Thèse soutenue

Contrôle d'accès collaboratif : application à la rocade sud de Grenoble

FR  |  
EN
Auteur / Autrice : Dominik Pisarski
Direction : Carlos Canudas-de-Wit
Type : Thèse de doctorat
Discipline(s) : Automatique et productique
Date : Soutenance le 16/09/2014
Etablissement(s) : Grenoble
Ecole(s) doctorale(s) : École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Grenoble Images parole signal automatique - Institut national de recherche en informatique et en automatique (France). Centre de recherche de l'université Grenoble Alpes
Jury : Président / Présidente : Mazen Alamir
Examinateurs / Examinatrices : Carlos Canudas-de-Wit, Olivier Sename, Giacomo Como
Rapporteurs / Rapporteuses : John Lygeros, Antonella Ferrara

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

La thèse présente les résultats de recherche sur une méthode de contrôle distribué et coordonné pour la régulation des accès autoroutiers. Le trafic autoroutier est représenté par le modèle Cell Transmission Model (CTM). L'objectif de contrôle principal est de d'obtenir une distribution uniforme de la densité des véhicules sur des portions d'autoroute. Équilibrer la densité est un nouvel objectif de trafic qui peut potentiellement réduire le nombre et l'intensité des accélérations et décélérations et peut par conséquent permettre des voyages plus sécurisés et confortables tout en diminuant la consommation de carburant et les émissions de polluants. En outre, cet objectif prend en compte les paramètres de trafic standards tels que le Temps de Trajet Total et la Distance Totale Parcourue. Une architecture modulaire distribuée est proposée pour le contrôleur. Cela permet de déterminer les décisions optimales à prendre en utilisant uniquement des informations d'état locales et en provenance des contrôleurs voisins.La contribution débute par l'analyse d'ensembles d'équilibre de CTM. L'objectif de cette étude est d'obtenir les conditions qui assurent l'existence et l'unicité des états stationnaire qui sont équilibrées. Dans l'ensemble des états stationnaire, nous sommes intéressés à la sélection du point qui maximise la Distance Totale Parcourue. Sont discutés ensuite les aspects de la mise en œuvre et les limites de la méthode proposée. Enfin, plusieurs études de cas sont présentées appuyant les résultats d'analyse et examinant l'efficacité de la méthode proposée.La majeure partie de la thèse vise à concevoir un dispositif de commande optimale pour équilibrer la densité du trafic routier. L'optimisation est réalisée de manière répartie. En utilisant les propriétés de contrôlabilité, l'ensemble des sous-systèmes devant être contrôlés par des feux aux rampes d'accès sont identifiés. Le problème d'optimisation est alors formulé comme de Nash du jeu dans un environnement non coopératif. Le jeu est résolu en le décomposant en une série de jeux à deux joueurs hiérarchiques et compétitifs. Le processus d'optimisation emploie des canaux de communication qui correspond à la structure de commutation de l'interconnexion de système. L'approche alternative pour équilibrer emploie la théorie des systèmes multi-agents. Chacun des contrôleurs est pourvu d'une structure à rétroaction assurant que les états au sein de son sous-système atteignent des valeurs communes par l'évaluation de protocoles de consensus. Dans ces structures, un problème de contrôle optimal minimisant le Temps de Trajet Total est formulé. Le contrôleur distribué fondé sur le jeu de Nash est validé grâce des simulations microscopiques Aimsun. Le scénario de test comprend des données de trafic provenant de la rocade sud de Grenoble.