Disciplines basées sur la taille pour la planification des jobs dans data-intensif scalable computing systems

par Mario Pastorelli

Thèse de doctorat en Informatique et réseaux

Sous la direction de Pietro Michiardi.

Le président du jury était Ernst W. Biersack.

Le jury était composé de Patrick Brown.

Les rapporteurs étaient Guillaume Urvoy-Keller, Giovanni Chiola.


  • Résumé

    La dernière décennie a vu l’émergence de systèmes parallèles pour l’analyse de grosse quantités de données (DISC) , tels que Hadoop, et la demande qui en résulte pour les politiques de gestion des ressources, pouvant fournir des temps de réponse rapides ainsi qu’équité. Actuellement, les schedulers pour les systèmes de DISC sont axées sur l’équité, sans optimiser les temps de réponse. Les meilleures pratiques pour surmonter ce problème comprennent une intervention manuelle et une politique de planification ad-hoc , qui est sujette aux erreurs et qui est difficile à adapter aux changements. Dans cette thèse, nous nous concentrons sur la planification basée sur la taille pour les systèmes DISC. La principale contribution de ce travail est le scheduler dit Hadoop Fair Sojourn Protocol (HFSP), un ordonnanceur préemptif basé sur la taille qui tient en considération le vieillissement, ayant comme objectifs de fournir l’équité et des temps de réponse réduits. Hélas, dans les systèmes DISC, les tailles des job d’analyse de données ne sont pas connus a priori, donc, HFSP comprends un module d’estimation de taille, qui calcule une approximation et qui affine cette estimation au fur et a mesure du progrès d’un job. Nous démontrons que l’impact des erreurs d’estimation sur les politiques fondées sur la taille n’est pas significatif. Pour cette raison, et en vertu d’être conçu autour de l’idée de travailler avec des tailles estimées, HFSP est tolérant aux erreurs d’estimation de la taille des jobs. Nos résultats expérimentaux démontrent que, dans un véritable déploiement Hadoop avec des charges de travail réalistes, HFSP est plus performant que les politiques de scheduling existantes, a la fois en terme de temps de réponse et d’équité. En outre, HFSP maintiens ses bonnes performances même lorsque le cluster de calcul est lourdement chargé, car il focalises les ressources sur des jobs ayant priorité. HFSP est une politique préventive: la préemption dans un système DISC peut être mis en œuvre avec des techniques différentes. Les approches actuellement disponibles dans Hadoop ont des lacunes qui ont une incidence sur les performances du système. Par conséquence, nous avons mis en œuvre une nouvelle technique de préemption, appelé suspension, qui exploite le système d’exploitation pour effectuer la préemption d’une manière qui garantie une faible latence sans pénaliser l’avancement des jobs a faible priorité.

  • Titre traduit

    Size-based disciplines for job scheduling in data-intensive scalable computing systems


  • Résumé

    The past decade have seen the rise of data-intensive scalable computing (DISC) systems, such as Hadoop, and the consequent demand for scheduling policies to manage their resources, so that they can provide quick response times as well as fairness. Schedulers for DISC systems are usually focused on the fairness, without optimizing the response times. The best practices to overcome this problem include a manual and ad-hoc control of the scheduling policy, which is error-prone and difficult to adapt to changes. In this thesis we focus on size-based scheduling for DISC systems. The main contribution of this work is the Hadoop Fair Sojourn Protocol (HFSP) scheduler, a size-based preemptive scheduler with aging; it provides fairness and achieves reduced response times thanks to its size-based nature. In DISC systems, job sizes are not known a-priori: therefore, HFSP includes a job size estimation module, which computes approximated job sizes and refines these estimations as jobs progress. We show that the impact of estimation errors on the size-based policies is not signifi- cant, under conditions which are verified in a system such as Hadoop. Because of this, and by virtue of being designed around the idea of working with estimated sizes, HFSP is largely tolerant to job size estimation errors. Our experimental results show that, in a real Hadoop deployment and with realistic workloads, HFSP performs better than the built-in scheduling policies, achieving both fairness and small mean response time. Moreover, HFSP maintains its good performance even when the cluster is heavily loaded, by focusing the resources to few selected jobs with the smallest size. HFSP is a preemptive policy: preemption in a DISC system can be implemented with different techniques. Approaches currently available in Hadoop have shortcomings that impact on the system performance. Therefore, we have implemented a new preemption technique, called suspension, that exploits the operating system primitives to implement preemption in a way that guarantees low latency without penalizing low-priority jobs.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.