Thèse soutenue

Approche comportementale pour la validation et le test système des systèmes embarqués : Application aux dispositifs médicaux embarqués

FR  |  
EN
Auteur / Autrice : Charbel El Gemayel
Direction : Nacer AbouchiDoumit Zaouk
Type : Thèse de doctorat
Discipline(s) : Electronique - Informatique
Date : Soutenance le 17/12/2014
Etablissement(s) : Lyon, INSA en cotutelle avec Université Libanaise
Ecole(s) doctorale(s) : École doctorale Électronique, électrotechnique, automatique (Lyon)
Partenaire(s) de recherche : Laboratoire : INL - Institut des Nanotechnologies de Lyon, UMR5270 (Rhône) - Institut des Nanotechnologies de Lyon - Site de l'INSA / INL
Jury : Président / Présidente : Richard Grisel
Examinateurs / Examinatrices : Nacer Abouchi, Doumit Zaouk, Richard Grisel, Toni Sayah, Joseph Constantin, Fabrice Jumel, Youssef Zaatar, Cyril Condemine
Rapporteurs / Rapporteuses : Richard Grisel, Toni Sayah

Résumé

FR  |  
EN

Les progrès des technologies de l'information et de la communication, des MEMS, des capteurs, actionneurs, etc. ont permis l’émergence de différents dispositifs biomédicaux. Ces nouveaux dispositifs, souvent embarqués, contribuent considérablement à l'amélioration du diagnostic et du traitement de certaines maladies, comme le diabète par exemple. Des dispositifs embarqués encore plus complexes sont en cours d’élaboration, leur mise en œuvre nécessite des années de recherche et beaucoup d’expérimentation. Le cœur artificiel, encore en phase de réalisation, est un exemple concret de ces systèmes complexes. La question de la fiabilité, du test de fonctionnement et de sureté de ces dispositifs reste problématique et difficile à résoudre. Plusieurs paramètres (patient, évolution de la maladie, alimentation, activité, traitement, etc.) sont en effet à prendre en compte et la conséquence d’une erreur de fonctionnement peut être catastrophique pour le patient. L'objectif de cette thèse est de développer des outils et des approches méthodologiques permettant la validation et le test au niveau système de ce type de dispositifs. Il s’agit précisément d’étudier la possibilité de modéliser et simuler d’une manière conjointe un dispositif médical ainsi que son interaction avec le corps humain, du moins la partie du corps humain concernée par le dispositif médical, afin de mesurer les performances et la qualité de services (QoS) du dispositif considéré. Pour atteindre cet objectif notre étude a porté sur plusieurs points. Nous avons d’abord mis en évidence une architecture simplifiée d’un modèle de corps humain permettant de représenter et de mieux comprendre les différents mécanismes du corps humain. Nous avons ensuite exploré un ensemble de métriques et une approche méthodologique générique permettant de qualifier la qualité de service d’un dispositif médical donné en interaction avec le corps humain. Afin de valider notre approche, nous l’avons appliquée à un dispositif destiné à la régulation du taux de sucre pour des patients atteints du diabète. La partie du corps humain concernée par cette pathologie à savoir le pancréas a été simulé par un modèle simplifié que nous avons implémenté sur un microcontrôleur. Le dispositif de régulation de l’insuline quant à lui a été simulé par un modèle informatique écrit en C. Afin de rendre les mesures de performances observées indépendantes d’un patient donné, nous avons étudiés différentes stratégies de tests sur différentes catégories de patients. Nous avons pour cette partie mis en œuvre un générateur de modèles capable de reproduire différents états physiologiques de patients diabétiques. L’analyse et l’exploitation des résultats observés peut aider les médecins à considérablement limités les essais cliniques sur des vrai patients et les focaliser uniquement sur les cas les plus pertinent.