [Agr02]) is naturally
used as component distribution when the variables are categorical. However, the
complete log-linear model estimates the probability of all the modality crossings. It
is also mandatory to impose constraints on this model to build the log-linear mixture
model.

Structure of this section A classical approach assumes conditional indepen-
dence between the variables. This model is named Latent class model or naive Bayes
[Goo74] and has been detailed in Section 2.3.1. Other log-linear mixture models,
which relax the conditional independence assumption, are presented in Section 2.3.2.

2.3.1 Latent class model

Model presentation

Main idea This mixture model assumes that the variables are independent condi-
tionally on class, thus its components follow a product of multinomial distributions.

De�nition 2.9 (Latent class model). Let xi be the d-variate categorical variable
using a disjunctive coding. If xi arise from the latent class model with g components,
then its pdf is written as follows

p(xi;θ) =

g∑
k=1

πkp̊(xi;αk) with p̊(xi;αk) =
d∏
j=1

mj∏
h=1

(αjhk )x
jh
i , (2.9)

where θ = (π,α), where π is de�ned on the simplex of size g, whereα = (α1, . . . ,αg)

and where αk = (α1
k, . . . ,α

d
k) as such that αjk = (αjhk ;h = 1, . . . ,mj) is de�ned on

the simplex of size mj. Note that αjhk denotes the probability that an individual
arisen from component k takes modality h for variable j.

Despite its simplicity, the latent class model leads to good results in practice
[HY01] for di�erent areas like the behavioral sciences [RSS+06] or in medicine
[SRAT+06].

Model identi�ability The generic identi�ability of the latent class model was
proved by E.S. Allman, C. Matias and J.A. Rhodes [AMR09]. We now present their
theorem. The reader interested by its proof can refer to the article [AMR09].

Theorem 2.10 (Generic identi�ability of the latent class model [AMR09]). Let the
model de�ned by De�nition 2.9 with d ≥ 3. Suppose there exists a tripartition of
the set S = {1, . . . , d} into three disjoint nonempty subsets S1, S2, S3, such that if
κb =

∏
j∈Sbmj then

min(g, κ1) + min(g, κ2) + min(g, κ3) ≥ 2g + 2. (2.10)
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Then model parameters are generically identi�able, up to a label swapping. More-
over, the statement remains valid when the mixing proportions π are held �xed and
positive.

Links with the geometric approaches As shown in [Gov10], the geometric
approach looking for the partition into g classes maximizing the information criterion
or the χ2 criterion is approximately equivalent to assume that individuals are drawn
by a latent class model.

Parameter estimation

The inference of the latent class model can be performed in a frequentist or in a
Bayesian framework.

In a frequentist point of view, the estimation of the mle can be performed via
an em algorithm, presented below, or by its extensions. Note that the likelihood
function is upper-bounded, so there is no degeneracy problem.

In a Bayesian framework, the estimation can be performed by a Gibbs sampler.
Note that by choosing the Je�reys non informative conjugate priors, the posterior
distributions are explicit and an exact information criterion can be computed.

We now detail both frequentist and Bayesian approaches.

Frequentist framework The mle can be easily obtained by the following em

algorithm.

Starting from the initial value of θ[0], iteration [r] of the em algorithm is
written as

� E step: calculate conditional probabilities

tik(θ
[r]) =

π
[r]
k p̊(xi;α

[r]
k )

p(xi;θ
[r])

. (2.11)

� M step: maximization of the expectation of the complete-data log-
likelihood

π
[r+1]
k =

n
[r]
k

n
and αjh[r+1]

k =

∑n
i=1 tik(θ

[r])xjhi

n
[r]
k

, (2.12)

where n[r]
k =

∑n
i=1 tik(θ

[r]).

Algorithm 2.11 (EM algorithm for the latent class model).

Bayesian framework The classical assumption of the independence between the
prior distributions of the class proportions π and of the class parameters αjk involves
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that

p(θ) = p(π)

g∏
k=1

d∏
j=1

p(αjk). (2.13)

As the Je�reys non informative prior for a multinomial distribution is a conjugate
Dirichlet one, the prior distribution is written as follows

p(π) = Dg
(

1

2
, . . . ,

1

2

)
and p(αjk) = Dmj

(
1

2
, . . . ,

1

2

)
. (2.14)

The inference is also made by the following Gibbs sampler which generates a
sequence of parameters from their posterior distributions. Note that this algorithm
is easily performed since conjugate prior distributions involve explicit posterior dis-
tributions.

Starting from the initial value of θ[0], iteration [r] of the Gibbs sampler
having p(θ, z|x) as stationary distribution is written as

∀i = 1, . . . , n z
[r]
i |xi,θ

[r] ∼Mg

(
ti1(θ[r]), . . . , tig(θ

[r])
)

(2.15)

π[r+1]|z[r] ∼ Dg
(

1

2
+ n

[r]
1 , . . . ,

1

2
+ n[r]

g

)
(2.16)

∀(k, j) α
j[r+1]
k |x, z[r] ∼ Dmj

(
1

2
+ n

j1[r]
k , . . . ,

1

2
+ n

jmj [r]
k

)
, (2.17)

where n[r]
k =

∑n
i=1 z

[r]
ik and njh[r]

k =
∑n

i=1 z
[r]
ik x

jh
i .

Algorithm 2.12 (Gibbs sampler for the latent class model).

Exact criterion By using the properties of the conjugate prior distributions,
[BCG10] proposed an exact version of the icl criterion for the latent class model.
Indeed, the integrated complete-data likelihood of this model, de�ned by

p(x, z) =

∫
θ∈Θ

p(x, z;θ)p(θ)dθ, (2.18)

is explicit by using the prior distributions de�ned in (2.14). For any couple (x, z),
the integrated complete-data likelihood is equal to

p(x, z) =
Γ(g

2
)

Γ(1
2
)g

∏g
k=1 Γ(nk + 1

2
)

Γ(n+ g
2
)

g∏
k=1

d∏
j=1

Γ(
mj
2

)

Γ(1
2
)mj

∏mj
h=1 Γ(njhk + 1

2
)

Γ(nk +
mj
2

)
. (2.19)

Vector z is replaced, in the above equation, by its maximum likelihood estimate ẑ
by using the map rule. Then, the exact icl criterion is de�ned as follows

iclex = ln p(x, ẑ). (2.20)
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In [BCG10], the authors propose to use (2.19) in order to compute the complete-
data likelihood by using importance sampling approach. They underline, by their
numerical experiments, that the exact criterion outperforms the classical asymptotic
information criteria (bic and icl). Thus, when the exact criteria are available, they
have to be favored.

Approach The mle are estimated for di�erent numbers of classes and
the bic criterion is used to select the best number of classes.

Interpretation The best model is the latent class model with three com-
ponents. The estimated classes can be interpreted as follows.

� The majority class (π1 = 0.72) groups the teeth diagnosed as sound
with a strong probability by all the dentists. This probability is
upper than 0.90 for the �rst four dentists and equal to 0.74 for the
last one.

� The second class (π2 = 0.20) groups the teeth claimed as sound by
the �rst four dentists with more incertitude than in the previous class
(probability between 0.50 and 0.90) while they are claimed as carious
by the last dentist with probability 0.76.

� The third class (π3 = 0.08) groups the teeth mainly declared as
carious especially by the �fth dentist.

Running example 2.13 (Latent class model clustering).

Parsimonious versions of the latent class model

The number of parameters required by the latent class model is equal to

(g − 1) + g
d∑
j=1

(mj − 1). (2.21)

Thus, this number is generally strongly smaller than the number of parameters
required by the full log-linear model which is equal to

∏d
j=1mj.

However, a better bias/variance trade o� can be obtained by reducing the number
of parameters for the latent class model. Thus, �ve parsimonious versions of the
latent class model was introduced by G. Celeux and G. Govaert [CG91] for binary
variables then these models was extended to the categorical variables [Gov10]. The
constraints added on the parameter space require the introduction of a new model
parametrization. With this new parameterization, the multinomial distribution of
variable j for component k is determined by its center ajk denoting the majority
modality and its a dispersion parameter εjk.

De�nition 2.14 (Alternative parametrization of the parsimonious latent class model).
The latent class model can be parametrized as follows

p(xi;θ) =
n∑
k=1

πk

d∏
j=1

(
(1− εjk)

ajhk (εjk/(mj − 1))1−ajhk
)xjhi

, (2.22)
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Thus, with 0 < εjk < 1, the parsimonious model assumes that one mode corre-
sponding to the most likely modality is characteristic for each multinomial while the
remaining probability mass is uniformly spread among the other modalities. This
model requires (g−1)+gd parameters. The other parsimonious models are obtained
by assuming the equality of εjk between the class or between the variables or between
the class and the variables.

Limits of the latent class model

The latent class model may su�er from severe biases when the data are intra-
class correlated. For instance, an application presented in [VHH09] shows that latent
class model dramatically over-estimates the number of classes when the conditional
independence assumption is violated. We now present three alternative mixture
models relaxing the conditional independence assumption. Note that the larger is
the number of variables, the higher is the risk to observe conditionally correlated
variables in a data set, and consequently the higher is the risk to involve such biases
by using the latent class model.

2.3.2 Log-linear mixture models with intra-class dependen-

cies

Main idea The log-linear models [Agr02] purpose is to modelize the individual log-
probability by selecting interactions between variables. Thus, the log-linear mixture
model has been used for a long time [Har72, Hag88] to cluster categorical data set
with intra-class dependencies. Note that some constraints have to be imposed on
each log-linear model in order to obtain the model identi�ability.
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Approach M.A. Espeland and S.L. Handelman [EH89] apply a log-linear
mixture model to �t the data. Note that authors estimate several models
�xed by advance whose the best one considers a mixture with four
components.

Interpretation The �rst two components take into account the interac-
tions between the dentists 3 and 4. The last two components are speci�c
since their allow only one modality interaction, when all the diagnoses are
respectively carious and sound.

Comments Note that these assumptions are required by the authors due
to their realistic nature. Indeed, this model �ts the data better than the
cim model. On the other hand, its interpretation needs the analysis of four
classes, so the data summary is more complex. Finally, we could criticize
the building of the two speci�c classes modeling only one modality crossing.
Indeed, these classes appears as arti�cially added in order to modelize the
conditional dependencies.

Running example 2.15 (Log-linear mixture model clustering [EH89]).

Model selection By considering intra-class dependency of order one, the authors
of [EH89] obtain good results for the clustering of radiographic cross-diagnostics.
These authors perform the model selection by using a forward method which deter-
mines the intra-class interaction. However, note that this approach is sub-optimal
and converges to a local optimum of the information criterion used by the prac-
titioner. The model presented in [VHH09] considers the interactions of order two
but during in the application there are only interactions of order one which are
estimated. As for the previous article, authors have to determine by advance the
intra-class interactions. The model selection for the log-linear mixture models is
a complex problem since the number of models becomes huge with the number of
variables.

Too many parameters The number of parameters required by the log-linear
mixture model increases with the number of modalities and with the considered
order of interactions. Thus, this model can �t well the data but it may need too
many parameters. So, there is an over-�tting risk and the interpretation becomes
harder. Furthermore, the parameters can be poorly meaningful if there are too
numerous.

Conclusion The log-linear mixture model is a powerful tool to cluster categori-
cal data. However, it is important to impose constraints on the parameters space
in order to provide a meaningful model. Both mixture models presented in Chap-
ter 3 and Chapter 4 can be interpreted as log-linear mixture models with speci�c
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constraints which control the number of parameters and which provide meaningful
classes. Both models are given with an e�cient approach to perform the model
selection in a Bayesian framework.

2.4 Mixtures of trees

2.4.1 Dependence trees

Main idea This approach, proposed by C. Chow and C. Liu [CL68], consists in
approximating discrete multivariate probability distribution with dependence trees,
i.e. with a product of second-order distributions.

De�nition 2.16 (Pdf of a dependence tree distribution). Let the tree T = {E, V }
where E = {1, . . . , d} and V = {(j, j′) : j ∈ E and j′ ∈ E \ j}. If variable xi is
sampled from a dependence tree distribution de�ned by T , then its pdf is written
as follows

p(xi;α) =

∏
(j,j′)∈V p(x

j
i ,x

j′

i ;βjj
′
)∏d

j=1 p(x
j
i ;α

j)vj−1
, (2.23)

where α = (αj,βjj
′
; j = 1, . . . , d; j′ as such (j, j′) ∈ V ), where vj denotes the cardi-

nal of the neighbor of edge j. The pdf of component k is de�ned by

p(xji ;α
j) =

mj∏
h=1

(αjh)x
jh
i and p(xji ,x

j′

i ;βjj
′
) =

mj∏
h=1

mj′∏
h′=1

(βjj
′h′h′)x

jh
i xj

′h′
i , (2.24)

with αj = (αjh;h = 1, . . . ,mj) and β
jj′ = (βjj

′hh′ ;h = 1, . . . ,mj;h
′ = 1, . . . ,mj′).

The parameter αjh denotes the probability that variable j takes modality h and the
parameter βjj

′hh′ denotes the probability that the couple of variables (j, j′) takes
the couple of modalities (h, h′).

Estimation As shown in [CL68], the maximum likelihood estimate can be directly
obtained by using the Kruskal algorithm which estimates the tree of minimal length
[Kru56]. The value of the branch weight between the two random variables Xj and
Xj′ is given by the mutual information de�ned as

I(Xj,Xj′) =

mj∑
h=1

mj′∑
h′=1

p(Xjh = 1, Xj′h′ = 1) ln
p(Xjh = 1, Xj′h′ = 1)

p(Xjh = 1)p(Xj′h′ = 1)
. (2.25)

From this de�nition, the empirical mutual information is deduced for a sample x.

De�nition 2.17 (Empirical mutual information). The empirical mutual informa-
tion between xj = (xji ; i = 1, . . . , n) and xj

′
= (xj

′

i ; i = 1, . . . , n) computed from the
sample x is de�ned as

Î(xj,xj
′
) =

mj∑
h=1

mj′∑
h′=1

f(xjh, xj
′h′) ln

f(xjh, xj
′h′)

f(xjh)f(xj′h′)
, (2.26)

where f(xjh, xj
′h′) = 1

n

∑n
i=1 x

jh
i x

j′h′

i and f(xjh) = 1
n

∑n
i=1 x

jh
i .
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1. Compute Î(xj,xj
′

i ), ∀(j, j′)
2. Index the d(d − 1)/2 branches according to their weight . So the

weight b` is greater than or equal to the weight b`′ whenever j < j′.

3. Select b1 and b2

4. For ` = 3 to d(d−1)/2: add the branch b` if it does not form a cycle
with the set previously selected.

Algorithm 2.18 (Estimation of the dependence tree).

Remark 2.19 (Unique solution). If the weights are all di�erent, then the solution
of Algorithm 2.18 is unique.

2.4.2 Tree mixture model

Main idea This approach, proposed by M. Meila and M.I. Jordan [MJ01], gener-
alizes the probabilistic trees to the mixture model framework. The authors assume
that each component follows a distribution per dependence tree de�ned in (2.23).

Estimation In a frequentist framework, the mle is easily obtained by an em

algorithm. The m step maximizes the expectation of the complete likelihood by
using Algorithm 2.18 where the empirical mutual information is computed according
to the conditional probabilities of the class memberships. In a Bayesian framework,
the mape is also obtained by a speci�c em algorithm maximizing the posterior
distribution.

Approach We cluster the data set with mixture models of dependency
trees with di�erent numbers of classes and we use the bic criterion to select
the best one.

Interpretation The best model is the bi-component one. Note that this
model requires the estimation of 19 parameters while the latent class model
requires only 11 parameters. If its bic criterion value is better than the
bi-component latent class model (respectively -7490 and -7511), its global
result is not better since the tri-component latent class model obtains a
bic criterion value of -7481. If the bic criterion values are relatively close,
the partitions are di�erent as shown by the confusion matrices presented in
Table 2.2.

Running example 2.20 (Tree mixture model clustering).
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c1-tree c2-tree
c1-bi-LCM 3037 191
c2-bi-LCM 55 586

(a)

c1-tree c2-tree
c1-tri-LCM 2922 0
c2-tri-LCM 170 484
c3-tri-LCM 7 293

(b)

Table 2.2 � Confusion matrices between the partition obtained by the bi-component
mixture of trees and the partition obtained by: (a) the bi-component latent class
model; (b) the tri-component latent class model.

Conclusion The main problem of these models is that they require too often an
intractable number of parameters. Furthermore, the tree structure is often unstable.
Indeed, if the data set is a little bit changed, then the tree structure can be very
di�erent. Thus, the interpretation based on this structure can be irrelevant. Finally,
note that the mixtures of trees are meaningful principally when the tree structure
explains some causal relationships.

2.5 Multilevel latent class model

Main idea The idea is to consider two latent variables. The �rst one is categorical
and is relative to the class membership. The second one is continuous (univariate
or multivariate) and modelizes the intra-class dependencies.

Overview of these methods When covariates are available, the conditional
dependencies between the categorical ones can be modeled by a logistic function
[For92, RIW08]. By assuming that these covariates are unobserved, the multilevel
latent class model [Ver03, Ver07] naturally incorporates the intra-class dependencies.
This model has connections with the approach of Y. Qu, M. Tan and M.H. Kut-
ner [QTK96] where the intra-class dependencies are modeled by a latent continuous
variable with a probit function. The hybrid model [Mut08] in which, for each class,
a factor analysis model is �tted to either all categorical variables or to those categor-
ical variables having dependencies is a more general approach. Recently, I. Gollini
and T.B. Murphy [GM13] have proposed the mixture model of latent traits analyzers
which assumes that the distribution of the categorical variables depends on both a
categorical latent variable (the class) and many continuous latent traits variables.
The inference is also a di�cult point which is solved via a variational approach. If
all these models consider the intra-class dependencies, their main drawback is that
these dependencies have to be interpreted among relations with a latent variable.
Thus, pertinent interpretation can be di�cult.

Focus on the [QTK96] approach The multilevel latent class model proposed
in [QTK96] is introduced to analyze binary data sets. It explains the intra-class
dependencies by a logit function.

De�nition 2.21 ([QTK96] multilevel latent class model). The pdf of component k



78 Chapter 2. Cluster analysis of categorical data sets: state of the art

is written as

p(xi;αk) =

∫
R

d∏
j=1

Φ(akj + bkjt)
xj1i (1− Φ(akj + bkjt))

1−xj1i dΦ(t), (2.27)

where Φ(.) denotes the cumulative distribution function of a standard normal vari-
able.

In practice, this pdf is approximated by using the Gauss-Hermit quadrature.
The mle is obtained by using an em algorithm. We now present the result of this
model for the running example.

Approach As the last speci�c model with four classes proposed in
[EH89] seems arti�cial, the authors of [QTK96] prefer to use the random
e�ects models in a latent class analysis with two classes. They assume that
conditional dependencies can be modelized by a single continuous latent
variable which varies among the individuals. According to the authors,
the latent continuous variable can re�ect the in�uence of the condition of
images.

Interpretation According to the authors, one class represents the sound
teeth and the other represents the carious ones. The random e�ect repre-
sents all the patient speci�c unrecorded characteristics of the x-ray images.
Their model does not require the two additional arti�cial classes. Thus,
their interpretation is easier even if it is not easy to evaluate the strength
of the intra-class dependencies

Running example 2.22 (Clustering with the random e�ects model).

Conclusion By adding two levels of latent variables, the multilevel latent class
models permits to consider the intra-class dependencies. However, it is not easy to
characterize these dependencies since there is none parameter re�ecting the strength
of these dependencies.

2.6 Conclusion

The classical latent class model is often biased when the sample size is large be-
cause its conditional independence assumption is violated. Di�erent methods allow
to cluster the data by taking into account the intra-class dependencies. However,
there is not any model which provides one coe�cient to characterize the strength of
these dependencies.

In this overview, we have not spoken about the mixture of factor analyzers since
we want to favor the models which are easily interpretable. So, we have focused on
models which cluster the individuals by modeling the distribution of the variables
in their native space.
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The log-linear mixture models seems to be the most general one. We also propose,
in the two following chapters, two mixture models which add speci�c constraints to
this general model. Thus, both proposed models allow to summarize the intra-class
dependencies with few parameters.





Chapter 3

Model-based clustering with blocks

of extreme distributions

This chapter introduces a new extension of the latent
class model. This model groups the variables into con-
ditionally independent blocks. The speci�c distribution
of the blocks modelizes the intra-class dependencies and
provides one coe�cient summarizing the strength of
these dependencies.
A maximum likelihood inference is performed by a gem

algorithm while the combinatorial problems of the model
selection are avoided by a mcmc algorithm.
Numerical experiments, on simulated and real data sets,
underline the main characteristics of this new mixture
model.

Science never solves a problem without
creating ten more.

George Bernard Shaw

3.1 Introduction

We propose to extend the classical latent class model for categorical data, by a
new mixture model which relaxes the conditional independence assumption between
the variables. We refer to the proposed model as the mixture of extreme dependency
distributions per blocks (denoted by medd).

The meddmodel groups the variables into conditionally independent blocks given
the class. The main intra-class dependencies are thus underlined by the repartition
of the variables into these blocks. This approach, allowing modeling of the main con-
ditional interactions, was �rst proposed by M. Jorgensen and L. Hunt [JH96, HJ99]
in order to cluster data sets with continuous and categorical variables. For the medd
model, each block follows a particular dependency distribution which consists in a
bi-component mixture of the independence and the maximal dependency distribu-
tion according to the Cramer's V criterion. This speci�c distribution of the blocks

81
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provides one parameter summarizing the strength of the conditional dependencies of
the variables. This crucial parameter is the proportion of the maximum dependency
distribution. Furthermore, the nature of the conditional dependencies is bring out
by the relation de�ned by the maximum dependency distribution. Thus, the model
puts the light on the main conditional dependencies and their strengths.

The proposed model can be interpreted as a two-level parsimonious version of a
log-linear mixture model and thus bene�ts from its interpretative power. The �rst
level de�nes the considered interactions by grouping in the same block the variables
which are conditionally dependent. The strength of this dependency is re�ected
by the proportion of the distribution of maximum dependency compared to that of
the independence distribution. The second level of sparsity is induced by the small
fraction of the parameters of the maximum dependency distribution of the block.
As for all log-linear mixture models, the selection of the pertinent interactions is
a combinatorial problem. Therefore, we propose to perform the model selection
via a mcmc algorithm in order to avoid the enumeration of all the models. Thus,
this general approach could also select the interactions of a more general log-linear
mixture model.

Structure of this chapter This chapter is organized as follows. Section 3.2
presents the mixture model of conditionally independent blocks of variables. Sec-
tion 3.3 presents the new mixture model taking into account the intra-class depen-
dencies. Section 3.4 is devoted to the estimation of the parameters by maximization
of the likelihood in the case where the class number and the blocks of variables
are supposed to be known. Section 3.5 presents a mcmc algorithm avoiding com-
binatorial di�culties inherent to block selection. Section 3.6 presents results on
simulated data. Section 3.7 illustrates the medd model on two real clustering chal-
lenges. A conclusion is given in Section 3.8. Note that a tutorial of the R package
Clustericat 1 performing the model selection and the estimation of the parameters
of medd is given in Chapter 5. All these results are part of the article Model-based
clustering for conditionally correlated categorical data [MBV13a].

3.2 Mixture of intra-class independent blocks

Main idea The mixture model of intra-class independent blocks considers that,
conditionally on class k, variables are grouped into bk independent blocks and each
block follows a speci�c distribution.

A partition of the variables per class The repartition of the variables into
blocks determines a partition σk = (σk1, . . . ,σkbk) of {1, . . . , d} in bk disjoint non-
empty subsets where σkb represents the subset b of variables in the partition σk.
This partition de�nes the vector of categorical variables x{kb}i = xσkbi = (x

{kb}j
i ; j =

1, . . . , d{kb}) which is the subset of xi associated to σkb. The integer d{kb} = card(σkb)

1. The R package Clustericat is available on Rforge website at the following url: https://r-
forge.r-project.org/R/?group_id=1803
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is the number of variables a�liated to block b of component k. The vector x{kb}ji =

(x
{kb}jh
i ;h = 1, . . . ,m

{kb}
j ) corresponds to variable j of block b for component k and

uses a complete disjunctive coding where m{kb}j is the number of modalities for the

variable x{kb}ji . Thus, x{kb}jhi = 1 if individual i takes modality h for variable x{kb}ji

and x{kb}jhi = 0 otherwise.

Remark 3.1 (Di�erent intra-class dependencies). Di�erent variables repartitions in
blocks are allowed for each component and they are grouped into σ = (σ1, . . . ,σg).

De�nition 3.2 (Mixture model of conditionally independent blocks of variables).
Let xi to be the d-variate categorical variable arisen from a mixture model of con-
ditionally independent blocks of variables whose the partition is denoted by σ and
the parameters by θ. Then, its pdf is written as follows

p(x i;σ,θ) =

g∑
k=1

πkp(x i;σk,αk) with p(x i;σk,αk) =

bk∏
b=1

p(x
{kb}
i ;αkb), (3.1)

where αk = (αk1, . . . ,αkbk) and where p(x {kb}i ;αkb) is the pdf of the block b of the
component k parametrized by αkb.

Example 3.3 (Bi-component mixture model of conditionally independent blocks of
variables). Let xi = (x1

i , . . . ,x
5
i ) be the vector of �ve categorical variables following

the bi-component mixture model of conditionally independent blocks. The partition
of the variables of this model is σ = (σ1,σ2) with σ1 = ({1, 2}, {3, 4, 5}) and
σ2 = ({1, 5}, {2, 4}, {3}). Figure 3.1 illustrates the intra-class dependencies taken
into account by the model: blank cell indicates that the intra-class correlation is
neglected and black cell indicates that this correlation is taken into account.
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Figure 3.1 � Intra-class dependencies taken into account by the bi-component
mixture model of conditionally independent blocks of variables with σ1 =
({1, 2}, {3, 4, 5}) and σ2 = ({1, 5}, {2, 4}, {3}).

Note that the classical latent class model with conditional independence would be
represented by white cells o� the diagonal and black on the latter.
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Related models The approach per conditionally independent blocks is very gen-
eral, since any distribution can be chosen for each block distribution p(x {kb}i ;αkb).
The mixture model by conditional independent blocks is a parsimonious version
of the log-linear mixture model. Indeed, the distribution of each block determines
which interactions are considered. Note that the order of these interactions is de-
termined by the number of the variables into the block. Finally, the interactions
between variables of di�erent blocks will be zero and those between variables of the
same block can be modelized by the speci�c distribution of the block. The limiting
case of this model where bk = d for each class is equivalent to the latent class model.

Generic identi�ability The generic identi�ability of the mixture models for cat-
egorical data can be di�cultly proved. However, by adding some constraints on
the repartition of the variables into blocks, we can use Theorem 2.10 [AMR09].
Thus, the generic identi�ability of the model is obtained by using its conditional
independence assumption between blocks under two su�cient conditions.

Corollary 3.4 (Generic identi�ability of the mixture model of conditionally inde-
pendent blocks of variables equal between classes). If σ1 =, . . . ,= σg with b1 ≥ 3,

and if that the block distributions p(x
{kb}
i ;αkb) are identi�able and have υb degrees of

freedom, then suppose there exists a tripartition of the set S = {σ11, . . . ,σ1b1} into
three disjoint nonempty subsets S1, S2 and S3, such that if κu =

∏
{j∈Su} υj then

min(g, κ1) + min(g, κ2) + min(g, κ3) ≥ 2g + 2. (3.2)

Then model parameters are generically identi�able, up to label swapping.

Proof. There is a bijection from x
{kb}
i to x̃{kb}i where x̃{kb}i is a categorical variable

having υb modalities. The variable x̃
{kb}
i follows the latent class model, so its identi-

�ability is de�ned by Theorem 2.10. Thus, we conclude to the generic identi�ability
of the model drawing x{kb}i .

Corollary 3.5 (Generic identi�ability of the mixture model of conditionally inde-
pendent blocks of variables). If there exists a tri-partition of σk, equals for each
k = 1, . . . , g, into three disjoint non-empty subsets S1, S2, S3:

∀k ∈ {1, . . . , g}, ∀σkb ∈ σk, ∃u ∈ {1, 2, 3} as σkb ∈ Su,

and if that the block distributions p(x
{kb}
i ;αkb) are identi�able and have υb degrees

of freedom such that if κu =
∏
{j∈Su} υj then

min(g, κ1) + min(g, κ2) + min(g, κ3) ≥ 2g + 2. (3.3)

Then model parameters are generically identi�able, up to label swapping.

Proof. The proof is similar than the proof of Corollary 3.4. Note that the existence
of x̃{kb}i is assured by the equality of the tri-partition of the σk between classes.
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3.3 Parsimonious block distribution

Main idea The aim is to de�ne a parsimonious distribution for each block that
takes into account the dependency between variables. Furthermore, the parameters
of the distribution inside block must be meaningful for the practitioner. In this
context, we propose to modelize the distribution of each block by a mixture of the
two extreme distributions according to the Cramer's V criterion computed on all
the couples of variables. The model results in a bi-component mixture between an
independence distribution and a maximum dependency distribution which can be
easily interpreted by the user.

The maximum dependency distribution is introduced �rst, then the mixture
model of extreme dependency distributions per blocks (medd) is secondly detailed.

Remark 3.6 (Ordered variables). Without loss of generality, the variables are con-
sidered as ordered by decreasing number of modalities in each block

∀(k, b) m{kb}j ≥ m
{kb}
j+1 where j = 1, . . . , d{kb} − 1.

3.3.1 Maximum dependency distribution

Main idea The maximum dependency distribution is de�ned as the �opposite� dis-
tribution of independence according to the Cramer's V criterion computed on all the
couples of variables. Indeed, the independence distribution minimizes this criterion
while the maximum dependency distribution maximizes it. Under this distribution,
the modality knowledge of one variable provides the maximum information on all
the subsequent variables.

Remark 3.7 (Non-reciprocal functional link). Note that it is a non-reciprocal func-
tional link between variables. Indeed, if x{kb}i arises from this distribution, the
knowledge of the variable having the largest number of modalities determines ex-
actly the others but the reverse does not necessarily apply.

Remark 3.8 (Successive surjections). This distribution de�nes successive surjec-
tions from the space of x{kb}ji to the space of x{kb}j+1

i with j = 1, . . . , d{kb}−1 (recall
that the variables are ordered by decreasing number of modalities in each block). In
fact, it is a reciprocal functional link only when m{kb}j = m

{kb}
j+1 .

Parametrization Since the �rst variable determines the other ones, this distri-
bution is de�ned by a product between the multinomial distribution of the �rst
variable parametrized by the continuous vector

τ kb = (τhkb;h = 1, . . . ,m
{kb}
1 ) with τhkb ≥ 0 and

m
{kb}
1∑
h=1

τhkb = 1, (3.4)

and the product between the conditional distributions de�ned as speci�c multinomial
distributions. So, conditionally on x

{kb}1h
i = 1, then for j = 2, . . . , d{kb}, x{kb}ji
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follows a multinomial distribution parametrized by the discrete vector

δhjkb = (δhjh
′

kb ;h′ = 1, . . . ,m
{kb}
j ) with δhjh

′

kb ∈ {0, 1},
m
{kb}
j∑
h′=1

δhjh
′

kb = 1 and
m
{kb}
1∑
h=1

δhjh
′

kb ≥ 1.

(3.5)
Note that the above constraints de�ne the successive surjections. By denoting δkb =
(δhjkb ;h = 1, . . . ,m

{kb}
1 ; j = 2, . . . , d{kb}), the distribution of maximum dependency

can be now de�ned.

De�nition 3.9 (Maximum dependency distribution). Let x{kb}i be the d{kb}-variate
categorical variable following the maximum dependency distribution whose the dis-
crete parameters are denoted by δkb and whose the continuous ones are denoted by
τ kb. Then, its pdf is written as follows

ṕ(x
{kb}
i ; τ kb, δkb) = p(x

{kb}1
i ; τ kb)

d{kb}∏
j=2

p(x
{kb}j
i |x{kb}1i ; {δhjkb}h=1,...,m

{kb}
1

)

=

m
{kb}
1∏
h=1

(
τhkb

d{kb}∏
j=2

m
{kb}
j∏
h′=1

(δhjh
′

kb )x
{kb}jh′
i

)x{kb}1hi

. (3.6)

Example 3.10 (Bivariate and tri-variate maximum dependency distributions). Let
the mixture model whose the blocks of variables for the �rst component are de�ned
by σ1 = ({1, 2}, {3, 4, 5}). The distributions of the blocks are maximum dependency
ones whose the parameters are the following

δ111
11 = δ212

11 = δ313
11 = δ413

11 = δ1j1
12 = δ2j2

12 = 1,

τ 11 = (0.1, 0.3, 0.2, 0.4) and τ 12 = (0.5, 0.5).

Figure 3.2 displays the probabilities of the joint distributions by the area of dark
boxes. Note that δkb de�nes the locations where the probabilities are non zero (loca-
tion of a dark boxes) and τ kb de�nes the probabilities of this non zero cells (area of
the dark boxes).

Identi�ability A su�cient condition of identi�ability is to impose τhkb > 0, for
all h = 1, . . . ,m

{kb}
1 . This distribution has very limited interest because it is so

unrealistic that it can almost never be used alone, we now present how to use it in
a more e�cient way.

3.3.2 Block distribution: mixture of two extreme distribu-

tions

Main idea We assume that the blocks composed by at least two variables follow
a bi-components mixture between an independence distribution and a maximum de-
pendency distribution while the block composed by one variable follow a multinomial
distribution.
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(a) First block of class 1 (b) Second block of class 1

Figure 3.2 � Two examples of block distributions following a maximum dependency
distribution where m{11}

1 = 4, m{11}
2 = 3 and m{12}

1 = m
{12}
2 = m

{12}
3 = 2.

De�nition 3.11 (Model-based clustering of blocks of extreme distributions). A
d-variate categorical variable xi is generated by a medd model if it is drawn by
a mixture model of conditionally independent blocks whose the pdf is written as
follows

p(x i;σ,θ) =

g∑
k=1

πk

bk∏
b=1

p(x
{kb}
i ;αkb). (3.7)

Moreover, the pdf of block b for component k is written as

p(x
{kb}
i ;αkb) =

{
(1− ρkb)p̊(x {kb}i ; ξkb) + ρkbṕ(x

{kb}
i ; τ kb, δkb) if d{kb} > 1

p̊(x
{kb}
i ; ξkb) otherwise,

(3.8)

where ṕ(x {kb}i ; τ kb, δkb) is the pdf of the maximum dependency distribution de�ned
by (3.6) and where p̊(x {kb}i ; ξkb) is the pdf of the independence distribution de�ned

by p̊(x {kb}i ; ξkb) =
∏d{kb}

j=1

∏m
{kb}
j

h=1 (ξjhkb )
x
{kb}jh
i . The parameter αkb = (ρkb, ξkb, τ kb, δkb)

groups the parameters of block b for component k. Finally, the real ρkb ∈ [0, 1] is
the proportion of the maximum dependency distribution.

Number of parameters The medd model requires little additional parameters
compared with the cim model. Indeed, for each block with at least two variables,
the number of additional parameters depends only on the number of modalities of
the �rst variable of the block and not on the number of variables into the block.
The number of parameters of medd, denoted by νmedd, is also de�ned by

νmedd = (g − 1) + g

d∑
j=1

(mj − 1) +
∑

{(k,b)|d{kb}>1}

m
{kb}
1 . (3.9)

In addition, the medd model is easily interpretable as explained in the next
paragraph. Note that the limiting case where ρkb = 0 de�nes the block distribution
by the independence one. In this particular case, the parameters of the maximum
dependency distribution are no longer de�ned.
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Meaningful block distribution Under this distribution, the proportion of the
maximum dependency distribution re�ects the deviation from independence under
the assumption that the alternative distribution is the maximum dependency dis-
tribution. The parameter ρkb gives an indicator of the inter-variable dependency
of the block. It is not here a pairwise dependency among variables but a depen-
dency between all variables of the block. Furthermore, it stays bounded when the
number of variables is larger than two while the Cramer's V is non upper-bounded
in this case. The intra-variable dependencies are de�ned by δkb. The strength of
these dependencies is explained by τ kb. Indeed, this vector gives the weight of the
over-represented modality crossings compared with the independence distribution.

Parsiominous log-linear mixture model We interpreted the medd model as
a two-level parsimonious version of the log-linear mixture model. The �rst one is
de�ned by the repartition of the variables into blocks determining the conditional
interactions to be modeled. The speci�c block distribution adds a second level
of parsimony since among the interactions allowed by each component, only those
corresponding to the maximum dependency distribution are modeled while the other
ones are considered as null.

Identi�ability The proposed distribution is identi�able under the condition that
the block is composed by at least three variables (d{kb} > 2) or that the modality
number of the last variable of the block is greater than two (m{kb}2 > 2). This result is
demonstrated in Appendix A.1. We remind that the parameter ρkb is a new indicator
allowing to measure the dependency between variables, not limited to dependency
between couples of variables. However, if d{kb} = 2 and m{kb}2 = 2 then the block
distribution is not identi�able so a new constraint is added. In order to have the
most meaningful parameters, the chosen value of ρkb is the largest value maximizing
the log-likelihood. This additional constraint does not falsify the de�nition of ρkb
as an indicator of the dependency strength between the variables of the same block.
Furthermore, this constraint is natural since blocks with the biggest dependencies
are wanted. Note that ρkb seems to be correlated with the Cramer's V as illustrated
by the following example.

Example 3.12 (Cramer's V and ρkb: two measures of the dependency). Figure 3.3
presents the link between the Cramer's V and ρkb on simulated bivariate binary
variables. Such a behavior has also been observed in many other situations.

3.4 Maximum likelihood estimation via a GEM al-

gorithm

Aim Let x = (x 1, . . . xn) be the sample composed with n independent and iden-
tically distributed individuals assumed to arise from the medd model. From this
sample, the aim is to estimate the mle for a �xed model m de�ned by (g,σ).
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Figure 3.3 � Evolution of ρkb computed with the identi�ability constraint according
to the Cramer's V for two binary variables.

Combinatorial problem We have seen in Section 1.3.2 that the inference for a
mixture model can be performed via an em algorithm or one of its extensions if the
maximization of the complete-data log-likelihood is easy. However, it is not the case
for the medd model since the estimation of the discrete parameters of the maximum
dependency distribution is a combinatorial problem. Indeed, if S(a, b) is the number
of possible surjections from a set of cardinal a into a set of cardinal b, then δkb is
de�ned in the discrete space of dimension

∏d{kb}−1
j=1 S(m

{kb}
j ,m

{kb}
j+1 ). So, an exhaustive

enumeration for estimating the discrete parameters is generally impossible when a
block contains variables with many modalities and/or many variables.

Example 3.13 (Combinatorial problem involved by the discrete parameters). A
block with three variables and m{kb} = (5, 4, 3) implies 51 840 possibilities for δkb.

Estimation map The parameters are estimated via a gem algorithm avoiding
the classical problem involved by the unknown class membership. At its gm step,
the maximization of the expectation of the complete-data likelihood is indepen-
dently performed on the parameters of each block. Thus, at the gm step of iteration
[r], the combinatorial problem of the discrete parameter estimation for block b of
component k is overcame by a Metropolis-Hastings algorithm whose the stationary
distribution is close to p(δkb|x{kb}, z[r]). The proposal distribution of this algorithm
randomly samples the candidate δ?kb while the candidate (ρ?kb, ξ

?
kb, τ

?
kb) is determin-

istically computed in order to maximize p(ρ?kb, ξ
?
kb, τ

?
kb, δ

?
kb|x{kb}, z[r]). Note that the

continuous parameters (ρ?kb, ξ
?
kb, τ

?
kb) are conditionally obtained by an em algorithm

by introducing a second latent variable denoting the membership of the dependency
distributions of the block (independence or maximum dependency distribution).
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3.4.1 Global GEM algorithm

Main idea The inference could be performed via an em algorithm overcoming
the problem of the class membership. However, as the optimization of the expec-
tation of the complete-data log-likelihood on the discrete parameters is performed
via a stochastic algorithm, we can only assure the increase of the expectation of
the complete-data log-likelihood and not its maximization. So, the inference is per-
formed via the following gem algorithm.

Starting from an initial value θ[0], its iteration [r] is written as
� E step: calculate conditional probabilities

tik(θ
[r]) =

π
[r]
k p(xi;σk,α

[r]
k )

p(xi;σ,θ
[r])

.

� GM step: increase of the expectation of the complete-data log-
likelihood

π
[r+1]
k =

n
[r]
k

n
and α[r+1]

kb as such Lkb(α
[r+1]
kb ;x, t[r]) ≥ Lkb(α

[r]
kb ;x, t

[r]),

where Lkb(αkb;x, t[r]) =
∑n

i=1 tik(θ
[r]) ln p(xkbi ;αkb) with t[r] = (tik(θ

[r]); i =

1, . . . , n; k = 1, . . . , g) and n[r]
k =

∑n
i=1 tik(θ

[r]).

Algorithm 3.14 (The gem algorithm to obtain the medd model mle).

This algorithm is stopped after rmax iterations. The optimization on each αkb is
independently performed for each (k, b) at the gm step by the following Metropolis-
Hastings algorithm.

3.4.2 Focus on the GM step of the GEM algorithm

Main idea A Metropolis-Hastings algorithm is independently executed for each
(k, b) in order to perform the gm step of Algorithm 3.14. For a �x (k, b), this
algorithm has a stationary distribution close to p(αkb|x, t[r]) when it is performed
at iteration [r] of the global gem algorithm. It samples a sequence of the block
parameters (α

[r,0]
kb , . . . ,α

[r,smax]
kb ) where smax is the number of iterations �xed by the

user. As the algorithm aims at �nding the value maximizing the expectation of the
complete-data log-likelihood, we put

α
[r+1]
kb = argmax

s=1,...,smax

Lkb(α
[r,s]
kb ;x, t[r]). (3.10)

We now detail the Metropolis-Hastings algorithm then we detail its instrument dis-
tribution q(.;α[r,s]

kb ).
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Starting from the initial value α[r,0]
kb = α

[r]
kb , its iteration [s] is written as

α?kb ∼ q(αkb;α
[r,s]
kb ) (3.11)

α
[r,s+1]
kb =

{
α?kb with probability λ[r,s]

α
[r,s]
kb with probability 1− λ[r,s].

(3.12)

Algorithm 3.15 (The Metropolis-Hastings algorithm).

Focus on the proposal distribution The instrumental distribution q(αkb;α
[r,s]
kb )

samples the candidate α?kb in two steps. Firstly, it uniformly samples the candidate
δ?kb among the neighborhood of δ[r,s]

kb denoted by ∆(δ
[r,s]
kb ). This neighborhood is

de�ned as the set of the parameters where at most two surjections are di�erent from
those of δ[r,s]

kb . Secondly, it computes the continuous parameters conditionally on
∆(δ

[r,s]
kb ) as such

(ρ?kb, ξ
?
kb, τ

?
kb) = argmax

ρkb,ξkb,τkb

Lkb(ρkb, ξkb, τ kb, δ
?
kb;x, t

[r]). (3.13)

Note that the maximization of the expectation of the complete-data log-likelihood
stays not straightforward, even when the discrete parameters are known. However,
by remarking that the block distribution is itself a mixture, we introduce a second
latent variable indicating the block distribution membership (independence or max-
imum dependency distribution). Thus, the continuous parameters de�ned by the
previous equation are obtained by an em algorithm detailed in the next section.

Example 3.16 (Neighborhood of the discrete parameter). Figure 3.4 states the
elements of ∆(δkb) with d{kb} = 2, m{kb}1 = 3, m{kb}2 = 2, and with δ121

kb = δ221
kb =

δ322
kb = 1 and δh2h′

kb = 0 otherwise.

Focus on the acceptance probability In order to complete the de�nition of
the Metropolis-Hastings algorithm, we precise the acceptance probability which is
de�ned by

λ[r,s] = min

{
p(x{kb}, t[r];α?kb)

p(x{kb}, t[r];α
[r,s]
kb )

|∆(δ?kb)|
|∆(δ

[r,s]
kb )|

; 1

}
, (3.14)

|∆(δ
[r,s]
kb )| denoting the cardinal of ∆(δ

[r,s]
kb ).

Remark 3.17 (Exhaustive approach vs. stochastic one). When the space of possible
δkb is small (for example when the block groups a small number of binary variables),
an exhaustive approach obtains the same results as the proposed algorithm with less
computation time. Thus, the retained approach (exhaustive or stochastic) depends
on the number of variables and modalities.
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Figure 3.4 � For the row h′ and the column h, a black cell indicates that δh2h′

kb = 1
and a white cell that δh2h′

kb = 0: (a) δkb; (b), (c), (d), (e) are the elements of ∆(δkb).

3.4.3 Determination of (ρ?kb, ξ
?
kb, τ

?
kb) by the proposal distribu-

tion

A second latent variable If the �rst latent vector z indicates the class mem-
bership, a second latent vector denotes the block distribution membership. It is
denoted by y = (y

{kb}
i ; i = 1, . . . , n; k = 1, . . . , g; b = 1, . . . ,bk) where y{kb}i = 1 if

x
{kb}
i arises from the maximum dependency distribution for block b of class k and

y
{kb}
i = 0 if x {kb}i arises from the independence distribution for block b of class k.

A full complete-data log-likelihood The whole mixture model distribution
corresponds to the marginal distribution of the random variable X obtained from
the triplet distribution of the random variables (X,Y,Z). Since the blocks are
independent conditionally on Z, the full complete-data log-likelihood (both in Y
and Z) is de�ned as

L(θ; x,y, z) =

g∑
k=1

nk ln πk +

g∑
k=1

bk∑
b=1

Lkb(αkb; x,y, z), (3.15)
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where Lkb(αkb; x,y, z) denotes the full complete-data log-likelihood of block b for
component k de�ned by

Lkb(αkb; x,y, z) =

n∑
i=1

zik

(
(1−y{kb}i ) ln

(
(1−ρkb)p̊(x

{kb}
i ; ξkb)

)
+y
{kb}
i ln

(
ρkbṕ(x

{kb}
i ; τ kb, δkb)

))
.

Conditional estimation of the continuous parameters At iteration [s] of
Algorithm 3.15 performed at iteration [r] of Algorithm 3.14, the discrete candidate
parameter δ?kb is sampled. Then, the continuous candidate parameters are de�ned
as follows:

(ρ?kb, ξ
?
kb, τ

?
kb) = argmax

ρkb,ξkb,τkb

Lkb(ρkb, ξkb, τ kb, δ
?
kb;x, t

[r]).

So, conditionally on (δ?kb,x, t
[r]), the continuous parameters are obtained by the

following em algorithm.

Starting from an initial value (ρ
[0]
kb ,α

[0]
kb , τ

[0]
kb), iteration [`] is written as

� E step: calculate the conditional expectation of y{kb}i

ui(α
[`]
kb) =

ρ
[`]
kbṕ(x

{kb}
i ; τ

[`]
kb, δ

?
kb)

(1− ρ[`]
kb)p̊(x

{kb}
i ; ξ

[`]
kb) + ρ

[`]
kbṕ(x

{kb}
i ; τ

[`]
kb, δ

?
kb)
,

� M step: maximization of the expectation of the complete-data log-
likelihood

ρ
[`+1]
kb =

n
[`]
kb

n
[r]
k

, ξ
jh[`+1]
kb =

n̊
jh[`]
kb

n
[r]
k − n

[`]
kb

and τh[`+1]
kb =

ń
h[`]
kb

n
[`]
kb

,

with n[`]
kb =

∑n
i=1 tik(θ

[r])ui(α
[`]
kb), ń

h[`]
kb =

∑n
i=1 tik(θ

[r])ui(α
[`]
kb)x

{kb}1h
i

and n̊jh[`]
kb =

∑n
i=1 tik(θ

[r])(1− ui(α[`]
kb))x

{kb}jh
i .

Algorithm 3.18 (The em algorithm to obtain (ρ?kb, ξ
?
kb, τ

?
kb)).

Conjecture 3.19 (One optimum). During our experiments, we empirically no-
ticed that the log-likelihood function of the mixture between the independence and the
maximum dependency distributions had a unique optimum. We conjecture that this
function has indeed a unique maximum.

Remark 3.20 (One em algorithm if the discrete parameters are known). In the
speci�c case where δkb are known for each (k, b), all the continuous parameters could
be estimated via a unique em algorithm. At iteration [r] of this algorithm, the e step
would compute both expectations of z[r] and y[r] while the m step would estimate
all the continuous parameters maximizing the expectation of the full complete-data
log-likelihood.
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3.5 Model selection via a MCMC algorithm

Aim The aim is to select the model de�ned by (ĝ, σ̂) which better �t the data.
Thus, in a Bayesian framework, the aim is to �nd the model having the largest
posterior probability.

Prior distributions We consider that p(g) = 1
gmax

if g ≤ gmax and 0 otherwise,
where gmax is the maximum number of classes allowed by the user, and we assume
that p(σ|g) follows a uniform distribution.

Posterior distributions The best model maximizes its posterior distribution.
According to the prior distributions, it is de�ned as

(ĝ, σ̂) = argmax
g

[
argmax

σ
p(x|g,σ)

]
where p(x|g,σ) ∝

∫
θ∈Θ

p(x|θ, g,σ)p(θ)dθ.

(3.16)

To �nd (ĝ, σ̂), a mcmc algorithm is used for estimating argmaxσ p(x|g,σ), for
each value of g ∈ {1, . . . , gmax}. This method limits the combinatorial problem
involved by the detection of the block structure of variables since it provides a
random walk among the σ of interest.

Remark 3.21 (On the reversible jump). A reversible jump method could be used
[RG97], however this approach is rarely performed with mixed parameters (con-
tinuous and discrete). Indeed, in such a case, it is di�cult to de�ne a mapping
between the parameters space of two models. So, we propose to use an easier mcmc
algorithm having p(σ|x, g) as stationary distribution.

3.5.1 Exploration of the space of the models by a MCMC

algorithm

Main idea This algorithm alternates between two steps: the generation of a neigh-
borhood conditionally on the current model by a proposal distribution and the gen-
eration of a new model belonging to this neighborhood according to its posterior
probability.
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This mcmc algorithm has p(σ|x, g) as stationary distribution. Starting
from an initial value of the repartition of the variables into blocks σ[0], its
iteration [q] is written as

� Neighborhood step: sampling of a stochastic neighborhood Σ[q]

Σ[q] ∼ q(Σ;σ[q]). (3.17)

� Model step: sampling of the repartition of the variables into blocks
σ[q+1]

σ[q+1] = p(σ|x, g,Σ[q]) where p(σ|x, g,Σ[q]) ∝
{
p(x|g,σ) if σ ∈ Σ[q]

0 otherwise.
(3.18)

Algorithm 3.22 (MCMC algorithm to explore the models).

We now detail both steps of the above mcmc algorithm.

Details of the Neighborhood step A deterministic neighborhood of σ[q] could
be de�ned as the set of models where, at most one variable is a�ected, for one
component, in another block (possibility to build a new block):{

σ : ∃!(k, b, j) j ∈ σ[q]
kb and j /∈ σkb

}
∪
{
σ[q]
}
.

However, as this deterministic neighborhood can be very large, our proposal
distribution allows reducing it to a stochastic neighborhood Σ[q] by limiting the
number of (k, b) where σkb could be di�erent to σ[q]

kb . Thus, the sampling according
to q(.;σ[q]) is performed by the three following steps:

� Component sampling

k[q] ∼ U [{1, . . . , g}].

� Leaving block sampling

b
[q]
from ∼ U [{1, . . . , B[q]

k[q]
}].

� Arriving block sampling

b
[q]
to = {b[q], B

[q]

k[q]
+ 1} where b[q] ∼ U [{1, . . . , B[q]

k[q]
} \ b[q]

from].

The stochastic neighborhood Σ[q] is then de�ned as:

Σ[q] =
{
σ : ∃!(k, b, j) j ∈ σ[q]

kb , j /∈ σkb and j ∈ σkb′ with k = k[q], b = b
[q]
from, b

′ ∈ b[q]to

}
∪
{
σ[q]
}
.

(3.19)

We denote by σ[q+ε(e)] the elements of Σ[q] where ε(e) = e
|Σ[q]|+1

and e = 1, . . . , |Σ[q]|.

Example 3.23 (neighborhood Σ[q]). Figure 3.5 shows an illustration of this de�ni-

tion of the neighborhood Σ[q] when σ
[q]
k = ({1, 2}, {3, 4}).
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Figure 3.5 � Example of the support of Σ[q] in the case of four variables. If the
variables of the jth row and of the j

′th column are in the same block then the cell
(j, j′) is painted in black. This cell is painted in white otherwise. (a�d) Elements
of Σ[q] if b[q]

from = 1; (e�h) Elements of Σ[q] if b[q]
from = 2.

Details of the Pattern step At the generation pattern step, the algorithm needs
the value of p(x|g,σ) ∀σ ∈ Σ[q] to implement Algorithm 3.22. By using the bic
approximation, this probability is approximated by

ln p(x|g,σ) ' L(θ̂;x, g,σ)− νmedd
2

log(n), (3.20)

θ̂ being the maximum likelihood estimator obtained by the gem algorithm previ-
ously described in Section 3.4. Thus, at iteration [q], for each e = 1, . . . , |Σ[q]|, the
estimator θ̂

[q+ε(e)]
associated to the element σ[q+ε(e)] is computed by Algorithm 3.14.

Initialization Whatever the initial value selected for σ[0], the algorithm converges
to the same stationary distribution. However, this convergence can be very slow
when the initialization is poor. Since blocks consist in the most correlated variables,
a Hierarchical Ascendant Classi�cation (HAC) is applied on the matrix of Cramer's
V distances on the couples of variables. We select, for σ[0]

k , the partition provided
by the HAC which minimizes the number of blocks and which excludes the blocks
consisting of more than four variables. Note that the number of the variables a�ected
into a block is limited to four, for the initialization, because very few blocks having
more than four variables were observed during our experiments. Obviously, the
mcmc algorithm can then violate this initial constraint if necessary.

Stopping criterion The algorithm is stopped when qmax successive iterations
have not discovered a better model.
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3.5.2 Consequences of the model selection on the GEM algo-

rithm

Main idea At iteration [q] of the mcmc algorithm performing the model selection

(i.e. Algorithm 3.22), the gem algorithm (i.e. Algorithm 3.14) estimates θ̂
[q+ε(e)]

associated to the model σ[q+ε(e)] for e = 1, . . . , |Σ[q]|. Since these models are close to
σ[q], their maximum likelihood estimates should be closed to θ̂

[q]
.

Parameters of the non-modi�ed blocks The gem algorithm initialization is

also done by the value of θ̂
[q]

for the non modi�ed blocks. Thus, in such a case

(σ[q+ε(e)]
kb = σ

[q]
kb), θ

[q+ε(e)][0]
kb = θ̂

[q]

kb .

Parameters of the modi�ed blocks For the other blocks, the continuous pa-
rameters are randomly sampled. In order to avoid the combinatorial problems, we
use a sequential method to initialize δ[q+ε(e)][0]

kb . The surjections from x
{kb}1
i to x{kb}ji

are sampled, according to x and the continuous parameters previously sampled
(ρ

[q+ε(e)][0]
kb ,α

[q+ε(e)][0]
kb , τ

[q+ε(e)][0]
kb ), for each j = 2, . . . , d{kb} as follows:

δ
.j[q+ε(e)][0]
kb ∝

n∏
i=1

p(x
{kb}1
i , x

{kb}j
i ; ρ

[q+ε(e)][0]
kb ,α

1[q+ε(e)][0]
kb ,α

j[q+ε(e)][0]
kb , τ

[q+ε(e)][0]
kb , δ.jkb)

z
[q]
ik ,

(3.21)
where δ.j[q+ε(e)]kb = (δ

hj[q+ε(e)]
kb ;h = 1, . . . ,m

{kb}
1 ) and where z[q]

ik = E
[
Zik|xi,θ[q]

]
.

Remark 3.24 (About the number of iterations of the GEM algorithm rmax). As
said in Section 3.4.1, the algorithm is stopped after a �xed number of iterations
rmax. If the algorithm is stopped before its convergence, the proposed initialization
limits the problems. Indeed, if the model has a high a posteriori probability, it will
stay in the neighborhood Σ[q] during some successive iterations, so its log-likelihood
will increase. As these algorithms are interlocked, the number of iterations of Algo-
rithm 3.18 (the most internal algorithm) is small. When the best model is selected
by Algorithm 3.22, this latter will stay in this model during many iterations so the
Metropolis-Hastings (Algorithm 3.15) and the em algorithm (Algorithm 3.18) are
performed lots of times. Thus, it is not necessary to have a large number of iterations
as stopping criterion.

3.6 Numerical experiments on simulated data sets

Table 3.1 presents the adjustment parameters values used for all the simulations.

Algorithms mcmc gem Metropolis-Hastings em

Criteria qmax = 20× d rmax = 10 smax = 1 tmax = 5

Table 3.1 � Values of the di�erent stopping criteria.
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3.6.1 Study of the algorithm for the δkb estimation

Aim In this section, we illustrate the performance of the Metropolis-Hastings algo-
rithm estimating δkb (see Section 3.4.2) and the relevance of its initialization de�ned
by (3.21). Since this algorithm is interlocked in the mcmc algorithm and in the gem
algorithm which respectively estimate the model and the parameters, we need it to
converge quickly. It is shown in the following simulations that the algorithm stays
relevant up to six modalities per variable and up to six variables per block. These
conditions hold in most situations.

Experimental conditions Samples of size 200 described by variables having the
same number of modalities are generated by a mixture between an independence
distribution and a maximum dependency distribution. The parameters are also es-
timated by the Metropolis-Hastings algorithm, described in Section 3.4.2, since only
one class is generated. The initializations of the discrete parameters are performed
according to Equation (3.21) with zi1 = 1 for all i = 1, . . . , 200.

Results Figure 3.6 shows the box-plots of the numbers of iterations required by
the Metropolis-Hastings algorithm in order to �nd the true links between modali-
ties maximizing the likelihood 2. According to these simulations, one observes that
the results of this algorithm are good thanks to its initialization which allows sig-
ni�cantly reducing the number of iterations needed in order to �nd the maximum
likelihood estimators.

3.6.2 Study of the algorithm for model selection

Aim In order to illustrate the e�ciency of the algorithm for the model selection
(and also the included estimation process), we want to study the evolution of the
Kullback-Leibler divergence according to the number of variables and to the size of
the data set.

Experimental conditions In many situations, 100 samples are generated ac-
cording to the medd model with two components. Note that the parameter u is
introduced for controlling the overlapping of classes: when it is close to one then
the classes are absolutely overlapped. This parameter �x the error rate to 0.10 for
each studied situation:

σkb = (d/b, 1 + d/b) ρkb = 0.6(1− u) τ kb = (0.60, 0.20, 0.20),

δh2h′
1b = 1 i� h = h′ δ122

1b = δ223
1b = δ321

1b = 1 αj1b = (0.20, 0.20, 0.60),

α1
2b = α1

1b(1− u) + (0.075, 0.850, 0.075)u and α2
2b = α2

1b(1− u) + (0.850, 0.075, 0.075)u.

2. In fact, the algorithm is stopped as soon as it �nds a discrete estimate involving a likelihood
higher than or equal to the likelihood obtained with the true discrete parameters used for the
simulation.
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(a) (b)

(c) (d)

Figure 3.6 � Box-plots of the number of iterations required by the Metropolis-Hastings algo-

rithm in order to �nd the best links between modalities, according to the number of modalities

when datasets are simulated with a proportion of maximum dependency distribution equal to 0.5.

(a) Three variables with the proposed initialization; (b) Three modalities per variables with the

proposed initialization; (c) Three variables with a random initialization; (d) Three modalities per

variables with a random initialization.

Results Table 3.2 shows the mean and the standard deviation of the Kullback-
Leibler divergence between the parameters used for the data set generation and the
estimated parameters according to the number of variables. When n increases, the
Kullback-Leibler divergence converges to zero. It con�rms the good behavior of the
proposed algorithm.
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d \ n 100 200 400 800
4 0.77 (1.34 ) 0.26 (0.26 ) 0.15 (0.05 ) 0.12 (0.05 )
6 1.22 (1.77 ) 0.27 (0.14 ) 0.09 (0.07 ) 0.05 (0.05 )
8 1.72 (2.50 ) 0.41 (0.20 ) 0.09 (0.05 ) 0.05 (0.03 )
10 1.73 (4.06 ) 0.52 (0.14 ) 0.10 (0.03 ) 0.04 (0.03 )

Table 3.2 � mean (standard deviation) of the Kullback-Leibler divergence.

3.7 Analysis of two real data sets

3.7.1 Contraceptive method choice

The data This data set is a subset of the 1987 National Indonesia Contraceptive
Prevalence Survey ([LLS00]). It is composed with 1473 married women who were
either not pregnant or do not know if they were at the time of interview. The original
problem is to predict the current contraceptive method choice (no use, long-term
methods, or short term methods) of a woman based on her demographic and socio-
economic characteristics. Each woman is described by nine variables: number of
children ever born Chi (0, 1, 2, 3, 4, 5 and more), wife's age WAg (25 and less,
26-35,36-45, 46 and more), wife's education WEd (1=low, 2, 3, 4=high), husband's
education HEd (1=low, 2, 3, 4=high), husband's occupation HOc (1, 2, 3, 4),
standard of living index Liv (1=low, 2, 3, 4=high), wife's religion WRe (Non-Islam
or Islam), wife's now working WWo (yes or no) and media exposure Med (good or
not good). For the analysis, the contraceptive method used is blinded, in order to
work in a clustering context.

Model selection Table 3.3 presents the values of the bic criterion for the cim
and the medd models. Until four classes, the results of the medd model are better
than them of the cim model. The selection of class number is better for the medd
model since it selects the �true� number of classes while the cim model overestimates
it.

g 1 2 3 4 5 6
cim -13221 -12566 -12430 -12383 -12368 -12410
medd -12709 -12378 -12288 -12339 -12368 -12410

Table 3.3 � Values of the bic criterion obtained by both models with di�erent
numbers of classes. Best values according to the bic criterion are in bold.

Model interpretation Figure 3.7 summarized the results of the bestmeddmodel
according to the bic criterion. It allows to describe the classes by their main fea-
tures (proportions, intra-class correlations). On ordinates, the estimated classes are
represented with respect to their proportion in decreasing order. Note that their
corresponding area depends on their proportion. The cumulated proportions are
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indicated on the left side. On abscissa, three indications are given. The �rst one is
the inter-variables correlations (ρkb) for all the blocks of the class ordered by their
strength of correlation (in decreasing order). The second one is the intra-variables
correlations (τ kb) for each block drawn according to the strength of their dependen-
cies (in decreasing order). The third is the variables repartition per blocks. A black
cell indicates that the variable is assigned to the block and a white cell indicates
that, conditionally on this class, the variable is independent of the variables of this
block. For example, this �gure shows that the �rst class has a proportion of 0.49
and that all the variables are split into three blocks.

� Class 1: young families
� General: this class proportion is equal to 0.49. There are two dependency

blocks and one block of independence.
� Block 1: in this class, the women age and their children number are

correlated (ρkb), with a presence of both extreme situations (young women
without child and old women with lots of children explained by both δkb
and τ kb).

� Block 2: the education level of both members of couple are closed (δkb)
and high education is most present (τ kb).

� Block 3: the practice of Islam is general. The couple members have jobs
in category two and three and their living index stays low (αkb).

� Class 2: well-o� and not practicing Islam
� General: this class proportion is equal to 0.37. There are two dependency

blocks and one block of independence.
� Block 1: there is a strong correlation between the kind of the husband's

occupation and the wife's religion (ρkb). In this class the women practicing
Islam have generally a husband with the occupation's level 4 (δkb and τ kb).

� Block 2: this block shows a link between the number of children and the
age of the women. The older are the women, the more children they have
(δkb).

� Block 3: in this class both members of the couple have done high studies
(αkb).

� Class 3: poor and large families
� General: this class proportion is equal to 0.14. There is one block of

independence.
� Block 1: this is a class where the number of children is very high (50% of

women have at least 5 children). It consists mostly of rather old women
with low levels of education, as well as their husbands. They work in
groups 2 and 3. The practice of Islam is general. Found in this category
all individuals not exposed to the media (αkb).

Conclusion It is noted that the medd model is more relevant for this data set.
Indeed, the number of classes is limited and they are interpretable. In addition, the
assumption of conditional independence between variables seems too stringent for
some couples of variable: relationship between age and number of children, relations
between the educational level of both members of a couple in a country where caste
system is present.
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Figure 3.7 � Summary of the best medd model according to the bic criterion for
the contraceptive method choice data set.

3.7.2 Calves clustering

The data The �Genes Di�usion� company has collected information from the
French breeders in order to cluster calves. The 4270 studied calves are described
by nine variables of behavior (aptitude for sucking Apt, behavior of the mother
just before the calving Iso) and health related (treatment against omphalite TOC,
respiratory disease TRC and diarrhea TDC, umbilicus disinfection Dis, umbilicus
emptying Emp, mother preventive treatment against respiratory disease TRM and
diarrhea TDM ).

Information criteria Table 3.4 displays the bic criterion values and the number
of parameters required by the cim and the medd models. Furthermore, the com-
puting time in minutes (obtained with a processor Intel Core i5-3320M) to estimate
the medd model by starting 20 mcmc chains with a stopping criterion of qmax = 180
while the cim model needs 3 sec with the R package RMixmod [LIL+12].

For the cim model, the bic criterion selects a high number of classes, since it
selected eight classes. The interpretation of the clusters is also di�cult and we
can assume that the quality of the estimate is very poor. Figure 3.8 helps the
interpretation for the medd model with �ve components (best model according to
the bic criterion). Its interpretation is the same as the interpretation of Figure 5.1.
For example, this �gure shows that the �rst class has a proportion of 0.29 and it is
composed of four blocks. The most correlated block of the �rst class has ρkb ' 0.80
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g 1 2 3 4 5 6 7 8
cim bic -28589 -26859 -26526 -26333 -26238 -26235 -26226 -26185

νcim 17 35 53 71 89 107 125 143

medd bic -26653 -26289 -26173 -26038 -26025 -26059 -26045 -26058
νmedd 24 48 80 89 112 131 148 163

time (min) 0.97 3.32 6.16 6.56 10.03 11.76 12.31 14.92

Table 3.4 � Results for the cim and the medd models according to di�erent numbers
of classes. For both models, �rst row corresponds to the bic criterion values and the
second row indicates the number of continuous parameters. Best results according
to the bic criterion are in bold. Computing time for the medd model estimation is
given in minutes.

and the strength of the biggest modalities link is close to 0.85. This block consists
in the variables TDC and TRM.
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Figure 3.8 � Summary of the best medd model according to bic criterion for the
calves data set.

Interpretation of Class 1 Here is now a possible interpretation of Class 1 (note
that the others classes are also meaningful; see details in [MBV13b]):

� General: this class has a proportion equal to 0.29 and consists of three
blocks of dependency and one block of independence.

� Block 1: there is a strong correlation (ρ11) between the variables diarrhea
treatment of the calve and mother preventive treatment against respiratory
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disease, especially between the modality no treatment against the calve diar-
rhea and the absence of preventive treatment against respiratory disease of
its mother (τ 11 and δ11).

� Block 2: there is a strong correlation (ρ12) between the variables treat-
ment against respiratory illness of the calve and mother preventive treat-
ment against diarrhea, especially between the modality preventive treatment
against respiratory illness of the calve and the presence of diarrhea preventive
treatment of its mother (τ 12 and δ12).

� Block 3: there exists another strong link between the behavior of the
mother, the emptying of the umbilical and its disinfection (τ 13 and δ13).

� Block 4: this block is characterized by an absence of preventive treatment
against omphalite and contains 50% of the calves infected by this illness (α14).

3.8 Conclusion

By using the block extension of the cim model, a new mixture model called the
medd model has been proposed to cluster categorical data by taking into account
the intra-class dependency. The block distribution of the medd model is de�ned as
a mixture between an independence distribution and a maximum dependency dis-
tribution. This speci�c distribution stays parsimonious and allows di�erent levels of
interpretation. The �rst level is given by the blocks of variables which bring out the
conditional dependencies between variables, and by the proportions of the maximum
dependency distributions which characterize the strength of these dependencies. The
second level is more precise since the parameters of the block distribution re�ect the
links between modalities and their strengths. The medd model has been compared
to the full latent class model on two real data sets.

The parameter and the model are simultaneously estimated via a mcmc algo-
rithm. This algorithm allows to reduce the combinatorial problems of the block
structure detection and the links between modalities search for the estimation of
the maximum dependency distribution. The results are good when the number of
modalities is small for each variable. For more than six modalities, the detection
of other links meets some persistent di�culties. So, the algorithm can be slow in
this case. The proposed approach to estimate the block structure is not adapted for
data sets with lots of variables.

The main drawback of this algorithm is its need to compute the mle associated
to each candidate model. This estimation is time consuming and only the mle
associated to the best model is interpreted. Thus, we propose in the next chapter
a new mixture model avoiding this drawback since its integrated complete-data
likelihood is explicit. This properties avoids the needs to use the mle to perform
the model selection.

Finally, the proposed model can be easily extended to the case of ordinal data.
For this, some additional constraints on the dependency structure of each distribu-
tion of maximum dependency need to be added. Note that these constraints also
limit the combinatorial research of the dependency structures.



Chapter 4

Model-based clustering with

conditional dependency modes

This chapter presents our second contribution to the
model-based framework permitting to cluster categori-
cal data. This contribution consists in a mixture model
which groups the variables into conditionally indepen-
dent blocks. Each block follows a parsimonious multi-
nomial distribution where the few free parameters corre-
spond to its modes.
The inference is easily performed via an em algorithm
while the challenge of the model selection is facilitated
by an e�cient approximation of the integrated complete-
data likelihood.
Numerical experiments, on simulated and real data sets,
underline the main characteristics of this new mixture
model.

Karma police, arrest this man
He talks in maths

He buzzes like a fridge
He's like a detuned radio

Radiohead � Karma Police

4.1 Introduction

In this chapter, we present a sparse mixture model which relaxes the conditional
independence assumption in order to overcome the biases caused by the latent class
model and which overcomes the main drawback of the medd model. Indeed, the
model selection can be easily and e�ciently performed by avoiding the combinatorial
problems. This step does not require the mle since the integrated complete-data
likelihood can be precisely approached. Firstly, the model selection can be performed
by a mcmc algorithm where the mle is not required. Secondly, the parameters are
only estimated for the best model which signi�cantly limits the computation time.

105
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This new model, named Conditional Modes Model (referred in this article by
cmm), groups the variables into conditionally independent blocks, for considering the
main conditional dependencies. Moreover, the speci�c distribution of the block is a
multinomial distribution per modes. This distribution assumes that few modality
crossings, named modes, are characteristic and that the other ones follow a uniform
distribution. Thus, the associated multinomial distribution is parsimonious, since
its free parameters are limited to the few parameters of the modes.

This simple mixture model (cmm) is a good challenger. On the one hand, the
cmm model challenges the mixture model with conditional independence assump-
tion (cim), since it avoids many biases through modelizing of the main conditional
dependencies. On the other hand, it challenges the mixture models relaxing this
assumption since its �exible distribution of the block requires few parameters. Note
that, as the medd model, the cmm model can be interpreted as a parsimonious
version of the log-linear mixture model. Indeed, the repartition of the variables
into blocks de�nes the considered interactions while the distribution per modes into
blocks de�nes a speci�c distribution for each interaction. Furthermore, resulting
classes are meaningful since the intra-class dependencies are brought out by two
complementary levels: the block variable interaction level and the associated mode
interaction level (through locations and probabilities). Note that the cmm model is
a comprehensive approach since it includes the cim model and a part of its parsi-
monious versions presented in Section 2.3.1.

For a �xed model (number of classes, repartition of the variables into blocks and
numbers of modes), the maximum likelihood estimate is obtained via an em algo-
rithm. The model is selected via a Metropolis-within-Gibbs algorithm. Indeed, this
algorithm is a Gibbs sampler which generates a new repartition of the variables into
blocks and a new number of modes by one Metropolis-Hastings step. It is performed
for a �xed number of classes and avoids combinatorial problems involved by the se-
lection of the blocks of variables and by the estimation of the numbers of modes.
This algorithm is based on the fact that the integrated complete-data likelihood, re-
quired for the acceptance probability computation of the Metropolis-Hastings inside
the Gibbs sampler, is accessible and non ambiguous through weakly informative con-
jugate prior. Finally, this approach has two main advantages. It permits to reduce
the bias of the bic-like approach. Let us mention that the overestimation of the
number of modes by this approach is illustrated during our numerical experiments.
Furthermore, it allows us to perform an e�cient model selection in a reasonable
computational time since the parameters are only estimated for the unique selected
model. Thus, this approach is a possible answer to the combinatorial model selection
problem which is known to be a real challenge for a log-linear mixture model.

Structure of this chapter This paper is organized as follows. Section 4.2
presents the Conditional Modes Model. Section 4.3 is devoted to maximum like-
lihood estimation via an em algorithm. Section 4.4 presents the Metropolis-within-
Gibbs sampler performing the model selection through the integrated complete-data
likelihood. In Section 4.5, we show that the proposed approach for computing the in-
tegrated complete-data likelihood reduces the biases of the bic-like approach. More-
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over, we numerically emphasize the good behavior of the Metropolis-within-Gibbs
sampler and the �exibility of the cmmmodel on simulated data. Section 4.6 presents
two cluster analysis of biological data sets performed by the R package CoModes 1. A
conclusion is drawn and future extensions are discussed in Section 4.7. All these re-
sults are part of the article Finite mixture model of conditional dependencies modes
to cluster categorical data [MBV14a].

4.2 Mixture model of multinomial distributions per

modes

Main idea The proposed model, referred as Conditional Modes Model (cmm),
assumes that data arise independently from a mixture of g components of condi-
tionally independent blocks, where the repartition of the variables into blocks is equal
between classes. Each block follows a multinomial distribution per modes which is
a multinomial distribution having few free parameters corresponding to the modes
of the distribution. More precisely, the modes are de�ned as the locations of the
largest probabilities, while the other parameters are equal.

4.2.1 Conditionally independent blocks equal between classes

The repartition of the variables is assumed to be equal between classes, so we
use the notations of the mixture model of conditionally independent blocks de�ned
in Section 3.2 by omitting the indexation on k.

A partition of the variables equals between classes The repartition of the
d categorical variables xi = (x1

i , . . . , x
d
i ) into b blocks determines a partition σ =

(σ1, . . . ,σb) of {1, . . . , d} in b disjoint non-empty subsets. This partition de�nes
new univariate categorical variables x{b}i = xσbi = (x

{b}h
i ;h = 1, . . . ,m{b}) obtained

by the concatenation of the subset of xi associated to σb where m{b} =
∏

j∈σbmj

is the number of the modality crossings into block b. The variable x{b}i uses a
disjunctive coding since x{b}hi = 1 if individual i takes modality h for the new
categorical variable (i.e. the modality crossing h of the initial variables a�ected to
the block b) and x{b}hi = 0 otherwise.

Triplet building a model A speci�c model is de�ned by the number of com-
ponents, the repartition of the variables into blocks and the number of modes for
each multinomial distribution. So, it is de�ned by the triplet ω = (g,σ, `) where
` = (`1, . . . , `g) groups all the numbers of modes with `k = (`k1, . . . , `kb) and where
`kb is the number of modes of x

{b}
i for class k (with 0 < `kb < m{b}).

De�nition 4.1 (Mixture of conditionally independent blocks equal between classes).
The categorical variable xi is drawn by a cmm model de�ned by ω and parametrized

1. Downloadable at https://r-forge.r-project.org/R/?group_id=1809
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by θ if its pdf is written as

p(xi;θ,ω) =

g∑
k=1

πkp(xi;αk,σ, `k) with p(xi;αk,σ, `k) =
b∏
b=1

p(x
{b}
i ;αkb, `kb),

(4.1)
where θ = (π,α) denotes the whole mixture parameters, where π = (π1, . . . , πg)
is the vector of class proportions with 0 < πk ≤ 1 and

∑g
k=1 πk = 1, and where

α = (α1, . . . ,αg) is the vector which groups the parameters of the multinomial
distributions per modes with αk = (αk1, . . . ,αkb).

4.2.2 Multinomial distribution per modes

We now specify the multinomial distribution per modes. So, let us introduce its
parameter space before to de�ne its pdf.

De�nition 4.2 (Parameter space of a multinomial distribution per modes). Let
αkb = (αhkb;h = 1, . . . ,m{b}) be the vector of size m{b} and let τkb be the mapping
from {1, . . . ,m{b}} to {1, . . . ,m{b}} ordering the elements of αkb by decreasing val-
ues. If αkb denotes the parameters of the multinomial distribution per `kb modes,
then it is de�ned in the constrained simplex S(`kb,m

{b}) de�ned as follows

S(`kb,m
{b}) =

αkb : 0 ≤ αhkb ≤ 1,
m{b}∑
h=1

αhkb = 1, α
(`kj+1)

kb = . . . = α
(m{b})
kb

 . (4.2)

where we use the shorter notation α(h)
kb = α

τkj(h)

kb , so α(h)
kb ≥ α

(h+1)
kb (1 ≤ h < m{b}).

De�nition 4.3 (Multinomial distribution per modes). The univariate categorical
data x{b}i has m{b} modalities and follows a multivariate distribution per `kb modes.
Its pdf is also written as

p(x
{b}
i ;αkb, `kb) =

m{b}∏
h=1

(
αhkb
)x{b}hi , (4.3)

where αkb = (αhkb;h = 1, . . . ,m{b}) ∈ S(`kb,m
{b}) and αhkb is the probability that

individual i takes modality h of the concatenated categorical variable x{b}i .

4.2.3 Mixture model of conditional modes

De�nition 4.4 (Mixture model of conditional modes). The categorical variable xi
is drawn by a cmm model de�ned by ω and parametrized by θ if its pdf is given by

p(xi;θ,ω) =

g∑
k=1

πk

b∏
b=1

m{b}∏
h=1

(
αhkb
)x{b}hi . (4.4)

Remark 4.5. The cim model is included in the ccm model, since the conditional
independence assumption between the initial variables is de�ned by putting one
variable per block (so d = b and σ = ({1}, . . . , {b})) and by �xing the number of
modes as the number of modalities of the variables minus one (`kj = mj − 1).



4.2. Mixture model of multinomial distributions per modes 109

4.2.4 Properties of the mixture model per conditional modes

Two levels of interpretation The cmm model has two levels of interpretation.
Firstly, the intra-class dependencies of variables (equal between classes) are em-
phasized by the repartition of the variables into blocks given by σ. Secondly, the
intra-class and intra-block dependencies of modalities (possibly di�erent between
classes) are summarized by the modes (locations and probabilities).

Two compact terms A shorter summary for each distribution is also available
by using the following compact terms κkb and ρkb de�ned on [0, 1] by

κkb =
`kb

m{b} − 1
and ρkb =

`kb∑
h=1

α
(h)
kb . (4.5)

They re�ect respectively the complexity and the strength of the intra-class and intra-
block dependencies. For instance, the smaller is κkb and the larger is ρkb, the more
massed in few characteristic modality crossings is the distribution. Indeed, the
modes are interpreted as an over-contribution at the uniform distribution among all
the modality crossings.

Identi�bailiy Note that the repartition of the variables guarantees the model
generic identi�ability since it is equal between classes. Indeed, with this constraint,
the results of [AMR09] can be applied to prove the generic identi�ability of the
cmm model (details are given in Appendix A.2). Despite the constraint to have of
the same repartition of the variables into blocks for all the classes, the model stays
�exible because of the speci�c block distribution.

Number of parameters The main idea of the former parsimonious versions of the
cimmodel (Conditional Independence Model) proposed in [CG91] is to consider only
one mode for each multinomial distribution of the initial variable (see Section 2.3.1).
Di�erent constraints of equality are then added between the variables and/or classes.
In fact, many of these models are included into the model family of cmm by putting
b = d and `kb = 1. In addition, the cmm models need νcmm parameters de�ned by

νcmm = (g − 1) +

g∑
k=1

b∑
b=1

`kb. (4.6)

Thus, a model of the cmm family can require less parameters than a cim model�
with νcim = (g−1)+g×

∑
b

b=1(m{b}−1) parameters�although it takes into account
the conditional dependencies.

4.2.5 New parametrization of the block distribution

Main idea The parsimonious versions of the cim model introduced in [CG91]
are meaningful since each multinomial distribution is expressed with two types of
parameters: a discrete one determines the location of the mode of the distribution
and a continuous one gives its probability (see Section 2.3.1). By using the same idea,
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we propose a new parametrization of the block distribution denoted by (δkb,akb).
This parametrization facilitates the interpretation and the writing of the prior and
posterior distributions related to the block parameters (see Section 4.4).

New parametrization The discrete parameter δkb = {δhkb;h = 1, . . . , `kb} deter-
mines the mode locations, since δhkb indicates the modality crossing where the mode
h is located, with δhkb ∈ {1, . . . ,m{b}} and δhkb 6= δh

′

kb if h 6= h′. The continuous
parameter akb = (ahkb;h = 1, . . . , `kb + 1) determines the probability mass of the `kb
modes by its �rst `kb elements (ahkb with h = 1, . . . , `kb) and the probability mass
of the non-mode by its last element (a`kb+1

kb ). The parameter akb is de�ned on the
following truncated simplex

St(m{b}) =

{
akb : 0 ≤ ahkb ≤ 1,∀h ≤ `kb + 1 and ahkb ≥

a`kb+1
kb

m{b} − `kb
, ∀h ≤ `kb

}
.

(4.7)
The parameter αkb and the couple (δkb,akb) are related by

αhkb =

{
ah
′

kb if ∃h′ such that δh
′

kb = h
a
`kb+1

kb

m{b}−`kb
otherwise.

(4.8)

4.3 Maximum likelihood estimation via an EM al-

gorithm

Aim Let x = (x1, . . . ,xn) be the sample composed with n independent and iden-
tically distributed individuals assuming to be drawn by the cmm model. From this
sample, the aim is to estimate the mle for a �xed model de�ned by ω.

When ω is known, the cmm model can be interpreted as a cim model applied on
the concatenated variables x{b}i , where constraints are added between parameters.
Thus, the mle can be easily obtained by the following em algorithm.
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Starting from an initial value θ[0], iteration [r] is written as
� E step: conditional probabilities computation

tik(θ
[r]) =

π
[r]
k p(xi;α

[r]
k ,σ, `k)∑g

k′=1 π
[r]
k′ p(xi;α

[r]
k′ ,σ, `k′)

. (4.9)

� M step: maximization of the expectation of the complete-data log-
likelihood

π
[r+1]
k =

n
[r]
k

n
and α(h)[r+1]

kb =


n
(h)[r]
kb

n
[r]
k

if (1 ≤ h ≤ `kb)

1−
∑`kj

h′=1
α
(h′)[r+1]
kb

m{b}−`kb
otherwise,

(4.10)
by using the notations n[r]

k =
∑n

i=1 tik(θ
[r]) and nh[r+1]

kb =
∑n

i=1 tik(θ
[r])x

{b}h
i .

Algorithm 4.6 (The em algorithm to obtain the mle of a cmm model).

Remark 4.7 (On the function τkb). Note that, at the m step of iteration [r], the
function τkb is rede�ned as the decreasing ordering function of the nh[r+1]

kb and allows
us to de�ne n(h)[r+1]

kb with n(h)[r+1]
kb ≥ n

(h+1)[r+1]
kb .

4.4 Model selection via a Metropolis-within-Gibbs

sampler

Prior distributions We assume that p(g) = 1
gmax

for g = 1, . . . , gmax and that
p(σ) (remind that g and σ are independent) and p(`|g,σ) follow uniform distribu-
tions.

Aim The aim is to obtain the model ω̂ = (ĝ, σ̂, ˆ̀) which has the largest posterior
probability

ω̂ = argmax
g,σ,`

p(x|g,σ, `) = argmax
g,σ,`

p(g,σ, `|x). (4.11)

Let gmax models denoted by ω(g) = (g,σ(g), `(g)), for g = 1, . . . , gmax, where

(σ(g), `(g)) = argmax
σ,`

p(x|g,σ, `) = argmax
σ,`

p(σ, `|x, g). (4.12)

The best model is also de�ned as

ω̂ = argmax
g

p(ω(g)|x), (4.13)

and is found by applying the bic approximation among those gmax selected models.
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Main idea An exhaustive search strategy is not doable for two correlated reasons.
Firstly, the number of couples (σ, `) can be excessively huge, and, secondly, the
estimation of the mle for each of them is an unnecessary waste of computation
time. A Metropolis-within-Gibbs sampler strategy overcomes these two drawbacks
at the same time, as we now describe.

For a �x value of g, the couple (σ(g), `(g)) is estimated by the following Metropolis-
within-Gibbs sampler [RC04] having p(σ, `|g,x) as stationary distribution.

This algorithm has p(σ, `|g,x) as marginal stationary distribution. Starting
from an initial value (σ[0], `[0]), iteration [s] is written as

θ[s+1] ∼ θ|ω[s],x, z[s] (4.14)

z[s+1] ∼ z|ω[s],x,θ[s+1] (4.15)

(σ[s+1], `[s+1]) ∼ σ, `|ω[s],x, z[s+1], (4.16)

where ω[s] = (g,σ[s], `[s]).

Algorithm 4.8 (The Metropolis-within-Gibbs sampler to obtain ω(g)).

Remark 4.9 (On the model sampling). A direct sampling from (4.16) is di�cult.
This step is also performed by one iteration of a Metropolis-Hastings algorithm
whose the stationary distribution is p(σ, `|g,x, z[r+1]). More details are given in
Section 4.4.2.

Sampling of the class memberships As the observed data are independent,
the full conditional distribution of z is classical and is written as

p(z|ω,x,θ) =
n∏
i=1

p(zi|ω,xi,θ) with p(zi|ω,xi,θ) =

g∏
k=1

(tik(θ))zik . (4.17)

In this section, we �rstly detail the full conditional distributions sampling the pa-
rameters (denoted by instrumental elements) by using the block parametrization
given in Section 4.2.5, and we secondly detail the sampling of (σ, `) (considered as
the interest elements).

4.4.1 Sampling of the instrumental elements

We now detail the sampling from (4.14) de�ned by p(θ|ω[s],x, z[s]).

Prior assumption We assume the a priori independence between the class pro-
portions and the parameters of the block distributions. So, the prior of the whole
parameter is written as follows

p(θ|ω) = p(π|ω)

g∏
k=1

m{b}∏
b=1

p(αkb|ω). (4.18)
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Note that this property of conditional independence is kept by the distribution of θ
conditionally on (ω,x, z), since we have

p(θ|ω,x, z) = p(π|ω,x, z)

g∏
k=1

m{b}∏
b=1

p(αkb|ω,x, z). (4.19)

Prior and posterior distributions of π The Je�reys non informative prior
distribution, for a multinomial, is a conjugate Dirichlet distribution [Rob07]. So,
the prior and the posterior distributions of π [BCG10] are respectively de�ned by

π|ω ∼ Dg
(1

2
, . . . ,

1

2

)
and π|ω,x, z ∼ Dg

(1

2
+ n1, . . . ,

1

2
+ ng

)
, (4.20)

where nk =
∑n

i=1 zik.

Prior distribution of αkb We now use the parametrization of the block distri-
bution (δkb,akb) (de�ned in Section 4.2.5). We assume the independence between
the prior of δkb and of akb, so

p(αkb|ω) = p(δkb|ω)p(akb|ω). (4.21)

We use a uniform distribution among all the mode locations and a conjugate trun-
cated Dirichlet distribution 2 as prior of akb, so

p(δkb|ω) =

(
m{b}

`kb

)−1

and akb|ω ∼ Dt
`kb+1

(
γ1
kb, . . . , γ

`kb+1
kb ;m{b}

)
, (4.22)

where the γhkb are the parameters of the truncated Dirichlet distribution so that
akb|ω ∈ St(m{b}). We now �x γhkb = 1, a justi�cation is given in Appendix A.3. The
proposed prior is also weakly informative since it is an uniform distribution.

Posterior distribution of αkb The posterior distribution of αkb is written as

p(αkb|ω,x, z) = p(δkb|ω,x, z)p(akb|ω, δkb,x, z). (4.23)

The distribution of δkb|ω,x, z is a multinomial one with too many values to be
computable. Let δ̃kb = {δ̃hkb;h = 1, . . . , `kb} be the set containing the indices of the
`kb largest values of nhkb =

∑n
i=1 zikx

{b}h
i ordered

∀h ∈ {1, . . . , `kb − 1}, n
δ̃hkb
kb ≥ n

δ̃h+1
kb
kb . (4.24)

We assume that the di�erence between the mode probabilities and the non-mode
probabilities are signi�cant. So, we can approximate the full conditional distribution

2. p(akb|ω) ∝
∏`kb+1
h=1 (ahkb)

γh
kb−11{

ahkb≥
a
`kb+1
kb

m{b}−`kb

}.



114 Chapter 4. Model-based clustering with conditional dependency modes

of δkb by a Dirac in δ̃kb. This approximation is strengthened by the fast conver-
gence speed of the discrete parameters [CS12]. Concerning now akb, as its prior is
conjugated, its conditional distribution is explicitly de�ned as

akb|ω, δkb,x, z ∼ Dt`kb+1

(
1 + n(1)

kb , . . . , 1 + n
(`kj)

kb , 1 + n̄`kbkb ;m{b}
)
, (4.25)

where n(h)
kb is the hth larger value of the set {nhkb;h = 1, . . . ,m{b}} and n̄`kbkb =

nk −
∑`kb

h=1 n
(h)
kb .

4.4.2 Sampling of a new model (σ[s+1], `[s+1])

Main idea The sampling of ω[s+1] = (g,σ[s+1], `[s+1]) according to (4.16) is per-
formed by one iteration of the following mcmc algorithm whose the stationary dis-
tribution is p(σ, `|g,x, z[r+1]). This algorithm is divided in two steps. Firstly, it
samples, by one iteration of a Metropolis-Hastings algorithm, a new repartition of
the variables into blocks and the mode number of the modi�ed blocks denoted re-
spectively by σ[s+1] and `[s+1/2]. Secondly, it samples the mode number of each block
by one mcmc iteration. Thus, the sampling of ω[s+1] is decomposed into the two
following steps.

This algorithm has p(σ, `|g,x, z[s+1]) as stationary distribution. At the
iteration [s] of Algorithm 4.8, the sampling of ω[s+1] is performed according
to both following steps

(σ[s+1], `[s+1/2]) ∼ σ, `|ω[s],x, z[s+1] (4.26)

`[s+1] ∼ `|ω[s+1/2],x, z[s+1], (4.27)

where ω[s+1/2] = (g,σ[s+1], `[s+1/2]).

Algorithm 4.10 (The MCMC algorithm).

Metropolis-Hastings algorithm to sample ω[s+1/2]

The sampling of ω[s+1/2] is performed by one iteration of the Metropolis-Hastings
algorithm divided into two steps. Firstly, the instrumental distribution q(.;ω[s])
generates a candidate ω? = (g,σ?, `?). Secondly, ω[s+1] is sampled according to the
acceptance probability.

Instrumental distribution The instrumental distribution q(.;ω[s]) samples ω?

in two steps. The �rst step changes the block a�ectation of one variable. In practice,
σ? is uniformly sampled in V (σ[s]) = {σ : ∃!b as b ∈ σ[s]

j and b /∈ σj}. The second
step uniformly samples the mode numbers among all its possible values for the
modi�ed blocks while `?kj = `

[s]
kj for non-modi�ed blocks (i.e. j such that σ[s]

j = σ?j).
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Acceptance probability The acceptance probability λ[s] is de�ned by

λ[s] = min

{
p(x, z[s+1]|ω?)
p(x, z[s+1]|ω[s])

q(ω[s];ω?)

q(ω?;ω[s])
; 1

}
. (4.28)

The computation of λ[s] involves to compute the integrated complete-data likeli-
hood. We now describe how to solve this problem without using the biased bic

approximation or using too much time consuming mcmc methods. The sampling
of ω[s+1/2] is also performed by the following Metropolis-Hastings algorithm.

This algorithm has p(σ, `|g,x, z[s+1]) as stationary distribution. Starting
from an initial value θ[0], iteration [r] is written as

ω? ∼ q(ω;ω[s]) (4.29)

ω[s+1/2] =

{
ω? with a probability λ[s]

ω[s] with a probability 1− λ[s].
(4.30)

Algorithm 4.11 (The Metropolis-Hastings algorithm).

MCMC algorithm to sample `[s+1]

This step allows us to increase or decrease the mode number of each block by
one at each iteration. So, `[s+1]

kb is sampled from p(`kb|ω[s+1/2],x, z[s+1]) de�ned by

p(`kb|ω[s+1/2],x, z[s+1]) ∝

 p(x{b}|z[s+1], `kb) if |`kb − `[s+1/2]
kb | < 2

and `kb /∈ {0,m{b}}.
0 otherwise,

(4.31)

where x{b} = (x
{b}
i ; i = 1, . . . , n). Thus, this algorithm requires the computation of

p(x{b}|z, `kb) de�ned by

p(x{b}|z, `kb) =

∫
S(`kb,m{b})

m{b}∏
h=1

(αhkb)
nhkbdαkb (4.32)

and that we detail now.

The integrated complete-data likelihood

The integrated complete-data likelihood is de�ned as

p(x, z|ω) = p(z|ω)

g∏
k=1

b∏
b=1

p(x{b}|z, `kb). (4.33)

Note that the quantities p(x, z|ω) and p(xj|z, `kb) are respectively required to com-
pute the acceptance probability of the Metropolis-Hastings algorithm de�ned by
(4.28) and to sample the number of modes from (4.31). It can be evaluated by
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bic-like approximations. For instance, the integrated complete-data likelihood is
approximated by

ln p(x, z|ω) = ln p(x, z|θ?,ω)− ν

2
lnn+O(1), (4.34)

where θ? is the maximum complete-data likelihood estimate. However, this kind of
approximation is only asymptotically true and can over-estimate the mode numbers
(see Section 4.5.1). As z|ω follows a uniform distribution among all the possible
partitions, we propose to compute each p(x{b}|z, `kb) to obtain p(x, z|ω). This com-
putation is not easy since αkb is de�ned on S(`kb;m

{b}) and not on the whole simplex
of size `kb (except when `kb = m{b} − 1; in such case we can use the approach of
the cim model [BCG10]). An explicit formula is given in the following proposition
by performing an exact computation of the integral over the continuous parameters
and an approximation on the discrete ones (for the proof see in Appendix A.3).

Proposition 4.12. The integrated complete-data likelihood is approximated, by ne-
glecting the sum over the discrete parameters of the modes locations and by perform-
ing the exact computation on the continuous parameters, so

p(x{b}|z, `kb) ≈
(

1

m{b} − `kb

)n̄
`kb
kb

`kb∏
h=1

Bi
(

1
m{b}−h+1

; n
(h)
kb + 1; n̄hkb + 1

)
m{b} − h

, (4.35)

where Bi(x; a, b) = B(1; a, b)−B(x; a, b) and where B(x; a, b) is the incomplete beta
function de�ned by B(x; a, b) =

∫ x
0
wa(1− w)bdw.

From the previous expression, it is straightforward to obtain p(x, z|ω).

4.5 Numerical experiments on simulated data sets

4.5.1 Integrated complete-data likelihood: comparison of both

approaches

Aim During this experiment, we highlight the biases of the bic criterion for the
selection of the number of modes and the gain given by the proposed computation
of the integrated complete-data likelihood.

Data generation We want to compare both approaches for the selection of the
number of modes. So, we simulate samples composed with n i.i.d individuals arisen
from a multinomial distribution per modesMs(r, r, r,

1−3r
s−3

, . . . , 1−3r
s−3

) with s modal-
ities and three modes having a probability r. For di�erent sizes of sample, 105

samples are generated with di�erent values of (r, s).

Results Figure 4.1 gives a comparison between the proposed approach and the
bic-like approximation for the selection of the number of modes. The proposed
criterion obtains better results than the bic criterion in the four studied situations
for the large sample sizes. Furthermore, it allows to never overestimates the number
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Figure 4.1 � Probability that the bic criterion (represented in �ne black lines) and
the proposed approach (represented in bold red lines) select the true number of
modes (represented in plain line) and overestimate it (represented in dotted line)
(a) r=0.3, s=9; (b) r=0.2, s=9; (c) r=0.2, s=18; (d) r=0.1, s=27.

of modes. Finally, its variability is smaller than the bic criterion one. We enter now
into more speci�c comments.

In case (a), modes have a large probability mass and they are easily detected
since there are few modalities. Thus, both criteria have the same behavior since
they �nd the true number of modes with a probability close to one even for small
samples.

When the mode probabilities decrease (case (b)), it is more di�cult to identify
them. In such a case, the bic criterion better �nds the true number of modes
than the proposed approach, for the small samples (size lower than 150). However,
the bic criterion has a moderated risk to overestimate the number of modes while
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the proposed approach underestimates this number when it is wrong. When the
sample size is larger than 200, the proposed approach obtains better results. Indeed,
it �nds a true number of modes almost always while the bic criterion keeps an
overestimation risk.

If the number of modalities increases (case (c)), then the problem becomes harder
and the proposed approach also shows its interest since the bic criterion is strongly
biased in such case. The bic criterion keeps this bias even for a large data set while
the proposed approach almost always �nds the true number of modes when the
sample size is larger than 100.

Finally, note that in the more complex situations like in case (d) (few proba-
bility mass for the modes and large number of modalities), the proposed approach
underestimates the number of modes when the sample size is small then converges
to the true mode values when the sample size increases. Note that, in such a case,
the bias of the bic criterion stays signi�cant even for a large data set.

Based on this experiment, the proposed criterion appears as the most relevant
since its asymptotic behavior is better than the asymptotic behavior of the bic
criterion. Indeed, it never overestimates the number of modes and its variability is
smaller than the variability of the bic criterion.

4.5.2 Simulation with well speci�ed model

Aim During this experiment, we highlight the good behavior of the algorithms
(em algorithm and Metropolis-within-Gibbs sampler) for performing the estimation
of the mle and the model selection. So, data are generated according to a cmm

model, then the model and the mle are estimated. The quality of the estimation
is determined by the Kullback-Leibler divergence. We show that this quantity con-
verges to zero when the sample size increases. So, we conclude to the good behavior
of both algorithms.

Data generation A data set of six variables with three modalities is generated
according to a bi-component cmm model with the following parameters:

σ = ({1, 2}, {3, 4}, {5, 6}), `kj = 2, π = (0.5, 0.5), αkj = (0.4, 0.4, 0.2/7).

The modes are located at di�erent modality crossings for both classes.

Results For di�erent values of n = (50, 100, 200, 400, 800), 100 samples are gen-
erated. The Kullback-Leibler divergence is computed between the true and the
estimated parameters. Table 4.1 presents the mean of this divergence.

As the Kullback-Leibler divergence converges to zero, when the sample size in-
creases, we claim that the estimated distribution converges to the true one. Thus,
we conclude to the good behavior of the estimation algorithm.

4.5.3 Simulation with misspeci�ed model

Aim During this experiment, we underline that the �exibility of the cmm model
allows it to keep good results even if the model is misspeci�ed. Thus, we simulate
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n 50 100 200 400 800
mean 0.656 0.117 0.061 0.028 0.015

sd 0.636 0.052 0.018 0.007 0.003

Table 4.1 � Mean and standard deviation of the Kullback-Leibler divergence com-
puted between the true parameters of the speci�ed model and the maximum like-
lihood estimates associated to the model selected by the Metropolis-within-Gibbs
algorithm for di�erent sample sizes.

samples according to a bi-component mixture model where the intra-class depen-
dencies are di�erent for both components. A tuning parameter allows us to modify
the strength of the intra-class dependencies and the class overlapping. The results
of the cmm model are compared to those of the cim model.

Data generation A data set of size 100 is sampled from the following bi-component
mixture model of dimension six

p(x;θ) = 0.5
3∏

h=1

p(x2h−1,x2h;θ) + 0.5 p(x1;θ)p(x6;θ)
2∏

h=1

p(x2h,x2h+1;θ), (4.36)

with p(xj,xj+1;θ) = p(xj;θ)
(
λ1{xj=xj+1} + (1− λ)p(xj+1;θ)

)
and with p(xj;θ) =∑3

h=1(1/3)x
jh
. Thus, when λ = 0, the sample is generated by a uniform distribution

and classes are confused. The larger is the tuning parameter λ, the larger are the
intra-class dependencies and the class separation. Note that cmm is not the true
model since the conditionally correlated variables are not the same in both classes.

Results For di�erent values of λ = (0.2, 0.4, 0.6, 0.8), 100 samples are generated.
The Kullback-Leibler divergence associated to the model with the best number of
classes (selected by the bic criterion among g = 1, ..., 4) is computed. Table 4.2
presents the results obtained by the cmm and the cim models.

λ 0.2 0.4 0.6 0.8
cmm 0.09 (1.00) 0.25 (1.16) 0.53 (2.08) 0.87 (2.10)
cim 0.11 (1.00) 0.27 (1.00) 1.67 (1.12) 5.79 (1.40)

Table 4.2 � Kullback-Leibler divergence and mean of the number of classes obtained
by cmm and cim.

The larger is λ, the larger is the Kullback-Leibler divergence for both models.
However, the �exibility of the cmm model allows to keep an acceptable value of the
Kullback-Leibler divergence while this divergence grows dramatically faster with the
cim model. Furthermore, when the classes are well separated (large value of λ), the
cmm model �nds more often the true number of classes than the cim model.
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4.6 Analysis of two real data sets

For both applications, the estimation of the cmm model was performed by the R
package CoModes. Both data sets are available in CoModes developed by the authors.

4.6.1 Seabirds clustering

Data We study a biological data set describing 153 pu�ns (seabirds) by �ve
plumage and external morphological characteristics presented in Table 4.3 [Bre07].
These seabirds are divided into three subspecies dichrous (84 birds), lherminieri (34
birds) and subalaris (35 birds).

variables mj modalities
collar 5 none ... ... ... continuous

eyebrows 4 none ... ... very pronounced
sub-caudal 4 white black black and white BLACK and white

border 3 none ... many
gender 2 male female

Table 4.3 � Presentation of the �ve plumage and external morphological variables
describing the pu�ns.

Experimental settings The subspecies memberships of the individuals are blinded.
For g = 1, . . . , 6, the mle of the cim model is obtained by 25 initializations of an em
algorithm while 25 chains of 3000 iterations are performed for the model selection
of the cmm model followed by 25 initializations of em algorithm to �nd the mle.

Results Table 4.4 presents the values of the bic criterion for both models and
di�erent numbers of classes. Even if both models select two components, the values
of the bic criterion are better for the cmm model than for the cim model for all the
numbers of classes. Thus, the cmm model better �ts the data than the cim model.

g 1 2 3 4 5 6
cmm -711 -691 -701 -709 -721 -727
cim -711 -706 -722 -745 -775 -805

Table 4.4 � Values of the bic criterion for di�erent numbers of classes obtained by
the cmm and the cim models. Boldface indicates the best values of this criterion.

According to Table 4.5 displaying the confusion matrix between the estimated
partitions and the subspecies, we claim that the Subalaris are more di�erent than
the two other subspecies. Indeed, both models a�ect all the Subalaris in class 2. If
the estimated partitions by both models are similar, we remark that the cmm model
a�ects less other subspecies in this class than the cim model.
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cmm cim

class 1 class 2 class 1 class 2
Dichrous 52 32 48 36

Lherminieri 23 11 22 12
Subalaris 0 35 0 35

Table 4.5 � Confusion tables between the subspecies and estimated partition into
two classes.

Figure 4.2(a) displays the seabirds scatterplot on the �rst correspondence analy-
sis plan and indicates the subspecies. We note that all the Subalaris are in the same
location (bottom left) for the �rst principal correspondence map. We display the
partition corresponding to the best model (the cmm model with two components)
in Figure 4.2(b). Note that, for both models, the �rst principal correspondence axis
allows to de�ne a classi�cation rule.

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

First principal correspondence analysis

S
ec

on
d 

co
rr

es
po

nd
en

ce
 a

na
ly

si
s

Dichrous  
Lherminieri       
Subalaris  

(a)

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

First principal correspondence analysis

S
ec

on
d 

co
rr

es
po

nd
en

ce
 a

na
ly

si
s

Class 1  cmm           
Class 2  cmm

(b)

Figure 4.2 � Seabirds on the �rst principal correspondence analysis map (a) with
the subspecies and (b) with the best cmm model estimated partition. The bold
triangles indicate the individuals a�ected in class 1 for the cmm model and in class
2 for the cim model. An i.i.d. uniform noise on [0, 0.1] has be added on both axes
for each individual in order to improve visualization.

We now describe the best bi-component cmm model. Even if the estimated
model assumes conditional independence between variables, this model is of interest
because of its sparsity. Indeed, it is more parsimonious than the cim model since
a small number of modes is estimated as shown by the summary proposed by κkj
and ρkj de�ned in (4.5) and presented in Table 4.6. Thus, the �rst variables are
characterized by few modalities with a high probability. As the variables are con-
ditionally independent, κkj indicates the number of modalities having a probability
upper than the uniform distribution. For example the multinomial distribution of
the variable sub-caudal has two modes for both classes (so κkj = 2/3).
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collar eyebrows sub-caudal border gender
class 1 0.75 (0.93) 0.67 (0.91) 0.67 (0.88) 1.00 (1.00) 1.00 (0.55)
class 2 0.75 (0.98) 0.67 (0.77) 0.67 (0.99) 0.50 (0.97) 1.00 (0.57)

Table 4.6 � Summary of the cmm model with three classes: κkj is displayed in plain
and ρkj is displayed in parenthesis.

The maximum likelihood estimates of the component parameters are presented
by Figure 4.3. Each sub-�gure corresponds to a block of variable, thus we note
again that the estimated model assumes the conditional independence. For each
block of variables, the modality crossings where one mode is estimated for at least
one component are focused. For these modality crossings, we display their cumulated
probability masses for each component (the component are identi�ed by di�erent
colors). These modality crossings are presented by decreasing order of cumulated
probability mass.

Note that the mode locations are discriminative since the modality black (resp.
white) has a probability of 0.64 (resp. 0.24) for class 1 while the modality white
(resp. BLACK and white) has a probability of 0.94 (resp. 0.05).
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Figure 4.3 � Class parameters of the bi-components cmm model estimated on the
Seabirds data. The black color (respectively the gray color) corresponds to the
probability mass of the modes for class 1 (respectively to class 2).

Finally, the conditional independence assumption seems realistic since the con-
ditional Cramer's V measures, presented in Table 4.7, are small. We also perform
a bootstrap test of the global nullity of the Cramer's V by generating 1000 sam-
ples. We obtain a p-value of 0.91, so the conditional independence assumption is
validated.
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1 0.14 0.15 0.23 0.21
1 0.36 0.20 0.13

1 0.13 0.19
1 0.01

1
(a) Class 1

1 0.14 0.09 0.11 0.28
1 0.24 0.21 0.26

1 0.02 0.07
1 0.17

1
(b) Class 2

Table 4.7 � Matrix of the Cramer's V measures computed according to the estimated
classes.

4.6.2 Acute in�ammations clustering

Data We want to cluster 120 patients [CZ03] described by �ve binary variables
(occurrence of nausea (Nau), lumbar pain (Lum), urine pushing (Pus), micturition
pains (Mic) and burning of urethra (Bur)) and by one variable having three modali-
ties (temperature of the patient (Tem): T < 37C, 37◦C ≤ T < 38◦C and 38◦C ≥ T ).
We know that some patients have one of the following diseases of the urinary system:
in�ammation of urinary bladder and Nephritis of renal pelvis origin.

Experimental conditions We use the same experimental conditions as the Seabirds
clustering.

Results Table 4.8 presents the values of the bic criterion for both models and
di�erent numbers of classes. For each number of classes, the bic criterion value of
the cmm model is better than those of the cim model. Furthermore, the cmm model
selects three classes while the cim model selects four classes. This phenomenon can
be due to the violated conditional independence assumption of the cim model.

g 1 2 3 4 5 6
cmm -510 -351 -338 -345 -399 -401
cim -527 -478 -439 -407 -412 -418

Table 4.8 � Values of the bic criterion for di�erent numbers of classes and for the
cmm and the cim models. Boldface indicates the best values of this criterion.

Note that the estimated distributions of the cim and the cmm models are dif-
ferent. The obtained partition are also di�erent. Table 4.9 displays the confusion
matrices between the best cmm model and the cim models with three and four
classes. Thus, if 29 individuals constitute a group which is well separated from the
other individuals (class 3) for the three models, the other individuals have a class
membership determined by the selected model.

Figure 4.4 displays the individuals on the 1-5 principal correspondence analysis
map where the estimated classes are well separated.

The cmm model with three classes has the following repartition of the variables
into blocks: σ = ({Tmp, Pus, Mic, Bur}, {Nau}, {Lum}). As shown by the sum-
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cmm

c1 c2 c3
cim c1 40 0 0
cim c2 10 41 0
cim c3 0 0 29

cmm

c1 c2 c3
cim c1 40 0 0
cim c2 10 20 0
cim c3 0 21 0
cim c4 0 0 29

Table 4.9 � Confusion matrices between the best cmm model and the cim models
with three and four classes.
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Figure 4.4 � Individuals on the 1-5 principal correspondence analysis map with the
best cmm model estimated partition. An i.i.d. uniform noise on [0, 0.1] has be
added on both axes for each individual in order to improve visualization. Colors
and symbols indicate the class membership.

mary ρkj and κkj displayed in Table 4.10, the three classes are concentrated in few
modality crossings for the block one and in one location with a probability close to
one for the two other blocks.

Tmp, Nau, Lum, Mic Pus Bur
Class 1 0.41 (1.00) 1.00 (1.00) 1.00 (0.99)
Class 2 0.33 (0.99) 1.00 (1.00) 1.00 (1.00)
Class 3 0.25 (0.99) 1.00 (1.00) 1.00 (1.00)

Table 4.10 � Summary of the cmm model with three classes: κkj is displayed in
plain and ρkj is displayed in parenthesis.

The following class interpretation is based on the class parameters displayed by
Figure 4.5. Note that the variables urine pushing and burning of urethra are the
most discriminative ones.

� The majority class (42%) groups individuals having no nausea and no lumber
pain.
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� The second class (34%) groups individuals having no nausea but lumber pain.
� The third class (24%) groups individuals having nausea and lumber pain.

Furthermore, these individuals have some �ever and micturition pain.

0.
0

0.
2

0.
4

fiever fiever fiever fiever cold normal cold normalnormalnormal fiever normal
yes yes no yes no no yes yes yes yes no yes
no yes yes yes no no yes yes yes no no no
yes no no yes no no yes no yes no no yes

Tem−Pus−Mic−Bur.

0.
0

1.
0

2.
0

no yes

Nau.

0.
0

1.
0

2.
0

yes no

Lum.

Figure 4.5 � Estimated parameters of the tri-component cmm model displayed by
the barplot function of the package CoModes. Black color corresponds to class 1,
black gray color corresponds to class 2 and pale gray color corresponds to class 3.

4.7 Conclusion

In this chapter, we have presented a new mixture model (cmm) to cluster cate-
gorical data. Its strength is to relax the conditional independence assumption and
to stay parsimonious. A summary of the distribution is given by κkj and ρkj while
each class can be summarized by the mode locations. As shown on the Seabirds
application, the cmm model can outperform the classical latent class model even if
the conditional independence assumption is true, thank's to its sparsity.

The combinatorial problems involved by the block detection and by the selection
of the numbers of modes are avoided by a Metropolis-within-Gibbs algorithm. This
algorithm can be used because the computation of the integrated complete-data
likelihood can be e�ciently approximated. Thus, this approach can be used to
select the interactions of the log-linear mixture model per block.

However, the model is hardly estimated if the data set has a large number of
variables. Some constraints on the block variables repartition could also be added
(for instance the number of variables into blocks could be limited to three variables).
Another solution could be to estimate the model by a forward/backward strategy
but it is known that these methods are sub-optimal.
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Finally, we imposed the equality of the repartition of the variables into blocks
for all the classes. This property allows us to prove the generic identi�ability of
the cmm model. This lack of �exibility is counterbalanced by �exible block dis-
tribution. However, one could try to relax the class-equality of σ with the model
no-identi�ability risk.



Chapter 5

Model comparison performed by

their R-packages

This chapter aim is to illustrate the R packages
Clustericat and CoModes which respectively perform
the inference of the medd and the cmm models.
In order to make a demonstration of both packages, we
use them to perform the cluster analysis of the running
example presented by Table 2.1 of Chapter 2. We re-
mind that this data set displays the evaluation (sound
or carious) of 3869 dental x-rays that may show incipi-
ent caries performed by �ve dentists.
Note that, this chapter can also be used as a tutorial of
both packages. Indeed, it provides a presentation of their
main functions and many scripts allowing to perform the
cluster analysis.

All animals are equal, but some
animals are more equal than others.

George Orwell � Animal Farm

5.1 Clustericat

5.1.1 Clustericat overview

Presentation The R package Clustericat performs the clustering of categorical
data according to the medd model. Its main functions are implemented in C++.
We remind that, in this model, variables are grouped into conditionally indepen-
dent blocks in order to consider the main intra-class correlations. The intra-class
dependency between variables grouped inside the same block is taken into account
by mixing two extreme distributions, which are respectively independence and max-
imum dependency.

127
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Download Clustericat The package is currently available on R-forge at the fol-
lowing url: https://r-forge.r-project.org/R/?group_id=1803. The installation and
the loading of Clustericat can be performed by using the following R scripts.

# R install command
> install.packages("Clustericat",

repos="http://R-Forge.R-project.org")

Clustericat script 5.1 (Clustericat installation).

# Clustericat loading
> require(Clustericat)

Clustericat script 5.2 (Clustericat loading).

Estimation The parameter estimation by maximum likelihood is performed via
a gem algorithm while a Gibbs algorithm, used for the model selection, avoids the
combinatorial problems induced by the block structure search.

5.1.2 Main functions

Five functions compose the Clustericat package. One function performs the
cluster analysis of the data. Its tuning parameters can be speci�ed by the user by
calling a speci�c function. The three last functions are implemented in order to
friendly present the parameters by providing numerical or graphical summaries.

The clustering function The cluster analysis can be performed with the function
clustercat() taking four arguments.

> clustercat(data, nb_cluster,

modal= 0, strategy= strategycat(data))

Clustericat script 5.3 (The clustering function).

This function has two mandatory arguments:
� A data frame data to cluster whose the columns are non-zero integers or

factors.
� An integer vector nb_cluster specifying the number of classes.

Default values are taken for the arguments modal and strategy.
� The argument modal is a vector given the modality number for each variable.
� The argument strategy is an instance of the strategycat class which con-

tains the adjustments inputs parameters related to the estimation algorithms.
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The function clustercat() returns an instance of the clustcat class which contains
all the outputs.

The tuning function The adjustments parameters of the estimation algorithms
contained in the strategycat class can be speci�ed by the function strategycat()

taking four arguments.

> strategycat(data, nb_init= 5, stop_criterion=

20 * ncol(data), partition= partitioncat(data))

Clustericat script 5.4 (The tuning function).

The input data matrix data is mandatory and the three others input parameters
allow to tune the algorithms.

� The argument nb_init sets the number of times where a mcmc chain is
started. By default 5 mcmc chains are initialized.

� The argument stop_criterion is the integer corresponding to the number
of successive iterations of the mcmc chain where if no better model is fund
then the algorithm is stopped. By default it takes the values of 20× d.

� The argument partition is the initial value of the repartition of the variables
into blocks (σ[0]). By default it is equal to the partition produced by the
HAC minimizing the block number without block consisting of more than
four variables.

Three tool functions Clustericat package also provides tool functions like
summary(), summary_dependencies() and plot() respectively to summarize re-
sults, to present the main conditional dependencies and to visualize the parameters.

5.1.3 Clustericat to cluster the dentists data set

Clustering with medd We now present the results of the medd model obtained
by the R package Clustericat by using the following script
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# Data set loading
> data("dentist")

# De�nition of the tuning parameters for the estimation algorithm
> st <- strategycat(dentist, nb_init= 35, stop_criterion=

200)

# Estimation of the bi-component medd model.
> res <- clustercat(dentist, 2, modal= rep(2,5), strategy=

st)

Clustericat script 5.5 (Dentists data set clustering).

Model selection The bic criterion selects two classes with a value of -7473.
It claims that the medd model better �ts the data than the model presented in
[QTK96] since its bic criterion value is -7487. The bic criterion values for the cim
and the medd models are displayed in Table 5.1. We indicate the computing time
(in seconds), obtained with a processor Intel Core i5-3320M, to estimate the medd
model where 20 mcmc chains were started with a stopping rules qmax = 100 while
the cim model needs less than 0.1 sec with the R package RMixmod [LIL+12].

g 1 2 3 4
cim BIC -8766 -7511 -7481 -7503
medd BIC -7743 -7473 -7481 -7503

time (sec) 1.7 4.9 6.1 7.7

Table 5.1 � bic criterion values for the cim and the medd models according to
di�erent numbers of classes for the dentistry data set. Best values are in bold.

We note that the medd model obtains better values for the bic criterion than
the cim model when g = 1, 2. When the number of classes is larger (g ≥ 3) the best
medd model assumes the conditional independence between variables.

Comparison of the results The bic criterion selects two classes for the medd
model. This result is coherent with a splitting of the teeth between the sound and
the carious ones. Furthermore, the two main characteristics of the log-linear mixture
model imposed in [EH89] are automatically detected by the model: importance of
the two modality crossings where all the dentists have the same diagnosis and a
dependency between the diagnosis of the dentists 3 and 4. Thus, the estimated
model is coherent with the imposed model presented in [EH89] while no information
was given a priori.
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Best model interpretation The model interpretation is facilitated by two tools
functions. The function summary() provides a general overview of the model (in-
formation criteria, proportions, blocks of variables and intra-class dependencies
ρkb).

# Function providing a model overview
> summary(res)

Number of classes: 2 BIC value: -7472.845
log-likelihood value: -7415.019
*************************************
Proportions: 0.8550206 0.1449794
*************************************
Blocks repartition of the variables for the class 1:

Variables Rho
Block 1 de1, de2, de3, de4, de5 0.3506754

Blocks repartition of the variables for the class 2:
Variables Rho

Block 1 de3, de4 0.2481778
Block 2 de1, de2, de5 0.0000000

Clustericat script 5.6 (Model overview).

The function summary_dependencies() focuses on the intra-class dependency pa-
rameters.

# Function providing summary of the intra-class dependencies
> summary_dependencies(res)

Blocks repartition of the variables for the class 1:

Block 1 contains the variables: de1 de2 de3 de4 de5 with Rho= 0.3506754

Tau de1 de2 de3 de4 de5
0.945732 sound sound sound sound sound
0.054269 carious carious carious carious carious
*****************************************************************
Blocks repartition of the variables for the class 2:

Block 1 contains the variables: de3 de4 with Rho= 0.2481778

Tau de3 de4
0.653164 sound carious
0.346837 carious sound

Block 2 contains the variables: de1 de2 de5 with Rho= 0

Clustericat script 5.7 (Summary of the intra-class dependencies).
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According to the previous outputs, the �tted model can be interpreted as follows

� The majority class (π1 = 0.86) mainly gathers the sound teeth. There is
a strong dependency between the �ve diagnoses (σ1 = ({1, 2, 3, 4, 5}) and
ρ11 = 0.35). The dependency structure of the maximum dependency dis-
tribution indicates an over contribution of both modality interactions where
the �ve dentists have the same diagnosis, especially when they claim that the
tooth is sound (τ all_sound

11 = 0.95 and τ all_carious
11 = 0.05).

� The minority class (π2 = 0.14) groups principally the carious teeth. There is
a dependency between the dentists 3 and 4 which provides opposite diagnoses
while the diagnoses of the other ones are independent given the class (σ2 =
({3, 4}, {1, 2, 5}), ρ21 = 0.25 and ρ22 = 0).

Best model visualization Finally, the function plot() provides a graphical sum-
mary of the parameters.

# Function providing the graphical summary given by Figure 5.1
> plot(res)

Clustericat script 5.8 (Graphical summary of the parameters).

On ordinates, the estimated classes are represented with respect to their pro-
portion in decreasing order. Note that their corresponding area depends on their
proportion. The cumulated proportions are indicated on the left side. On abscissa,
three indications are given. The �rst one is the inter-variables correlations (ρkb)
for all the blocks of the class ordered by their strength of correlation (in decreasing
order). The second one is the intra-variables correlations (τ kb) for each block drawn
according to the strength of their dependencies (in decreasing order). The third one
is the variables repartition per blocks. A black cell indicates that the variable is
assigned into the block and a white cell indicates that, conditionally on this class,
the variable is independent of the variables of this block. For example, this �gure
shows that the �rst class has a proportion of 0.86 and that all the variables are
assigned into the same block.

5.2 CoModes

5.2.1 CoModes overview

Presentation The R package CoModes performs the clustering of categorical
data according to the cmm model. We remind that, in this model, variables are
grouped into conditionally independent blocks equal between classes and that each
block follows a multinomial distribution per modes. All the functions of this package
are implemented in R. So, they should be implemented in C++ in order to increase
the computation speed.
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Figure 5.1 � Summary of the best medd according to BIC for the dentists data set.

Download CoModes The package is currently available on R-forge at the fol-
lowing url: https://r-forge.r-project.org/R/?group_id=1809. The installation and
the loading of CoModes can be performed by using the following R scripts.

# R install command
> install.packages("CoModes",

repos="http://R-Forge.R-project.org")

CoModes script 5.9 (CoModes installation).

# CoModes loading
> require(CoModes)

CoModes script 5.10 (CoModes loading).

Estimation The parameter estimation by maximum likelihood is performed by
an EM algorithm while a Gibbs algorithm is used for model selection to avoid com-
binatorial problems involved by the block structure search. Note that the Gibbs
algorithm uses an e�cient approximation of the integrated complete-data likelihood.

5.2.2 Main functions

Four functions compose the CoModes package: one function performs the cluster
analysis and three functions help for the result interpretation.
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The clustering function The cluster analysis can be performed with the function
CoModescluster() taking seven arguments.

> CoModescluster(x, g, Gibbs_init= 2, Gibbs_iter= 50,

Gibbs_chauffe= 50, EM_init= 5, EM_tol= 0.001)

CoModes script 5.11 (Dentists data set clustering).

This function has two mandatory arguments:
� A data frame x to be analyzed whose columns are factors.
� An integer values g setting the number of classes.

Default values are taken for the �ve tuning arguments:
� The number of mcmc chains performed to select the best model is set by the

argument Gibbs_init (default value is 2).
� The number of iterations of the Gibbs sampler is set by the argument Gibbs_iter

(default value is 50).
� The number of iterations of the burn-in of the Gibbs sampler is set by the

argument Gibbs_chauffe (default value is 50).
� The number of di�erent initializations of the em algorithm estimating the

mle for the best model according to the Gibbs sampler is set by the argument
EM_init (default value is 5).

� The em algorithm is stopped when the increase of the likelihood is smaller
than EM_tol (default value is 0.001).

Three tool functions The CoModes package also provides tool functions like
summary(), barplot() and plot() which respectively give a summary of the model,
a graphical summary of the parameters and a scatter-plot of the individuals in the
multiple correspondence map.

5.2.3 CoModes to cluster the dentists data set

Clustering with cmm We now display the results of the cmm model estimated
with the R package CoModes by using the following script.

> res <- CoModescluster(dentist,3, Gibbs_init= 25,

Gibbs_iter= 500, EM_init= 25)

CoModes script 5.12 (Dentists data set clustering).

Model selection The values of the bic criterion obtained by the three models
(cim, medd and cmm) are presented in Table 5.2.

The model �tting the best the data is the bi-component medd model. The cmm
model �ts the data better than the cim model for a number of classes smaller than
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g 1 2 3 4
cim -8766 -7511 -7481 -7503
medd -7743 -7473 -7481 -7503
cmm -8294 -7492 -7481 -7503

Table 5.2 � BIC criterion values for the cim, the medd and the cmm models ac-
cording to di�erent numbers of classes for the dentistry data set. Best values are in
bold.

three. Note that, when the class number is upper or equal to three, both medd and
cmm models are equivalent to the cim model.

A possible reason explaining the poor performance of the cmm model could be
its constraint of the equality between class of the repartition of the variables into
blocks. We remind that this assumption is not made by the medd model.

In order to illustrate the tools functions of CoModes, we now analyze the bi-
component cmm model.

Bi-component cmm interpretation The model interpretation of the cmmmodel
is facilitated by three tools function. The function summary() provides a general
overview of the model (information criteria, numbers of modes, τkb, κkb).
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# Function providing a model overview
> summary(res)

Number of variables: 5 Number of individuals: 3869
Number of modalities: 2 2 2 2 2
Class number: 2 log-likelihood: -7434.628 BIC: -7492.453

*************************************
Mode number:

de1-de2-de3 de4 de5
Class 1 5 1 1
Class 2 4 1 1

*************************************
Tau index:

de1-de2-de3 de4 de5
Class 1 0.8495717 0.5477190 0.8945463
Class 2 1.0000000 0.9798947 0.7185214
*************************************
Kappa index:

de1-de2-de3 de4 de5
Class 1 0.7142857 1 1
Class 2 0.5714286 1 1

CoModes script 5.13 (Dentists data set clustering).

The function barplot() provides a graphical summary of the parameters. In-
deed, it plots a barplot re�ecting the probability of the modes per class for each block
by ordering the modality crossings according to their posterior probability.

# Barplot of the parameters presented by Figure 5.2
> barplot(res)

CoModes script 5.14 (Dentists data set clustering).

The majority class (displayed in gray) is mainly composed with the sound diag-
noses. The second class (displayed in black) is composed with teeth diagnosed as
carious by some dentists especially the �fth. Note that the dentist 4 mainly diag-
noses the teeth as sound since its corresponding variable has a mode in this location
for both classes.

Bi-component cmm visualization The function plot() provides a scatter-plot
of the individuals, by indicating their class membership according to the map rule,
in a correspondence analysis map where the axes are chosen by the user.



5.2. CoModes 137

0.
0

0.
4

0.
8

sound sound carious sound sound carious
sound carious carious carious sound sound
sound sound carious carious carious sound

de1−de2−de3.

0.
0

0.
4

0.
8

1.
2

sound

de4.

0.
0

0.
4

0.
8

carious sound

de5.

Figure 5.2 � Summary of the cmm parameters.

# Scatter-plot of the individuals presented by Figure 5.3
> plot(res, c(1,2))

CoModes script 5.15 (Dentists data set clustering).
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Figure 5.3 � Scatter-plot in the �rst correspondence analysis map. Individuals af-
fected to the majority class are displayed by red triangles while those a�ected to
the minority class are displayed by black circles. An i.i.d. uniform noise on [0, 0.1]
has been automatically added on both axes for each individual in order to improve
visualization.



Conclusion of Part I

We have seen that the classical latent class model allows to �t well the small
data sets thanks to its sparsity induced by its conditional independence assump-
tion. For such data sets, more complex models taking into account the intra-class
dependencies are irrelevant since the information of conditional dependency is not
present.

When the number of individuals is su�ciently large according to the number of
variables, the latent class model can be biased when its conditional independence
assumption is violated. We have presented three main models of the bibliography
relaxing this assumption but they are facing with di�erent di�culties: model se-
lection, instability or an interpretation of classes which is performed throughout
another latent variable.

We have also proposed two mixture models which are speci�c versions of the
log-linear mixture model. They consider the main intra-class dependencies thanks
to a component distribution per independent blocks. Their main strength is that
both models can be summarized by few meaningful parameters. Indeed, the medd
model provides one coe�cient and one dependency relationship by blocks of vari-
ables, while the cmm model provides few characteristic modes and two indicators
of the dependency strength per block. Note that both models can consider inter-
actions among more than two variables while the usual ones take into account the
interactions of order one or two.

As all models of the log-linear mixture family, both proposed models are facing
with a complex challenge for the model selection. This di�culty is double since the
number of competing models can be huge. Furthermore, the information criteria
are generally asymptotic, so they are failing when the number of models is large
according to the sample size (for instance the bic criterion is biased to select the
mode number). We have proposed a mcmc algorithm performing a random walk
among the models, in order to reduce this drawback. However, the computation
time increases with the size of the model space. This phenomenon is a strong
obstacle to the analysis by the proposed models of data sets with a large number
of variables. Thus, the medd model is reserved for the cluster analysis of data sets
with few variables. The cmm model is less complex and its model selection does not
require any parameter estimate. So, the cmm model can cluster more complex data
sets. However, our advice is to use these models on data sets having at most 20
variables. Indeed, when the number of variables is large, there are too many models
in competition. So, the Gibbs algorithm requires too many iterations to sample
according to its stationary distribution. In such a case, a pragmatic approach could
consists in the estimation of a good model (but not the best one). Thus, the model
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selection could be performed by a deterministic but sub-optimal approach like the
forward method.

Finally, the approaches performing the model selection often require to infer
the parameters for each candidate model while the only interpreted ones are those
relative to the best model. The �Grail� would consists in performing the model
selection without needing the parameters of the model candidates and after to infer
the parameters only for the best model. Indeed, models having this property will
simplify the challenge of the model selection.



Part II

Model-based clustering for mixed

data
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This part, devoted to the cluster analysis of mixed data,
is split in three chapters.
The �rst one presents an overview of the clustering ap-
proach speci�c to the mixed data sets. We mainly focus
on the two main mixture models which relax the condi-
tional independence assumption and which �ll in part of
the lack of multivariate distributions for mixed data.
The second chapter presents a mixture model to clus-
ter mixed data sets with continuous and categorical vari-
ables. This model derives from the multilevel latent class
model developed for the categorical data analysis.
The third chapter presents one of the main contribution
of this thesis. It consists in the mixture model of Gaus-
sian copulas which allows to cluster data sets with any
kind of variables admitting a cumulative distribution
function. These results are part of a submitted article.

Une fois n'est pas coutume,
ni deux d'ailleurs,

ni trois.
À vrai dire,

on a jamais su
à partir de combien

c'était coutume
Stéphane De Groodt � Voyages en

absurdie
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Chapter 6

Cluster analysis of mixed data sets:

state of the art

The purpose of this chapter is to present the main ap-
proaches to cluster mixed data sets.
Firstly, we emphasize the speci�city of the mixed data
for the cluster analysis.
Secondly, we present some naive approaches to perform
the cluster analysis of such data.
Finally, we detail the two most relevant approaches to
cluster mixed data sets.

Génétique en bandoulière
Des chromosomes dans l'atmosphère

Des taxis pour les galaxies
Et mon tapis volant lui

Noir Désir � Le vent nous portera

6.1 Challenge of cluster analysis for mixed data

Introduction Nowadays, many data sets are often composed with mixed vari-
ables (di�erent kinds of variables in the data set). So, it is essential to be able to
cluster such data sets. The di�culty, inherent to the cluster analysis of mixed data
performed by mixture models, is the lack of multivariate distribution for such data.
Indeed, if the Gaussian (respectively the Poisson and the multinomial) distribu-
tions are reference to cluster continuous (respectively integer and categorical) data,
there is no reference distribution for mixed data. So, the easiest approach consists
in assuming the conditional independence between the variables and in selecting
classical one-dimensional margin distributions for each component. However, this
approach can lead to biases. Moreover, some models approach the distribution of
intra-class correlated mixed data, but they are not easily meaningful. Indeed, the
one-dimensional margins of each component do not follow classical distributions. As
the mixture models are used to cluster, this objective appears to be crucial for us
since it provides meaningful models.

147
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Two crucial objectives This chapter proposes an overview of the clustering ap-
proaches for mixed data. It puts the light on the importance to provide multivariate
mixture models which respect both following objectives:

1. To provide classical one-dimensional margin distributions for each compo-
nent.

2. To modelize the intra-class dependencies.

These two objectives aim to simplify the model interpretation. Indeed, the practi-
tioner is in a usual framework when the one-dimensional margins of the components
are classical. Moreover, its class interpretation is more precise when the intra-class
dependencies are modelized. Thus, the mixture models presented in the following
chapters aim at respecting both objectives.

The data Throughout this part, we consider the e-variate vector of mixed vari-
ables denoted by xi = (x1

i , . . . , x
c
i ,x

c+1
i , . . . ,xei ). We denote by xci = (x1

i , . . . , x
c
i)

its subset of the c continuous variables. In the same way, we denote by xdi =
(xc+1

i , . . . ,xei ) its subset of the d discrete variables, where c + d = e. Note that
the term discrete will be speci�ed for each presented model. We denote by m the
number of modality crossings of the set of the categorical variables of xdi .

Structure of this chapter Section 6.2 �rstly presents three naive methods which
are not relevant since they do not consider each variable in its native space. Secondly,
this section formulates two extensions of classical methods to perform the cluster
analysis of mixed variables. The two following sections present the two most relevant
approaches to cluster mixed data. Section 6.3 details the mixture of location models
and its extension per block. Section 6.4 introduces the underlined Gaussian mixture
model. A conclusion is given in Section 6.5.

6.2 Overview of simple methods to cluster mixed

data

6.2.1 Naive methods

In order to emphasize the di�culties inherent to the mixed data clustering, we
enumerate three naive (but not e�cient) methods which permit to cluster such data.
However, all of these methods have a main drawback. Indeed, either they do not
respect the kind of each variable, either they do not consider each variable in its
native space.

Whole continuous method One may be tempted to cluster the discrete variables
as if they were continuous. Thus, this method consists in converting the categorical
and ordinal attribute values to numeric values. A method speci�c to the continuous
data is then applied to perform the cluster analysis. This approach makes a very
strong assumption for the ordinal variables. Indeed, it assumes that there is the
same gap between all the couples of successive modalities. Moreover, this approach
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has to be barred in the presence of categorical variables. Indeed, it assumes a
meaningless order between the modalities. For instance, it is not possible to give
numeric variables to categorical values like color or hobby.

Whole discrete method This method consists in a discretization of the continu-
ous variables. Thus, a method speci�c to the categorical variables is used to perform
the cluster analysis. The choices of the numbers of modalities and of the bound
locations are delicate. However, these choices are crucial since they in�uence the
results of the cluster analysis. Moreover, whatever are the numbers of categories, the
discretization process leads to a loss of information. Finally, the intra-class depen-
dencies are di�culty modelized since all the variables are considered as categorical
(see Part I).

Factorial approach The Multiple Factorial Analysis method permits to project
individuals described by categorical variables in a �continuous� space. Thus, by
replacing the discrete variables by their factor coordinates, any method speci�c to
the continuous variables can be used to cluster the data set. However, note that,
even if this space is continuous, individuals can take only a �nite number of values.
This phenomenon also increases the risk of degeneracy. Moreover, the results are
less meaningful since the variables are not clustered in their native space. Indeed,
the interpretation of the classes is done by the parameters of the factorial space.

The three methods presented above are not e�cient since they do not respect
the nature of each variable. Thus, in the following, all the studied methods modelize
the distribution of all the variables in their native space.

6.2.2 Extension of classical methods for mixed data

K-means algorithm The K-means algorithm only requires a de�nition of a dis-
tance between the individuals to cluster any kind of data. Di�erent distance mea-
sures can be selected for mixed data (see, for instance, the suggestions of Z. Huang
[Hua98] and of A. Ahmad and L. Dey [AD07]). Obviously, this approach keeps the
drawbacks of the geometric methods discussed in Section 1.1.2.

Conditional independence mixture model The lack of reference distribution
for mixed data is a problem to perform the cluster analysis with mixture models.
This problem is easily avoided by the conditional independence model (see Sec-
tion 1.2.3). Indeed, each component distribution is de�ned by the product of univari-
ate distributions. Thus, classical distributions can be used as the one-dimensional
margin distributions of the components as proposed by J. Bacher [Bac00] and by I.
Moustaki and I. Papageorgiou [MP05]. The idea which consists in setting the one-
dimensional margin distributions by classical distributions is a major notion. How-
ever, the conditional independence model is biased when its assumption is violated.
Now, we present two main approaches which relax the conditional independence
assumption.



150 Chapter 6. Cluster analysis of mixed data sets: state of the art

6.3 Mixture of location models and its extension

per blocks

The data The location mixture model, introduced by W.J. Krzanowski [Krz93],
allows to cluster data sets with continuous and categorical variables.

Main idea It concatenates the whole categorical variables into a single one which
follows a full multinomial distribution. Moreover, it assumes that the continuous
variables follow a multivariate Gaussian distribution conditionally on the class and
on each modality crossing. More precisely, its means depend on both class and
categorical variables. Thus, the conditional dependency between the whole variables
is taken into account.

6.3.1 Location model

Aim I. Olkin and R.F. Tate [OT61] note that data arisen from experimentations in
psychology often contain both discrete and continuous variables. So, they introduce
the location model to have measures of association between the variables of such
data sets.

Main idea The location model de�nes the multinomial distribution on the whole
categorical variables and a multivariate Gaussian distribution on the continuous
variables conditionally on the categorical ones. More precisely, the set of the cat-
egorical variables xdi is considered as one categorical variables which follows a free
multinomial distributionMm(λ1, ..., λm). Thus, λh denotes the probability that xdi
takes the modality crossing h. Moreover, conditionally on xdi taking the modality
crossing h, the c-variate continuous variable xci follows a c-variate Gaussian distribu-
tion Nc(µh,Σ). Thus, the categorical variables in�uence the mean of the continuous
variables but not their dispersion.

Notations As the set of the categorical variables xdi is considered by the location
model as one categorical variables, we use a complete disjunctive coding as such
xdhi = 1 if the individual takes the modality crossing h and xdhi = 0 otherwise.

De�nition 6.1 (Location model). The vector of mixed variables xi = (xci ,x
d

i ) is
drawn by a location model if its pdf is written as follows

p(xi;α) =
m∏
h=1

(
λhφc(x

c

i ;µ
h,Σ)

)xdhi , (6.1)

where α groups the dispersion matrix Σ and the vector (λh,µh;h = 1, . . . ,m).

6.3.2 Mixture of location models

The location model was extended to the mixture framework. Indeed, the mixture
of location models was used in discriminant analysis by W.J. Krzanowski [Krz93]
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and in cluster analysis by C.J. Lawrence and W.J. Krzanowski [LK96] in order to
take into account the intra-class dependencies.

De�nition 6.2 (Mixture of location models). The vector of mixed data xi =
(xci ,x

d

i ) is drawn by a mixture of location models if the pdf of its component k
is written as follows for k = 1, . . . , g

p(xi;αk) =
m∏
h=1

(
λhkφc(x

c

i ;µ
h
k,Σ)

)xdhi , (6.2)

where αk groups the dispersion matrix Σ and the vector (λhk,µ
h
k;h = 1, . . . ,m).

Intra-class dependencies The mixture of location models considers all the intra-
class dependencies per couple of variables, as follows.

� If both variables are categorical, their intra-class dependencies are modelized
by the full multinomial distributions.

� If both variables are continuous, their intra-class dependencies are modelized
by the bivariate Gaussian distributions.

� If one variable is categorical and one variable is continuous, their intra-class
dependencies are modelized by the in�uence of the categorical variable on the
means of the Gaussian distributions of the continuous variable.

Identi�ability As pointed-out by A. Willse and R.J. Boik [WB99], the mixture of
location models is not identi�able because of the indeterminacy of class memberships
at each location. In order to overcome this lack of identi�ability, these authors add
some constraints on the mean parameters of the Gaussian distributions.

One-dimensional margin distributions We have emphasized that the condi-
tional independence model is meaningful, since its one-dimensional margin distri-
butions of its components are classical (for instance, they consist in multinomial or
a Gaussian distributions). For the mixture of location models, the one-dimensional
margin distributions of the categorical variables for a component are classical since
they are multinomial distributions. However, the one-dimensional margin distribu-
tions of the continuous variables for a component are not classical. Indeed, they
consist in a mixture of homoscedastic Gaussian with m components.

Parameter estimation The inference can be easily performed in both frequentist
and Bayesian frameworks even if the authors only presented it in the frequentist one.
The mle can be obtained by the following em algorithm
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Starting from an initial value θ[0], iteration [r] is written as
� E step: calculate conditional probabilities

tik(θ
[r]) =

π
[r]
k p(xi;α

[r]
k )

p(xi;θ
[r])

. (6.3)

� M step: maximization of the expectation of the complete-data log-
likelihood

π
[r+1]
k =

n
[r]
k

n
, λ

h[r+1]
k =

1

n
[r]
k

n∑
i=1

tik(θ
[r])xdhi , (6.4)

µ
h[r+1]
k =

1

n
[r]
k

n∑
i=1

tik(θ
[r])xdhi x

c

i , (6.5)

Σ[r+1] =
1

n[r]

g∑
k=1

mj∑
h=1

n∑
i=1

tik(θ
[r])xdhi (xci − µ

h[r+1]
k )′(xci − µ

h[r+1]
k ),

(6.6)
where n[r]

k =
∑n

i=1 tik(θ
[r]).

Algorithm 6.3 (em algorithm for the mixture of location models).

The mape can be easily obtained by selecting a usual prior. This prior assumes
independence between the parameters and selects conjugate distributions for each
parameters. It is also easy to build a Gibbs sampler since the parameters have
explicit posterior distributions.

6.3.3 Mixture of blocks of location model

Main idea The number of parameters required by the mixture of location models
increases with the number of categorical variables and with the number of their
modalities. Thus, M. Jorgensen and L. Hunt [JH96, HJ99] propose an extension of
this model. In their extension, the variables are split into conditionally independent
blocks such that each block is composed with at most one categorical variable.
Moreover, each block of variables follows a location model.

De�nition 6.4 (Mixture of blocks of location model). The vector xi composed
with continuous and categorical variables arises from a mixture of blocks of location
model if the pdf of its component k is written as follows for k = 1, . . . , g

p(xi;αk) =
b∏
b=1

p(x
{b}
i ;αkb), (6.7)

where αk = (αkb; b = 1, . . . ,b) and if the pdf of block b for component k is written
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as follows for all b = 1, . . . ,b

p(xi;αkb) =



φd{kb}(x
{b}c
i ,µkb,Σkb) if x{b}i is continuous
m{b}∏
h=1

(λkh)
x
{b}dh
i if x{b}i is categorical

m{b}∏
h=1

(
λhkbφd{kb}−1(x

{b}c
i ;µhkb,Σkb)

)x{b}dhi

if x{b}i is mixed,

(6.8)
where x{b}ci and x{b}di are respectively the continuous and the categorical variables
of block b.

Related models
� If there are only continuous variables (i.e. c = e and d = 0) and if all the

variables are a�liated into the same block (i.e. x{1}i = xi), then the model
is equivalent to the heteroscedastic Gaussian mixture model.

� If there are only continuous variables (i.e. c = e and d = 0) and if each
block is composed with only one variable (i.e. x{b}i = xbi , for b = 1, . . . , c),
then the model is equivalent to the Gaussian mixture model with conditional
independence assumption (i.e. Σk is diagonal).

� If there are only categorical variables (i.e. c = 0 and d = e) then the model
is equivalent to the latent class model (see Section 2.3.1).

Parameter estimation The inference is easily performed. Indeed, the condi-
tional independence between the blocks allows to adapt the em algorithm presented
in Algorithm 6.3, in order to obtain the mle of the mixture of blocks of location
model. The Bayesian inference could be performed by a Gibbs sampler if the priors
are assumed to be independent and follow conjugate distributions.

Model estimation of the repartition of the variables into blocks The au-
thors estimate the repartition of the variables into blocks by an ascending method
with a �xed number of classes. Indeed, an exhaustive approach is not doable (see
Section 3.5). The aim of this ascending method is to optimize an information crite-
rion. This method is initialized by the locally independent model. Then, di�erent
models are proposed by using the intra-class dependencies computed with the cur-
rent model.

Performances of the mixture of blocks of location model As presented in
[HJ11], the mixture of blocks of location model can outperform the locally inde-
pendent model. However, this model has two main drawbacks. The �rst one is
about the class interpretation, since the one-dimensional margin distribution of a
component is not classical if the variable is continuous. The second one is about
the di�culty to perform model selection. Indeed, the proposed approach can be
sub-optimal to select the repartition of the variables into blocks. Furthermore, the
choice of the correlation coe�cient between a continuous variable and a categorical
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one is subjective. However, this choice is crucial since it determines the candidates
during the model estimation.

6.4 Underlined Gaussian mixture model

Main idea The underlined Gaussian mixture model, introduced by B.S. Everitt
[Eve88], performs the cluster analysis of data sets with continuous and ordinal vari-
ables. Its main assumption is that the observed ordinal and binary variables are
generated from underlying unobservable continuous variables according to the val-
ues of a set of thresholds.

Remark 6.5 (The categorical variables are not allowed). The categorical variables
(except the binary ones) cannot be modelized by the underlined Gaussian mixture
model. Indeed, this model assumes an order between the modalities which is not
present for such variables.

6.4.1 Description of the underlined Gaussian mixture model

Gaussian variable We consider the vector yi = (xci ,y
d

i ) where ydi is a continuous
vector of size d. The vector yi is assumed to be drawn by the homoscedastic Gaussian
mixture model whose the pdf is

p(yi;θ) =

g∑
k=1

πkφe(yi;µk,Σ). (6.9)

Gaussian latent variable In practice the variables ydi are not observed. However,
they are related to the set of the observed discrete variables xdi as follows

∀j = c+ 1, . . . , e, xjhi = 1 if bjhk < ydji ≤ bjh+1
k , (6.10)

where bjhk < bjh+1
k for j = c + 1, . . . , e and h = 1, . . . ,mj and where bj1k = −∞ and

b
jmj+1
k = ∞. The bounds bjhk determine the observed discrete variables from the
latent continuous ones. Thus, we obtain that the observed variables xi = (xci ,x

d

i )
have the following pdf

p(xi;θ) =

g∑
k=1

πk

∫
Sk(xdi )

φe(yi,µk,Σ)dydi , (6.11)

where Sk(xdi ) is the domain of the integration of latent Gaussian variables ydi related
to the observed discrete variables xdi . More precisely, Sk(xdi ) = Sc+1

k (xc+1
i )× . . .×

Sek(xei ) where the interval Sjk(x
j
i ) is de�ned for j = c + 1, . . . , e as such Sjk(x

j
i ) =

]bjhk , b
jh+1
k ] if xjhi = 1.
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Alternative form of the pdf An alternative (and more friendly) form of the
pdf de�ned by (6.11) is obtained by noting that the conditional distribution of xdi
given xci is an underlined Gaussian one. This distribution has the mean µd|c

k and
the covariance matrix Σd|c which are de�ned by

µ
d|c
k = µd

k + ΣdcΣ
−1
cc

(xci − µc

k) and Σd|c = Σdd −ΣdcΣ
−1
cc

Σcd, (6.12)

where µc

k and µd

k are respectively the means of xci and of xdi and where the co-

variance matrix Σ =

[
Σcc Σcd

Σdc Σdd

]
is decomposed into sub-matrices. For instance,

Σcc is the sub-matrix of Σ composed by the rows and the columns related to the
observed continuous variables. This alternative form of the pdf allows us to de�ne
the underlined Gaussian mixture model.

De�nition 6.6 (Underlined Gaussian mixture model). Let xi the vector of e mixed
variables drawn be the underlined Gaussian mixture model. Its pdf is written as
follows

p(xi;θ) =

g∑
k=1

πkφc(x
c

i ;µ
c

k,Σcc)

∫
Sk(xdi )

φd(y
d

i ;µ
d|c
k ,Σd|c)dydi . (6.13)

Crucial condition for model identi�ability Since the latent vector ydi is not
observed, there is no information on its mean and variance. Thus, the model assumes
that the elements of µd

k are null and that the diagonal elements of Σdd are equal to
one.

6.4.2 Estimation of the underlined Gaussian mixture model

The inference by maximization of the log-likelihood function is not easy because
of the presence of d-dimensional integrals having no explicit form when Σ is not
diagonal.

E.S. Everitt proposes to perform the inference by using simplex method. Note
that its approach limits at four the number of discrete variables.

6.5 Conclusion

We have pointed out the importance to consider all the variables in their native
space. However, the mixed data are not easily clustered by mixed models because
of the lack of standard multivariate distribution for such variables. Thus, the aim
is to propose relevant multivariate distribution for mixed data. We have put the
light on the importance that the one-dimensional margins of this distributions are
classical and that the dependencies are modelized.

The model presented in Chapter 7 allows to perform the cluster analysis of data
sets with continuous and categorical variables by achieving these objectives. Note
that this situation (data set with continuous and categorical variables) is the most
studied one.
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In the bibliography, the authors do not study the case of mixed variables with
integer values. Thus, the model presented in Chapter 8 is of interest. Indeed, it is
very general since it allows to cluster data sets with any kind of variables admitting
a c.d.f.



Chapter 7

Model-based clustering of Gaussian

and logistic distributions

This chapter introduces a sparse mixture model for data
sets with continuous and categorical variables. The
component distributions of the continuous variables are
Gaussian. Moreover, the categorical variables are as-
sumed to be independent conditionally on the class and
on the continuous variables. Finally, conditionally on
the continuous variables, the component distributions of
the categorical variables are linear logistic distributions
where few parameters are not zero in the regression.
The maximum likelihood inference and the model selec-
tion are simultaneously performed by a gem algorithm
for a �xed number of classes.
Numerical experiments illustrate the model relevance in
a cluster analysis and in a semi-supervised classi�cation
when few individuals are labeled.

Si estirem tots, ella caurà
I molt de temps no pot durar

Segur que tomba, tomba, tomba
Ben corcada deu ser ja.

Si tu l'estires fort per acqui
I jo l'estiro fort per alla

Segur que tomba, tomba, tomba,
I ens podrem alliberar.
Lluis Llach � L'estaca

7.1 Introduction

We present a mixture model to cluster data sets with continuous and categorical
variables. This model has a double objective: to provide classical one-dimensional
margin distributions for each component and to modelize the intra-class dependen-
cies.

157



158 Chapter 7. Model-based clustering of Gaussian and logistic distributions

For such a model, the continuous variables follow a multivariate Gaussian dis-
tribution for each component. Conditionally on the class and on the continuous
variables, the categorical variables are assumed to be independently drawn by linear
logistic distributions. The resulting model is also named: mixture model of Gaussian
and logistic distributions.

The linear logistic regressions are classically used by mixture models for cate-
gorical data [For92]. Moreover, the multilevel latent class model [Ver03] uses latent
continuous variables to modelize the intra-class dependencies between the categor-
ical variables. So, it is natural to use a mixture model of Gaussian and logistic
distributions when both of the continuous and categorical kinds of variables are
observed.

A parsimonious version of this model is introduced by adding some constraints on
the logistic parameter space. So, the resulting model is more easily interpretable and
can perform a better trade o� between the bias and the variance. For a �xed number
of classes, the selection of the parsimonious model and the parameter estimation
are simultaneously performed by a gem algorithm which optimizes an information
criterion. During our numerical experiments, we illustrate the relevance of the bic
criterion compared to the aic criterion.

Finally, even if the model is introduced to perform a cluster analysis, it can
be applied for a semi-supervised classi�cation [CSZ+06]. Indeed, it is known that
the generative approaches can outperform the methods speci�c of the classi�cation
challenge. This phenomenon is particularly observed when few observations are
labeled [DMD06]. Indeed, these methods exploit the informations present in both
labeled and unlabeled data while discriminative approaches take only into account
the labeled data information. Indeed, they learn a classi�cation rule only on the
labeled data.

Structure of this chapter This article is organized as follows. Section 7.2
presents the mixture model of Gaussian and logistic distributions for data sets
with continuous and categorical variables. This model performs the cluster anal-
ysis by providing classical one-dimensional distributions for each component and by
modelizing the intra-class dependencies. In a clustering framework, Section 7.3 is
devoted to the maximum likelihood estimation. Section 7.4 presents the gem algo-
rithm which simultaneously performs the estimation of both model and parameters
by optimizing an information criterion. Section 7.5 presents di�erent numerical ex-
periments. They illustrate the relevance of the bic criterion to perform the model
selection. Moreover, they show the performances of the estimation algorithm and
the model robustness. Section 7.6 presents one application in clustering and one
application in semi-supervised classi�cation on two real data sets. A conclusion is
given in Section 7.7.

The data Let xi = (x1
i , . . . , x

c
i ,x

c+1
i , . . . ,xei ) be the e-variate vector of mixed

variables. The �rst c variables are continuous and this subset of variables is denoted
by xci . The last d variables are categorical variables using a disjunctive coding and
this subset of variables is denoted by xdi . Note that c+ d = e.



7.2. Mixture model of Gaussian and logistic distributions 159

7.2 Mixture model of Gaussian and logistic distri-

butions

Aim The model performs the cluster analysis of continuous and categorical data
set with a double objective: to provide classical one-dimensional margin distribu-
tions for each component and to modelize the intra-class dependencies.

Main idea 1 The pdf of each component is de�ned by the product between the
pdf of the whole continuous variables and the pdf of the whole categorical variables
conditionally on the whole continuous variables. More precisely, concerning the
continuous variables, they follow a multivariate Gaussian distribution for each com-
ponent. Concerning the categorical variables, the model assumes their independence
conditionally on both the class membership and the continuous variables.

De�nition 7.1 (Mixture model related to Main idea 1). The vector xi is drawn by
a mixture model respecting Main idea 1 if the pdf of its component k is written as
follows for k = 1, . . . , g

p(xi;αk) = p(xci ;αk)p(x
d

i |xci ;αk)

= φc(x
c

i ;µk,Σk)
e∏

j=c+1

p(xji |xci ;βkj), (7.1)

where αk = (µk,Σk,βk) denotes the whole component parameters, where the vector
µk ∈ Rd denotes the mean of the continuous variables for component k and where the
matrix Σk denotes their covariance matrix. The vector βk = (βkj; j = c+ 1, . . . , e)
denotes the whole parameters of component k which are related to the categorical
variables. Indeed, the vector βkj groups the parameters related to the distribution
of the categorical variable xji for component k.

Main idea 2 The model assumes that, for each component, the distribution of
each categorical variable is a linear logistic regression whose the explanatory vari-
ables are the continuous ones.

De�nition 7.2 (Mixture model of logistic regressions). With the notation x0 = 1,
the component distributions of xji (for j = c+ 1, . . . , e) are de�ned, by the following
pdf for k = 1, . . . , g

p(xji |xci ;βkj) =

mj∏
h=1

 exp
(∑c

j′=0 β
j′h
kj x

j′

i

)
∑mj

h′=1 exp
(∑c

j′=0 β
j′h′

kj x
j′

i

)
xjhi

, (7.2)

where the parameters βkj = (βj
′h
kj ; j′ = 0, . . . , c;h = 1, . . . ,mj) ∈ Rc+1 denotes the

logistic parameters of the categorical variable xji for class k. In order to insure the
model identi�ability, we put ∀(k, j, j′), βj

′1
kj = 0. Finally, note that the parameter

β0h
kj is the intercept of the logistic regression while the other parameters βj

′h
kj (for

j′ = 1, . . . , c) are the slope parameters.
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Potential large number of parameters The model can require a large number
of parameters. Indeed, the number of parameters involved by the model is equal to

(g − 1) + g

(
c(c+ 3)

2

)
+ g

e∑
j=c+1

(mj − 1)(c+ 1). (7.3)

In order to obtain a better bias/variance tradeo�, we introduce a parsimonious
version of the model by reducing the space of the logistic coe�cients.

Sparse logistic functions for the mixed conditional dependencies The
sparsity of the model is de�ned by the discrete parameters δkj = (δj

′

kj; j
′ = 0, . . . , c).

Indeed, δj
′

kj = 1 if categorical variable j is conditionally dependent on continuous

variable j′ for component k and δj
′

kj = 0 otherwise. Note that δ0
kj = 0 involves a null

intercept in the logistic regression of categorical variable j for component k. Thus,
δkj �xes some logistic parameters to zero since βkj ∈ S(δkj) with

S(δkj) =
{
βkj : ∀(k, j, j′) as such δj

′

kj = 1, then ∀h βj
′h
kj = 0

}
. (7.4)

Controlled number of parameters The number of parameters required by the
general model de�ned by (g, δ) is equal to

(g − 1) + g

(
c(c+ 3)

2

)
+

g∑
k=1

e∑
j=c+1

c∑
j′=0

δj
′

kj(mj − 1). (7.5)

Meaningful model The mixture model of Gaussian and logistic distributions pro-
vides meaningful classes. Indeed, each class can be summarized by few parameters:
mean and variance for the continuous variables and probability of each modality for
each categorical variable equal to

p(xjh = 1|zik = 1) =

∫
Rc
φc(x

c

i ;µk,Σk)
exp

(∑c
j′=0 β

j′h
kj x

j′

i

)
∑mj

h′=1 exp
(∑c

j′=0 β
j′h′

kj x
j′

i

)dxci . (7.6)

Although this integral is not explicit, it is easily approximated by a mcmc method.
Furthermore, for each class, the dependencies between the continuous variables are
modelized by the correlation matrix while the categorical variable xji is conditionally
dependent with the continuous one xj

′

i if δj
′

kj = 1.

Dependencies network Figure 7.1 gives an example of the dependencies be-
tween variables taken into account by the model. A link between variables denotes
a dependency between variables and an absence of link denotes a conditional inde-
pendence. Note that all the observed variables are linked with zi, there is a clique
between the continuous variables, the categorical variables are not linked together
and the intra-class dependency between the continuous and the categorical variables
are de�ned by the discrete parameters δ.
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zi

x1
i

x2
i

x3
i

x4
i

Figure 7.1 � Example of the dependencies taken into account by the model where
xci = (x1

i , x
2
i ) and x

d

i = (x3
i ,x

4
i ) with δ

1
k3 = δ2

k3 = δ1
k4 = 1 and δ2

k4 = 0.

Generic identi�ability The mixture model of Gaussian and logistic distributions
is generically identi�able. Details of the proof are given in Appendix B.1. The
demonstration is split in two parts. Firstly, we sum over all the possible values of
xdi to obtain a mixture of Gaussian distributions and to use its identi�ability results
[Tei63, YS68]. Secondly, we show the identi�ability of the parameters of each logistic
function.

7.3 Maximum likelihood estimation via an EM al-

gorithm

Main idea We consider the sample x = (x1, . . . ,xn) which consists of n indi-
viduals assumed independently drawn by a mixture model of Gaussian and logistic
distributions. The mle is easily obtained by the following em algorithm. This al-
gorithm, that we detail below, is performed for a �xed model de�ned by the couple
(g, δ).

Inference of the logistic parameters At the m step, the maximizations on the
proportions and on the Gaussian parameters are easily performed. However, the
estimation of the parameters related to the logistic functions involve to solve non-
explicit equations. So, they are classically obtained by a Newton-Raphson method.
Indeed, the aim is just to estimate the logistic regression parameters where individ-
uals have di�erent weights.
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Starting from an initial value θ[0], iteration [r] is written as
� E step: calculate conditional probabilities

tik(θ
[r]) =

π
[r]
k p(xi;α

[r]
k )

p(xi;θ
[r])

. (7.7)

� M step: maximization of the expectation of the complete-data log-
likelihood

π
[r+1]
k =

n
[r]
k

n
, µ

[r+1]
k =

1

n
[r]
k

n∑
i=1

tik(θ
[r])xi,

Σ
[r+1]
k =

1

n
[r]
k

n∑
i=1

tik(θ
[r])(xi − µ[r+1]

k )′(xi − µ[r+1]
k ),

β
[r+1]
kj = argmax

βkj∈S(δkj)

n∑
i=1

tik(θ
[r]) ln p(xji |xci ;βkj), (7.8)

where n[r]
k =

∑n
i=1 tik(θ

[r]).

Algorithm 7.3 (em algorithm).

7.4 Model selection via a GEM algorithm

Aim The model selection is a combinatorial problem because of the estimation of
the discrete parameter δ. Thus, we want to obtain the parameter δ which maximizes
the information criterion for a �x number of classes.

Main idea It is generally impossible to �nd the mle for each δ since the num-
ber of competing models is 2g(c+1)d. As the bic criterion is a penalization of the
observed-data log-likelihood, we can use an em algorithm maximizing the penalized
observed-data log-likelihood [Gre90] (see Section 1.3.4). Thus, the m step consists
in maximizing the expectation of the penalized complete-data likelihood.

Modi�cation of the m step At iteration [r], the m step of the em algorithm
aims at determining (δ

[r+1]
kj ,β

[r+1]
kj ) as such

(δ
[r+1]
kj ,β

[r+1]
kj ) = argmax

δkj∈{0,1}c+1

argmax
βkj∈S(δkj)

n∑
i=1

tik(θ
[r]) ln p(xji |xci ;βkj)−

νkj
2

lnn, (7.9)

where νkj =
∑c

j′=0 δ
j′

kj indicates the number of parameters required by the logistic
regression related to categorical variable j for component k.
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The gem algorithm to avoid the combinatorial problems The space of δ
is large, so an exhaustive approach to determine δ[r+1]

kj according to (7.9) is not
doable. Thus, we prefer to use a gem version of this algorithm. In this algorithm,
the expectation of the penalized complete-data likelihood is just increased at the m
step. So, at iteration [r] of the gm step, we use ascendant and descendant methods
initialized by (δ

[r]
kj ,β

[r]
kj).

On the importance of several initializations Note that this approach keeps
the classical properties of the em algorithm. So, this deterministic algorithm con-
verges to a local optimum of the penalized observed-data likelihood which depends
of the initial value of (δ[0],θ[0]). Thus, it is mandatory to perform this algorithm
with di�erent initializations to assure the convergence to a global maximum of the
penalized observed-data likelihood.

7.5 Numerical experiments on simulated data sets

Aim We experimentally study the behavior of the gem algorithm when it per-
forms the model selection using both classical information criteria (aic and bic).
The results attest to the good behavior of the gem algorithm for the simultaneous
estimation of the model and the parameters. Moreover, they show that the bic cri-
terion outperforms the aic criterion. Indeed, this latter overestimates the number
of components and the conditional dependencies between mixed data.

Structure of this section Firstly, data are simulated according to the mixture
model of Gaussian and logistic distributions. Secondly, data are simulated according
to other models.

7.5.1 Simulations by the well speci�ed model

Known number of classes

Data generation Data are sampled according to the model of Gaussian and lo-
gistic distributions with two components and equal proportions. Individuals are
described with two continuous variables and two binary ones. The model parame-
ters are the following

µk = (ε(k − 2), ε(k − 1)), Σk =

[
1 k − 1.5

k − 1.5 1

]
, δk1 = (1, 1, 0),

δk2 = (1, 0, 1), βj
′2
kj = ε, (7.10)

where the parameter ε allows to �x the classes overlaps. The larger is ε, the better
separated are the classes. For two classes overlaps and for di�erent sizes of samples
(n = 50, 100, 200, 400), 25 data sets are generated.
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Estimation conditions For each data set, three models are in competition: the
�true� model, the model maximizing the aic criterion and the model maximizing
the bic criterion. The estimation of the parameters related to the true model is
performed by the em algorithm maximizing the likelihood for a �x model (Algo-
rithm 7.3). The two other parameter estimations are performed by the gem algo-
rithm maximizing an information criterion. In each case, 25 random initializations
of the estimation algorithm are done. Note that, even in this simple case, it is not
doable to perform an em algorithm for each model since there are 212 models in
competition.

Results In Table 7.1, we present the Kullback-Leibler divergence of the true model
m and of the best model according the aic (respectively bic) criterion denoted by
maic (respectively mbic). We conclude to the well behavior of the algorithm used
for the parameter estimation. Indeed, the Kullback-Leibler divergence tends to zero
when n grows for the three approaches. Furthermore, for a �nite sample size, the
information criteria allow to reduce the Kullback-Leibler divergence by selecting less
complex models.

Overlap 10% 20%
n 50 100 200 400 50 100 200 400
m 1.04 0.18 0.10 0.06 0.42 0.21 0.09 0.05
m̂aic 0.68 0.17 0.10 0.05 0.54 0.20 0.08 0.04
m̂bic 0.48 0.15 0.08 0.04 0.44 0.17 0.07 0.04

Table 7.1 � Means of the Kullback-Leibler divergences in a well speci�ed model
situation where the number of classes is known.

Number of classes unknown

Data generation Data are sampled according to model described in the previ-
ous simulation. For three overlapped classes and for di�erent sample sizes (n =
50, 100, 200, 400), 25 data sets are generated.

Estimation conditions For each data set, the best models according to the aic
and the bic criteria are estimated for g = 1, . . . , 4. In each case, 25 random initial-
izations of the algorithm are done.

Results Table 7.2 displays the mean of the best number of classes and the adjusted
rand index [HA85] computed with the estimated partition of the best number of
classes for both information criteria. The behavior of the bic criterion is better
since it underestimates the number of classes when the sample size is small and
when classes overlap. Furthermore, its convergence to the true number of classes
is faster than for the aic criterion. Indeed, this latter overestimates the number of
classes even if the data set is large. The adjusted Rand index related to the model
which optimize the bic criterion is small, since this index is equal to zero when
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g = 1. Note that this index takes high values for the aic criterion when this latter
overestimates the number of classes. Thus, we can claim that when the aic criterion
overestimates the number of classes, it splits a �true� class into two classes.

Overlap 05% 10% 20%
n aic bic aic bic aic bic

50 3.68 (0.76) 1.59 (0.40) 3.55 (0.60) 1.50 (0.16) 3.40 (0.41) 1.24 (0.04)
100 3.18 (0.76) 1.91 (0.62) 3.55 (0.63) 1.60 (0.30) 3.32 (0.53) 1.28 (0.05)
200 3.36 (0.76) 2.00 (0.76) 3.27 (0.69) 2.00 (0.56) 3.56 (0.56) 1.64 (0.16)
400 3.20 (0.83) 2.00 (0.80) 3.16 (0.66) 2.00 (0.28) 3.48 (0.59) 2.00 (0.28)

Table 7.2 � Means of the selected number of classes in plain and adjusted Rand
indices in parenthesis computed for both information criteria.

Conditional independence situation

Data generation Data are sampled according to the bi-components model where
the categorical variables are conditionally independent to the continuous ones. Its
parameters are

µk = (k − 2, k − 1), Σk =

[
1 k − 1.5

k − 1.5 1

]
, δk1 = (1, 0, 0),

δk2 = (1, 0, 0), β02
kj = (−1)k/2. (7.11)

Estimation conditions For each data set, the best models according to the aic
and the bic criteria are estimated by a gem algorithm randomly initialized 25 times,
with g = 2.

Results Table 7.3 displays the headcount where the logistic intercepts are not
null and the headcount where the conditional dependency relationship between a
categorical variable and a continuous one is zero.

n aic bic

δ0
kj = 1 δ

(1,2)
kj = 1 δ0

kj = 1 δ
(1,2)
kj = 1

50 0.58 0.32 0.50 0.29
100 0.58 0.31 0.61 0.21
200 0.63 0.27 0.62 0.20
400 0.73 0.23 0.73 0.14

Table 7.3 � Headcount where the logistic intercepts are not null (δ0
kj = 1) and head-

count where the conditional dependency relationship between a categorical variable
and a continuous one is estimated (δ

(1,2)
kj = 1) for both information criteria.

We note that the bic criterion has a better behavior since the aic criterion
overestimates some relationships between variables when the conditional assumption
is valid.
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7.5.2 Simulations by misspeci�ed models

Data generation Data sets of size 200 are sampled according to the following
bi-components four-variate Gaussian mixture model

πk = 0.5, µ1j = 0.5, µ2j = −µ1j, Σ1 = Σ2 =


1 ε 0.5 ε
ε 1 ε 0.5

0.5 ε 1 ε
ε 0.5 ε 1

 , (7.12)

where ε is an adjustment parameter. If ε = 0, many variables are conditionally
independent while, when ε is high, all the variables are conditionally dependent.
The two last variables are discretized to obtain categorical data with four levels:
]−∞,−1], ]− 1, 0], ]0, 1] and ]1,∞[.

Estimation conditions The best bi-component model according to each infor-
mation criterion is estimated by the em algorithm initialized 25 times.

Results Table 7.4 displays the headcount of the no-null coe�cients in the logistic
regression for the 0.5 correlated variables and the ε-correlated variables according
to both criteria for di�erent values of ε. When ε = 0, the coe�cient of the lo-
gistic regression between the ε-correlated variables have to be 0. Thus, the aic
criterion overestimates the conditional dependencies. However, it detects better the
dependencies between the other variables.

d aic bic

0.5-correlated ε-correlated 0.5-correlated ε-correlated
0 0.77 0.22 0.62 0.08
0.2 0.74 0.26 0.63 0.08
0.4 0.77 0.34 0.52 0.13

Table 7.4 � Headcount where the conditional dependencies are modeled by both
information criteria.

Because of the bias of the aic criterion shown during all the numerical experi-
ments, our advice is to use the bic criterion to perform the model selection, even if
this latter can neglect some conditional dependencies between mixed variables.

7.6 Analysis of two real data sets

7.6.1 Disease data clustering

Data set description The Cleveland Heart Disease data [Det88] described 303
patients per 14 variables (�ve continuous, eight categorical and one predicted at-
tribute) and is available in the UCI machine learning repository. The predicted
attribute is a binary variable indicating the presence of heart disease. We blind this
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information during our clustering. Furthermore, the six individuals having missing
values are omitted.

Homogeneous model-based clustering Note that both kinds of variables are
important for the cluster analysis. Indeed, the analysis performed on the continuous
variables by a mixture of Gaussian distributions selects four classes while the analysis
performed on the categorical ones by the latent class model selects three classes.
Figure 7.2 displays the estimated partition by the Gaussian mixture model in the
�rst component map (Figure 7.2.a) and by the multinomial mixture model in the
�rst correspondence map (Figure 7.2.b). Thus, we see that classes overlap in the
�rst factorial maps and we do not �nd a factorial map where the estimated classes
are well separated.
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Figure 7.2 � Partitions estimated by the homogeneous model: (a) partition of the
Gaussian mixture model drawn in the �rst component map; (b) partition of the
latent class model drawn in the �rst correspondence map.

As shown by the confusion matrix presented in Table 7.5, the partitions ob-
tained by the model for homogeneous variables are very di�erent from the predicted
attribute. Indeed, the value of the adjusted rand index computed between the parti-
tion of the Gaussian mixture model and the predicted attribute is equal to 0.23 while
it is equal to 0.10 when it is computed between the multinomial mixture model and
the predicted attribute. If we set g = 2, the error rates are: 0.28 for the continuous
case and 0.47 for the categorical case. Finally, both partitions of the homogeneous
models are di�erent since their adjusted rand index values are equal to 0.10.

Heterogeneous model-based clustering We perform the cluster analysis on
the whole data set by using two models: the conditional independence model and
the mixture of Gaussian and logistic distributions. The results displayed in Ta-
ble 7.6 claim that the mixture model of Gaussian and logistic distributions better



168 Chapter 7. Model-based clustering of Gaussian and logistic distributions

Heart Continuous variables Categorical variables
disease class 1 class 2 class 3 class 4 class 1 class 2 class 3
absence 11 61 12 76 122 23 15
presence 36 14 43 44 39 20 78

Table 7.5 � Confusion tables between the predicted attributed and the two partitions
estimated by the homogeneous mixture models.

approaches the data distribution. Indeed, this model selects two classes since its bic
criterion values are -7178.35 with one component and -7140.36 with three compo-
nents. Note that the conditional independence model overestimates the number of
classes since the bic criterion selects three classes with a value of -7401. By consid-
ering the whole data set, the mixture model of Gaussian and logistic distributions
obtains a more meaningful model since it has less classes and less parameters.

Cond. indp. proposed model
bic criterion -7449.71 -7122.74

Log-likelihood -7310.21 -6871.22
Parameters 49 88

Table 7.6 � Values of the bic criterion and of the log-likelihood function and number
of parameters for both bi-component models in competition.

Best model interpretation The majority class (70%) groups individuals taking
the smallest values for the continuous variables except for the variable thalach. More-
over, their variances are smaller than them of the minority class (30%), while the
correlation between the continuous variables are stronger. As displayed in Figure 7.3,
less continuous variables in�uence the categorical ones in class 1 (Figure 7.3.a) than
in class 2 (Figure 7.3.b). The variable thalance impacts the most categorical vari-
ables in class 1 while it is the variable oldpeachs which impact the most categorical
variable in class 2.

Figure 7.4 displays the partition obtained by the bi-component mixture model
of Gaussian and logistic distributions in the �rst plan of the PCAmixte [CKSS12].
We can see that the second axis is discriminative between both estimated classes.

Comparison with other approaches The error rate obtained by the mixture
model of Gaussian and logistic distributions is 38%. According to [HJ11], the con-
ditional independence model and Multimix obtain an error rate of 23%. Finally,
the traditional hierarchical clustering methods have a misclassi�cation rate ranging
between 22% and 46%. Note that the k-means approach [AD07] obtains an error
rate of 15% but the selection of the number of classes is more delicate.
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Figure 7.3 � Dependencies between the continuous variables (triangles on the left)
and the categorical variables (circle on the right) per class. A link involves a depen-
dency (so a no null coe�cient in the logistic regression in the class).

−2 −1 0 1 2

−
1

0
1

2

First principal component analysis mixte

S
ec

on
d 

pr
in

ci
pa

l c
om

po
ne

nt
 a

na
ly

si
s 

m
ix

te

Class 1        
Class 2

Figure 7.4 � Partition drawn in the �rst component map of the PCAmixte.

7.6.2 Melanoma semi-supervised classi�cation

Data set description Melanoma is cancer of skin. The data set describes 205
patients [ABGK93] by four continuous variables (accompagned time in days, age in
years, year of operation and the tumor thickness), by two binary variables (sex and
presence/absence of ulcer) and by one status variable that we dichotomized (died
from melanoma or not).

Discriminative and generative approaches comparison We illustrate that
the mixture model of Gaussian and logistic distributions can outperform classical
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methods of semi-supervised classi�cation, especially when few observations are la-
beled. So, we randomly blind a part of the labels. We compare the error rate of the
blinded partition obtained by mixture model of Gaussian and logistic distributions
to the error rate obtained with a logistic regression. Table 7.7 presents the mean
of the misclassifying rate computed on 100 randomly blinded partition for di�erent
percentages of missing labels.

% missing 20 40 60 70 80 90 95 97.5 100
labels

proposed model 0.129 0.130 0.138 0.140 0.144 0.153 0.154 0.156 0.156
Logistic 0.128 0.129 0.134 0.145 0.169 0.220 0.254 0.274 NA

Table 7.7 � Mean of the misclassifying rate computed on the individuals having a
missing membership.

Two di�erent approaches for two di�erent objectives We remind that the
logistic regression aim is to directly modelize the border between the classes. Indeed,
this methods was developed speci�cally for the semi-supervised classi�cation. The
aim of the mixture model of Gaussian and logistic distributions models is more
ambitious. Indeed, it modelizes the whole distribution of the data.

Comments The presented results are as expected. When a majority of the indi-
viduals is labeled, the logistic regression obtains a lower misclassifying rate. How-
ever, when a majority of the individuals is unlabeled, the main information is con-
tained by these individuals. Thus, during this experiment, we observe that the
mixture model of Gaussian and logistic distributions outperforms the logistic model
for an high rate of missing labels. Furthermore, this rate dramatically grows for
the logistic regression when very few individuals are labeled while its stays stable
for the mixture model of Gaussian and logistic distributions. Indeed, as 27.8% of
the individuals was died from melanoma, the logistic regression is close to the worse
error rate when 95% of the labels are missing.

Meaningful classes in cluster analysis We now interpret both classes obtained
when all the individuals are unlabeled. The majority class (60%) groups individuals
having a long accompany time and recently treated. The class is mainly composed
by young women having a small tumor. In this class, the bigger is the tumor, the
larger is the ulcer risk. In the minority class (40%), we �nd the patients where
the accompany time is shorter (died or accompaniment stopped) and where the
treatment is old. These patients are older, generally with a big tumor mainly present
for the men and increasing the ulcer risk. The class interpretation is based on the
margin parameters presented in Figure 7.5.

The confusion matrix displayed in Table 7.8 shows that the estimated partition
is close to the survival status. The majority class involves a small risk of death from
Melanoma while this risk is higher in the minority class.
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Figure 7.5 � Plotting of the margin parameters of the bi-component mixture model
of Gaussian and logistic distributions estimated on the Melanoma data sets.

mixture model of Gaussian and logistic distributions
majority class minority class

not died form melanoma 121 5
died form melanoma 27 52

Table 7.8 � Confusion matrix between the partition estimated by the mixture model
of Gaussian and logistic distributions and the survival status.

7.7 Conclusion

The mixture model of Gaussian and logistic distributions is an e�cient approach
to cluster data sets with continuous and categorical variables. So, it is a good chal-
lenger to the well-known models: naive Bayes and mixture of location models (and
its derives). Its �rst advantage is to take into account the intra-class dependencies
between all the variables. Thus, the proposed model avoids the biases involved by
the conditional independence assumption. Its second advantage is to keep classical
distributions for the one-dimensional margins of each component. Indeed, the prac-
titioner easily summarizes each class by the parameters of the classical distributions
and by the logistic functions.

The parsimonious versions of mixture model of Gaussian and logistic distribu-
tions allow to model the main conditional dependencies between mixed variables.
Thus, the class interpretation is easier. The model selection and the parameter
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estimation are simultaneously performed via a gem algorithm maximizing an in-
formation criterion. According to our experiments, our advice is to use the bic
criterion as the information criterion.

The mixture model of Gaussian and logistic distributions can be used in a semi-
supervised classi�cation. According to our application, it can be a good challenger to
the classical discrimination approaches, especially when few individuals are labeled.



Chapter 8

Model-based clustering of Gaussian

copulas for mixed data

A mixture model of Gaussian copulas is presented to
cluster mixed data where any kinds of variables are
allowed if they admit a cumulative distribution func-
tion. This approach allows to straightforwardly de�ne
simple multivariate intra-class dependency models while
preserving any one-dimensional margin distributions of
each component of interest for the statistician. Typically
in this work, the margin distributions of each compo-
nent are classical parametric ones in order to facilitate
the model interpretation. In addition, the intra-class de-
pendencies are taken into account by the Gaussian copu-
las which provide one correlation coe�cient, having good
properties, per couple of variables and per class.
This model generalizes di�erent existing models de�ned
for homogeneous and mixed variables. The inference is
performed via a Metropolis-within-Gibbs sampler in a
Bayesian framework. Numerical experiments illustrate
the model �exibility and its relevance.

Tu as vu Zorba
quand tu mets une loupe au soleil

et que tu rassembles
tous les rayons sur un seul point ?

Ce point-là prend bientôt feu.
Pourquoi ?

Parce que la force du soleil
ne s'est pas éparpillée,

elle s'est rassemblée
sur un seul point.

De même l'esprit de l'homme.
On fait des miracles

en concentrant son esprit
sur une seule et même chose.

Níkos Kazantzákis�Alexis Zorba.
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8.1 Introduction

The aim of this chapter is to present a model-based clustering for mixed data
of any kinds of variables admitting a cumulative distribution function. This model
has a double objective: to preserve classical distributions for all its one-dimensional
margin distributions of each component and to parsimoniously and meaningfully
modelize the intra-class dependencies.

This objective can naturally be achieved by the use of copulas [Joe97, Nel99,
GF07]. Indeed, copulas build a multivariate model by setting, on the one hand, the
one-dimensional margins, and, on the other hand, the dependency model between
variables. More precisely, the data distribution is approached by a full parametric
mixture model of Gaussian copulas whose the margin distributions of each compo-
nent are classical and whose the Gaussian copulas [Hof07, HNW11] modelize the
intra-class dependencies. Note that [SK12, MDCL13] already use one Gaussian
copula to de�ne a distribution of mixed variables. The proposed model is also a
generalization of this approach to the �nite mixture model framework.

The new mixture model is meaningful since it permits a three-level schema which
allows a friendly interpretation: the proportions indicate the class weights, the one-
dimensional margin parameters of each components roughly describe the classes
while the correlation matrices re�ne this description. Finally, by using the contin-
uous latent structure of the Gaussian copulas, a PCA-type visualization per class
allows to summarize the main intra-class dependencies and provides a scatterplot of
the individuals according to the class parameters.

Note that I. Kosmidis and D. Karlis [KK14] have recently submitted an article
which proposes to use a mixture of copulas to perform cluster analysis. The authors
study di�erent copulas, among them the Gaussian copulas are considered. Their
model is close to the approach developed in this chapter. However, two important
di�erences have to be mentioned. Firstly, we propose a Bayesian inference while the
authors propose an approach by maximum likelihood under constraints. Secondly,
some visualizations tools are presented here.

Structure of this chapter This paper is organized as follows. Section 8.2
presents the mixture model of Gaussian copulas introduced to cluster, its links with
the existing models and its contribution to the visualization of mixed variables. Sec-
tion 8.3 is devoted to the parameter estimation in a Bayesian framework since the
maximum likelihood estimate is unattainable [PCK06]. Section 8.4 illustrates the
behavior of the algorithm performing the inference and also the model robustness on
numerical experiments. Section 8.5 presents three applications of the new mixture
model by clustering three real data sets. Section 8.6 concludes this work. All these
results are part of the article Model-based clustering of Gaussian copulas for mixed
data [MBV14b].
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8.2 Mixture model of Gaussian copulas

8.2.1 Finite mixture model

Data

The vector of e mixed variables is denoted by xi = (x1
i , . . . , x

e
i ) ∈ Rc × X , with

e = c+ d. Its �rst c elements are the set of the continuous variables, de�ned on the
space Rc and further denoted by xci . Its last d elements are the set of the discrete
variables (integer, ordinal or binary), de�ned on the space X and further denoted by
xdi . Note that if x

j
i is an ordinal variable with mj modalities, then it uses a numeric

coding {1, . . . ,mj}.

Notation We remind that we use the generic notation P (.; .) for the cumulative
distribution functions (cdf) and p(.; .) for the probability distribution function (pdf).

Probability distribution function

De�nition 8.1 (Finite mixture model of parametric distributions). Data xi are
supposed to be drawn by the mixture model of g parametric distributions whose the
pdf is written as follows

p(xi;θ) =

g∑
k=1

πkp(xi;αk), (8.1)

where θ = (π,α) denotes the whole parameters. The vector π = (π1, . . . , πg)
groups the proportions of each class k denoted by πk, and respecting the following
constraints 0 < πk ≤ 1 and

∑g
k=1 πk = 1, while the vector α = (α1, . . . ,αg) groups

the parameters of each class k denoted by αk.

Property 8.2 (Latent variable). A �nite mixture model can be expressed by using
the latent variable zi. This categorical variable indicates the class membership
by using a complete disjunctive coding and follows the multinomial distribution
Mg(π1, . . . , πg). Thus, (8.1) can be interpreted as the marginal distribution of xi
based on the distribution of the couple (xi, zi).

8.2.2 Gaussian copula for mixed data

Component distributions following Gaussian copulas

Copulas allow to build a multivariate model by setting, on the one hand, the
one-dimensional margins, and, on the other hand, the dependency model between
variables. We now present the margin distribution of the components then we focus
on the Gaussian copula which is of interest for us since it provides one correlation
coe�cient per couple of variables and since it allows an easy parameter estimation.
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One-dimensional margins of the components

For each component, we assume that the margin distributions of each component
belongs to the exponential family, in order to provide meaningful classes.

De�nition 8.3 (One-dimensional margins of the components). The margin distri-
bution of the variable xji , for component k, belongs to the exponential family and
has p(xji ;βkj) for pdf and P (xji ;βkj) as cdf. More precisely,

� If xji is continuous, its margin of component k follows a Gaussian distribution
with mean µkj and variance σ2

kj, i.e. xji |zik = 1 ∼ N1(µkj, σ
2
kj) and βkj =

(µkj, σ
2
kj) ∈ R× R+∗.

� If xji is integer, its margin of component k follows a Poisson distribution, i.e.
xji |zik = 1 ∼ P(βkj) and βkj ∈ R+∗.

� If xji is ordinal, its margin of component k follows a multinomial distribution,
i.e. xji |zik = 1 ∼Mmj(βkj), βkj being de�ned on the simplex of size mj.

Dependency model of the components

The mixture model of Gaussian copulas assumes that each component k follows
a Gaussian copula whose the correlation matrix of size e× e is denoted by Γk. We
note Φe(.; Γk) the cdf of the e-variate centred Gaussian distribution with correlation
matrix Γk, and Φ−1

1 (.) the inverse cumulative distribution function ofN1(0, 1). Thus,
we obtain the following de�nition of the component cdf.

De�nition 8.4 (Cumulative distribution function of the components). For the mix-
ture model of Gaussian copulas, the cdf of component k is written as

P (xi;αk) = Φe(Φ
−1
1 (u1

k), . . . ,Φ
−1
1 (uek); 0,Γk), (8.2)

where ujk = P (xji ;βkj) and where αk = (βk,Γk) denotes the whole parameters of
component k with βk = (βk1, . . . ,βke).

Property 8.5 (Standardized coe�cient of correlation per class). The Gaussian
copula provides a coe�cient of correlation per couple of variables which has good
properties. Indeed, when both variables are continuous, it is equal to the upper
bound of the coe�cients of correlation obtained by all the monotonic transformations
of the variables [KW97]. Furthermore, when both variables are discrete, it is equal
to the polychoric coe�cient of correlation [Ols79].

Property 8.6 (Second latent variable). The mixture model of Gaussian copulas
involves a second latent variable (added to the class membership) which consists
in an e-variate continuous variable denoted by yi = (y1

i , . . . , y
e
i ) ∈ Re. Condition-

ally on the class membership, this variable follows an e-variate centered Gaussian
distribution. Indeed, if yi|zik = 1 ∼ Ne(0,Γk) and if

xji = P−1(Φ1(yj);βkj), ∀j = 1, . . . , e, (8.3)

then component k is a Gaussian copula whose the cdf is P (xi;αk).
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Mixture model of Gaussian copulas for mixed data

We introduce the function Ψ(xci ;αk) =
(xji−µkj

σkj
; j = 1, . . . , c

)
and the space of

the antecedents of xdi for class k is noted Sk(xdi ) = Sc+1
k (xc+1

i )× . . .× Sek(xei ). The
interval Sjk(x

j
i ) =]b	k (xji ), b

⊕
k (xji )] is de�ned for j = c + 1, . . . , e and its bounds are

b	k (xji ) = Φ−1
1 (P (xji − 1;βkj)) and b

⊕
k (xji ) = Φ−1

1 (P (xji ;βkj)). We now de�ne the pdf
of the components according to (8.2) as proposed in [SK12].

De�nition 8.7 (Mixture model of Gaussian copulas). Data xi follows a mixture
model of Gaussian copulas if its pdf is the �nite mixture model de�ned in (8.1)
whose the pdf of component k is written as

p(xi;αk) = p(xci ;αk)p(x
d

i |xci ;αk) (8.4)

=
φc(Ψ(xci ;αk); 0,Γkcc)∏c

j=1 σkj

∫
Sk(xdi )

φd(u;µd

k ,Σ
d

k)du, (8.5)

where Γk =

[
Γkcc Γkcd

Γkdc Γkdd

]
is decomposed into sub-matrices, for instance Γkcc is the

sub-matrix of Γk composed by the rows and the columns related to the observed
continuous variables. Moreover, µd

k is the conditional mean of ydi de�ned by µd

k =
ΓkdcΓ

−1
kccΨ(xci ;αk) and Σd

k is its conditional covariance matrix de�ned by Σd

k =
Γkdd − ΓkdcΓ

−1
kccΓkcd.

Property 8.8 (Generative model). The mixture model of Gaussian copulas involves
the generative model split into the following three steps:

� Class membership sampling : zi ∼Mg(π1, . . . , πg)
� Gaussian copula sampling : yi|zik = 1 ∼ Ne(0,Γk)
� Observed data deterministic computation: xi is obtained from (8.3).

Remarks

� Homoscedastic models. When the sample size is small, the trade o� between
the bias and the variance of the estimate may be better if some constraints
on the parameter space are added. Thus, we propose a parsimonious version
of the mixture model of Gaussian copulas by assuming the equality between
the correlation matrices, so

Γ1 = . . . = Γg. (8.6)

Note that this model is named homoscedastic since the covariance matrices
of the latent Gaussian variables are equal between classes.

� Number of parameters. The heteroscedastic (respectively homoscedastic)
mixture model of Gaussian copulas needs νHe (respectively νHo) parameters
where

νHe = (g−1)+g

(
e(e− 1)

2
+

d∑
j=1

νj

)
and νHo = (g−1)+

e(e− 1)

2
+g

d∑
j=1

νj,

(8.7)
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where νj denotes the number of parameters of the margin distribution of
variable j for one component. More precisely, with the speci�c margin dis-
tribution of the components, νj is equal to

νj =


2 if xj is numeric
1 if xj is discrete

mj − 1 if xj is ordinal.
(8.8)

� Model identi�ability. The mixture model of Gaussian copulas is identi�able
(in the sense de�ned in [Tei63, YS68]) if, at least, one variable is continuous
or integer. The proof is given in Appendix B.2.

8.2.3 Strengths of the mixture model

Related models

The mixture model of Gaussian copulas allows to generalize many classical
model-based clusterings, among them one can cite the following four.

� Obviously, if the correlation matrices are diagonal (i.e. Γk = I, ∀k =
1, . . . , g), then the mixture model of Gaussian copulas is equivalent to the
conditional independence mixture model.

� If all the variables are continuous (i.e. c = e and d = 0), then the mixture
model of Gaussian copulas becomes a multivariate Gaussian mixture model
without constraint between the parameters [BR93].

� The mixture model of Gaussian copulas is linked to the binned Gaussian
mixture model. For instance, it is equivalent, when data are ordinal, to the
mixture model of [Gou06]. In such a case, this model is stable by fusion of
modalities.

� When the variables are both continuous and ordinal, the mixture model of
Gaussian copulas is a new parametrization of the mixture model proposed
by Everitt [Eve88] (see Section 6.4). However, Everitt estimates directly the
space Sk(xdi ) containing the antecedents of xdi and not the margin parameters.
Thus, the maximum likelihood inference is also performed via a simplex al-
gorithm dramatically limiting the number of ordinal variables. Note that our
approach for the inference avoids this drawback (see details in Section 8.3).

Data visualization per class: a by-product of Gaussian copulas

We can use the model parameters to obtain a visualization of the individuals per
class and to bring out the main intra-class dependencies. Thus, for class k, we �rstly
compute the coordinates equal to E[yi|xi, zik = 1;αk] and we secondly project them
on the principal component analysis space of the Gaussian copula of component k,
obtained by the spectral decomposition of Γk.

The individuals drawn by the component k follow a centred Gaussian distribution
in the factorial map, so they are close to the origin. Those drawn by another
component have an expectation di�erent from zero, so they are farther to the origin.
Finally, the correlation circle summarizes the intra-class correlations. The following
example illustrates this phenomenon.
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Example 8.9 (Mixture model of Gaussian copulas and visualization per class). Let
the bi-component mixture model of Gaussian copulas composed with three variables
(one continuous, one integer and one binary), in this order, with

π = (0.5, 0.5), β11 = (−2, 1), β12 = 5, β13 = (0.5, 0.5),β21 = (2, 1), β22 = 15,

β23 = (0.5, 0.5), Γ1 =

 1 −0.4 0.4
−0.4 1 0.4
0.4 0.4 1

 and Γ2 =

 1 0.8 0.1
0.8 1 0.1
0.1 0.1 1

 .
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Figure 8.1 � Example of visualization: (a) scatter-plot of the individuals described
by three variables: one continuous (abscissa), one integer (ordinate) and one binary
(symbol); (b) individuals scatter-plot in the �rst component map of class 2; (c)
variables representation in the �rst component map of class 2. The color indicates
the class memberships.

The visualization of class 2 is presented in Figure 8.1. Concerning the individuals,
the scatter-plot shows a centered class (the red one) and a second class (the black
one) located on the left side. Concerning the variables, the representation points out
by a strong intra-class correlation between the continuous and the integer variables.
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8.3 Bayesian inference via a Metropolis-within-Gibbs

sampler

Aim We observe the sample x = (x1, . . . ,xn) composed with n independent indi-
viduals xi ∈ Rc×X assumed to be drawn by a mixture model of Gaussian copulas.
The aim is to infer the parameters according to the data.

Frequentist context The inference by maximum likelihood is a di�cult problem
for the full parametric copulas when the margin parameters are unknown. So, it
is often replaced by the Inference Function for Margins method performing the
inference in two steps (see Chapter 10 of [Joe97]). The �rst step estimates the
margin parameters by maximizing each univariate likelihood while the second step
estimates the correlation parameters by maximizing the likelihood conditionally on
the margin parameters. This approach is used in [KK14]. However, the maximum
likelihood estimate can be essentially obtained when the variables are continuous
by using the �xed-point algorithm proposed by [SFK05]. Indeed, this approach can
not be extended to the mixed data setting. Thus, an em algorithm can not be
implemented to obtain the maximum likelihood estimates of a mixture model of
Gaussian copulas in the mixed data case. Furthermore, even if the m step would
be explicit, the e step would be too much time consuming, if the discrete variables
are numerous, because of the computation of the integral of dimension d de�ned in
(8.5).

Bayesian context In order to avoid both previous problems, we prefer to work
in a Bayesian framework. We �rstly de�ne the prior distributions and we secondly
present the Gibbs sampler performing the inference.

8.3.1 Maximum a posteriori estimate

Prior distributions

Independence assumption A classical assumption is to suppose the indepen-
dence between the prior distributions, thus

p(θ) = p(π)

g∏
k=1

(
p(Γk)

d∏
j=1

p(βkj)

)
. (8.9)

Proportions The classical conjugate prior distribution of the proportion vector
is the Je�reys non informative one which is a Dirichlet distribution whose the pa-
rameters are equal to 1/2

π ∼ Dg
(

1

2
, . . . ,

1

2

)
. (8.10)

Margin parameters The prior distribution of the margin parameters are the
classical conjugate ones. More precisely,
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� if xj is continuous, then βkj denotes the parameters of a univariate Gaussian
distribution so p(βkj) = p(µkj|σ2

kj)p(σ
2
kj) with

σ2
kj ∼ G−1(c0, C0) and µkj|σ2

kj ∼ N1(b0, σ
2
kj/N0), (8.11)

where G−1(., .) denotes the inverse gamma distribution. With an empirical
Bayesian approach, the hyper-parameters (c0, C0, b0, N0) are �xed as pro-
posed by [Raf96], so c0 = 1.28, C0 = 0.36Var(xj), b0 = 1

n

∑n
i=1 x

j
i and

N0 = 2.6
argmax x

j−argmin x
j .

� if xj is integer, βkj denotes the parameter of a Poisson distribution and

βkj ∼ G(a0, A0). (8.12)

According to [FS06], the values of hyper-parameters a0 and A0 are empirically
�xed to a0 = 1 and A0 = a0n/

∑n
i=1 x

j
i .

� if xj is ordinal, βkj denotes the parameter of a multinomial distribution and
its Je�reys non informative conjugate prior involves that

βkj ∼ Dmj
(

1

2
, . . . ,

1

2

)
. (8.13)

Correlation matrices The conjugate prior of a covariance matrix is the Inverse
Wishart distribution denoted by W−1(., .). So, it is natural to de�ne the prior of
the correlation matrix Γk from the prior of the correlation matrix Λk since Γk|Λk is
deterministic [Hof07]. So,

Λk ∼ W−1(s0, S0) and ∀1 ≤ h, ` ≤ e, Γk[h, `] =
Λk[h, `]√

Λk[h, h]Λk[`, `]
, (8.14)

where (s0, S0) are two hyper-parameters. However, the classical approach consisting
in �tting the hyper-parameters through an empirical Bayesian approach is not pos-
sible since yi is not observed. We thus put s0 = e + 1 and S0 equal to the identity
matrix, since in this case, the margin distribution of each correlation coe�cient is
uniform on ]− 1, 1[ [BMM00].

Posterior distribution

The Bayesian inference is performed by sampling a sequence of parameters from
their posterior distribution. In practice, we use a Gibbs sampler which is the most
popular approach to perform a Bayesian inference of mixture model since it uses the
latent structure of the data. Indeed, it alternatively samples the class memberships
conditionally on the parameters and on the data, and the parameters condition-
ally on the class memberships and on the data. Since its stationary distribution
is p(θ, z|x), the sequence of the generated parameters is drawn by the marginal
posterior distribution p(θ|x). This algorithm relies on two instrumental variables:
the class membership of the individuals of x denoted by z = (z1, . . . ,zn) and the
Gaussian vector of the individuals denoted by y = (y1, . . . ,yn).
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8.3.2 Gibbs sampler

Starting from an initial value θ[0], its iteration [r] is written as

z[r],y[r−1/2] ∼ z,y|x,θ[r−1] (8.15)

β
[r]
kj ,y

j[r]
[rk] ∼ βkj,y

j
[rk]|x,y

̄[r]
[rk], z

[r],β
[r]
k̄ ,Γ

[r−1]
k (8.16)

π[r] ∼ π|z[r] (8.17)

Γ
[r]
k ∼ Γk|y[r], z[r], (8.18)

Algorithm 8.10 (The Gibbs sampler).

where y[rk] = y{i:z[r]i =k}, y
̄[r]
i = (y

1[r]
i , . . . , y

j−1[r]
i , y

j+1[r−1/2]
i , . . . , y

e[r−1/2]
i ) and β[r]

k̄ =

(β
[r]
k1, . . . ,β

[r]
kj−1,β

[r−1]
kj+1, . . . ,β

[r−1]
ke ).

Remark 8.11 (Twice sampling of the Gaussian variable). The Gaussian variable
y is twice generated during one iteration of the Gibbs sampler but, obviously, its
stationary distribution stays unchanged. This twice sampling is mandatory because
of the strong dependency between y and z, and between yj[rk] and βkj.

Remark 8.12 (On the Metropolis-within-Gibbs sampler). If the samplings from
(8.17) and (8.18) are classical, the two other ones are more complex. Indeed, the
sampling from (8.15) involves to compute the conditional probabilities of the class
memberships, so to compute the integral de�ned in (8.5). If the number of dis-
crete variables is large, this computation is time consuming. However, the sam-
pling from (8.15) can be e�ciently performed by one iteration of a Metropolis-
Hastings algorithm having p(zi,yi|xi, t(r−1)) as stationary distribution. Concerning
the sampling according to (8.16), it is performed in two steps. Firstly, the margin
parameter is sampled by one iteration of a Metropolis-Hastings algorithm having
p(βkj|x,y

↑j(r)
[rk] , z

(r),β
↑j(r)
k ,Γk) as stationary distribution. Secondly, the latent Gaus-

sian vector is sampled from its full conditional distribution.

Remark 8.13 (Twice sampling of the Gaussian variable). The Gaussian variable
y is twice generated during one iteration of the Gibbs sampler but, obviously, its
stationary distribution stays unchanged. This twice sampling is mandatory because
of the strong dependency between y and z, and between yj[rk] and βkj.

We now detail the four steps of the Gibbs sampler and we point out the di�culties
to sample from (8.15) and (8.16). Thus, both steps are modi�ed to obtain the
Metropolis-within-Gibbs sampler detailed in the next section.

Class membership and Gaussian vector sampling

The aim is to sample from (8.15). By using the independence between the indi-
viduals, the vectors (z,y) are easily sampled conditionally on (x,θ[r−1]) according
to

p(z,y|x,θ[r−1]) =
n∏
i=1

p(zi|xi,θ[r−1])p(yi|xi, zi,θ[r−1]). (8.19)
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We now detail both distributions of the right side of the above equation.
� Each z[r]

i is independently sampled from the following multinomial distribu-
tion

zi|xi,θ[r−1] ∼Mg(ti1(θ[r−1]), . . . , tig(θ
[r−1])), (8.20)

where tik(θ
[r−1]) =

π
[r−1]
k p(xi;α

[r−1]
k )

p(xi;θ
[r−1])

is the posterior probability that xi has been

drawn by component k with the parameters θ[r−1].
� Each y[r−1/2]

i is independently sampled by remarking that the �rst c elements
of yi, denoted by yci , are deterministic for a �x triplet (xi, zi,θ

[r−1]) with
zik = 1 as such yci = Ψ(xci ;α

[r−1]
k ) while its last d elements, denoted by

ydi , are sampled according to a d-variate Gaussian distribution Nd(0,Γ[r−1]
k )

truncated on the space Sk(xdi )

p(ydi |xi, zi,θ[r−1]) ∝
g∏

k=1

(
φd(y

d

i ;µ
d[r−1]
k ,Σ

d[r−1]
k )1{ydi ∈Sk(xdi )}

)zik
, (8.21)

where µd[r−1]
k = Γ

[r−1]
kdc Γ

−1[r−1]
kcc Ψ(xci ;α

[r−1]
k ).

Remark 8.14 (Di�culties to compute tik(θ
[r−1])). Note that the computation of

tik(θ
[r−1]) involves to compute the integral de�ned in (8.5) which can be too much

time consuming if d is large (d > 6). Thus, the sampling according to (8.19) is
also performed by one iteration of a Metropolis-Hastings algorithm avoiding this
di�culty and detailed in the next section.

Margin parameter and Gaussian vector sampling

The aim is the sampling from (8.16) which can be decomposed as follows

p(βkj,y
j
[rk]|x,y

̄[r]
[rk], z

[r],β
[r]
k̄ ,Γ

[r−1]
k ) = p(βkj|x,y

̄[r]
[rk], z

[r],β
[r]
k̄ ,Γ

[r−1]
k )

× p(yj[rk]|x,y
̄[r]
[rk], z

[r],β
[r]
k̄ ,βkj,Γ

[r−1]
k ). (8.22)

We now detail both distributions of the right side of the above equation.
� The full conditional distribution of βkj is de�ned with an unknown intercept

such as

p(βkj |x,y
̄[r]
[rk], z

[r],β
[r]
k̄ ,Γ

[r−1]
k ) ∝ p(βkj)

n∏
i=1

(
p(xji |y

↑j[r]
i , z

[r]
i ,Γ

[r−1]
k ,βkj)

)z[r]ik
.

(8.23)

The conditional distribution of xji |y
↑j[r]
i , z

[r]
i ,Γ

[r−1]
k with z[r]

ik = 1 used on the
right side of the above equation is de�ned by

p(xji |y
↑j[r]
i , z

[r]
i ,Γ

[r−1]
k ,βkj) =

 φ1(
xji−µkj
σkj

; µ̃i, σ̃
2
i )/σkj if 1 ≤ j ≤ c

Φ1(
b⊕(xji )−µ̃i

σ̃i
)− Φ1(

b	(xji )−µ̃i
σ̃i

) otherwise,

(8.24)

where the real µ̃i = Γ
[r−1]
k [j, ̄]Γ

[r−1]
k [̄, ̄]−1y

↑j[r]
i is the full conditional mean of

yji , Γk[j, ̄] being the row j of Γk deprived of the element j and Γk[̄, ̄] being
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the matrix Γk deprived of the row and the column j, and where σ̃2
i is the full

conditional variance of yji de�ned by σ̃
2
i = 1−Γ

[r−1]
k [j, ̄]Γ

[r−1]
k [̄, ̄]−1Γ

[r−1]
k [̄, j].

� By the independence between the individuals, the full conditional distribution
of yj[rk] is explicitly de�ned as

p(yj[rk]|x,y
̄[r]
[rk], z

[r],β
[r]
k̄ ,βkj,Γ

[r−1]
k ) =
n∏
i=1

(
p(yji |x

j
i ,y

↑j[r]
i , z

[r]
i ,βkj,Γ

[r−1]
k )

)z[r]ik
. (8.25)

If xj is a continuous variable (i.e. 1 ≤ j ≤ c), when z
[r]
i = k, the full

conditional distribution of yji is deterministic such as

y
j[r]
i =

xji − µ
[r]
kj

σ
[r]
kj

. (8.26)

If xj is a discrete variable (i.e. c + 1 ≤ j ≤ e), when z[r]
ik = 1, the full

conditional distribution of yji is a truncated Gaussian distribution such as,

p(yji |x
j
i ,y

↑j[r]
i , z

[r]
i ,β

[r]
kj ,Γ

[r−1]
k ) =

φ1(yji ; µ̃i, σ̃
2
i )

p(xji ;β
[r]
kj)

1{yji∈[b
	[r]
k (xji ),b

⊕[r]
k (xji )]}

, (8.27)

where b	[r]
k (xji ) = P (xji − 1;β

[r]
kj) and b

⊕[r]
k (xji ) = P (xji ;β

[r]
kj).

Remark 8.15 (Di�culties to sample the margin parameters). The sampling of βkj
is not easily performed since the normalizing constant de�ned in (8.23) is unknown.
This step is then replaced by one iteration of a Metropolis-Hastings algorithm as
detailed in the next section. However, note that the sampling of yj[rk] from (8.27) is
easily performed.

Vector of proportions sampling

The aim is the sampling from (8.17) which is classical for the mixture model.
The conjugate Je�reys non informative prior involves that

π|z[r] ∼ Dg
(
n[r]

1 +
1

2
, . . . , n[r]

g +
1

2

)
, (8.28)

where n[r]
k =

∑n
i=1 z

[r]
ik .

Correlation matrix sampling

The aim is the sampling from (8.18). We use the approach proposed by [Hof07]
in the case of semiparameteric Gaussian copula which is divided into two steps.
Firstly, a covariance matrix is generated by its explicit posterior distribution, and
secondly, the correlation matrix is deduced by normalizing the covariance matrix.
When (y, z) are known, we are in the well-known case of a multivariate Gaussian
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mixture model with known means. Thus, the sampling according to Γk|y[r], z[r] is
performed by the two following steps

Λk|y[r], z[r] ∼ W−1

s0 + n[r−1]
k , S0 +

∑
{i:z[r]i =k}

y
[r]T
i y

[r]
i

 (8.29)

∀1 ≤ h, ` ≤ e, Γk[h, `] =
Λk[h, `]√

Λk[h, h]Λk[`, `]
. (8.30)

Remark 8.16 (Sampling of the correlation matrices for the homoscedastic model).
As the homoscedastic model assumes the equality between the correlation matrices,
in such a case we only sample one Λ so (8.29) is replaced by

Λ|y[r], z[r] ∼ W−1

(
s0 + n, S0 +

n∑
i=1

y
[r]T
i y

[r]
i

)
, (8.31)

and we put Λk = Λ for k = 1, . . . , g.

According to both Remarks 8.14 and 8.15, the �rst two steps of the Gibbs sampler
involve di�culties avoided by the following hybrid mcmc algorithm.

8.3.3 Metropolis-within-Gibbs sampler

When some steps of a Gibbs sampler cannot be easily simulated, it may be useful
to perform the inference via a hybrid mcmc algorithm [RC04]. Thus, we use the
Metropolis-within-Gibbs sampler which replaces both sampling from z,y|x,θ[r−1]

and βkj|x,y
̄[r]
[rk], z

[r],β
[r]
k̄ ,Γ

[r−1]
k (de�ned by (8.15) and (8.23)) by one iteration of two

Metropolis-Hastings steps that we now detail.

Class membership and Gaussian vector sampling

The step (8.15) is performed via one iteration of the Metropolis-Hastings algo-
rithm. This algorithm is independently performed to sample each couple (zi,yi)
since the individuals are independent. Its stationary distribution is

p(zi,yi|xi,θ[r−1]) ∝
g∏

k=1

(
π

[r−1]
k φe(yi; 0,Γ

[r−1]
k )1{yci=Ψ(xci ;α

[r−1]
k )}1{y

d

i ∈Sk(xdi )}

)zik
.

(8.32)
The Metropolis-Hastings algorithm samples a candidate (z?i ,y

?
i ) by the instru-

mental distribution q1(.|xi,θ[r−1]) which uniformly samples z?i then which samples
y?i |z?i as follows. Conditionally on z?ik? = 1, this instrumental distribution is deter-
ministic for the �rst c elements of y?i , denoted by y?ci such as y?ci = Ψ(xci ;α

[r−1]
k? ),

while it samples the last d elements of y?i denoted by y
?d
i according to a multivariate

independent Gaussian distribution truncated on Sk?(xdi ). Thus,

q1(zi,yi|xi,θ[r−1]) =

g∏
k=1

(
1

g

φd(y
d

i ; 0, I)∏e
j=c+1 p(x

j
i ;β

[r−1]
kj )

1{yci=Ψ(xci ;α
[r−1]
k )}1{y

d

i ∈Sk(xdi )}

)z?ik

.

(8.33)
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The candidate is accepted with the probability

ρ
[r]
1i = min


∏g

k=1

(
πkφe(y

?
i ; 0,Γ

[r−1]
k )

)z?ik
∏g

k=1

(
πkφe(y

[r−1]
i ; 0,Γ

[r−1]
k )

)z[r−1]
ik

q1(z
[r−1]
i ,y

[r−1]
i |xi)

q1(z?i ,y
?
i |xi)

; 1

 . (8.34)

Thus, at iteration [r] of the Algorithm 8.10, the sampling according to (8.15) is
performed via one iteration of the following Metropolis-Hastings algorithm.

This algorithm has p(zi,yi|xi,θ[r−1]) as stationary distribution. Its is writ-
ten as follows

(z?i ,y
?
i ) ∼ q1(zi,yi|xi) (8.35)

(z
[r]
i ,y

[r−1/2]
i ) =

{
(z?i ,y

?
i ) with probability ρ[r]

1i

(z
[r−1]
i ,y

[r−1]
i ) with probability 1− ρ[r]

1i .
(8.36)

Algorithm 8.17 (Metropolis-Hastings).

Margin parameter sampling

The step (8.16) is performed in two steps. Firstly the sampling of β[r]
kj according

to (8.23) is performed via one iteration of the Metropolis-Hastings algorithm whose
the stationary distribution is p(βkj|x,y

̄[r]
[rk], z

[r],β
[r]
k̄ ,Γk). Secondly, the sampling of

y
j[r]
[rk] is performed according to its conditional distribution given by (8.27). The

instrumental distribution of the Metropolis-Hastings algorithm q2(.|x, z) samples a
candidate β?kj according to the posterior distribution of βkj under the conditional
independence assumption (this distribution is explicit since the conjugate prior dis-
tributions are used). So,

q2(.|x, z) = p(βkj|x, z,Γk = I). (8.37)

Thus, according to (8.23), the candidate β?kj is accepted with the probability

ρ
[r]
2 = min

p(β
?
kj)q2(β

[r−1]
kj |x, z)

p(β
[r−1]
kj )q2(β?kj |x, z)

∏
{i:z[r]i =k}

p(yji |x
j
i ,y
↑j[r]
i , zi,β

?
kj ,Γ

[r−1]
k )

p(yji |x
j
i ,y
↑j[r]
i , zi,β

[r−1]
kj ,Γ

[r−1]
k )

; 1

 .

Thus, at iteration [r] of the Algorithm 8.10, the sampling from (8.16) is performed
via one iteration of the following Metropolis-Hastings algorithm.
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This algorithm has p(βkj|x[rk],y
̄[r]
[rk], z,β

[r]
k̄ ,Γk) as stationary distribution. It

is written as follows

β?kj ∼ q2(βkj|x, z) (8.38)

β
[r]
kj =

{
β?kj with probability ρ[r]

2

β
[r−1]
kj with probability 1− ρ[r]

2 .
(8.39)

Algorithm 8.18 (Metropolis-Hastings).

Remark 8.19 (Instrumental distributions). Note that, the smaller are the intra-
class dependencies of the variable xi, the closer of the stationary distributions are
the instrumental distributions of both Metropolis-Hastings algorithms.

8.3.4 Label switching problem

The label switching problem is generally solved by speci�c procedures [Ste00b].
However, based on the argument developed in [JP14], these techniques are princi-
pally impacting when g is known.

When the model is used to cluster, the number of classes is unknown, and the
model selection is performed by the bic criterion which simultaneously avoids the
label switching phenomenon. Indeed, on the one hand, this criterion selects quite
separated classes when the sample size is small, so the label switching is not present
in practice because of the class separability. On the other hand, even if it can select
more classes when the sample size increases, the label switching problem is settled
since this phenomenon vanishes asymptotically.

Obviously, when the number of classes is �xed and the size of sample is small,
the label switching problem can occur. In such a case, our advice is naturally to use
the procedures detailed in [Ste00b].

8.4 Numerical experiments on simulated data sets

In order to illustrate the properties of the model, two numerical experiments
are performed. The �rst one consists in simulating data according to the proposed
model and to study the convergence of the estimates. The second one consists in
simulating data according to a mixture of Poisson distributions [KT08] in order to
show the robustness of the proposed model. The estimate is computed by averaging
the parameters sampled by the Gibbs algorithm.

Experiment conditions

For each situation, 100 samples are generated and the algorithm is initialized
with the maximum likelihood estimate of the conditional independence model. A
burn-in is performed during 1000 iterations even if the parameter initialization is
relevant when the intra-class dependencies are small. The algorithm is stopped after
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1000 iterations. The maximum a posteriori estimate is approximated by the mean
of the sampled parameters. The Kullback-Leibler divergence is approximated via
10000 iterations of a Monte-Carlo method.

Simulation 8.20 (Mixed variables: one continuous, one integer and one binary).
We consider the mixture model of Gaussian copulas detailed in Example 8.9 and
composed with one continuous variable, one integer variable and one binary variable.
Figure 8.2 illustrates the decreasing behavior of the Kullback-Leibler divergence of
the model with the maximum a posteriori estimate from the model with the true pa-
rameters according to the sample size in the mixed case. This simulation illustrates
the good behavior of the Metropolis-within-Gibbs algorithm. Furthermore, the ap-
proximation of the maximum a posteriori estimate by the mean of the parameters
sampled by this algorithm is e�cient.
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Figure 8.2 � Decrease of the Kullback-Leibler divergence of the model with the
maximum a posteriori estimate from the model with the true parameter.

Simulation 8.21 (Robustness of the mixture model of Gaussian copulas). During
these experiments, data are sampled according to a bivariate Poisson mixture model
[KT08] whose the margin parameters are denoted by αk = (λk1, λk2, λk3). The
simulation is performed with the following values of the parameters

π = (1/3, 2/3), λ1h = h and λ2h = 3 + h, for h = 1, 2, 3. (8.40)

The error rate of this model computed with the Bayes' rule is equal to 9.5%. Results
show that the �exibility of the mixture model of Gaussian copulas allows to e�ciently
�t these simulated data. Indeed, the Kullback-Leibler divergence becomes very small
when the size of the sample increases. Furthermore, the error rate of the model seems
to converge to a value just a little bit larger than the theoretical one (9.5%). We also
note that the margin parameters of both components and the correlation coe�cients
seem to converge to their true values.

8.5 Analysis of three real data sets

We now cluster three real data sets by using the mixture model of Gaussian
copulas. The parameters are estimated via the Metropolis-with-Gibbs algorithm
initialized on the maximum likelihood estimate of the conditional independence
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Figure 8.3 � Results of Simulation 4.2: (a) Kullback-Leibler divergence of the esti-
mated model from the true one; (b) Error rate of the estimated model; (c) Value
of the �rst margin parameter for the class 1; (d) Value of the correlation coe�cient
between both variables for class 1.

model. A burn-in is performed during 1000 iterations even if the parameter initial-
ization is relevant when the intra-class dependencies are small. The algorithm is
stopped after 1000 iterations and the estimate is obtained by taking the mean of the
sampled parameters. The model selection is performed by using two information
criteria (bic criterion [Sch78], icl criterion [BCG00]) computed on the maximum a
posteriori estimate.

8.5.1 Liver disorder data set

The data

This data set [For90] describes 345 individuals by �ve blood tests which are
thought to be sensitive to liver disorders that might arise from excessive alcohol
consumption (�ve continuous variables) and by the number of quart-pint equivalents
of alcoholic beverages drunk per day (one integer variable).

Model selection

We estimate the three mixture models (conditional independence one, heteroscedas-
tic Gaussian copula mixture and homoscedastic Gaussian copula mixture) for dif-
ferent numbers of classes. Table 8.1 presents the values of both used information
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criteria. The values of both criteria obtained with the bi-component homoscedastic
mixture model of Gaussian copulas are the best ones. However, note that the three
models select two components.

g 1 2 3 4 5 6
BIC cond. indpt. -8690 -8017 -8039 -8092 -8130 -8235

hetero. -8551 -7935 -8103 -8157 -8277 -8287
homo. -8551 -7898 -7999 -8032 -8050 -8123

ICL cond. indpt. -8690 -8026 -8060 -8117 -8208 -8341
hetero. -8551 -7943 -8120 -8171 -8322 -8306
homo. -8551 -7907 -8032 -8043 -8088 -8205

Table 8.1 � Values of the bic and icl criteria for the three mixture models estimated
on the liver disorder data set.

Interpretation of the best model

We now describe the best model according to both criteria (the homoscedastic
bi-component mixture model of Gaussian copulas) by using the margin parameters
and the intra-class dependencies summarized by Figure 8.4. The model considers
two classes whose the majority one (π1 = 0.60) groups the individuals having a
strong alcoholic consumption (β1drinks = 10.6) and large values of the �ve blood
tests especially for the tests Sogt and Gammagt. The miniority class groups the
individuals having a small alcoholic consumption (β2drinks = 1.36) and smaller values
of the blood tests. For both classes, the three following blood tests are positively
correlated with Sgpt, Sopt and Gammagt while the test Mcv is positively correlated
with the number of alcoholic drinks.

Gammagt
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Figure 8.4 � Summary of the homoscedastic bi-component mixture model of Gaus-
sian copulas for the liver disorder data set. Class 1 is displayed in black and Class 2
in red.
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Partition study

As all the variables are numerical, Figure 8.5a can display the individuals and
their class memberships in the �rst classical pca map. However, as classes are not
well separated in this map, the structure of the data is not brought out. Thus,
Figure 8.5b displays the individuals in the �rst pca map of class 1. In this map,
classes are better separated since the �rst class (black circles) is centred while the
second class (red triangles) is on the top part of the graphic. So, the second axis
is discriminant. This summary is in agreement with the class interpretation since
this axis is built by the variables Mcv and drinks which are themselves discriminant
according to their margin parameters.
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Figure 8.5 � Visualization of the partition by the homoscedastic bicomponent mix-
ture model of Gaussian copulas for the liver disorder data set (Class 1 is drawn by
black circles and Class 2 by red triangles).

Note that the partitions obtained by the three bi-component models are similar
but not identical as shown by Table 8.2.

hetero.
c1 c2

c1-homo. 190 0
c2-homo. 5 150

(a)

cond. indpt.
c1 c2

c1-homo. 190 0
c2-homo. 7 148

(b)

Table 8.2 � Confusion matrices between the partition obtained by the homoscedas-
tic bi-component model and the partition obtained by: (a) the heteroscedastic bi-
component model; (b) the conditional independence model.

Conclusion

On this data set, the mixture model of Gaussian copulas better �ts the data
according to the information criteria than the conditional independence model, even
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if both models select the same number of classes. The pca per class allows to
summarize the intra-class dependencies and to bring out the separation of both
classes hidden by a classical pca.

8.5.2 Wine data set

The data

The data set [CCA+09] contains 6497 variants of the Portuguese �Vinho Verde"
wine (1599 red wines and 4898 white wines) described by eleven physiochemical
continuous variables (�xed acidity, volatile acidity, citric acidity, residual sugar,
chlorides, free sulfur dioxide, total density dioxide, density, pH, sulphates, alcohol)
and one integer variable (quality of the wine evaluated by experts). The kinds of
the wines (red or white) are hidden and we cluster the data set with three di�erent
mixture models. Note that one white wine (number 4381) is excluded of the study
since it is an outlier.

Model selection

We estimate the three mixture models (conditional independence one, heteroscedas-
tic Gaussian copula mixture and homoscedastic Gaussian copula mixture) for di�er-
ent numbers of classes and we present the values of both used information criteria in
Table 8.3. Both criteria distinctly select the bi-component heteroscedastic mixture
model of Gaussian copulas. We now show that this model allows to well separate
the white wines from the red ones then we give the model interpretation.

g 1 2 3 4 5 6
BIC cond. indpt. -63516 -61069 -61010 -55967 -60250 -57163

hetero. -44675 -34520 -39724 -44692 -44484 -48349
homo. -44675 -39372 -38289 -45209 -43217 -42417

ICL cond. indpt. -63516 -61229 -61365 -56310 -60726 -58138
hetero. -44675 -34688 -40176 -44933 -44758 -48959
homo. -44675 -39607 -38791 -45380 -43345 -42667

Table 8.3 � Values of the bic and icl criteria for the three mixture models estimated
on the wine data set.

Partition study

Table 8.4 presents the confusion matrices in order to compare the relevance of the
estimated partitions according to the true one (wine color). These results strengthen
the idea that the model best �tting the data is the bi-component heteroscedastic
Gaussian copula mixture models. Indeed, its partition is the closest to the true one.

Figure 8.6 displays the individuals in a pca map of both classes estimated by
the bi-component heteroscedastic mixture model of Gaussian copulas. According to
these scatter-plots, classes are well-separated. We now detail its parameters.
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white red
c1 4359 9
c2 538 1590
(a) Adj. Rand: 0.68

white red
c1 2441 12
c2 1911 7
c3 545 1580
(b) Adj. Rand: 0.30

white red
c1 2547 1561
c2 2007 35
c3 275 3
c4 68 0
(c) Adj. Rand: 0.00

Table 8.4 � Values of the adjusted Rand index and confusion matrices between the
true partition and the estimated partition by: (a) the bi-component heteroscedastic
Gaussian copula mixture; (b) the tri-component homoscedastic Gaussian copula
mixture; (c) the four-component conditional independence mixture.
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(b) PCA of the class 2, map(1,2)

Figure 8.6 � Visualization of the partition by the heteroscedastic bicomponent mix-
ture model of Gaussian copulas for the wine data set (Class 1 is drawn by black
circles and Class 2 by red triangles).

Interpretation of the best model

The following interpretation is based on the margin parameters of the compo-
nents and on the intra-class correlation matrices summarized by Figure 8.7. The
majority class (π1 = 0.59) is principally composed with white wines. This class is
characterized by lower rates of acidity, pH, chlorides and sulphites than them of the
minority class (π2 = 0.41) which is principally composed by red wines. The majority
class has larger values for both sulfur dioxide measures and the alcoholic rate. Note
that the wine quality of both classes is similar (β1quality = 5.96 and β2quality = 5.58).
The majority class is characterized by a strong correlation between both sulfur mea-
sures opposite to a strong correlation between the density and acidity measures. The
minority class underlines that the wine quality is dependent with a larger alcoholic
rate and small values for the chlorides and acidity measures.

Conclusion

On this data set, the Gaussian copula mixture models allows to reduce the num-
ber of classes and to better �t the data. Furthermore, its impact on the estimated
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Figure 8.7 � Summary of the heteroscedastic bi-component Gaussian copula mixture
model for the wine data set. Class 1 is drawn in black and Class 2 in red.

partition is signi�cant. Based on the individual scatter-plots in the model pca, the
estimated classes are relevant since they are well-separated. Finally, the estimation
of the intra-class dependencies helps the interpretation since its underlines the link
between the wine quality of the minority class and its physiochemical properties.

8.5.3 Forest �re data set

The data

This data set describes 517 forest �res [CM07] in the north-east region of Portugal
by using meteorological variables: seven continuous variables (four about the FWI
system: FFMC, DMC, DC, ISI and two about the meteorology: temperature and
relative humidity), two integer variables relative to the spatial coordinates and three
binary ones indicating the presence of rain, the season (summer or not summer) and
the day (week-end or not week-end).

Model selection

Table 8.5 presents the values of both used information criteria for the three
mixture models. According to both criteria, the model better �tting the data is the
homoscedastic mixture model of Gaussian copulas with three components.

Interpretation of the best model

The following interpretation is based on the margin parameters on the intra-
class correlation matrices summarized in Figure 8.8. The majority class (π1 = 0.57)
groups the �res developed with high temperature and small relative humidity. The
measures of FMC, DMC and ISI are high. The second class (π2 = 0.26) groups
the winter �res. These �res are developed with a strong wind and no rain. All
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g 1 2 3 4 5 6
BIC cond. indpt. -16559 -16296 -16473 -17370 -17379 -17454

hetero -16559 - 16002 -16171 -16410 -16666 -16791
homo. -16559 -15899 -15824 -16300 -15946 -16034

ICL cond. indpt. -16559 -16301 -16494 -17401 -17400 -17527
hetero -16559 -16014 -16205 -16471 -16721 -16871
homo. �16559 -15907 -15893 -16352 -16020 -16137

Table 8.5 � Values of the bic and icl criteria for the three mixture models estimated
on the forest �re data set.

the FWI measures take small values. The minority class (π3 = 0.17) groups the
summer �res developed with few values of FWI measures except the DC one. The
temperature is median but the relative humidity is high. The intra-class correlation
matrix underlines the dependencies between the summer and high temperature and
values of FFMC and DMC. Finally, note that the space coordinates roughly follow
the same distribution in the three classes.
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Figure 8.8 � Summary of the homoscedastic bi-component mixture model of Gaus-
sian copulas for the forest �re data set. Class 1 is displayed in green, Class 2 in red
and Class 3 in black.

Partition study

Note that the partitions obtained by the three models are similar but not identical
as shown by Table 8.6.
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hetero.
c1 c2

c1-homo. 244 23
c2-homo. 1 127
c3-homo. 122 0

(a)

cond. indpt.
c1 c2

c1-homo. 265 2
c2-homo. 7 121
c3-homo. 111 11

(b)

Table 8.6 � Confusion matrices between the partition obtained by the homoscedastic
tri-component model and the partition obtained by: (a) the heteroscedastic bi-
component model; (b) the conditional independence model.

Conclusion

The model points out three classes of forest �res. It is more precise than the
conditional independence model which roughly separates the summer �res from the
other ones. Indeed, the homoscedastic mixture model of Gaussian copulas considers
two kinds of summer �res. The restrictions done on the parameters spaces allow to
better �t the data than the heteroscedastic Gaussian copula mixture model accord-
ing to both criteria. Its impact is signi�cant since the numbers of classes selected
by both models are di�erent.

8.6 Conclusion

The mixture model of Gaussian copulas uses the properties of copulas: indepen-
dent choice of the margin distributions and of the dependency relations. Thus, this
mixture allows to �x classical distributions belonging to the exponential family for
the one-dimensional margin distributions of each component. Moreover, it takes into
account the intra-class dependencies. An approach based on a pca per class of the
Gaussian latent variable allows also to summarize the main intra-class dependencies
and to visualize the data by using the model parameters.

During both numerical experiments and applications, we pointed out that this
model is su�ciently �exible to �t data drawn by an other one. Furthermore, it can
reduce the biases of the conditional independence model (for instance the reduction
of the number of classes).

The number of parameters increases with the numbers of classes and variables
especially because of the correlation matrices of the Gaussian copulas. To avoid this
drawback, we propose a homoscedastic version of the model assuming the equality
between the correlation matrices. This model may better �t the data than the
heteroscedastic Gaussian copula mixture model. However, it can be large when the
number of variables increases. So, more parsimonious correlation matrices could be
proposed to avoid this drawback in future works.

Finally, the model can not cluster non-ordinal categorical variables having more
than two modalities. Indeed, in such case, the cumulative distribution function is
not de�ned. An arti�cial order between the modalities could be added to de�ne
a cumulative distribution function but this method has three potential di�culties
for which attention has to be paid: it assumes regular dependencies between the
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modalities of two variables, its estimation would slow down the estimation algorithm
and its stability would have to be studied.





Conclusion of Part II

We have seen that it is important to perform the cluster analysis in the na-
tive space of the variables, in order to provide meaningful results. Even if the
method-based on mixture models is relevant, it su�ers from a lack of multivariate
distributions for mixed data.

The assumption of the conditional independence between the variables gives
a meaningful model since it provides classical distributions for the one-dimensional
margins of the components. This model is relevant especially when the sample size is
small according to the number of variables. Indeed, in such a case, the information
on the intra-class dependency is not present in the data set. However, it can be
necessary to relax the conditional independence assumption.

The mixture of location models and its extension per blocks is also an alter-
native to the conditional independent model. Note that its extension per blocks
appears to be more e�cient since the number of parameters stays limited. However,
the model interpretation can be di�cult to perform by the practitioner since the
one-dimensional margin distributions of the components are not classical for the
continuous variables.

The second alternative consists in the underlined Gaussian mixture model which
appears as more meaningful. However, its method used for the parameter estimation
dramatically limits the number of discrete variables.

In this context, two main objectives appear to us as crucial: the model must
to provide classical one-dimensional margin distributions for its components, and it
must provide meaningful coe�cients re�ecting the intra-class dependencies. Based
on both objectives, we have proposed two mixture models.

The �rst model allows to perform the cluster analysis of data sets with continuous
and categorical variables. It derives from the multilevel latent class model devel-
oped for intra-class dependent categorical variables. Indeed, the components of this
model are composed with a Gaussian and by logistic distributions. The speci�city
of our approach is to simultaneously perform the model selection and the parameter
estimation in a gem algorithm.

The second model is a mixture of Gaussian copulas. This model is very general
since it performs the cluster analysis of mixed data sets with variables admitting a
cumulative distribution functions. Moreover, it provides some visualization tools to
summarize the intra-class dependencies and to display the individuals. However, the
model complexity increases with the number of variables, even for the homoscedastic
version. Thus, this model appears as unappropriated for data sets with large number
of variables. So, more parsimonious versions could be considered to cluster such data
sets.
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General conclusion and perspectives

Conclusion

In this thesis, we have been interested in the cluster analysis of complex data.
More precisely, we have focused on the categorical and mixed data sets. The ob-
jective was to introduce model-based approaches in order to cluster such data by
modelizing the intra-class dependencies. Moreover, these models had to summarize
the data distribution by few parameters to facilitate the interpretation.

Two models have been presented to perform the cluster analysis of categorical
data sets. The main idea is to group the variables into conditionally independent
blocks and to put a parsimonious distribution for each block. The combinatorial
problems are ubiquitous when the categorical data sets with intra-class dependencies
are analyzed. So, the presented models su�er from this problem during the model
selection step. Even if two Bayesian approaches reduce this drawback, it is not
realistic to perform, with these models, the cluster analysis of a data set with a lot
of variables. However, when the variables are ordinal or binary, a possible answer
to this problem can be given by the model-based copulas.

The mixture model of Gaussian copulas has been introduced to cluster mixed
data sets. This model permits to obtain classical one-dimensional margins for each
components and to modelize the intra-class dependencies. The general mixture
model of Gaussian copulas does not su�er from combinatorial problems to perform
the model selection. Thus, this model can be an e�cient alternative to the model
speci�c to the categorical data when the variables are binary or ordinal. Indeed, it
avoids the combinatorial problems of the model selection.

Perspectives

Throughout this thesis, we have de�ned a class by the set of the individuals
drawn by the same distribution. However, alternative de�nitions of a class could be
used [BRC+10, Hen10].

The models have been introduced in a clustering framework. Obviously, they
can be used in a semi-supervised or in a classi�cation context. However, one can
expect that these models outperform the discriminant approaches (like the logistic
regression) only when few individuals are labeled. Indeed, their objective is more
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ambitious than the discriminant approaches since they modelize the data distribu-
tion while the discriminant approaches focus on the boundaries between classes.

The models introduced in this thesis could manage data sets with missing values.
Indeed, their estimation can be performed by an EM algorithm or by a Gibbs sampler
which are known to manage such data.

The models which estimate a covariance matrix can require a large number of
parameters. So, it is important to introduce some parsimonious versions of the
mixture model of Gaussian copulas in order to manage data sets with a large number
of variables. Based on the geometric approaches used for the Gaussian mixture
models [CG95], some constrains could be added on the correlation matrix of the
Gaussian copulas. However, this approach could make the estimation harder. Other
parsimonious approaches inherited from the Gaussian framework could also be used
(for instance the models for large data sets [BB14]). Finally, another research axis
could consist in a generalization of the mixture model of dependency trees. Indeed,
the copulas de�ne the bivariate distribution for any couples of mixed variables (if
they admit a cdf). Moreover, the model selection step of this method is classical.
Finally, this approach could allow an inference by maximization of the likelihood
by using methods inherited from [Eve88]. Thus, no a priori information would be
added with this method of inference.

The correlation coe�cient of the Gaussian copula has good properties when the
margin distributions are well estimated. However, we have set the margin distri-
butions of the components for the mixture model of Gaussian copulas. Thus, a
semi-parametric approach (for instance, based on the works of [Hof07, HNW11])
since the properties of the correlation coe�cient would be asymptotically guaran-
teed.

Finally, the mixture of the two extreme dependency distributions would be an
alternative to the Gaussian copulas. This model can be de�ned by using copulas.
Indeed, the maximum dependency distribution could be de�ned as the distribution
which attains the Fréchet-Hoe�ding upper bound. By adding some constraints (like
the structure in tree), the model selection could be easily performed.

It hurts to set you free
But you'll never follow me

The end of laughter and soft lies
The end of nights we tried to die

This is the end
The Doors�The end.



Appendix A

Appendix of Part I

A.1 Generic identi�ability of the mixture of the two

extreme dependency distributions

The block distribution is generically identi�able when the block contains at least
three variables or when the block contains at least two variables having at least three
modalities. To prove this propoperty, we �rstly show the generic identi�ability of
the model in both of the following simple cases: two variables with three modalities
and three binary variables. Then, we conclude to the generic identi�ability of the
model.

Proposition A.1 (Two variables with three modalities). The mixture model of
the two extreme dependency distributions is generically identi�able when d{kb} = 2,
m
{kb}
1 = m

{kb}
2 = 3.

Proof. Suppose that there existsαkj = (ρkj, ξkb, τ kb, δkb) and α̃kj = (ρ̃kj, ξ̃kb, τ̃ kb, δ̃kb)
as such

∀x{kb}i p(x
{kb}
i ;αkb) = p(x

{kb}
i ; α̃kb). (A.1)

We demonstrate that this equality involves that αkj = α̃kj. The demonstration
is split in three parts which are determined by the three possibilities of (δkb, δ̃kb)
(equality, one relation equal for both parameters, no relation equal for both param-
eters). We show that (A.1) involves the equality between the dependency relations
(i.e. δkb = δ̃kb) and between the continuous parameters. Thus, (A.1) involves
αkb = α̃kb.

• Equality of the dependency relations (i.e. δkb = δ̃kb)
Without loss of generality, we assume that

∀h, h′ ∈ {1, . . . , 3}, h 6= h′ : δh2h
kb = 1 and δh2h′

kb = 0.

Then, the relation de�ned by (A.1) leads to the following system of nine equations
for h ∈ {1, . . . , 3} and h′ ∈ {1, . . . , 3} \ {h}:{

(1− ρkb)ξ1h
kb ξ

2h
kb + ρkbτ

h
kb = (1− ρ̃kb)ξ̃1h

kb ξ̃
2h
kb + ρ̃τ̃hkb

(1− ρkb)ξ1h
kb ξ

2h′

kb = (1− ρ̃kb)ξ̃1h
kb ξ̃

2h′

kb .
(A.2)
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We use the second line of the previous system with the following values of the couple
(h, h′): (1,3), (2,3), (1,2) and (3,2). Thus, we obtain that

ξ11
kb

ξ12
kb

=
ξ̃11
kb

ξ̃12
kb

and
ξ11
kb

ξ13
kb

=
ξ̃11
kb

ξ̃13
kb

. (A.3)

So, ξ̃11
kb = ξ11

kb
ξ̃12kb
ξ12kb

= ξ11
kb
ξ̃13kb
ξ13kb
. There is a intercept ε ∈ R+ such that ε =

ξ̃12kb
ξ12kb

=
ξ̃13kb
ξ13kb
. We

remind that
∑3

h=1 ξ
1h
kb =

∑3
h=1 ξ̃

1h
kb = 1. Moreover,

3∑
h=1

ξ̃1h
kb = ξ11

kbε+ ξ12
kbε+ ξ13

kbε = ε. (A.4)

So, ε = 1. We conclude that ξ1h
kb = ξ̃1h

kb . The same reasoning is used to obtain
that ξ2h

kb = ξ̃2h
kb . From this, we obtain the equality between ρkb = ρ̃kb and τhkb = τ̃hkb.

Finally, we obtain that αkb = α̃kb.

• Only one relation is equal between both parametrizations
Without loss of generality, we assume that δ121

kb = δ222
kb = δ323

kb = 1 and δh2h′

kb = 0
otherwise while δ̃122

kb = δ̃221
kb = δ̃323

kb = 1 and δ̃h2h′

kb = 0.
From the system of nine equations de�ned by (A.1), we extract the following system


(1− ρkb)ξ13

kbξ
21
kb = (1− ρ̃kb)ξ̃13

kb ξ̃
21
kb

(1− ρkb)ξ13
kbξ

22
kb = (1− ρ̃kb)ξ̃13

kb ξ̃
22
kb

(1− ρkb)ξ11
kbξ

21
kb + ρkbτ

1
kb = (1− ρ̃kb)ξ̃11

kb ξ̃
21
kb

(1− ρkb)ξ11
kbξ

22
kb = (1− ρ̃kb)ξ̃11

kb ξ̃
22
kb + ρ̃kbτ̃

1
kb.

(A.5)

From the �rst two lines of the previous equation, we deduce that ξ22
kb = ξ21

kb
ξ̃22kb
ξ̃21kb
. We

consider the last two lines where ξ22
kb is replaced by ξ21

kb
ξ̃22kb
ξ̃21kb

and where the last line is

multiplied by ξ̃21kb
ξ̃22kb
. Thus,

{
(1− ρkb)ξ11

kbξ
21
kb + ρkbτ

1
kb = (1− ρ̃kb)ξ̃11

kb ξ̃
21
kb

(1− ρkb)ξ11
kbξ

21
kb = (1− ρ̃kb)ξ̃11

kb ξ̃
21
kb + ρ̃kbτ̃

1
kb
ξ̃21kb
ξ̃22kb
.

(A.6)

Thus, ρkbτ 1
kb + ρ̃kbτ̃

1
kb
ξ̃21kb
ξ̃22kb

= 0. This result is in contradiction with the strict positivity

of all the terms. So, it is not possible to respect (A.1) when only one relation is
equal between both parametrizations.

• No relation equal between both parametrizations
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Without loss of generality, we consider the following system

(1− ρkb)ξ11
kbξ

21
kb + ρkbτ

1
kb = (1− ρ̃kb)ξ̃11

kb ξ̃
21
kb

(1− ρkb)ξ12
kbξ

22
kb + ρkbτ

2
kb = (1− ρ̃kb)ξ̃12

kb ξ̃
22
kb

(1− ρkb)ξ13
kbξ

23
kb + ρkbτ

3
kb = (1− ρ̃kb)ξ̃13

kb ξ̃
23
kb

(1− ρkb)ξ12
kbξ

21
kb = (1− ρ̃kb)ξ̃12

kb ξ̃
21
kb + ρ̃kbτ̃

2
kb

(1− ρkb)ξ13
kbξ

22
kb = (1− ρ̃kb)ξ̃13

kb ξ̃
22
kb + ρ̃kbτ̃

3
kb

(1− ρkb)ξ11
kbξ

23
kb = (1− ρ̃kb)ξ̃11

kb ξ̃
23
kb + ρ̃kbτ̃

1
kb

(1− ρkb)ξ11
kbξ

22
kb = (1− ρ̃kb)ξ̃11

kb ξ̃
22
kb

(1− ρkb)ξ12
kbξ

23
kb = (1− ρ̃kb)ξ̃12

kb ξ̃
23
kb

(1− ρkb)ξ13
kbξ

21
kb = (1− ρ̃kb)ξ̃13

kb ξ̃
21
kb

(A.7)

From the lines 1 and 4, we obtain that ξ11kb
ξ12kb

<
ξ̃11kb
ξ̃12kb
. From the lines 7 and 2, we obtain

that ξ11kb
ξ12kb

>
ξ̃11kb
ξ̃12kb
. So, it is not possible to respect (A.1) when no relation is equal

between both parametrizations.

Proposition A.2 (Three binary variables). The mixture model of the two extreme

dependency distributions is generically identi�able when d{kb} = 3, m
{kb}
1 = m

{kb}
2 =

m
{kb}
3 = 2.

Proof. Suppose that there existαkj = (ρkj, ξkb, τ kb, δkb) and α̃kj = (ρ̃kj, ξ̃kb, τ̃ kb, δ̃kb)
as such

∀x{kb}i p(x
{kb}
i ;αkb) = p(x

{kb}
i ; α̃kb). (A.8)

By writing the system with 8 equations related to (A.8), we obtain that ∀j =
1, . . . , 3 : ξj1kb(1 − ξ̃j1kb) = (1 − ξj1kb)ξ̃

j1
kb. Thus, ∀j = 1, . . . , 3 : ξj1kb = ξ̃j1kb. We

straightforwardly obtain the equality between the others parameters, so αkb = α̃kb.

Conclusion The mixture model is stable by fusion of modalities and/or variables.
So, we obtain the generic identi�ability of all the models which can be written by
fusion of modalities and/or variables as one of the following models: the three binary
one and the two three-modalities one.

A.2 Generic identi�ability of the mixture model of

multinomiale distributions per modes

Generic identi�ability of the cmm model with three blocks Let k0 =
argmin

k
`kb and the matrix Mb where

Mb(k, h) = α
τk0b(h)

kb . (A.9)

By denoting by ξb = min
k

`kb + 1, generically, we have

rankK Mb = min(g, ξb).
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Corollary 1 The parameters of the cmm model with three blocs are generically
identi�able, up to label swapping, provided:

min(g, ξ1) + min(g, ξ2) + min(g, ξ3) ≥ 2g + 2.

Generic identi�ability of the cmm model with more than three blocks In
the same way that [AMR09], we generalize the result with b blocks by observing that
b blocks of categorical variables can be combined into three categorical variables.
Thus, we can apply the Kruskal theorem.
Corollary 2We consider a cmm model with b blocks where b ≥ 3. If there exists
a tri-partition of the set {1, . . . ,b} into three disjoint non empty subsets S1, S2 and
S3, such that γi =

∏
j∈Si ξj with

min(g, γ1) + min(g, γ2) + min(g, γ3) ≥ 2g + 2, (A.10)

then the model parameters are generically identi�able up to label swapping.

A.3 Computation of the integrate complete-data like-

lihood of the mixture model of multinomiale

distributions per modes

In this Section, a proof of Proposition 4.12 is given. We �rstly de�ne a new
parametrization of the block distribution facilitating the integrate complete-data
likelihood computation. We secondly de�ne the prior distribution of the new block
parametrization according to the other parametrization. Thirdly, we underline the
relation between the embedded models. We conclude by the integrate complete-data
likelihood computation, which is the target result.

A.3.1 New parametrization of the block distribution

Without loss of generality, we assume that the elements of δkb are ordered by de-
creasing values of the probability mass associated to them and we introduce the new

parametrization of akb denoted εkb where εkb ∈ Ekb =
[

1
m{b}

; 1
]
×, . . . ,×

[
1

m{b}−`kb
; 1
]

and where εkbh is de�ned by

εhkb =

 aδkbhkb if h = 1
a
δkbh
kb∏h−1

h′=1
(1−εh′kb)

otherwise.

Lemma A.3. The conditional probability of x{b} is

p(x{b}|z, `kb, δ̃kb, εkb) =

`kb∏
h=1

(εhkb)
n
(h)
kb (1− εhkb)n̄hkb , (A.11)
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Proof.

p(x{b}|z, `kb, δ̃kb, εkb) = p(x{b}|z, `kb,αkb)

=
m{b}∏
h=1

(αhkb)
nhkb

=

 `kj∏
h=1

(α
(h)
kb )n

(h)
kb

(α(`kb+1)
kb

)n̄`kbkb
= (ε1

kb)
n
(1)
kb

`kb∏
h=2

[
(εhkb)

n
(h)
kb

(
h−1∏
h′=1

(1− εhkb)n
(h)
kb

)]
`kb∏
h=1

(1− εhkb)n̄
`kb
kb

=

`kb∏
h=1

(εhkb)
n
(h)
kb (1− εhkb)n̄

h
kb .

A.3.2 Prior distribution

Lemma A.4. The prior distribution of εkb is

p(εkb|ω, δkb) =
m{b}

m{b} − `kb
. (A.12)

Proof. We remind that akb|ω ∼ Dt
`kb+1

(
1, . . . , 1;m{b}

)
and that

p(akb, δkb|ω) = p(α|ω) = p(εkb, δkb|ω). (A.13)

So, we deduce the pdf of the prior distribution of εkb

p(εkb|δkb,ω) =

∏`kb
h=1(εhkb)

γhkb−1(1− εhkb)
∑`kb+1

h′=h+1
(γh
′
kb−1)∫

εkb∈Ekb

∏`kb
h=1(εhkb)

γhkb−1(1− εhkb)
∑`kb+1

h′=h+1
(γh
′
kb−1)dεkb

. (A.14)

Thus, each εhkb follows a truncated Beta distribution on the parameters space
[

1
m{b}−h+1

, 1
]

denoted by Be(γhkb,
∑`kb+1

h′=h+1(γh
′

kb−1)+1). To assure the positivity of the parameters
of the truncated Beta distributions, we put γhkb = 1, so

p(εkb|δkb,ω) =
m{b}

m{b} − `kb
. (A.15)

A.3.3 Relation between embedded models

Lemma A.5. Let the model with `	kb modes and the parameters (δ̃
	
kb, ε

	
kb) and let the

model with `kb modes and the parameters (δ̃kb, εkb). Both modes are de�ned as such
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that `	kb = `kb − 1, that the `	kb modes having the largest probabilities have the same
locations (∀h ∈ δ	kb, h ∈ δkb) and the same probability masses (ε	hkb = εhkb, h < `kb).
These embedded models follow this relation

p(x{b}|z, `kb, δ̃kb, εkb)
p(x{b}|z, `	kb, δ̃

	
kb, ε

	
kb)

=
(m{b} − `kb + 1)n̄

`kb−1

kb −1

(m{b} − `kb)n̄
`kb
kb

(ε`kb)
n
(`kb)

kb (1− ε`kb)n̄
`kb
kb . (A.16)

Proof. We start by the following relation

p(x{b}|z, `kb,αkb)
p(x{b}|z, `	kb,α

	
kb)

=
(α`kbkb )n

(`kb)

kb (α`kb+1
kb )n̄

`kb
kb

(α	`kbkb )n̄
`kb−1

kb

. (A.17)

Note that, εhkb = ε	hkb when (h = 1, . . . , `kb − 1), since α(h)
kb = α

	(h)
kb and τ̃`kb(h) =

τ̃`kb−1(h) when (h = 1, . . . , `kb − 1). Then, by using the reparamatrization in εkb,
the proof is completed.

A.3.4 Integrated complete-data likelihood

The integrated complete-data likelihood is �nally approximated, by neglecting
the sum over the discrete parameters of the modes locations and by performing the
exact computation on the continuous parameters, by

p(x{b}|z, `kb) ≈
(

1

m{b} − `kb

)n̄
`kb
kb

`kb∏
h=1

Bi
(

1
m{b}−h+1

; n(h)
kb + 1; n̄hkb + 1

)
m{b} − h

, (A.18)

where Bi(x; a, b) = B(1; a, b)−B(x; a, b), B(x; a, b) being the incomplete beta func-
tion de�ned by B(x; a, b) =

∫ x
0
wa(1 − w)bdw. From the previous expression, its is

straightforward to obtain p(x{b}, z|ω).

Proof of Proposition 4.12. If, for the model with `kb − 1 modes, the best modes
locations are known and given by δ̃

	
kb then the conditional probability of x{b} for a

model with `kb modes is

p(x{b}|z, `kb, δ̃
	
kb, εkb) =

1

m{b} − `kb + 1

∑
τ∈{1,...,m{b}}\{δ̃	kb}

p(x{b}|z, `kb, {δ̃
	
kb, τ},α	kb, εkb),

(A.19)
Thus, by approximating this sum by its maximum element, we obtain that

p(x{b}|z, `kb, δ̃
	
kb, εkb) ≈

1

m{b} − `kb + 1
p(x{b}|z, `kb, δ̃kb,α	kb, εkb). (A.20)

By using Lemma A.5, we obtain that:

p(x{b}|z, `kb, δ̃
	
kb, εkb)

p(x{b}|z, `	kb, δ̃
	
kb, ε

	
kb)
≈ (m{b} − `kb + 1)n̄

`kb−1

kb −1

(m{b} − `kb)n̄
`kb
kb

(ε`kbkb )n
(`kb)

kb (1− ε`kbkb )n̄
`kb
kb . (A.21)
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As p(x{b}|z, `kb = 0) = (m{b})−nk , by applying recursively the previous expression,
we obtain that

p(x{b}|z, `kb, εkb) ≈
(

1

m{b} − `kj

)n̄
`kb
kb

`kb∏
h=1

(εhkb)
n
(h)
kb (1− εhkb)n̄

h
kb

m{b} − h+ 1
. (A.22)





Appendix B

Appendix of Part II

B.1 Identi�ability of the mixture model of Gaussian

and logistic distributions

Proposition B.1. The mixture model of Gaussian and logistic distributions is
generically identi�able.

Proof. Suppose there are two mixture models of Gaussian and logistic distributions
denoted by p(xi;θ) and p(xi; θ̃) such that

∀xi,
g∑

k=1

πkp(xi;αk) =

g̃∑
k=1

π̃kp(xi; α̃k), 0 < πk, π̃k ≤ 1,

g∑
k=1

πk =

g̃∑
k=1

π̃k = 1.

(B.1)
The aim is to prove that θ = θ̃. The demonstration is split in two parts. In the
�rst one, we show the equality of the Gaussian distributions parameters and of the
proportions. In the second one, we show the equality of the parameters of the logistic
regressions.

� Continuous parameters and proportions.
We sum Equation (B.1) over all the possible values of xdi , so we obtain that

∀xci ,
g∑

k=1

πkφ(xci ;µk,Σk) =

g̃∑
k=1

π̃kφ(xci ; µ̃k, Σ̃k), 0 < πk, π̃k ≤ 1,

g∑
k=1

πk =

g̃∑
k=1

π̃k = 1. (B.2)

The identi�ability of the �nite Gaussian mixtures models (see [Tei63] for the
univariate case and [YS68] for the multivariate case) involves that g = g̃,
πk = π̃k, µk = µ̃k and Σk = Σ̃k.

� Parameters of the logistic regressions.
It is clear [Tei67] that if ∀j = 1 + c, . . . , e, ∀(xci ,x

j
i ):

g∑
k=1

fk(x
c

i )p(x
j
i |xci ;βkj) =

g∑
k=1

fk(x
c

i )p(x
j
i |xci ; β̃kj) (B.3)
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involves that βkj = β̃kj, where fk(x
c

i ) = πkφ(xci ;µk,Σk), then mixture model
of Gaussian and logistic distributions is identi�able.
Let the vector of size c denoted by yci = (y1, . . . , yc) where all the elements
are zero except the element j′ which is equal to a. Without loss of generality,
we consider that the fk(yci ) are ordered such that Σ−1

k (j′, j′) < Σ−1
k+1(j′, j′).

From Equation (B.3), we deduce that
g∑

k=1

fk(y
c

i )α1(βkj|yci ) =

g∑
k=1

fk(y
c

i )α1(β̃kj|yci ), (B.4)

with
(
α1(βkj|yci )

)−1
= 1 +

∑mj
h=2 exp(β0h

kj + βj
′h
kj a). We divided the above

equation by f1(yci )α1(β1j|yci ), thus

1 +

g∑
k=2

fk(y
c

i )α1(βkj|yci )
f1(yci )α1(β1j|yci )

=
α1(β̃1j|yci )
α1(β1j|yci )

+

g∑
k=2

fk(y
c

i )α1(β̃kj|yci )
f1(yci )α1(β1j|yci )

. (B.5)

Letting a → ∞,
∑g

k=2

fk(yci )α1(βkj |yci )

f1(yci )α1(β1j |yci )
= 0 and

∑g
k=2

fk(yci )α1(β̃kj |yci )

f1(yci )α1(β1j |yci )
= 0 since

the fk(yci ) are ordered. Without loss of generality, if mj > 2 we assume that
βj
′h

1j > βj
′h+1

1j if 1 < h < mj,

lim
a→∞

α1(β̃1j|yci )
α1(β1j|yci )

= lim
a→∞

exp
(

(βj
′2
kj − β̃

j′2
kj )a+ (β02

kj − β̃02
kj )
)

= 1. (B.6)

The above equation involves that βj
′2
kj = β̃j

′2
kj and β02

kj = β̃02
kj . By repeating

this argument for h = 3, . . . ,mj, then for each j = 1, . . . , jc we conclude that
β1j = β̃1j. By repeating this argument for j = 1 + jc, . . . , jc + jd then for
k = 2, . . . , g we conclude that if Equation (B.1) is true then θ = θ̃.

B.2 Iden�tiability of the mixture model of Gaussian

copulas

The model identi�ability is proved by two propositions. The �rst proposition
proves the model identi�ability when the variables are continuous and/or integer.
This proposition presents the reasoning in a simple case since it does not consider
the ordinal variables. The second proposition proves that the model requires at least
one continuous or integer variable to be identi�able.

Proposition B.2 (Identi�ability with continuous and integer variables). The mix-
ture model of Gaussian copulas is weakly identi�able [Tei63] if the variables are
continuous and integer ones ( i.e. the margin distributions of the components are
Gaussian or Poisson distributions). Thus,

∀x ∈ Rc × Nd,

g∑
k=1

πkp(x;αk) =

g′∑
k=1

π′kp(x;α′k) (B.7)

⇒ g = g′, π = π′, α = α′. (B.8)
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Proof. The identi�ability of the multivariate Gaussian mixture models and of the
univariate Poisson mixture model [Tei63, YS68] involves that (B.7) implies

g = g′, π = π′, βkj = β′kj and Γkcc = Γ′kcc. (B.9)

We now show that Γkcd = Γ′kcd and Γkdd = Γ′kdd.
Let j ∈ {1, . . . , c} and h ∈ {c + 1, . . . , e}. We denote by ρk = Γk(j, h),

ρ′k = Γ′k(j, h), vk = Φ−1
1 (P (xj;βkj)), εk(x

j) = πk
φ1(vk)
σkj

, ak =
b⊕k (xj)−ρkvk√

1−ρ2k
and

a′k =
b⊕k (xj)−ρ′kvk√

1−ρ′2k
. Without loss of generality, we order the components as such

σkj > σk+1j and if σkj = σk+1j then µkj > µk+1j, then (B.7) implies that

1 +

g∑
k=2

(εk(x
j)Φ(ak))/(ε1(xj)Φ(a1)) =

g∑
k=1

εk(x
j)Φ(a′k)/(ε1(xj)Φ(a1)).

Let γt = {(xj, xh) ∈ R× N : a1 = t}. Then, letting xh →∞ as such (xj, xh) ∈ γt,

∀t,
∫ a′1
t
φ(u)du

Φ(t)
= 0. (B.10)

Thus a′1 = a1, so ρ′1 = ρ1. Repeating this argument for k = 2, . . . , g and for all the
couples (j, h), we conclude that Γkcd = Γ′kcd.

When both variables are integer, we use the same argument with γ(t,ξ) = {(xj, xh) ∈
N × N : a1 ∈ B(t, ξ)}. Note that if ρ1 6= ρ′1 then ∃n0 as such ∀xj > n0 a

′
1 > t + ξ.

Letting xh →∞ as such (xj, xh) ∈ γ(t,ξ), we obtain the following contradiction∫ a′1
t+ξ

φ(u)du

Φ(t− ξ)
= 0 and

∫ a′1
t+ξ

φ(u)du

Φ(t− ξ)
> 0. (B.11)

So, a′1 = a1 then ρ1 = ρ′1. Repeating this argument for k = 2, . . . , g and for all the
couples (j, h), we conclude that Γkdd = Γ′kdd.

Proposition B.3 (Identi�ability of the mixture model of Gaussian copulas). The
mixture model of Gaussian copulas is weakly identi�able [Tei63] if at least one vari-
able is continuous or integer.

Proof. In this proof, we consider only one continuous variable and two binary vari-
ables. Obviously, the same reasoning can be extend to the other cases. We now
show that Γkcd = Γ′kcd and Γkdd = Γ′kdd.

Let j = 1 and let h ∈ {2, 3}. We note ρk = Γk(j, h), ρ′k = Γ′k(j, h), vk =

Φ−1
1 (P (xj;βkj)), εk(x

j) = πk
φ(vk;0,1)
σkj

, ak =
b⊕k (xj)−ρkvk√

1−ρ2k
and a′k =

b′⊕k (xj)−ρ′kvk√
1−ρ′2k

. Without

loss of generality, we order the components as such σkj > σ[k+1]j and if σkj = σ[k+1]j

then µkj > µ[k+1]j. Note that (B.7) implies that

1 +

g∑
k=2

(εk(x
j)Φ(ak))/(ε1(xj)Φ(a1)) =

g∑
k=1

εk(x
j)Φ(a′k)/(ε1(xj)Φ(a1)).
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Letting x1 →∞ and assuming that ρk > 0 then Φ(a′k)

Φ(ak)
= 1. So, sign(ρk) = sign(ρ′k).

By denoting κ = lim
a→∞

φ(a)
Φ(a)

and letting x1 →∞ κ 1
κ

φ(a′k)

φ(ak)
= 1. Thus a′1 = a1, so ρ′1 = ρ1

and b⊕k (xj) = b′⊕k (xj) so βkh = β′kh.
Note that the same result can be obtain by tending x1 to −∞ is ρk < 0. Re-

peating this argument for k = 2, . . . , g and for all the couples (j, h), we conclude
that Γkcd = Γ′kcd then Γkdd = Γ′kdd.
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