Acceleration for statistical model checking

par Benoît Barbot

Thèse de doctorat en Informatique

Sous la direction de Serge Haddad.

Soutenue le 20-11-2014

à Cachan, Ecole normale supérieure , dans le cadre de École doctorale Sciences pratiques (1998-2015 ; Cachan, Val-de-Marne) , en partenariat avec Laboratoire Spécification et Vérification (laboratoire) .

Le jury était composé de Patrice Moreaux, David Parker, Nihal Pekergin, Claudine Picaronny.

Les rapporteurs étaient Pieter-Tjerk De Boer, Gerardo Rubino.

  • Titre traduit

    Accélérations pour le model checking statistique


  • Résumé

    Ces dernières années, l'analyse de systèmes complexes critiques est devenue de plus en plus importante. En particulier, l'analyse quantitative de tels systèmes est nécessaire afin de pouvoir garantir que leur probabilité d'échec est très faible. La difficulté de l'analyse de ces systèmes réside dans le fait que leur espace d’état est très grand et que la probabilité recherchée est extrêmement petite, de l'ordre d'une chance sur un milliard, ce qui rend les méthodes usuelles inopérantes. Les algorithmes de Model Checking quantitatif sont les algorithmes classiques pour l'analyse de systèmes probabilistes. Ils prennent en entrée le système et son comportement attendu et calculent la probabilité avec laquelle les trajectoires du système correspondent à ce comportement. Ces algorithmes de Model Checking ont été largement étudié depuis leurs créations. Deux familles d'algorithme existent : - le Model Checking numérique qui réduit le problème à la résolution d'un système d'équations. Il permet de calculer précisément des petites probabilités mais soufre du problème d'explosion combinatoire- - le Model Checking statistique basé sur la méthode de Monte-Carlo qui se prête bien à l'analyse de très gros systèmes mais qui ne permet pas de calculer de petite probabilités. La contribution principale de cette thèse est le développement d'une méthode combinant les avantages des deux approches et qui renvoie un résultat sous forme d'intervalles de confiance. Cette méthode s'applique à la fois aux systèmes discrets et continus pour des propriétés bornées ou non bornées temporellement. Cette méthode est basée sur une abstraction du modèle qui est analysée à l'aide de méthodes numériques, puis le résultat de cette analyse est utilisé pour guider une simulation du modèle initial. Ce modèle abstrait doit à la fois être suffisamment petit pour être analysé par des méthodes numériques et suffisamment précis pour guider efficacement la simulation. Dans le cas général, cette abstraction doit être construite par le modélisateur. Cependant, une classe de systèmes probabilistes a été identifiée dans laquelle le modèle abstrait peut être calculé automatiquement. Cette approche a été implémentée dans l'outil Cosmos et des expériences sur des modèles de référence ainsi que sur une étude de cas ont été effectuées, qui montrent l'efficacité de la méthode. Cette approche à été implanté dans l'outils Cosmos et des expériences sur des modèles de référence ainsi que sur une étude de cas on été effectué, qui montre l'efficacité de la méthode.


  • Résumé

    In the past decades, the analysis of complex critical systems subject to uncertainty has become more and more important. In particular the quantitative analysis of these systems is necessary to guarantee that their probability of failure is very small. As their state space is extremly large and the probability of interest is very small, typically less than one in a billion, classical methods do not apply for such systems. Model Checking algorithms are used for the analysis of probabilistic systems, they take as input the system and its expected behaviour, and compute the probability with which the system behaves as expected. These algorithms have been broadly studied. They can be divided into two main families: Numerical Model Checking and Statistical Model Checking. The former computes small probabilities accurately by solving linear equation systems, but does not scale to very large systems due to the space size explosion problem. The latter is based on Monte Carlo Simulation and scales well to big systems, but cannot deal with small probabilities. The main contribution of this thesis is the design and implementation of a method combining the two approaches and returning a confidence interval of the probability of interest. This method applies to systems with both continuous and discrete time settings for time-bounded and time-unbounded properties. All the variants of this method rely on an abstraction of the model, this abstraction is analysed by a numerical model checker and the result is used to steer Monte Carlo simulations on the initial model. This abstraction should be small enough to be analysed by numerical methods and precise enough to improve the simulation. This abstraction can be build by the modeller, or alternatively a class of systems can be identified in which an abstraction can be automatically computed. This approach has been implemented in the tool Cosmos, and this method was successfully applied on classical benchmarks and a case study.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : École normale supérieure. Bibliothèque.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.