Thèse soutenue

Expression hétérologue de la connexine humaine 43 dans Escherichia coli

FR  |  
EN
Auteur / Autrice : Maria Silacheva
Direction : Valentin Gordeliy
Type : Thèse de doctorat
Discipline(s) : Physique pour les sciences du vivant
Date : Soutenance le 10/03/2014
Etablissement(s) : Grenoble
Ecole(s) doctorale(s) : École doctorale physique (Grenoble ; 1991-....)
Partenaire(s) de recherche : Equipe de recherche : Institut de biologie structurale (Grenoble)
Jury : Président / Présidente : Eva Pebay-Peyroula
Rapporteurs / Rapporteuses : Martin Engelhard, Georg Büldt

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les protéines membranaires (PMs) sont les composants fonctionnels principaux des membranes biologiques. Les processus cellulaires fondamentaux sont régulés à l’aide des PMs. Malgré leur importance et leur intérêt scientifique et pharmaceutique, les structures des PMs ne représentent qu’une partie mineure des structures 3D répertoriées. Les PMs humaines sont des cibles particulièrement intéressantes mais parmi plus de 7000 PMs humaines, seules 30 structures ont été élucidées.Les raisons principales qui rendent les PMs très difficiles à étudier sont leur faible abondance et leur nature hydrophobe. En effet, le niveau d’expression des PMs dans leur environnement naturel est habituellement faible et la surexpression hétérologue aboutit souvent à une protéine inactive.Les connexines font partie de la famille des PMs intégrales de vertébrés. Elles sont largement exprimées dans tout le corps et sont impliquées dans les processus essentiels à un fonctionnement physiologique normal. En s’oligomérisant elles établissent des canaux intercellulaires qui forment des jonctions lacunaires. La communication des jonctions lacunaires joue un rôle essentiel dans la fonction des tissus et le développement des organes. Ainsi, les mutations génétiques des connexines provoquent des désordres héréditaires. Les connaissances actuelles portent principalement sur la physiologie des connexines et la perméabilité des pores. Difficiles à produire pure, homogène et en quantité suffisante pour la cristallisation, l’unique structure de résolution atomique de jonction lacunaire est un polymère de la connexine 26. La connexine 43 (Cx43), protéine de jonction lacunaire la mieux étudiée, est exprimée dans tout le corps humain. Les études structurales de microscopie électronique ont montré que le domaine cytoplasmique C-terminal de Cx43 (Cx43CT) est flexible et diminue la qualité de diffraction des cristaux 2D. La troncation de la majorité de Cx43CT améliore la résolution des segments transmembranaires de Cx43. Tronqué au niveau du résidu 263, le mutant Cx43-263T est néanmoins capable de former des cristaux 2D et de s’assembler en jonctions lacunaires. L’œuvre présenté est consacré à l’étude de Cx43, Cx43-263T et Cx43CT.L’optimisation des codons du gène de la connexine et la minimisation de la stabilité de la structure secondaire d’ARNm ont considérablement augmenté l’expression de Cx43 et Cx43-263T. De nouvelles procédures de purification de Cx43-263T et Cx43 ont été élaborées. La protéine purifiée a été reconstituée en polymère amphiphile amphipol A8-35 et caractérisée par des approches de SEC, DLS et SAXS. Des techniques indépendantes ont montré l’auto-assemblage de Cx43-263T fonctionnelle en hexamères.Cx43 homogène a été surexprimée dans E. coli, purifiée et caractérisée par SEC, DLS, DSC et SAXS. L’oligomérisation a été mesurée en fonction de la concentration.Cx43-263T et Cx43 fusionnées à la protéine Mistic ont été surexprimées dans E. coli. La séparation de Mistic de la connexin a été testée avec différentes protéases, jonctions, conditions de clivage et soit in vivo soit in vitro. Toutes les constructions ainsi générées ont démontré une haute résistance aux protéolyses spécifiques. Mistic (membrane integrating sequence for translation of integral membrane protein constructs) est une séquence de protéine de B. subtilis, qui permet l'adressage des PMs intégrales dans la membrane. Mistic a été surexprimée chez E. coli et la protéine homogène a été purifiée avec divers détergents. Alors que la structure tertiaire de Mistic, solubilisée avec de l'oxyde de lauryldimethylamine, est déjà déterminée, la structure native de Mistic dans un milieu lipidique, qui permettrait de comprendre sa fonction, n’est pas encore disponible. Dans le travail présenté ici, Mistic a été reconstituée dans des lipides différents et utilisée pour des essais initiaux de cristallisation in meso. Mistic a de plus été utilisée pour la production d’anticorps anti-Mistic.