Méthodes utilisant des fonctions de croyance pour la gestion des informations imparfaites dans les réseaux de véhicules

par Mira Bou Farah

Thèse de doctorat en Génie Informatique et Automatique

Sous la direction de François Delmotte.

Soutenue le 02-12-2014

à l'Artois , dans le cadre de Ecole doctorale Sciences pour l'Ingénieur .


  • Résumé

    La popularisation des véhicules a engendré des problèmes de sécurité et d’environnement. Desprojets ont été lancés à travers le monde pour améliorer la sécurité sur la route, réduire l’encombrementdu trafic et apporter plus de confort aux conducteurs. L’environnement des réseaux devéhicules est complexe et dynamique, les sources sont souvent hétérogènes, de ce fait les informationséchangées peuvent souvent être imparfaites. La théorie des fonctions de croyance modélisesouplement les connaissances et fournit des outils riches pour gérer les différents types d’imperfection.Elle est utilisée pour représenter l’incertitude, gérer les différentes informations acquises etles fusionner. Nous nous intéressons à la gestion des informations imparfaites échangées entre lesvéhicules concernant les événements sur la route. Les événements locaux et les événements étendusn’ayant pas les mêmes caractéristiques, les travaux réalisés les distinguent. Dans un environnementsans infrastructure où chaque véhicule a son propre module de fusion, l’objectif est de fournir auxconducteurs la synthèse la plus proche possible de la réalité. Différents modèles fondés sur desfonctions de croyance sont proposés et différentes stratégies sont étudiées : affaiblir ou renforcervers l’absence de l’événement pour prendre en compte le vieillissement des messages, garder lesmessages initiaux ou seulement le résultat de la fusion dans la base des véhicules, considérer la miseà jour du monde, prendre en compte l’influence du voisinage pour gérer la spatialité des embouteillages.Les perspectives restent nombreuses, certaines sont développées dans ce manuscrit commela généralisation des méthodes proposées à tous les événements étendus tels que les brouillards.

  • Titre traduit

    Methods using belief functions to manage imperfect information in vehicular networks


  • Résumé

    The popularization of vehicles has created safety and environmental problems. Projects havebeen launched worldwide to improve road safety, reduce traffic congestion and bring more comfortto drivers. The vehicle network environment is dynamic and complex, sources are often heterogeneous,and therefore the exchanged information may be imperfect. The theory of belief functionsoffers flexibility in uncertainty modeling and provides rich tools for managing different types of imperfection.It is used to represent uncertainty, manage and fuse the various acquired information.We focus on the management of imperfect information exchanged between vehicles concerningevents on the road. The carried work distinguishes local events and spatial events, which do nothave the same characteristics. In an environment without infrastructure where each vehicle is afusion center and creates its own vision, the goal is to provide to each driver the synthesis of thesituation on the road as close as possible to the reality. Different models using belief functionsare proposed. Different strategies are considered: discount or reinforce towards the absence of theevent to take into account messages ageing, keep the original messages or just the fusion result invehicle database, consider the world update, manage the spatiality of traffic jam events by takinginto account neighborhood. Perspectives remain numerous; some are developed in the manuscriptas the generalization of proposed methods to all spatial events such as fog blankets.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université d'Artois (Arras, Pas-de-Calais). Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.