Thèse soutenue

Modélisation Stochastique des carnets d'ordres

FR  |  
EN
Auteur / Autrice : Aymen Jedidi
Direction : Frédéric Abergel
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 09/01/2014
Etablissement(s) : Châtenay-Malabry, Ecole centrale de Paris
Ecole(s) doctorale(s) : École doctorale Sciences pour l'Ingénieur (Châtenay-Malabry, Hauts de Seine)
Partenaire(s) de recherche : Laboratoire : Mathématiques et informatique pour la complexité et les systèmes (Gif-sur-Yvette, Essonne ; 2006-....)
Jury : Président / Présidente : Jim Gatheral
Examinateurs / Examinatrices : Frédéric Abergel, Bernard Lapeyre, Mathieu Rosembaum, Emmanuel Bacry, Jean-Philippe Bouchard
Rapporteurs / Rapporteuses : Bernard Lapeyre, Mathieu Rosembaum

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Cette thèse étudie quelques aspects de la modélisation stochastique des carnets d'ordres. Nous analysons dans la première partie un modèle dans lequel les temps d'arrivées des ordres sont Poissoniens indépendants. Nous démontrons que le carnet d'ordres est stable (au sens des chaines de Markov) et qu'il converge vers sa distribution stationnaire exponentiellement vite. Nous en déduisons que le prix engendré dans ce cadre converge vers un mouvement Brownien aux grandes échelles de temps. Nous illustrons les résultats numériquement et les comparons aux données de marché en soulignant les succès du modèle et ses limites. Dans une deuxième partie, nous généralisons les résultats à un cadre où les temps d'arrivés sont régis par des processus auto et mutuellement existants, moyennant des hypothèses sur la mémoire de ces processus. La dernière partie est plus appliquée et traite de l'identification d'un modèle réaliste multivarié à partir des flux des ordres. Nous détaillons deux approches : la première par maximisation de la vraisemblance et la seconde à partir de la densité de covariance, et réussissons à avoir une concordance remarquable avec les données. Nous appliquons le modèle ainsi estimé à deux problèmes concrets de trading algorithmique, à savoir la mesure de la probabilité d'exécution et le coût d'un ordre limite.