Thèse soutenue

Particules greffées d'homopolymères et de copolymères pour l'élaboration de nanocomposites modèles : dispersion des particules, dynamique des chaînes greffées en relation avec les propriétés rhéologiques

FR  |  
EN
Auteur / Autrice : Nicolas Genevaz
Direction : Denis BertinJacques Jestin
Type : Thèse de doctorat
Discipline(s) : Sciences chimiques
Date : Soutenance le 18/12/2014
Etablissement(s) : Aix-Marseille
Ecole(s) doctorale(s) : Ecole èdoctorale Sciences Chimiques (Marseille ; 1996-....)
Jury : Président / Présidente : Catherine Amiel
Examinateurs / Examinatrices : François Boué, Didier Gigmes
Rapporteurs / Rapporteuses : Emmanuelle Dubois, Emmanuel Beyou

Résumé

FR  |  
EN

Les nanocomposites polymère intéressent depuis de nombreuses années la communauté scientifique, du fait, notamment, de leurs bonnes propriétés mécaniques. Il est établi que l'amélioration des propriétés mécaniques observées dans les nanocomposites est principalement due à des effets de structure (dispersion des particules) et à des effets d'interface (interactions particule/matrice et particule/particule). Cependant, de nombreux résultats expérimentaux restent difficiles à expliquer. Dans ce contexte, nous avons synthétisé des nanocomposites modèles constitués de nanoparticules de silice greffées de chaînes de polystyrène (PS) (ou de PS-b-poly(acrylate de tertio-butyle)) par polymérisation radicalaire contrôlée par les nitroxydes (NMP) et réparties dans une matrice de PS. Ces nanocomposites ont ensuite été caractérisés en couplant la diffusion de rayons X et la microscopie électronique à transmission. En variant la taille des chaînes de la matrice, nous sommes parvenus à obtenir différentes répartitions spatiales de particules allant de la dispersion totale à l'agrégation en passant par un état intermédiaire s'apparentant à un réseau connecté aux fractions volumiques élevées. Les propriétés mécaniques de ces nanocomposites ont été étudiées par des mesures de cisaillement aux faibles fréquences puis reliées aux différentes dispersions observées. Enfin, nous avons mesuré la dynamique locale et intermédiaire des chaînes de polymères greffées dans les matériaux préparés en couplant la diffusion quasiélastique des neutrons (rétrodiffusion et écho de spin) et la résonance magnétique nucléaire. Ces mesures ont ensuite été reliées aux propriétés mécaniques des nanocomposites.