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ABSTRACT

We prove here, using stochastic analysis methods, the invariance principle for a Rd- dif-
fusions d ≥ 2, in a periodic potential beyond uniform boundedness assumptions of po-
tential. The potential is not assumed to have any regularity. So the stochastic calculus
theory for processes associated to Dirichlet forms is used to justify the existence of a con-
tinuous Markov process starting from almost all x ∈ Rd and denoted by (Xt, t > 0) (cf
chapter 1). In chapter 2, we prove a new Sobolev inequality with different weights, which
allows us to deduce the existence and boundedness of the density of probability transition
associated to the continuous Markov process. This inequality, Theorem 2.1.1 in chapter
2, which is the principal key of this work, is proved by using some materials in harmonic
analysis. In chapter 3, we prove the main result (Theorem 1) of this work, the invariance
principle. Our strategy for proving Theorem 1 follows some classical steps: we rely on
the construction of the so-called corrector: this is a periodic function v : Rd → Rd such
that the process t → Xt + v(Xt) is a Martingale with stationary increments under Px. It
then follows that the process X(ε) + εv(1

ε
X(ε)) satisfies the invariance principle (result of

I.S. Helland in 1982, see [2]), and the key step of the proof of the Theorem 1 consists in
showing that the corrector part εv(1

ε
X(ε)) tends to 0.

In order to control the corrector, and actually also in order to show its existence, we
rely on the Sobolev inequality: Theorem 2.1.1 of chapter 2.
After proving this inequality, we construct a so-called time changed process denoted
by (X̃t, t ≥ 0) from the initial process (Xt, t ≥ 0), using an additive functional. We
show the invariance principle for (X̃t, t ≥ 0) before deducing the invariance principle for
(Xt, t ≥ 0) by the Ergodic theorem.

All the work is done under the following hypothesis: the potential V is periodic and
satisfies eV + e−V ∈ L1

loc(Rd; dx) where dx is the Lebesgue measure.
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RÉSUMÉ DES TRAVAUX

Nous montrons ici, en utilisant les méthodes de l’analyse stochastique, le principe d’invari-

ance pour des diffusion sur Rd, d ≥ 2, en milieu périodique au delà des hypothèses
d’uniforme ellipticité et au delà des hypothèses de régularité sur le potentiel.
La théorie du calcul stochastique pour les processus associés aux formes de Dirichlet est
largement utilisée pour justifier l’existence du processus de Markov à temps continus,
défini pour presque tout point de départ sur Rd. Pour éviter l’hypothèse de régularité, on
considère le générateur associé au processus, mais de manière informelle avant de con-
sidérer la forme de Dirichlet associée à ce dernier (cf chapiter 1). Puis dans le chapitre 2,
nous montrons une nouvelle inégalité de type Sobolev avec des poids différents, qui nous
permet de déduire l’existence et la bornitude d’une densité de la probabilité de transition
associée au processus de Markov. Cette inégalité, Theorem 2.1.1 du chapitre 2, est l’outil
principal de ce travail. La preuve fera appel à des techniques d’analyse harmonique (voir
[12]).
Enfin, le chapitre 3 contient le résultat principal du travail de la thèse: le principe d’invariance
qui veut dire que la suite de processus (εXtε−2) converge en loi quand ε tend vers zéro vers
un mouvement Brownien. Notre stratégie pour prouver ce thórème qu’est notée Théorème
1 dans cette thèse suit quelques étapes classiques: nous nous appuyons sur la construc-
tion de ce qu’on appelle ici correcteur. C’est une fonction périodique v sur Rd à valeurs
dans Rd telle que le processus t → Xt + v(Xt) soit une Martingale à accroissements
stationnaires sous Px. Il s’en suit d’après le résultat de I. S Helland en 1982 (voir [2]),
que la suite de processus X(ε) + εv(1

ε
X(ε)) satifait un principe d’invariance et l’étape clef

dans la preuve du Theorem 1 est de montrer que la partie correcteur εv(1
ε
X(ε)) tends vers

zéro quand ε tend vers zéro. Afin de contrôler le correcteur, et aussi pour montrer son
existence, nous nous appuyons sur l’inégalité de Sobolev, Théorème 2.1.1 du chapitre 2.
Nous construisons à la suite cette inégalité de type-Sobolev, un processus appelé proces-
sus changé de temps noté (X̃t, t ≥ 0) à partir du processus initial (Xt, t ≥ 0) en utilisant
une fonctionnelle additive. La construction de cette fonctionnelle additive utilise évidam-
ment cette inégalité. Nous obtenons un processus (X̃t, t ≥ 0) dont la mesure invariante
est non seulement connue mais satisfait l’inégalité du Théorème 2.1.1. De là , Nous mon-
trons le principe d’invariance pour (X̃t, t ≥ 0) avant de déduire le principe d’invariance
pour le processus (Xt, t ≥ 0) en passant par le theorème ergodique.

En résumé, une inégalité de Sobolev de type Théorème 2.1.1 avec certaines hypothèses
sur la mesure de référence, implique le principe d’invariance.
Tout le travail effectué dans les trois chapitres utilise seulement les hypothèses suivantes:
le potentiel V est périodique et eV + e−V est localement dans L1(Rd; dx), ou dx est la
mesure de Lebesgue.
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Introduction générale

Comme le titre de cette thèse l’indique, nous nous intéressons à l’homogénéisation
des diffusions dans des milieux périodiques.

L’homogénéisation est la théorie qui consiste à remplacer lorsque celà est possible, un
milieu décrit de facon microscopique par une approximation à une échelle macroscopique.
Autrement dit, cela revient à étudier le remplacement d’un milieu fortement hétérogène
par un milieu homogène, mais dont les propriétés caractéristiques sont données par une
moyennisation des hétérogénéités.

Les enjeux sont bien entendu très importants, car de nombreux milieux sont don-
nés par leurs propriétés microscopiques (sous-sol, coeur de réacteur nucléaire, matériaux
composites, polymères,...), et des simulations numériques réalisées à des échelles sont
souvent quasi impossibles. Par exemple, pour l’étude de la diffusion du pétrole dans un
milieux poreux, l’échelle des pores est de l’ordre de millimètre, alors que les réservoires
ont des tailles qui sont de l’ordre du kilomètre. De plus, l’utilisation des maillages adap-
tatifs est souvent nécessaire pour faire face aux brusques variations des hétérogénéités, ce
qui augmente d’autant plus la puissance de calcul et la mémoire requises.

Cette théorie s’est considérablement développée ces dernières années et constitue une
discipline à part entière. Comme précurseur de ces genre de problème nous pouvons citer
Luc Tartar. Nous pouvons trouver dans cette théorie un appercu de la diversité des prob-
lèmes et des modes de résolutions par exemple dans les ouvrages [7] and [17]. C’est
surtout au cours des quatres derniéres décennies que la théorie de l’homogénéisation ou
" averaging"’ des équations aux dérivées partielles a pris forme comme une discipline
mathématique distincte. Cette théorie a d’importantes applications en mécanique des
matériaux composites et des matériaux perforés, de la filtration, des milieux dispersés,
et dans plusieurs autres branches de la physique, de la mécanique et de la technolo-
gie moderne. Le terme " averaging"’ a souvent été associé aux méthodes mécaniques
non-linéaires et aux équations aux derrivées partielles developpées dans les travaux de
Poincaré, Van Der Pol, Kryslov, Bogoliubov, etc. Et c’est vers les annnées 90’ que des
disciplines en mécaniques et en physiques ont stimulé l’apparition du concept du milieu
microscopiquement non-homogéne de type général et ont encouragé un developpement
intensif des methodes de milieu effectif, champs moyennée ( averaged field), etc., qui
sont en accord avec la théorie d’homogénéisation moderne.
Dans les modèles mathématiques des milieux microscopiquement non-homogènes, les di-
verses caractéristiques locales sont souvent décrites par une fonction V (ε−1x), où ε est un
paramètre assez petit. La fonction V peut être périodique, presque périodique ou souvent
une réalisation d’un environnement stationaire; il peut aussi appartenir à d’autres classes
spécifiques de fonctions. Evaluer les caractéristiques d’un milieu non-homogène est un
travail extrémement difficile, puisque les coefficients d’une équation différentielle corre-



6

spondante sont des fonctions qui oscillent très rapidement. Cependant, il est nécessaire
d’appliquer l’analyse asymptotique aux problèmes de milieu non-homogène qui, immé-
diatement correspond au concept d’homogénéisation.
L’homogénéisation, du point de vue analytique peut être expliquée comme suit. Si on note
par L = eV (x)div(e−V (x)∇), un opérateur sous forme divergence sur L2(Rd; e−V (x)dx)
montrer un résultat d’homogénéisation pour la suite Lε = eV (x/ε)div(e−V (x/ε)∇) signi-
fie: pour toute fonction continue et bornée f sur L2(Rd; eV (x

ε
)dx) les solutions uε de

l’équation parabolique

(0.0.1)
{

∂uε(t,x)
∂t

= Lεuε(t, x),
uε(t, 0) = f(x)

converges simplement quand ε tend vers zero, vers u solution de

(0.0.2)
{

∂u(t,x)
∂t

= L̄u(t, x),
u(t, 0) = f(x)

où L̄ est le Laplacien.

Par ailleurs, dans la théorie des probabilités cet opérateur sous forme divergence peut
engendrer un processus de diffusion (Xt, t ≥ 0;Px) sur Rd dès que la fonction V est
assez régulière. Dire que la suite de processus (εXtε−2)ε≥0 converge, quand ε tend vers
zéro, vers un mouvement Brownien sous Px implique un résultat d’homogénéisation pour
la suite Lε.

Donc la question à laquelle nous nous intéressons ici est de savoir le comportement
assymptotique en temps longs de (Xt)t≥0, le processus de diffusion associé à l’opérateur
sous forme divergence
L = eV div(e−V∇) où V est mesurable et périodique. Plus précisement, est ce que la suite
de processus (X.ε)ε≥0 :=

(
εX./ε2

)
ε≥0

converges en loi vers un mouvement Brownien.
Aussi, une autre question est de savoir à quel point le potentiel V influence effectivement
le comportement assymptotique de cette diffusion. Ces questions qui semblent simples à
première vue nécessite beaucoup de travail et d’indulgence pour y répondre très claire-
ment.

Précisons exatement les types de diffusions qui nous intéssent:

(0.0.3) dXt = dBt −∇V (Xt)dt,

où Bt est un mouvement Brownien sur Rd et V une fonction mesurable sur
(
Rd,B(Rd)

)
.

Cette équation modélise le mouvement d’une particule soumis à deux forces: une diffu-
sion représentée par le mouvement Brownien et une force venant du milieu V , représentée
par son gradient. Puisque la solution de cette équation différentielle stochastique est un
processus de Markov, un résultat bien connu dans le théorie des Probabilités, on peut alors
écrire son générateur sous forme divergence, donnée par :

(0.0.4) L = eV (x)div(e−V (x)∇).
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Cependant, deux cas sont généralement à étudier dans ces genres de problème: Les cas
où V est PÉRIODIQUE et le cas où V est une réalisation de l’environnement:ALÉATOIRE.
Dans le dernier cas, l’équation (0.0.3) s’écrit: pour tout environnement ω,

(0.0.5) dXω
t = dBt −∇V (Xt, ω)dt

and

(0.0.6) Lω = eV (x,ω)div(e−V (x,ω)∇)

où l’ensemble des environnements est considéré comme un espace de probabilités (Ω,F,Q)
sur le quel nous faisons agir l’ensemble Rd avec des propriétés d’ergodicité et de station-
arité.

Dans cette thèse, nous nous intéressons uniquement au cas ou le potentiel est péri-
odique: le cas où la fonction V satisfait V (x + z) = V (x) pour tout x ∈ Rd et pour tout
z ∈ Zd. Nous nous rendons compte, même si on ne l’a pas précisé, que l’équation (??) a
un sens que si le potentiel V est suffisamment régulièr. Dans ce cas, l’équivalence (0.0.3)
et (0.0.4) devient évidente, cours de calcul stochastique de master. Donc ce que nous al-
lons voir en premièr lieu dans cette thèse est comment construire un processus de diffusion
à partir de l’opérateur sous forme divergence. La théorie des formes de Dirichlet dévelop-
pée dans [4] permet à partir d’un operateur sous forme divergence construit un processus
de Markov qui lui est associé dès que la forme de Dirichlet est régulière et locale, deux
propriétés que nous verrons dans le chapitre 1. En gros, pour éviter l’hyppothèse de régu-
larité de l’opérateur sous forme divergence, on considère sa forme bilinéaire associée.
Dans le cas qui nous intéresse, la fonction V n’est pas régulière donc nous regardons
l’opérateur ainsi: pour tout f , g dans l’ensemble

H(Rd) =
{
f ∈ L2(Rd; e−V (x)dx) : ∀i = 1, ..., d ∂if ∈ L2(Rd; e−V (x)dx)

}
, où ∂if est la derrivée faible de f dans la direction i. Nous notons par∇f = (∂if)i=1,...,d.

(0.0.7)
∫
Rd
Lf(x)g(x)e−V (x)dx = −

∫
Rd
∇f(x).∇g(x)e−V (x)dx.

∇f(x).∇g(x) signifie le produit scalaire dans Rd de∇f(x) and∇g(x) i.e∇f(x).∇g(x) =∑d
i=1 ∂if(x)∂ig(x).

Nous vérifions que

ξ(f, g) :=

∫
Rd
−Lf(x)g(x)e−V (x)dx,

pour tout f, g ∈ H(Rd) est une forme bilinéaire et donc intuitivement candidat pour être
la forme de Dirichlet associée à L avec une domaine à déterminer.

Il y a deux manière de regarder le problème. Premièrement, nous pouvons consid-
erer l’opérateur sur H(Rd), définir la diffusion associé en utilisant les formes de Dirich-
let et ensuite projetter la diffusion sur le tore unité sachant qu’elle gardera toujours sa
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propritée Markovienne. Oubien, nous pouvons définir la diffusion sur le tore, en con-
sidérant tout au début la forme bilinéaire associée à l’opérateur sous forme divergence
L̇ := eV (ẋ)div(e−V (ẋ)∇), sur

H1(I0; e−V ) :=
{
f ∈ L2(I0; e−V (ẋ)dẋ) : ∀i = 1, ...d ∂if ∈ L2(I0; e−V (ẋ)dẋ)

}
.

Nous faisons par la suite un relèvement sur Rd de la trajectoire obtenue. Ce qui va nous
donner un processus markovien dont la projection sur le tore correspond a celui engendré
par L̇. Ce processus nouvellement défini sur Rd est l’unique processus tel que sa projec-
tion sur le tore est celui associé à L̇.
Pour la première démarche, la difficulté pourrait être d’identifier la forme de Dirichlet
associée au processus sur le tore. La forme de Dirichlet sur le tore constitue un outil de
base, dans notre démarche pour montrer le principe d’invariance de la diffusion sur Rd.
Donc cette démarche nous posera plus de difficultés si nous ne disposons pas de la forme
de Dirichlet du processus sur le tore. La propriété de Feller de la fonction de transition
est restée une véritable question pour nous.
Pour la deuxième démarche, celle que nous optons à priorie, on va définir la diffusion
sur Rd, en relèvant la trajectoire de la diffusion qui est sur le tore, donnée par la forme
bilinéaire sur H1(I0; e−V ).
En gros, on part d’un opérateur sous forme divergence surL2(I0; e−V ), définir sa diffusion
associée sur la tore à l’aide des formes de Dirichlet avant de définir la diffusion sur Rd

par relèvement de la trajectoire. Mais, aussi bien sur tore I0 que sur Rd; il est important
de se rappeler que la diffusion sera définie pour presque tout point de départ. Une autre
question s’intérroge. Peut-on la définir pour tout point de départ? Cette question n’est
pas traitée ici. Cependant, des techniques comme les inégalités de type-Harnack, permet-
traient de montrer la continuité du semigroupe Markovien et donc nous obtenons une loi
markovienne qui peut être définie pour tout point de départ de Rd grace à la propriété de
Feller.

Après que le processus soit bien défini pour presque tout point de départ dans Rd,
l’objectif reste à montrer que la suite de processus (X.ε)ε>0 converges en loi vers un
mouvement Brownien. En d’autres thermes, nous allons montrer la convergence en loi
fini-dimensionnelle de cette suite de processus vers un Gaussien et montrer la tension sur
l’espace des fonctions continues sur [0, T ] à valeurs dans Rd. Pour la preuve, la démarche
est assez connue: construction d’un correcteur et théorème central limite fonctionnel des
Martingales à temps continus.

Beaucoup de résultats sur ce problème ont été connus. Le plus rescent est de celui
Antoine Lejay en 2000, où il ne considère que les hypothèses de mesurabilité et de bor-
nitude sur le potentiel V (hypotèses d’uniforme ellipticité). Si V est bornée et régulière
les travaux de Bensoussian, Lions et Papanicolau, cf [7] en 1978 montrent le principe
d’invariance. La régularité de V est très importante car celà permet d’avoir le proces-
sus sous forme d’une semi-martingale solution de l’équation (0.0.3) et dès lors, le calcul
stochastique d’Ito intervient.



9

La nouveauté de ce travail est qu’au delà de la non régularité de V , nous ne sonsidérons
que eV and e−V localement integrables par rapport à la mesure de Lebesgue sur Rd.

Nous divisons la thèse en trois chapitres. Le premier fera une construction du proces-
sus associé à l’opérateur L en utilisant la théorie de la forme de Dirichlet. Dans le second
chapitre, nous montrons une nouvelle inégalité de type-Sobolev avec des poids différents
en utilisant les techniques d’analyse harmonique (la théorie sur les sensembles de Muck-
enhoupt, les fonctions maximale de Hardy-Littlewood, etc. developpée dans [12]). Ce qui
va nous permettre dans le troisième chapitre de montrer le principe d’invariance (la con-
vergence en loi-fini dimensionnelle et la tension) avec une démarche assez connue dans
ces genres de problème: Construction et convergence du correcteur, principe d’invariance
d’une suite de Martingales à temps continus (cf [2]) et un ingrédient qu’est la notion de
processus changé de temps.
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Chapter 1

On the divergence-form operators

1.1 Introduction
The goal in this chapter is to recall the main results on divergence-form operators and
their associated symmetric Markov processes. This association is possible because the
divergence-form operator defined on L2(I0; e−V (ẋ)dẋ), where I0 = Rd/Zd is the unit
torus of Rd, can be associated with one Dirichlet form defined on L2(I0; e−V (ẋ)dẋ). The
link connecting the Dirichlet form with Markov processes is: the Markovian nature of a
closed symmetric form on the spaceL2(I0; e−V (ẋ)dẋ) is equivalent to the Markovian prop-
erties of the associated semigroup and resolvent on L2(I0; e−V (ẋ)dẋ). The local property
of Dirichlet forms ensures the continuity of the Markov processes’s path. The reader can
be refered to [4]. This book which is an extention of [18] published in 1980 from Kodan-
sha and North Holland, combined with Oshima’s Lecture note ”Lectures on Dirichlet
space” delivred at Universitat Erlangen-Nurenberg in 1988. Most ingredients in [18] are
kept as the skeleton of [4].
Part I of this chapter contains an introductory and comprehensive account of the theory of
(symmetric),Dirichlet forms. An axiomatic extension of the classical Dirichlet integrals
in the direction of Markovian semigroups. In part II, this analytic theory is unified with
the probabilistic potential theory based on symmetric Markov processes and developes
further in conjonction with the stochastic analysis based on the additive functionals.

We recall that in this thesis, I0 means the unit torus of Rd: Rd/Zd, d ≥ 2. Let
us consider the Hilbert space L2(I0; e−V (ẋ)dẋ). As said in the part of Introduction, we
consider the divergence-form operator, defined in (0.0.4)

(1.1.1) L̇ = eV (ẋ)div(e−V (ẋ)∇).

on L2(I0; e−V (ẋ)dẋ). Since V is not assumed to be regular, this definition can seen for-
mally. In other words, we define L̇ = eV (ẋ)div(e−V (ẋ)∇) the operator which satisfies∫

I0

L̇f(ẋ)g(ẋ)e−V (ẋ)dẋ = −
∫
I0

∇g(ẋ)∇f(ẋ)e−V (ẋ)dx

13
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in the space of functions f in L2(I0; e−V (ẋ)dẋ) such that all the weak derivatives denoted
by ∂f

∂i
, i = 1, ...d are also in L2(I0; e−V (ẋ)dẋ). This space will be denoted later, in chapter

3 by H1(I0; e−V ). We assume that V is 1−periodic and e−V +eV isL1(I0; dẋ) the measure
dẋ is the Lebesgue measure on the torus.

Remark 1.1.1. It is also important to recall that the theory which will be given in this
chapter, holds also in L2(X;m) as soon as
(X,B,m) is a locally compact separable metric space.
m is a positive Radon measure on X such that supp[m] = X .
i.e m is a non-negative Borel measure on X finite on compact sets and strictly positive on
non-empty open set (see [4], page 5).

1.2 Basic theory and Dirichlet forms

1.2.1 Basic notions and definitions
We consider the inner product on L2(I0; e−V (ẋ)dẋ):

(u, v) =

∫
I0

u(ẋ)v(ẋ)e−V (ẋ)dẋ.

A non-negative definite symmetric bilinear form densely defined on L2(I0; e−V (ẋ)dẋ) is
henceforth called simply a symmetric form on L2(I0; e−V (ẋ)dẋ). To be precise, ξ is called
a symmetric form on L2(I0; e−V (ẋ)dẋ) if the following conditions are satisfied:
(ξ.1) ξ̇ is defined on D × D with values in R1, D being a dense linear subspace of
L2(I0; e−V (ẋ)dẋ),

(ξ.2) ξ̇(u, v) = ξ̇(v, u), ξ̇(u+ v, w) = ξ̇(u,w) + ξ̇(v, w),
a ξ̇(u, v) = ξ̇(au, v) ,ξ̇(u, u) ≥ 0, u, v, w ∈ D, a ∈ R1.

D is called the domain of ξ̇.
The inner product (, ) on L2(I0; e−V (ẋ)dẋ) is a specific symmetric form defined on the
whole space L2(I0; e−V (ẋ)dẋ). Given a symmetric ξ̇ on L2(I0; e−V (ẋ)dẋ),

ξ̇α(u, v) = ξ̇(u, v) + α(u, v), u, v ∈ D

Dα = D

defines a new symmetric form on D for each α > 0. Note that the space D is then a pre-
Hilbert space with inner product ξ̇α. Furthermore ξ̇α and ξ̇β determine equivalent metric
on D for different α, β > 0.

Definition 1.2.1.
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ξ̇ is said to be closed if D is complete with respect to the metric ξ̇α, for an α > 0. In
other word, a symmetric form ξ̇ is said to be closed if:
(ξ.3) un ∈ D, ξ̇1(un − um, un − um) −→ 0, n,m ↑ ∞,
⇒ ∃u ∈ D, ξ̇1(un − u, un − u) −→ 0, n ↑ ∞.

Definition 1.2.2.

We say that a symmetric form ξ̇ is closable if the following condition is fulfilled:
un ∈ D, ξ(un − um, un − um) −→ 0, n,m ↑ ∞,
(un, un)→ 0, n ↑ ∞ ⇒ ξ(un, un) −→ 0, n ↑ ∞.

Cleary D is then a real Hilbert space with the inner product ξ̇α for each α > 0. Given
two symmetric forms ξ̇1 and ξ̇2, ξ̇2 is said to be an extension of ξ1 if
D1 ⊆ D2 and ξ̇1 = ξ̇2 on D1×D1 where D1 is the domain of ξ̇1. Let us give some
examples to get a closable form.

Remark 1.2.3.

The following condition is sufficient for a symmetric form ξ̇ to be closable:
un ∈ D, (un, un)→ 0, n ↑ ∞ ⇒ ξ̇(un, v)→ 0, n ↑ ∞,∀v ∈ D

Definition 1.2.4.

We say that a symmetric form ξ̇ on L2(I0; e−V (ẋ)dẋ) is Markovian if there exists:

(ξ.4) for each ε > 0, a real function φε(t), t ∈ R such that:
φε(t) = t for all t ∈ [0, 1]
0 ≤ φε(t)− φε(k) ≤ t− k for all t ≥ k
−ε ≤ φε(t) ≤ 1 + ε,

u ∈ Dom(ξ̇)⇒ φε(u) ∈ Dom(ξ̇), ξ̇(φε(u), φε(u)) ≤ ξ̇(u, u).

Definition 1.2.5.

A Dirichlet form ξ̇ on L2(I0; e−V (ẋ)dẋ) is a symmetric form on L2(I0; e−V (ẋ)dẋ)
which is closed and Markovian.

We now state two other conditions which look stronger but simpler than the Marko-
vian condition (ξ.4). Given a symmetric form ξ̇ on L2(I0; e−V (ẋ)dẋ), we say that the unit
contraction ( resp. every normal contraction) operates on ξ̇ if the following (ξ.5) (resp.
(ξ.6) ) is satisfied:

(ξ.5) u ∈ D, v = (0 ∨ u) ∧ 1⇒ v ∈ D, ξ̇(v, v) ≤ ξ̇(u, u).
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(ξ.6) u ∈ D, v is a normal contraction of u⇒ v ∈ D, ξ̇(v, v) ≤ ξ̇(u, u).

Here a function v is called a normal contraction of a function u if:

|v(ẋ)− v(ẏ)| ≤ |u(ẋ)− u(ẏ)| , ∀ẋ, ẏ ∈ I0, |v(ẋ)| ≤ |u(ẋ)| ,∀ẋ ∈ I0.

We call v ∈ L2(I0; e−V (ẋ)dẋ) a normal contraction of u ∈ L2(I0; e−V (ẋ)dẋ) if some Borel
version of v is a normal contraction of some Borel version of u.
Notice the obvious implication: (ξ.5)⇒ (ξ.4)⇒ (ξ.3). The three conditions are equiva-
lent if ξ̇ is closed.
Therefore, it is both practically and theorically important to consider Markovian symmet-
ric forms which are closable but not necessarily closed. They don’t satisfy ξ.4 and ξ.5 in
general.

Definition 1.2.6.

A core of a Dirichlet form ξ̇ is by definition a subset C of D
⋂
C(I0) such that C is

dense in D with ξ̇1-norm and dense in C(I0) with uniform norm, where C(I0) means the
continuous functons on I0. ξ̇ is regular if:
(ξ.6) ξ̇ posseses a core.

Definition 1.2.7.

Let u a continuous function on I0, then supp[u] is the closure of {ẋ ∈ I0 : u(ẋ) 6= 0}.
We say that a symmetric form ξ̇ posseses a local property or simply is local if:
(ξ.7) u, v ∈ D, supp[u] and supp[v] are disjoint compact sets⇒ ξ̇(u, v) = 0.

1.2.2 Closed forms and semigroups
All the following of this chapter, we denote by D(ξ̇) the domain of a symmetric form ξ̇
instead D above.
In this section we consider only the real space L2(I0; e−V (ẋ)dẋ) with the inner product (, )
defined above.
Consider a family {Tt, t > 0} of linear operators on L2(I0; e−V (ẋ)dẋ) satisfying the fol-
lowing conditions:

(Tt.1) each Tt is a symmetric operator with domain D(Tt) = L2(I0; e−V (ẋ)dẋ).

(Tt.2) semigroup property TtTs = Ts+t, t, s > 0.

(Tt.3) contraction property: (Ttu, Ttu) ≤ (u, u), t > 0, u ∈ L2(I0; eV (ẋ)dẋ).
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Then {Tt, t > 0} is called a semigroup (of symmetric operators) on L2(I0; e−V (ẋ)dẋ).
It is called strongly continuous if in addition

(Tt.4) (Ttu− u, Ttu− u) −→ 0, t ↓ 0, u ∈ L2(I0; e−V (ẋ)dẋ).

A resolvent on L2(I0; e−V (ẋ)dẋ) is by definition a family {Gα, α > 0} of linear oper-
ators on L2(I0; eV (ẋ)dẋ) satisfying the following conditions.

(Gα.1) each Gα is a symmetric operator with domain D(Gα) = L2(I0; eV (ẋ)dẋ).

(Gα.2) resolvent equation (α− β)GαGβ = −Gα +Gβ , α, β > 0.

(Gα.3) contraction property: (αGαu, αGαu) ≤ (u, u), α > 0, u ∈ L2(I0; eV (ẋ)dẋ).
If in addition

(Gα.4) (αGαu − u, αGαu − u) −→ 0, α ↑ ∞, u ∈ L2(I0; eV (ẋ)dẋ) is satified, the
resolvent is said to be strongly continuous. The following proposition is well known.

Proposition 1.2.8. Given a strongly continuous semigroup {Tt, t > 0} onL2(I0; e−V (ẋ)dẋ).
The strong limit of the Riemann sum

(1.2.1) Gαu =

∫ ∞
0

e−αt(Ttu)dt

determines a strongly continuous resolvent {Gα, α > 0}. This is called the resolvent of
the given semigroup. The generator A with domain denoted by D(A), of the semigroup
{Tt, t > 0} on L2(I0; e−V (ẋ)dẋ) is defined by{

Au = limt↓0
Ttu−u
t

D(A) =
{
u ∈ L2(I0; e−V (ẋ)dẋ) : Au exists as a strong limit

}
.

Given a strongly continuous resolvent {Gα, α > 0} on L2(I0; e−V (ẋ)dẋ) let us assume
that Gαu = 0. Then Gβu = 0 ∀β > 0, from (Gα.2), and u = limβ−→0 βGβu = 0 from
(Gα.4). Hence Gα is invertible and we can set{

Au = αu−G−1
α u.

D(A) = Gα

(
L2(I0; e−V (ẋ)dẋ)

)
.

This operator is easily seen to be independent of α > 0 and is called the generator of a
given resolvent {Gα, α > 0}.

Lemma 1.2.9. i)The generator of a strongly continuous resolvent is a non positive definite
self-adjoint operator.
ii)The generator of a strongly continuous semigroup on L2(I0; e−V (ẋ)dẋ) coincides with
the generator of the resolvent.
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By this lemma, we are led from semigroups to self adjoint operators. In the following
we make full use of the spectral calculus relevant to self-adjoint operator.

Lemma 1.2.10. Let−A be a non negative definite self-adoint operator onL2(I0; e−V (ẋ)dẋ).
(i)
{
Tt = etA, t > 0

}
and {Gα = (α− A)−1, α > 0} are a strongly continuous semigroup

and strongly continuous resolvent on L2(I0; e−V (ẋ)dẋ) respectively.
(ii) The generator of Tt of (i) coincides with A. The strongly continuous semigroup pos-
sessing A as its generator unique. The same statement holds for the resolvent.

The above two lemmas tell us that there are one to one correspondances among the
family of self-adjoint operator on L2(I0; e−V (ẋ)dẋ), the family of strongly continuous
semigroups, and the family of strongly continuous resolvents.

The following proposition corresponds to the problem (1.3.2) of [4]

Proposition 1.2.11. For strongly resolvent {Gα, α > 0}, the associated semigroup {Tt, t > 0}
is given by:

(1.2.2) Ttu = lim
β→∞

e−tβ
∞∑
n=0

(tβ)n

n!
(βGβ)nu, u ∈ L2(I0; e−V (ẋ)dẋ).

We now state the main theorem in this section.

Theorem 1.2.12. There is one to one correspondance between the family of closed sym-
metric forms ξ̇ on L2(I0; e−V (ẋ)dẋ) and the family of non-positive definite self-adjoint
operator A on L2(I0; e−V (ẋ)dẋ). The correspondance is determined by:

(1.2.3)
{

D(ξ̇) = D(
√
−A)

ξ̇(u, v) = (
√
−Au,

√
−Au).

Proof. We start by recalling some definitions about the spectral theory associated with
the self-adjoint operator.
Definition A symmetric S satisfying D(S) = L2(I0; e−V (ẋ)dẋ), S2 = S is called a pro-
jection operator.
A family {Sλ,−∞ < λ <∞} of projection operators on L2(I0; e−V (ẋ)dẋ) is called a
spectral family if:

SλSµ = Sλ, λ ≤ µ

limλ′→λ Sλ′u = Sλu ∀u ∈ L2(I0; e−V (ẋ)dẋ)

limλ→−∞ Sλu = 0

limλ→∞ Sλu = u ∀u ∈ L2(I0; e−V (ẋ)dẋ)
Definition An operator A defined on L2(I0; e−V (ẋ)dẋ) is said to be closed if its domain is
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closed with respect to L2(I0; eẋdẋ)-norm.
Theorem For a given self-adjoint operator A on L2(I0; e−V (ẋ)dẋ) there exists a unique
spectral family {Eλ,−∞ < λ <∞} such that A =

∫ +∞
−∞ λdEλ. This is called the spec-

tral representation of A.
If A is non-negative, then the corresponding spectral representation satisfies Eλ = 0, λ <
0.

Let us prove Theorem 1.2.12. Since −A is non-negative definite self-adjoint oper-
ator on L2(I0; e−V (ẋ)dẋ) then so is

√
−A. Hence the operator

√
−A is closed, which

means that the symmetric form ξ̇ on L2(I0; e−V (ẋ)dẋ) defined by 1.2.3 is closed. In-
deed, if un ∈ D(

√
−A) satisfies un −→ v,

√
−Aun −→ w ∈ L2(I0; e−V (ẋ)dẋ) then

v ∈ D(
√
−A) and w =

√
−Au which is nothing but the closedness of ξ̇.

Let us observe the following relation. The strongly continuous resolvent {Gα, α > 0}
generated by A satisfies

(1.2.4)
{
Gα

(
L2(I0; e−V (ẋ)dẋ)

)
⊂ D(ξ̇)

ξ̇(Gαu, v) = (u, v), u ∈ L2(I0; e−V (ẋ)dẋ) and v ∈ D(ξ)

This follows easily from the expression

(1.2.5)

{
D(ξ̇) =

{
u ∈ L2(I0; e−V (ẋ)dẋ) :

∫
[0,∞[

λd(Eλu, u) <∞
}

ξ̇(u, v) =
∫

[0,∞[
λd(Eλu, v)

{Eλ} being the spectral family associated with −A.
Conversely, given a symmetric form ξ̇ on L2(I0; e−V (ẋ)dẋ), there exists by the Riesz rep-
resentation theorem a unique element Gαu ∈ D(ξ̇) such that

(1.2.6) ξ̇α(Gαu, v) = (u, v) ∀v ∈ D(ξ̇)

for each α > 0 and u ∈ L2(I0; e−V (ẋ)dẋ). We easily see that the family of {Gα, α > 0}
defined this way is a strongly continuous resolvent. For instance, the contraction property
follows from α(Gαu,Gαu) ≤ ξα(Gαu,Gαu) = (u,Gαu) and Schwarz inequality. To see
the strong continuity, it suffices to show the strong convergence βGβu → u β → ∞
only for u ∈ D(ξ̇) because D(ξ̇) is dense in L2(I0; e−V (ẋ)dẋ) and βGβ is contractive.
For u ∈ D(ξ̇), β(βGβu − u, βGβu − u) ≤ ξ̇β(βGβu − u, βGβu − u) = β2(Gβu, u) −
β(u, u) + ξ̇(u, u) ≤ ξ̇(u, u), which implies the the desired convergence.
Denote by A the generator of this resolvent {Gα, α > 0}. Since −A is non-negative
definite self-adjoint, we may associate with A a closed symmetric form ξ̇

′ by the for-
mula (1.2.3). We claim that ξ̇ = ξ̇

′ . From (1.2.4) Gα

(
L2(I0; e−V (ẋ)dẋ)

)
⊂ D(ξ̇

′
) and

ξ̇
′
α(Gαu,Gαv) = (Gαu, v) which also equals ξα(Gαu,Gαv) by (1.2.6). Thus ξ̇ = ξ̇

′

on Gα

(
L2(I0; e−V (ẋ)dẋ)

)
× Gα

(
L2(I0; e−V (ẋ)dẋ)

)
. But the same equations (1.2.4) and

(1.2.6) imply that Gα(H) is dense in D(ξ̇
′
) and D(ξ̇) proving ξ̇′ = ξ̇.

For a given ξ̇, A satisfying (1.2.3) is unique, because the resolvent {Gα, α > 0} generated
by a such A satisfies (1.2.4) which in turn means that {Gα, α > 0} and A are uniquely
determined by ξ̇.



20 CHAPTER 1. ON THE DIVERGENCE-FORM OPERATORS

In the above proof, we actually showed that the correspondance between ξ̇ and the re-
solvent of A is caracterized by the equation (1.2.4). A restatement of this is the following.

Corollary 1.2.13. The correspondance in Theorem 1.2.12 can be caracterized by

(1.2.7)
{

D(A) ⊂ D(ξ̇)

ξ̇(u, v) = (−Au, v), u ∈ D(A), v ∈ D(ξ̇)

We state two lemmas for later use.

Lemma 1.2.14. Let a closed form ξ̇ and a non-negative definite self-adjoint operator
−A correspond to each other by (1.2.7). Let {Tt, t > 0} and {Gα, α > 0}be the strongly
semigroup and resolvent corresponding to A. Then
(i) Tt

(
L2(I0; e−V (ẋ)dẋ)

)
⊂ D(ξ̇), ξ̇(Ttu, Ttu) ≤ (1/2t) {(u, u)− (Ttu, Ttu)} ≤ ξ̇(u, u), u ∈

D(ξ̇).
(ii) Gα

(
L2(I0; e−V (ẋ)dẋ)

)
⊂ D(ξ̇), ξ̇α(Gαu, v) = (u, v), u ∈ L2(I0; e−V (ẋ)dẋ), v ∈

D(ξ̇).
(iii) The following convergence takes place strongly in D(ξ̇) for any u ∈ D(ξ̇):
Ttu −→ u, t ↓ 0.
(1/t)(G1u− e−tG1Ttu) = (1/t)(G1u− e−tTtG1u) −→ u, t ↓ 0.
αGαu −→ u, α −→∞.

Proof. (ii) has been proved using (1.2.4). The other assertions can be proved in the same
way. Integrating λe−2tλ ≤ (1/2t)(1− e−2tλ) with respect to d(Eλu, u), we get (i).
For wt = (1/t)(G1u− e−tG1Ttu), we have

ξ1(wt−u,wt−u) =

∫
[0,∞)

((1−e−t(λ+1))/t(λ+1)−1)2(λ+1)d(Eλu, u) −→ 0, t ↓ 0, u ∈ D(ξ).

For a semigroup {Tt, t > 0} and a resolvent {Gα, α > 0} on L2(I0; e−V (ẋ)dẋ), we
define the symmetric form ξt and ξβ on L2(I0; e−V (ẋ)dẋ) by

(1.2.8) ξ̇t(u, u) =
1

t
(u− Ttu, v), u, v ∈ L2(I0; e−V (ẋ)dẋ)

(1.2.9) ξ̇β(u, u) = β(u− βGβu, v), u, v ∈ L2(I0; e−V (ẋ)dẋ).

The next lemma justifies our saying that ξ̇t and ξ̇β are approximating forms determined
by Tt and Gβ respectively.
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Lemma 1.2.15. Consider ξ̇,−A, Tt, Gα of lemma 1.2.14 and let ξ̇t and ξ̇β be the approx-
imating forms determined by Tt and Gα respectively.
(i) For u ∈ L2(I0; e−V (ẋ)dẋ), ξ̇t(u, u) is non-decreasing as t ↓ 0 and

(1.2.10)

{
D(ξ) =

{
u ∈ L2(I0; e−V (ẋ)dẋ) : limt→0 ξ̇

t(u, u) <∞
}

ξ̇(u, v) = limt→0 ξ̇
t(u, v), u, v ∈ D(ξ̇).

(ii) For any u ∈ L2(I0; e−V (ẋ)dẋ), ξ̇β(u, u) is non-decreasing as β ↑ ∞ and

(1.2.11)
{

D(ξ̇) =
{
u ∈ L2(I0; e−V (ẋ)dẋ) : limβ↑∞ ξ

β(u, u) <∞
}

ξ̇(u, v) = limβ↑∞ ξ̇
β(u, v), u, v ∈ D(ξ̇).

The lemma can be proved using the spectral family as in the proof of the preceding
lemma. This lemma is very useful in that it provides us with a simple direct description
of ξ in terms of Tt and Gα. In partcular, a direct correspondance between the family
of closed symmetric forms and the family of strongly continuous resolvents is given by
(1.2.11) and (1.2.4).
Such a correspondance can be extended to the relationship between resolvent which are
not necessarily strongly continuous and closed forms whose domains are not necessarily
dense in L2(I0; e−V (ẋ)dẋ). We call ξ a symmetric form on L2(I0e

−V (ẋ)dẋ) in the wide
sense if ξ̇ satisfies all conditions of the symmetric form except for the denseness of D(ξ̇)
in L2(I0; e−V (ẋ)dẋ).

1.2.3 Dirichlet forms and Markovian semigroups
Definition 1.2.16. −→ A linear operator S onL2(I0; e−V (ẋ)dẋ) with D(S) = L2(I0; e−V (ẋ)dẋ)
is called Markovian if 0 ≤ Su ≤ 1 almost everywhere whenever u ∈ L2(I0; e−V (ẋ)dẋ),
0 ≤ u ≤ 1 almost everywhere. We abreviate in the following "almost everywhere" by
a.e. Here almost everywhere is almost everywhere with respect to the measure e−V (ẋ)dẋ
called the reference measure.
−→ We say that S is positivity preserving if Su ≥ 0 a.e whenever u ∈ L2(I0; e−V (ẋ)dẋ)
and u ≥ 0.

Theorem 1.2.17. Let ξ̇ a closed symmetric form on L2(I0; e−V (ẋ)dẋ). Let {Tt, t > 0}
and {Gα, α > 0} be the strongly continuous semigroup and resolvent on L2(I0; e−V (ẋ)dẋ)
which are associated with ξ̇ in the manner of the preceding section. Then the next five con-
ditions are equivalent to each other: (a) Tt is Markovian for each t > 0.

(b) αGα is Markovian for each α > 0.

(c) ξ is Markovian.
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(d) The unit contraction operates on ξ̇.

(e) Every normal contraction operates on ξ̇.

A semigroup (resp. a resolvent) on L2(I0; e−V (ẋ)dẋ) satisfying condition (a) (resp.
(b)) is called a Markovian semigroup (resp.markovian resolvent). In particular, 1.2.17
means the family of all Dirichlet forms on L2(I0; e−V (ẋ)dẋ) and the family of strongly
continuous markovian semigroup onL2(I0; e−V (ẋ)dẋ) stand in one to one correspondance.
The implications (a) =⇒ (b) and (b) =⇒ (a) are evident from proposition 1.2.8 and
proposition 1.2.11 respectively. (e) =⇒ (d) =⇒ (c) is trivial. Hence it suffices to prove
the relations (c) =⇒ (b) and (b) =⇒ (e).

Proof. (c) =⇒ (b). Fix α > 0 and u ∈ L2(I0; e−V (ẋ)dẋ) such that 0 ≤ u ≤ 1 a.e.
Introduce the quadratic form ψ on D(ξ̇) by

(1.2.12) ψ(v) = ξ̇(v, v) + α
(
v − u

α
, v − u

α

)
, v ∈ D(ξ̇).

Then by virtue of (1.2.4), we have

(1.2.13) ψ(Gαu) + ξ̇α(Gαu− v,Gαu− v) = ψ(v), v ∈ D(ξ̇).

In other words, Gαu is the unique element of D(ξ̇) minimizing ψ. Now suppose that ξ̇ is
Markovian, i.e., there exists for each ε a function φε(t) satisfying the Markovian condition
(ξ.4). Put φ̃ε(t) = (1/α)φαε(αt) and w = φ̃ε(Gαu). Then

(1.2.14) w ∈ D(ξ̇), ξ̇(w,w) ≤ ξ̇(Gαu,Gαu).

On the other hand,
∣∣∣φ̃ε(t)− s∣∣∣ ≤ |t− s| for s ∈ [0, 1/α] and t ∈ R and so

|w(ẋ)− u(ẋ)/α| ≤ |Gαu(ẋ)− u(ẋ)/α| a.e. Hence (w − u/α,w − u/α) ≤ (Gαu −
uα,Gαu − uα). Combining this with (1.2.14), we get ψ(w) ≤ ψ(Gαu) which implies
that w = Gαu. In particular −ε ≤ Gαu ≤ 1/α + ε. Since ε is arbitrary, the Markovian
property of αGα is proven.

The implication (b) =⇒ (e) uses the following lemma.

Lemma
(i) S is a positive symmetric linear operator onL2(I0; e−V (ẋ)dẋ), then there exists a unique
positive symmetric Radon measure σ on the product space I0×I0 satisfying the following
property: for any Borel functions u, v ∈ L2(I0; e−V (ẋ)dẋ)

(1.2.15) (u, Sv) =

∫
I0×I0

u(ẋ)v(ẏ)σ(dẋ, dẏ).
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(ii) If in addition S is Markovian,

(1.2.16) σ(I0 × I0) ≤
∫
E

e−V (ẋ)dẋ, ∀E ∈ B(I0).

B(I0) means the set of Borelians.
Proof of lemma
(ii) follows from (i). To prove (i), let us consider a function f(ẋ, ẏ) =

∑l
i=1 ui(ẋ)vi(ẏ), ui, vi ∈

C(I0), on I0 × I0. C(I0) means the set of continuous functions with compact support in
I0. Let

(1.2.17) I(f) =
∑
i=1

l(ui, Svi).

Assuming that f(ẋ, ẏ) ≥ 0, ẋ, ẏ ∈ I0, we show I(f) ≥ 0. Let K = ∪li=1supp[ui]. Since
each ui is uniformly continuous on the compactum K, we can choose, for any ε > 0,
a finite decomposition K =

∑l
k=1Ek, Ek ∈ B(I0), and points ξ̇k ∈ Ek, 1 ≤ k ≤ p

such that supẋ∈K |ui(ẋ)− ũi(ẋ)| < ε where ũi =
∑p

k=1 ui(ξ̇k)1Ek(ẋ), 1 ≤ i ≤ l. Then∣∣∣I(f)−
∑l

i=1(ũi, Svi)
∣∣∣ ≤ ε

∑l
i=1(1K , |Svi|).

On the other hand,
∑l

i=1(ũi, Svi) =
∑p

k=1(1Ek , Sfξ̇k) with fξk(ẏ) = f(ξ̇k, y). The last
sum is non-negative because f ≥ 0 a.e. We have shown I(f) ≥ 0.
By the above observation, we conclude that (1.2.17) defines a positive linear functional
on the space C̃0(I0 × I0) =

{
f(ẋ, ẏ) =

∑l
i=1 ui(ẋ)vi(ẋ) : ui, vi ∈ C(I0), l ≥ 1

}
. The

value I(f) for f ∈ C̃0(I0× I0) does not depend on the manner of the expression of f . So
I can be extended to a positive linear functional on C(I0).
Proof of (b) =⇒ (e). Assume that αGα is Markovian. Then by precedent lemma there is
a positive Radon measure σα on I0 × I0 such that

(1.2.18) α(u,Gαv) =

∫
I0×I0

u(ẋ)v(ẏ)σα(dẋ, dẏ)

for any Borel function u, v ∈ L2(I0, e
−V (ẋ)dẋ). Using this measure, the approximating

form (1.2.9) can be rewritten as

(1.2.19)
ξ̇β(u, u) =

1

2
β

∫
I0×I0

(ũ(ẋ)− ũ(ẏ))2σβ(dẋ, dẏ)

+

∫
I0

ũ(ẋ)2(1− sβ(ẋ))e−V (ẋ)dẋ, u ∈ L2(I0, e
−V (ẋ)dẋ)

where sα(ẏ) = σα(I0, dẏ)/(e−V (ẏ)dẏ) and ũ is any borel modification of u. In view of
precedent lemma,

(1.2.20) 0 ≤ sα ≤ 1 a.e

It is obvious from the expression (1.2.19) and lemma 1.2.15 that every normal contraction
operates on ξ̇.
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We recall that a Dirichlet form which is a closed , and Markovian form. Thus,the proof of
(a) and (e) of theorem 1.2.17 are obvious. We collect below some important properties
of the Dirichlet related to the property (e).

Theorem 1.2.18. A Dirichlet form ξ̇ on L2(I0, e
−V (ẋ)dẋ) possesses the following proper-

ties: (i) u, v ∈ D(ξ̇)⇒ u ∧ v, u ∨ v, u ∧ 1 ∈ D(ξ̇).

(ii) u, v ∈ D(ξ̇)∩L∞(I0, e
−V (ẋ)dẋ)⇒ u.v ∈ D(ξ̇) and

√
ξ̇(u.v, u.v) ≤ ‖u‖∞

√
ξ̇(v, v)+

‖v‖∞
√
ξ̇(u, u)

(iii) u ∈ D(ξ̇), un = ((−n) ∨ u) ∧ n⇒ un ∈ D(ξ̇) and un → u, n→∞ with respect to
ξ̇1-metric.
(iv) u ∈ D(ξ̇), uε = u− ((−ε) ∨ u) ∧ ε⇒ uε ∈ D(ξ̇) and uε → u, ε→ 0 with respect to
ξ1-metric.
(v) un, u ∈ D(ξ̇), un → u, n → ∞ with respect to ξ̇1 metric and φ(t) is real function
such that φ(0) = 0,

∣∣φ(t)− φ(t
′
)
∣∣ ≤ ∣∣t− t′∣∣ , t, t′ ∈ R ⇒ φ(un), φ(u) ∈ D(ξ̇) and

φ(un) → φ(u), n → ∞, weakly with respect to ξ̇1. If in addition, φ(u) = u, then the
convergence is strong with respect to ξ̇1.

Proof. (i) By Theorem 1.2.17 (e), u ∈ D(ξ̇) implies that |u| ∈ D(ξ̇) and u ∧ 1 ∈
D(ξ̇). Then it suffices to note that u ∨ v = 1/2 {(u+ v) + |u− v|} and u ∧ v =
1/2 {(u+ v)− |u− v|}.
(ii) By making use of formula (1.2.19), we can prove the following which is even stronger
than (e):: if u1, u2 ∈ D(ξ̇),w ∈ L2(I0; e−V (ẋ)dẋ) satisfy |w̃(ẋ)− w̃(ẏ)| ≤ |ũ1(ẋ)− ũ1(ẏ)|+
|ũ2(ẋ)− ũ2(ẏ)|, |w̃(ẋ)| ≤ |ũ1(ẋ)− ũ2(ẋ)| , ẋ, ẏ ∈ I0, for some Borel modification ũ1, ũ2

and w̃, then w ∈ D(ξ̇) and
√
ξ̇(w,w) ≤

√
ξ̇(u1, u1) +

√
ξ̇(u2, u2). Assertion (ii) is now

obtained by setting w = u.v, u1 = ‖u‖∞ .v and u2 = ‖v|∞ .u.
(iii) Since un is a normal contraction of u, ξ̇1(un, un) is uniformly bounded by ξ̇1(u, u.
Moreover, ξ̇1(un, G1v) = (un, v) → (u, v) = ξ̇1(u,G1v), n → ∞, v ∈ L2(I0; e−V (ẋ)dẋ)
by formula (1.2.4). SinceG(L

2(I0; e−V (ẋ)dẋ)) is dense in D(ξ̇) with metric ξ̇1, un weakly
converges to u with respect to ξ̇1: ξ̇1(un, w)→ ξ̇1(u,w), n→∞,∀w ∈ D(ξ̇).
But then ξ̇1(un − u, un − u) ≤ 2ξ̇1(u, u)− 2ξ̇1(un, un)→ 0, n→∞.
(iv) The proof is the same as above because uε is a normal contraction of u.
(v) The proof is also similar to the above since φ(un) is a normal contraction of un

1.2.4 Closability and the smallest closed extension
We show that the Markovian nature and the local property of a closable form are preserved
under the operation of taking the smallest closed form.

Theorem 1.2.19. Let (ξ̇,D(ξ̇) a closable form on L2(I0; e−V (ẋ)dẋ). Then, the smallest
closed extension ¯̇ξ is again Markovian and hence a Dirichlet form.
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Proof. Let
{
αĠα, α

}
be a strongly continuous resolvent associated with the closed form

¯̇ξ. By vertue of Theorem 1.2.17, it suffices to show that αĠα is Markovian.
Take u ∈ L2(I0; e−V (ẋ)dẋ) such that 0 ≤ 1 almost everywhere, and consider the quadratic
functional ψ defined by (1.2.12). By virtue of (1.2.13), we can see that αĠαu is the unique
element minimizing ψ on D( ¯̇ξ) and vn ∈ D( ¯̇ξ) is ¯̇ξ1 convergent to Ġαu if and only if
limn→∞ ψ(vn) = ψ(Ġαu).
We can select a such sequence {vn} from D(ξ̇) because D(ξ̇) is ¯̇ξ1 dense in D( ¯̇ξ). For
any ε > 0, let φε(t) be a real function as given in the Markovian condition (ξ.4) above
and put φ̃ε(t) = (1/α)φαε(αt) and wn = φ̃ε(vn). In the same way as in the proof of
the implication (e) ⇒ (b) of Theorem 1.2.17, we have ψ(wn) ≤ ψ(vn). Therefore,
limn→∞ ψ(wn) = ψ(Ġαu) and wn is ¯̇ξ1 convergent to Ġαu. In particular, a subsequence
of wn converges to αĠαu almost everywhere with respect to e−V (ẋ)dx. Since−ε ≤ wn ≤
1/α+α+ ε almost evrywhere with respect to e−V (ẋ)dx, −ε ≤ Ġα ≤ 1/α+α+ ε almost
everywhere with respect to e−V (ẋ)dx for arbitrary ε, we get the Markovian nature of αĠα.

The theory given up here is a general theory of Dirichlet forms, what is true, as
stated at the beginning, for any space L2(X;m) where X is a locally compact sepa-
rable metric space and m a positive Radon measure on X such that supp[m] = X .
In the following, we fix our divergence-form operator L̇ = eV (ẋ)div(e−V (ẋ)∇) on
L2(I0; e−V (ẋ)dẋ) where I0 is the unit torus of Rd, which is a compact metric space.
The hypothesis on V , in this thesis; will be used: V is measurable and eV + e−V ∈
L1(I0; dẋ). The next objective is to construct a continuous and conservative Markov
process

(
Ω,F, Pẋ, Ẋt

)
on I0 associated with L̇ by using the preceeding general the-

ory.

1.3 Construction of continuous Markov process

For the divergence-form operator L̇ defined in (1.1.1), we associate a bilinear form ξ̇,
a family of resolvent

{
Ġα, α > 0

}
and semigroup

{
Ṗt, t > 0

}
in as in Section 1. Our

problem now is to construct a stochastic process from the divergence-form operator using
the theory of Dirichlet forms. All the following definitions we give here, come from [4].

Hunt process A process
(

Ω,F, Ẋt, Pẋ, ẋ ∈ I0

)
is called a Hunt diffusion process if

it satisfies the following conditions:
1)
(

Ω,F, Ẋt, Pẋ, ẋ ∈ I0

)
is strong Markov Process on I0 with respect to the filtration F.

2) Let ∆ be an adjoined isolation point of I0 (recall that I0 is compact). We have:
(i) Ẋ∞(ω) = ∆,∀ω ∈ Ω,
(ii) Ẋt(ω) = ∆,∀t ≥ τ(ω) where τ(ω) = inf

{
t > 0 : Ẋt = ∆

}
(iii) for each t ∈ [0,∞], there exists a map θt from Ω to Ω such that
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Ẋsoθt = Ẋt+s, s > 0
(iv) for almost all ω ∈ Ω, the sample path t 7−→ Ẋt(ω) is continuous Pẋ− a.e on [0, τ(ω)].
If the transition function associated with (Ω,F, Ẋt, Pẋ) is symmetric with respect to
e−V (ẋ)dẋ in the sense of precedent section, we say hat the Hunt process is e−V (ẋ)dẋ−
symmetric.

In the remainder of this section, we examine the case when strongly continuous
Markovian semigroups and resolvents on L2(I0; e−V (ẋ)dẋ) are determined by Markovian
transition functions and resolvent kernels respectively.

Let us consider the measurable space (I0,B(I0)), I0 is the unit torus and B(I0)) the
family of all Borel measurable subsets of I0.

Definition 1.3.1. Some definitions and construction of a strongly continuous semigroup

A non-negative function k(ẋ, A), ẋ ∈ I0, A ∈ B(I0), is called a kernel on (I0,B(I0))
if k(ẋ, .) is a positive measure on B(I0) for each ẋ in I0 and if k(., A) is a measurable
function on I0 for each A ∈ B(I0). If in addition k(ẋ, I0) ≤ 1, ẋ ∈ I0 is imposed, then
k is called a Markovian kernel. We write ku(ẋ) =

∫
I0
u(ẏ)k(ẋ, dẏ) whenever the integral

makes sense.

A family {ṗt, t > 0} of Markovian kernel on (I0,B(I0)) is said to be Markovian tran-
sition function if:

(1.3.1) ṗtṗsu = ṗt+su t, s > 0, u ∈ B(I0) and bounded.

A family
{
Ṙα, α > 0

}
is said to be a Markovian resolvent kernel if

{
αṘα, α > 0

}
is

a family of Markovian kernel on (I0,B(I0)) and :

(1.3.2) Ṙαu− Ṙβu+ (α− β)ṘαṘβu = 0, α, β > 0,

for all measurable and bounded function u. We denote by Bb(I0) the set of all measurable
and bounded functions.
A kernel ṗt on (I0,B(I0)) is called symmetric with respect to e−V (ẋ)dẋ if

(1.3.3) (u(ẋ), ṗtv(ẋ)) = (v, ṗtu(ẋ))

for all non-negative measurable and bounded function u and v. Besides, we know that if
ṗt is a e−V (ẋ)dẋ− symmetric Markovian kernel. Then

(1.3.4)
∫
I0

(ṗt(u(ẋ))2e−V (ẋ)dx ≤
∫
I0

u(ẋ)2e−V (ẋ)dẋ,∀u ∈ Bb ∩ L2(I0; e−V (ẋ)dẋ)

because by Shwarz inequality, (ṗtu(ẋ))2 ≤ ṗt(ẋ).ṗtu(ẋ)2, which leads us to (1.3.4) be-
cause of the symmetry of pt. Equation (1.3.4) means that pt can be extended uniquely to
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a symmetric contractive operator on L2(I0; e−V (ẋ)dẋ). We can say now that a family of
e−V (ẋ)dẋ− symmetric Markovian transition function determines a Markovian semigroup
Ṗt not necessary strongly continuous. Ṗt becomes strongly continuous if limt→0 ṗtu(x) =
u(ẋ)∀u ∈ L2(I0; e−V (ẋ)dẋ) or for all u in a subset of Bb(I0) ∩ L1(I0; e−V (ẋ)dẋ), dense in
L2(I0; e−V (ẋ)dẋ).

Theorem 1.3.2. Theorem 7.2.2 of [4]
Let (ξ,D(ξ)) a regular and local Dirichlet form onL2(I0;m). Then there exists am−symmetric
Hunt diffusion process,

(
Ω,F, Ẋt, Pẋ, ẋ ∈ I0

)
defined for almost all ẋ ∈ I0 and whose

Dirichlet form is given by (ξ,D(ξ))

We consider the divergence form operator L̇ = eV (ẋ)div(e−V (ẋ)∇) onL2(I0, e
−V (ẋ)dẋ)

where I0 is the unit torus of Rd, which is a compact. Let us consider H1(I0, e
−V ) the set

of all functions f ∈ L2(I0; e−V (ẋ)dẋ) with all derivatives ∂if belongs to L2(I0; e−V (ẋ)dẋ).
By Definition of L̇ we have for all f, g ∈ H1(I0, e

−V ),

(1.3.5) ξ̇(f, g) :=

∫
I0

−L̇f(ẋ)g(ẋ)e−V (ẋ)dẋ =

∫
I0

∇f(ẋ).∇g(ẋ)e−V (ẋ)dẋ,

is a symmetric form on L2(I0; e−V (ẋ)dẋ). It is very easy to verify (ξ.1) and (ξ.2).

Proposition 1.3.3. Assume that eV is integrable on I0 with respect to Lebesgue. The
symmectric form ξ̇ on H1(I0; e−V ) is a local Dirichlet form.

Proof. The Markovian property is proved in [9] page 36, lemma 3.2. The local property
is obvious from the definition.
We prove the closable property: let (fn) be a sequence in H1(I0; e−V ) which goes to zero
in L2(I0; e−V (ẋ)dẋ) and such that (fn) is ξ̇-Cauchy.
Since (fn) is ξ̇-Cauchy, we see that ∇fn is Cauchy in L2(I0; e−V (ẋ)dẋ). Therefore ∇fn
converges to some limit h in L2(I0; e−V (ẋ)dẋ).
Since

∫
I0
eV (ẋ)dẋ <∞, then, for all g ∈ C∞(I0), we have

c :=

(∫
I0

(
|g(ẋ)|2 + |∇g(ẋ)|2

)
eV (ẋ)dẋ

) 1
2

<∞,

and, using the Cauchy-Schwarz inequality:∣∣∣∣∫
I0

g(ẋ)∇fn(ẋ)dẋ−
∫
I0

g(ẋ)h(ẋ)dẋ

∣∣∣∣ ≤ ∫
I0

|g(ẋ)| |∇fn(ẋ)− h(ẋ)| e
1
2
V (ẋ)− 1

2
V (ẋ)dẋ

≤ c

(∫
I0

|∇fn(ẋ)− h(ẋ)|2 e−V (ẋ)dẋ

) 1
2

→ 0

when n→∞.
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As (fn) converges to 0 in L2(I0; e−V (ẋ)dẋ), we also have:∣∣∣∣∫
I0

g(ẋ)∇fn(ẋ)dẋ

∣∣∣∣ =

∣∣∣∣∫
I0

∇g(ẋ)fn(ẋ)e
1
2
V (ẋ)e−

1
2
V (ẋ)dẋ

∣∣∣∣
≤ c(

∫
I0

|fn(ẋ)|2 e−V (ẋ)dẋ)
1
2 → 0 when n→∞.

As a consequence of these two facts, we see that
∫
I0
g(ẋ)h(ẋ)dẋ = 0 for all g ∈

C∞(I0). Therefore h = 0 almost everywhere and

ξ̇(fn, fn)→ 0 when n→∞.

Thus we have proved that ξ̇ is closable.

Let us set H1(I0; e−V ) := C∞(I0)
ξ̇1 be the completion of C∞(I0) with respect to

the norm ξ̇1. Since C∞(I0) is a subset of H1(I0; e−V ) then ξ̇ is also a closable form on
C∞(I0). Thus, (ξ̇, H1(I0; e−V )) is a regular and local Dirichlet form because by defini-
tion of core in (1.2.6), C∞(I0) is obviously a core of ξ̇.

Let us consider the e−V (ẋ)dẋ−symmetric Hunt diffusion process
(

Ω,F, Ẋt, Pẋ, ẋ ∈ I0

)
on (I0,B(I0)) associated with the regular and local Dirichlet form (ξ̇, H1(I0; e−V )). The
Hunt diffusion process is also a Markov process, then the transition function defined by
ṗt(x,E) = Pẋ(Ẋt ∈ E), ẋ ∈ I0, E ∈ B(I0) is a Markovian symmetric transition func-
tion, and the resolvent Markovian kernel of the process is Ṙα(ẋ, E) =

∫
I0
e−αtṗt(ẋ, E)dt.

They determine a strongly continuous semigroup Ṗt and resolvent Ġα onL2(I0; e−V (ẋ)dẋ).

In the next paragraph, we prove easily that our diffusion process
(

Ω,F, Ẋt, Pẋ, ẋ ∈ I0

)
is conservative. In other words, we prove that the death time defined by:

τ(ω) = inf
{
t > 0 : Ẋt(ω) = ∆

}
where ∆ is an adjoined isolation point of I0 satisfies:

Pẋ(τ(ω) < +∞) = 0.

1.3.1 Conservativeness of the diffusion process
(

Ω,F, Ẋt, Pẋ, ẋ ∈ I0
)

The proof of this property uses the equivalence beetwen conservativeness of Dirichlet
form and conservativeness of the associated process.
We consider our regular and local Dirichlet form (ξ̇, H1(I0; e−V )) associated with the dif-
fusion process

(
Ω,F, Ẋt, Pẋ, ẋ ∈ I0

)
.

Definition
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We say that the Dirichlet form is conservative if the associated semigroup Ṗt onL2(I0; e−V (ẋ)dẋ)
satisfies:

(1.3.6) Ṗt1(ẋ) = 1, for almost all ẋ ∈ I0,∀t > 0.

The following Theorem is proved in Problem 4.5.1 of [4].

Theorem 1.3.4. (ξ̇, H1(I0; e−V )) is conservative ⇔ Pẋ(τ < ∞) = 0 for almost all
ẋ ∈ I0.

By this Theorem, we deduce:

Proposition 1.3.5. The diffusion process
(

Ω,F, Ẋt, Pẋ, ẋ ∈ I0

)
is conservative.

Proof. proving the conservativeness property for
(

Ω,F, Ẋt, Pẋ, ẋ ∈ I0

)
is not very diffi-

cult, because of compactness property of the torus. Indeed, since the function 1 is in the
domain of ξ̇ we have:

∀f ∈ H1(I0; e−V ) ξ̇(f, 1) = 0.

Taking f = ˙Pt1 we get:

0 = −
∫
I0

L̇Pt1(ẋ)1(ẋ)e−V (ẋ)dẋ

= −
∫
I0

∂

∂t
Pt1(ẋ)1(ẋ)e−V (ẋ)dẋ

= − ∂

∂t

∫
I0

Pt1(ẋ)1(ẋ)e−V (ẋ)dẋ.

This implies that
∫
I0
Pt1(ẋ)1(ẋ)e−V (ẋ)dẋ = c < ∞,∀t ≥ 0. Thus c =

∫
I0
e−V (ẋ)dẋ by

taking t = 0. We have now∫
I0
Ṗt1(ẋ)e−V (ẋ)dẋ =

∫
I0
e−V (ẋ)dẋ .

By consequence, Ṗt1 = 1 a.e,∀t > 0



30 CHAPTER 1. ON THE DIVERGENCE-FORM OPERATORS

Therefore we will give for readers, in chapter Appendix; a sufficient condition to prove
the conservativeness of diffusions processes on

(
Rd,B(Rd)

)
or in general on (X,B(X),m)

satisfying the condition in Remark 1.1.1. For what, we refer to the last part of chapter 5
of [4] entitled "Forward and backward martingale additive functionals": see part 1 of Ap-
pendix.

We return our diffusion on the torus
(

Ω,F, Ẋt, Pẋ, ẋ ∈ I0

)
whose Dirichlet form is

(ξ̇, H1(I0; e−V )). The space (ξ̇, H1(I0; e−V )) is called a Dirichlet space associated with(
Ω,F, Ẋt, Pẋ, ẋ ∈ I0

)
. In the next section, we talk about the extended Dirichlet spaces

and their properties. More theory can be found in section 1.5 of [4].

1.3.2 The extended Dirichlet space

We consider (ξ̇, H1(I0; e−V )) the Dirichlet from associated to
(

Ω,F, Ẋt, Pẋ, ẋ ∈ I0

)
as

a closed symmetric and Markovian form on L2(I0; e−V (ẋ)dẋ). We already know that
H1(I0; e−V ) is a Hilbert space with respect the norm ξ̇α) for each α > 0 , in particular if
α = 1. But H1(I0; e−V ) is not a pre-Hilbert space with respect to ξ̇ in general. However
ξ̇ is not a norm.
We define the extended domain denoted here byH1

e (I0; e−V ): this is the set of measurable
functions u on I0, such that |f | < ∞ a.e and there exists a ξ̇-Cauchy sequence (un) in
H1(I0; e−V ) such that limn→∞ un = u a.e.
We call un above the approximating sequence for u ∈ H1(I0; e−V ). H1

e (I0; e−V ) is a
linear space containing H1(I0; e−V ).
In general, the Dirichlet space can be extended to the function space H1

e (I0; e−V ) on
which ξ̇ can be well defined.

It will be seen in chapter 4 (Appendix) that in general a extended Dirichlet space
(ξ,De) is a Hilbert space if and only if (ξ,D) is transient. The notion of transient will be
defined on chapter 4.

Let’s see the following proposition.

Proposition 1.3.6. Let (ξ̇, H1(I0; e−V )) be a Dirichlet space on L2(I0; e−V (ẋ)dẋ).
(i) For any u ∈ H1

e (I0; e−V ) and its approximating sequence {un}, the limit

ξ̇(u, u) = lim
n→∞

ξ̇(un, un) exists

and does not depend on the approximating sequence {un} for u.
(ii) Extend the expression (1.2.19) of the approximating form associated with (ξ̇, H1(I0; e−V ))
to any Borel function u ∈ I0:

ξβ(u, u) =
β

2

∫
I0×I0

(u(ẋ)− u(ẏ))2σβ(dẋ, dẏ) + β

∫
I0

u(ẋ)2(1− sβ(ẋ))e−V (ẋ)dẋ.
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If u ∈ H1(I0; e−V ) then for all Borel modification ũ of u, ξ̇β(ũ, ũ) increases to ξ̇(u, u) as
β →∞.
(iii) H1(I0; e−V ) = H1

e (I0; e−V ) ∩ L2(I0; e−V (ẋ)dẋ).

Proof. Let u ∈ H1
e (I0; e−V ) and {un} its approximating sequence. The limit in (i) exists

by the triangle inequality.
We may assume that some Borel modifications ũn and ũ satisfy limn→∞ ũn(ẋ) = ũ(ẋ)
for any ẋ ∈ I0. Then by Fatou’s lemma

ξ̇β(ũn − ũ, ũn − ũ) ≤ lim inf
m→∞

ξ̇β(ũn − ũm, ũn − ũm)

≤ lim inf
m→∞

ξ̇β(un − um, un − um)

which can be may arbitrary small for sufficiently large n. In particular limn→∞ ξ̇
β(ũn, ũn) =

ξ̇(ũ, ũ). Hence ξ̇β(ũ, ũ) is non-decreasing with β.
Furthermore, the inequality∣∣∣ξ̇(u, u)1/2 − ξ̇(ũ, ũ)1/2

∣∣∣ ≤ ∣∣∣ξ̇(u, u)1/2 − ξ̇(un, un)1/2
∣∣∣+
∣∣∣ξ̇(un, un)− ξ̇β(ũn, ũn)

∣∣∣
+ ξ̇β(ũn − ũ, ũn − ũ)1/2

implies that limβ→∞ ξ̇
β(ũ, ũ) = ξ̇(u, u). We have shown (ii). In particular, if u = 0 a.e,

then ξ̇β(ũ, ũ) = 0 and ξ̇(u, u) = 0. This means the second statement in (i).
(iii) is an immediate consequence of (ii).

By Proposition 1.3.6, ξ̇ can be extended toH1
e (I0; e−V ) as a non-negative definite sym-

metric bilinear form. We call (ξ̇, H1
e (I0; e−V )) the extended Dirichlet space of (ξ̇, H1(I0; e−V )).

As we have seen in Lemma 1.2.14, the Markovian semigroup
{
Ṗt, t > 0

}
onL2(I0; e−V (ẋ)dẋ)

has the properties

Ṗt(H
1(I0; e−V )) ⊂ H1(I0; e−V ), ξ̇(Ṗtu, Ṗtu) ≤ ξ̇(u, u)

lim
t→0

ξ̇(Ṗtu− u, Ṗtu− u) = 0

This two properties can be extended to the extended Dirichlet space (ξ̇, H1
e (I0; e−V )):

Lemma 1.3.7. Ṗt can be extended to a linear operator on (ξ̇, H1
e (I0; e−V )) such that

u− Ṗtu ∈ H1(I0; e−V ) for u ∈ H1
e (I0; e−V ) and

(1.3.7) ξ̇(Ṗtu, Ṗtu) ≤ ξ̇(u, u) u ∈ H1
e (I0; e−V ); lim

t→0
ξ̇(Ṗtu− u, Ṗtu− u) = 0.
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Proof. For u ∈ H1
e (I0; e−V ) take {un} the approximating sequence for it. (1.3.7) applied

to {un} yields that
{
Ṗtun

}
is ξ̇-Cauchy. We recall that

(u, v) =

∫
I0

u(ẋ)v(ẋ)e−V (ẋ)dx for all u, v ∈ L2(I0; e−V (ẋ)dẋ).

Since (Ṗtw, Ṗtw) ≤ (w,w) for w ∈ L2(I0; e−V (ẋ)dẋ), we get

1

t

∥∥∥(un − um)− Ṗt(un − um)
∥∥∥
L2(I0;e−V (ẋ)dẋ)

=
1

t
((un − um)− Ṗt(un − um), un − um)

− 1

t
((un − um)− Ṗt(un − um), Ṗt(un − um))

≤ 1

t
((un − um)− Ṗt(un − um), un − um)

≤ ξ̇(un − um, un − um).

Consequently,
{
un − Ṗtun

}
is Cauchy in L2(I0; e−V (ẋ)dẋ). In particular, a subse-

quence
{
Ṗtunk

}
converges a.e to a function v, which can be easily to be independant of

the choice of the approximating sequence {un}. We let Ṗtu = v. Then Ṗtu ∈ H1
e (I0; e−V )

and Ṗtunk is its approximating sequence and u−Ṗtu ∈ H1
e (I0; e−V )∩L2(I0; e−V (ẋ)dẋ) =

H1(I0; e−V ). Clearly (1.3.7) is extended to u ∈ H1
e (I0; e−V ). The last assertion follows

from

ξ̇(Ṗtu− u, Ṗtu− u) ≤ ξ̇(Ṗtun − un, Ṗtun − un) + ξ̇(Ṗt(u− un), Ṗt(u− un))

+ξ̇(u− un, u− un)

≤ ξ̇(Ṗtun − un, Ṗtun − un) + 2ξ̇(u− un)

if we let first t→ 0 and then n→∞.

1.4 Some results about Potential theory for Dirichlet forms
We already know from definition 1.2.5 that a Dirichlet form is regular if it admits a core
. This section is devoted to a presentation of potential theory for regaular Dirichlet form
mainly due to Beurling and Deny.
Fundamental notions in the potential theory: definition of capacity, sets of capacity zero,
quasi continuity of functions, equilibrium potentials etc. will be developped in this part.
We will give also theirs interpretations in probability.
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1.4.1 Capacity and notion of quasi-continuity
Denote by O the set of all open subsets of I0. For A ∈ O we define

(1.4.1) LA =
{
u ∈ H1(I0; e−V ) : u ≥ 1 a.e. on A

}

(1.4.2) Cap(A) =

{
inf
u∈LA

ξ̇1(u, u), LA 6= ∅

∞, LA = ∅

and for any set A ⊂ I0 we let

(1.4.3) Cap(A) = inf
B∈O,A⊂B

Cap(B)

We call this quantity, the 1−capacity ofA or simply the capacity ofA. We can simillarly
defined the α− capacity for all α > 0 by replacing ξ̇1 in (1.4.2) by ξ̇α.
Let

O0 = {A ∈ O;LA 6= ∅} .

Proposition 1.4.1. (i) For each A ∈ O0, there exists a unique element eA ∈ LA such that

(1.4.4) ξ̇1(eA, eA) = Cap(A).

Proof. Clarly LA is a convex closed subset of (ξ̇, H1(I0; e−V )). By making use of the
equality

(1.4.5)
ξ̇1(

u− v
2

,
u− v

2
) + ξ̇1(

u+ v

2
,
u+ v

2
)

=
1

2
ξ̇(u, u) +

1

2
ξ(v, v)

we can see that all minimizing sequence (limn→∞ ξ1(un, un) = Cap(A)) is ξ1 convergent
to an element eA ∈ LA satisfying (1.4.4) and that such an eA is unique.

This proposition is the lemma 2.1.1 of chapter 2 of [4]. In this same lemma also we
can found the following remark

Remark 1.4.2. (i) 0 ≤ eA ≤ 1 a.e and eA = 1 a.e on A.
(ii) eA is a unique element of H1(I0; e−V ) satisfying eA = 1 a.e on A and ξ1(eA, v) ≥ 0,
∀v ∈ H1(I0; e−V ), v ≥ 0 a.e on A.
(iii) v ∈ H1(I0; e−V ), v = 1 a.e on A⇒ ξ1(eA, v) = Cap(A).
(iv) A,B ∈ O0, A ⊂ B ⇒ eA ≤ eB.

We recall the following properties
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Proposition 1.4.3. The following properties are obvious. (cf lemma 2.1.2 of [4]).
(i) A,B ∈ O, A ⊂ B ⇒ Cap(A) ≤ Cap(B).
(ii) Cap(A ∪B) + Cap(A ∩B) ≤ Cap(A) + Cap(B), A,B ∈ O.
(iii) An ∈ O, An ↑⇒ Cap(

⋃
nAn) = supnCap(An).

(iv) An ∈ O, An ↓⇒ Cap(
⋂
nAn) = infnCap(An).

It holds also that

(1.4.6) Cap(A) = sup
Kcompact,K⊂A

Cap(K).

The present notion of capacity allows us to deduce that all set A of zero capacity is zero
e−V (ẋ)dẋ measure and also zero Lebesgue measure. Indeed, the inequality

∫
A
e−V (ẋ)dẋ ≤

Cap(A,A) for all A ∈ O follows from definition (1.4.2).
Let’s recall some definitions

Definition 1.4.4. (quasi-everywhere) Let A a subset of I0. A statement depending on
ẋ ∈ A is said to be hold quasi − everywhere, in abreviation q.e if there exists a subset
N ⊂ A of zero capacity and such that the statement is true for every ẋ ∈ A−N .

A property "q.e" implies a property "a.e" (almost everywhere) with respect to dµ for
all measure µ on I0 charging no set of zero capacity. Then we get almost everywhere with
respect to Lebesgue measure. In this Thesis , "a.e" means almost everywhere with respect
to Lebesgue measure.

Definition 1.4.5. For some measure µ finite on I0, we denote

Pµ(.) =

∫
I0

Pẋ(.)dµ(ẋ).

Nearly Borel set
A subset A of I0 is said a nearly Borel set if there exists two Borelian sets A1 and A2

such that A1 ⊂ A ⊂ A2 and Pλ(∃t ≥ 0, Ẋt ∈ A2 − A1) = 0, where λ means Lebesgue
measure on I0.
Polar set
A subset A of I0 is said polar if it is contained in nearly Borel set A1 such that for almost
all ẋ ∈ I0 Pẋ(σA1 <∞) = 0, where σA1 = inf

{
t > 0 : Ẋt ∈ A1

}
.

Exceptional set
A subset A of I0 is said exceptional if it is contained in a nearly Borel set A1 such that for
almost all ẋ ∈ I0 Pλ(σA1 <∞) = 0, where λ is the Lebesgue measure.
Consequence: every Polar set is exceptional. Every exceptional set can be including in
a properly exceptional set: a subset M of I0 with zero Lebesgue measure and such that
I0 −M satisfies

Pẋ[
{
ω ∈ Ω : ∃t ≥ 0, Ẋt(ω) ∈ I0 −M

}
] = 1 for almost all ẋ ∈ I0.
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We deduce easily the following equivalence :

Polar ⇐⇒ Exceptional ⇐⇒ Properly exceptional .

We see easily also that any exceptional set is negligible set with respect to dµ, for all µ
absolutly continuous with respect to Lebesque measure. Indeed, for a Borel exceptional
set N we have ṗt(ẋ, N) = 0 µ− a.e ẋ ∈ I0 and consequently µ(N) = 0 because 0 =
limt→0

∫
I0
ṗt(ẋ, N)dµ(ẋ) = limt→0

∫
N
Ṗt1(ẋ)dµ(ẋ) ≥ µ(N).

Remark 1.4.6. On I0 a subset of zero capacity is a negligible subset with respect to µ for
all µ strictly positive and integrable measure.

Definition 1.4.7. (quasi-continuity) Let u an extended real value function defined q.e on
I0. We call u quasi − continuous if there exists for any ε > 0 an open set G ⊂ I0 such
that Cap(G) < ε and u|I0−G is finite and continuous. Here u|I0−G denotes the restriction
of u to I0 −G.

A sequence {Fk}of closed sets such that Fk ↑ and cap(I0 − Fk) ↓ 0, k ↑ ∞, is called
a nest on I0.

Definition 1.4.8. Given two functions u and v, v is said to be a quasi-continuous modifi-
cation of u if v is quasi-continuous and v = u a.e. In this case we designate v by ũ.

We now state theorem based on property of regularity of ξ̇.
We can see in theorem 2.1.3 of [4] that each element in the Dirichlet space (ξ̇, H1(I0; e−V ))
admits a quasi-continuous modification (with respect to Cap). Let us turn back to a general
extended Dirichlet space (ξ̇, H1(I0; e−V )) on L2(I0; e−V (ẋ)dẋ) and consider its extended
Dirichlet space (ξ̇, H1

e (I0)). The proof is the same as in Theorem 2.1.3 of [4]

Proposition 1.4.9. Any u ∈ H1
e (I0; e−V ), the extended domain of the Dirichlet form ξ̇;

admits a quasi-continuous modification ũ.

Proof. First we prove the theorem with u ∈ H1(I0; e−V ). We establish the inequality:

(1.4.7) Cap ({ẋ ∈ I0 : |u(ẋ)| > λ}) ≤ 1

λ2
.

Since G = {ẋ ∈ I0 : |u(ẋ)| > λ} ∈ O and |u| /λ ∈ LG for any λ > 0 and u ∈
H1(I0; e−V ), we have Cap(G) ≤ (1/λ2)ξ̇1(|u| , |u|) ≤ (1/λ2)ξ̇1(u, u), proving (1.4.7).

In view of the regularity of ξ̇, any u ∈ H1(I0, e
−V ) can be approximated with respect

to the ξ̇1-metric by some un ∈ H1(I0, e
−V ) ∩ C(I0). We may assume ξ̇1(unk+1

− unk) <
2−3k by selecting a subsequence if necessary. Then Cap(Gk) ≤ 2−k by (1.4.7), where
Gk =

{
ẋ ∈ I0 : |uk+1(ẋ)− uk(ẋ)| > 2−k

}
. Let Fk =

⋂∞
l=kG

c
l . Cleary {Fk} is a nesk

and |um(ẋ)− un(ẋ)| ≤
∑∞

v=N+1 |uv+1(ẋ)− uv(ẋ)| ≤ 2−N for any ẋ ∈ Fk and any
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n,m > N ≥ k. This means, for each k, un|Fk are uniformly convergent as n → ∞. Let
ũ(ẋ) = limn→∞ un(ẋ), ẋ ∈

⋃∞
k=1 Fk; then ũ ∈ C({Fk}) and u = ũ a.e.

The consequence of quasi-continuous functions is

Proposition 1.4.10. Let f be a quasi-continuous function defined on I0. Let
(

Ω, Ẋt,Ft, Pẋ

}
be a continuous and conservative Markov process on I0. Then

t −→ f(Ẋt)

is continuous in [0,+∞[ Pẋ−almost surely, for almost all ẋ ∈ I0.

1.4.2 Mesures of finite energy integrals
A Radon measure µ on I0 is said to be of finite energy integral if

(1.4.8)
∫
I0

|v(ẋ)|µ(dẋ) ≤ C

√
ξ̇1(v, v) ∀v ∈ H1(I0; e−V ) ∩ C(I0),

for some positive constante C. A positive Radon measure µ on I0 is of finite energy
integral if and only if there exists for each α > 0 a unique function Uαµ ∈ H1(I0; e−V )
such that

(1.4.9) ξα(Uαµ, v) =

∫
I0

|v(ẋ)|µ(dẋ), ∀v ∈ H1(I0; e−V ) ∩ C(I0).

We call Uαµ an α−potential. Let S0 be a set of measures of finite energy integral, and
denote by S00 the subset of S0 such that

‖U1µ‖∞ <∞.
Lemma 1.4.11. Let µ be in S0. Then µ charges no set of zero capacity.

Proof. It suffices to prove for µ ∈ S0

(1.4.10) µ(A) ≤
√
ξ̇1(U1µ, U1µ).

√
Cap(A), ∀A ∈ O0.

Let gn = n(U1µ−nĠn+1(U1µ)). This follows from Lemma 2.2.2 of [4] gn.e−V converges
vaguely to µ and Ġ1gn converges ξ̇1−weakly to U1µ. We get then,

µ(A) ≤ lim
n→∞

∫
A

gn(ẋ)e−V (ẋ)dẋ

= lim
n→∞

∫
A

eA(ẋ)gn(ẋ)e−V (ẋ)dẋ

≤ lim
n→∞

∫
I0

eA(ẋ)gn(ẋ)e−V (ẋ)dẋ

= lim
n→∞

ξ̇1(Ġ1gn, eA) = ξ̇1(U1µ, eA)

≤
√
ξ̇1(U1µ, U1µ)

√
ξ̇1(eA, eA)
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which equals the right hand side of (1.4.10) in view of (1.4.4).

Definition 1.4.12. A positive Radon measure µ is said smooth if:
(S1) µ charges no set of zero capacity.
(S2) There exists a sequence (Fn)n∈N of closed sets such that:

µ(Fn) <∞ and lim
n→∞

Cap(I0 − Fn)) = 0.

Such a sequence is called nest associated with the smooth measure µ.
Since smooth measures contain all positive Radon measures charging no set of zero ca-
pacity, then it contains S0 in view of lemma 1.4.11.
Let
{
Ṗt, t > 0

}
be the Markovian semigroup on L2(I0; e−V (ẋ)dẋ) associated with Dirich-

let form ξ̇. A function u ∈ L2(I0; e−V (ẋ)dẋ) is called α−excessif (with respect to{
Ṗt, t > 0

}
) if

(1.4.11) u ≥ 0, eαtṖtu ≤ u a.e, ∀t > 0.

Proposition 1.4.13. For all u ∈ H1(I0; e−V ) the following conditions are equivalent to
each other. (i) u is a α−potential. (ii) u is a α−excessif.

Proof. The see this equivalence, refer to Theorem 2.2.1 and Lemma 2.2.1 of [4].

Let A be a subset of O, let σA be

σA = inf
{
t > 0 : Ẋt ∈ A

}
.

σA is obviously a stopping time with respect to F. The link beetwen the capacity theory
and the Markov process is: if we defined eA(ẋ) := Eẋ[e

−σA ] a.e, we have

(1.4.12) ξ̇1(eA, eA) = Cap(A).

Remark 1.4.14. α-capacity

We study reduced functions of potentials. Fixing α > 0, we consider an α−potential
f ∈ H1(I0; e−V ) and an arbitrary set B ⊂ I0. We put

(1.4.13) Lf,B =
{
w ∈ H1(I0; e−V ) : w̃ ≥ f̃ q.e on B

}
.

In the same way as in the proof of Proposition 1.4.1, we see that Lf,B admits a unique
element, say fB ∈ Lf,B, minimizing ξ̇α(w,w) on Lf,B. The function fB is called the
α−reduced function of f on B. Cleary by Remark 1.4.2 (ii),

(1.4.14) ξ̇α(fB, v) ≥ 0 ∀v ∈ H1(I0; e−V ), ṽ ≥ 0 q.e on B,
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where ṽ is the quasi-continuous modification of v.
We observe the following assertion: The α−reduced function fB on B of an α−potential
f ∈ H1(I0; e−V ) is an unique element satisfying (1.4.14).
If we let eαA(ẋ) := Eẋ(e

−ασA), then (1.4.12) can be rewritten by

(1.4.15) ξ̇α(eαA, e
α
A) = inf

w∈LA
ξ̇α(w,w)

as in (1.4.2).

1.5 Stochastic analysis by additive functionals

We assume troughout this part that we are given a symmetric continuous Markov process
on the unit torus of Rd, d ≥ 2, denoted by I0. The continuous Markov Process is denoted
by
(

Ω,F, Ẋt, Pẋ, ẋ ∈ I0

)
defined for almost all starting point ẋ ∈ I0 and whose Dirich-

let form (ξ̇, H1(I0; e−V )) is regular and local. And by vertue of Theorem 1.4.9, every
function u in the extended domain denoted here by H1

e (I0; e−V ) has a quasi-continuous
modification. Throughout this section every function in the space H1

e (I0; e−V ) is consid-
ered to be quasi-continuous already.
We will talk about additive functionals, energy of continuous additive functional and in
particular those that are zero energy. We will see that the AF u(Ẋt) − u(Ẋ0) generated
by u ∈ H1

e (I0; e−V ) admits a unique decomposition

u(Ẋt)− u(Ẋ0) = Mt +Nt

where Mt is Martingale additive functonal with finite energy and Nt a continuous addi-
tive functional (CAF) of zero energy. This decomposition will be more discussed in Part
(1.5.2) of this section.

1.5.1 PCAF and smooth measures

Let (Ω,F, Ẋt, Pẋ) be a stochastic process on I0, Let a subset T ⊂ [0;∞]. We define
F0
∞ = σ

{
Ẋs, s ∈ T, s <∞

}
. For all Λ ∈ F0

∞ and µ a finite measure on I0 we define

Pµ(Λ) =

∫
I0

Pẋ(Λ)dµ(ẋ)

a probability measure Pµ on (Ω,F0
∞). We denote by Fµ∞ the completion of F0

∞ with re-
spect to Pµ. We also set F∞ =

⋂
µ:µ(I0)<∞ Fµ∞.

Definition 1.5.1.
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An extended real valued function At(ω), t ≥ 0, ω ∈ Ω is called and additive func-
tional (AF in abreviation) if it satisfies the following conditions:

(A.1) At is Ft-measurable for each t ≥ 0.

(A.2 There exists Λ ∈ F∞ with Pẋ(Λ) = 1, for almost all ẋ ∈ I0, θtΛ ⊂ Λ,∀t >
0, and, for each ω ∈ Λ, A.(ω) is right continuous and has the left limit on [0,∞], A0(ω) =
0, |At(ω)| <∞,∀t <∞ and

At(ω) = As(ω) + At(θsω),∀t, s ≥ 0.

The set Λ in the above is called a defining set for A. An additive functional is said to be
finite (respec. continuous) if |At(ω)| < ∞,∀t ∈ [0,∞] (respec. At(ω) is continuous in
t ∈ [0, ,∞]). A [0,∞]-valued continuous is called a positive continuous additive funtional
(PCAF in abreviation). We note that a CAF is not necessarily defined for all starting point
of the process but for almost all starting point. In case where it is defined for all starting
point, we say an AF in strict sense. But this case doesn’t interest us here.

Example 1.5.2. Let f a quasi-continuous function in the domain of the regular and local
Dirichlet form ξ̇. Let

(
Ω,F, Ẋt, Pẋ, ẋ ∈ I0

)
a continuous Markov process associated.

Then f(Ẋt)− f(Ẋ0) is CAF.

Example 1.5.3. Let f ∈ L1(I0; e−V (ẋ)dẋ) and
(

Ω,F, Ẋt, Pẋ, ẋ ∈ I0

)
a continuous Markov

process. Then At =
∫ t

0
f(Ẋs)ds is CAF;

Theorem 1.5.4. For any µ ∈ S0, there exists a finite PCAF A such that Eẋ(
∫∞

0
e−tdAt)

is a quasi-continuous version of U1µ. And more this association is unique.

Proof. This proof of the existence can be found in [4] and coincide with Theorem 5.1.1
of [4], the uniqueness is the Theorem 5.1.2 of [4].

This association can be enlarged on S00 also. The Theorem 1.5.4 allows us to car-
acterise any PCAF by a measure of finite energy integral. A version of this Theorem
and which is more general is, for all µ ∈ S0, for all bounded measurable function,
Eẋ(
∫∞

0
e−αtf(Ẋt)dAt) is quasi-continuous version of Uα(f.µ). The following Theorem

correspond to Theorem 0.8 of [8]
Before formulating the main assertion of this section, we need the definition of the smooth
measure given above in definition 1.4.12

Proposition 1.5.5. Let us denote by dm(ẋ) = e−V (ẋ)dẋ et let h be a α−excessif function
for all α > 0. Then, all PCAF A can be associated with a smooth measures µ by the
relation

(1.5.1) lim
t→0

1

t
Eh.m

[∫ t

0

f(Ẋs)dAs

]
=

∫
I0

h(ẋ)f(ẋ)dµ(ẋ),

for all positive measurable bounded function f. This association is unique.
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In this case, we call µ the Revuz measure of PCAF A and the association is called
in the following the Revuz association beetwen a PCAF A and the smooth measure µ.
Lemma 5.1.7 and Lemma 5.1.8 of [4] say that any A PCAF admits its Revuz measure µ a
smooth measure and any smooth measure µ admits an A PCAF whose Revuz measure is
µ.
As a consequance of this Proposition, we have: for all f ∈ L1(I0; e−V (ẋ)dẋ) the Revuz
measure associated to PCAFAt =

∫ t
0
f(Ẋs)ds defined in Example 1.5.3, is f(ẋ)e−V (ẋ)dẋ

by using simply Theorem 1.5.5.

1.5.1.1 Energy of CAF

Let A be a CAF. Then we let

(1.5.2) e(A) = lim
t→0

1

2t
Em[A2

t ],

when this limit exists. This value e(A) is called energy of A. First of all we shall exibit
three important classes of AF ′s of finite energy.

(I) AF generated by functions
Suppose that a function u on I0 posses a version ũ (u = ũ) a.e such that ũ is quasi-
continuous. Then

(1.5.3) ũ(Ẋt)− ũ(Ẋ0), t > 0

defines a finite AF in our sense. Thus, ũ(Ẋt) − ũ(Ẋ0) is well defined whenever u ∈
H1
e (I0; e−V ) because we can take ũ ∈ H1

e (I0; e−V ) see Theorem 1.4.9. Moreover, A[u] :=
ũ(Ẋt)− ũ(Ẋ0) has finite energy and

(1.5.4) e(A[u]) = ξ̇(u, u).

(II) Martingale AF’s of finite energy
Consider the family

M =
{
M : is a finite CAF such that for each t>0

Ex(M2
t )<∞ and Eẋ(Mt)=0 a.e ẋ∈I0

}
Since Em(M2

t ) is subadditive in t, e(M) is well defined and

(1.5.5) e(M) = sup
t>0

1

2t
Em(M2

t )(≤ ∞)

for any M ∈M. We set

(1.5.6) M̃ = {M ∈M : e(M) <∞}
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The process M ∈ M̃ is a square integrable AF with mean zero. In other word, Mt

is square integrable martingale additive functional. We conclude from the following
Theorem A.3.18 of [4] that there exists a unique quadratic variation denoted by < M >
which is also a PCAF and verifies

(1.5.7) Eẋ(M
2
t ) = Eẋ(< M >t) a.e ẋ ∈ I0, t > 0.

We call M ∈M a Martingale additive functional and < M > a quadratic variation.
Let µ<M> the Revuz measure assiciated to < M > called also the energy measure of the
Martingale additive functional M . We have from (1.5.1), (1.5.2) and (1.5.7),

(1.5.8) µ<M>(I0) = 2e(M), M ∈M

We extend the definition of energy for two CAF M and N by:

e(M,N) = lim
t→0

1

2t
Em(MtNt).

We note this following theorem

Theorem 1.5.6. The space M̃ is a Hilbert space with respect to e.

(III) CAF’s of zero energy

N =
{
N : is finite CAF such that for each t>0

Eẋ(|Nt|)<∞ a.e and e(N)=0.

}
The quadratric variation of N ∈ N vanishes in the following sense:

(1.5.9)
[nT ]∑
k=1

(N(k+1)/n −Nk/n)2 −→ 0, n→∞, in L1(Pm)

Because the expectation of the left hand side equals

[nT ]∑
k=1

Em(EXk/n(N1/n)2) ≤ nT.Em(Nk/n)2 −→ 0, n→∞.

Example 1.5.7. An example of N ∈ N is given by

(1.5.10) Nt =

∫ t

0

f(Ẋs)ds

for a nearly Borel function f ∈ L2(I0; e−V (ẋ)dẋ).

Indeed, N is PCAF by Example 1.5.3. Besides, Eẋ |Nt| ≤ Eẋ(
∫ t

0

∣∣∣f(Ẋs)
∣∣∣ ds) ≤

etG1 |f | (ẋ) <∞ a.e. Furthermore, if we recall that (f, g) means the integral with respect
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to the measure m defined in Theorem 1.5.5, we have

Em(N2
t ) = 2Em(

∫ t

0

f(Ẋs)

∫ t

s

f(Ẋv)dvds)

= 2Em(

∫ t

0

∫ t−s

0

f(Ẋs)pvf(Ẋs)dvds) = 2

∫ t

0

∫ t−s

0

(ps1, f.pvf)dvds.

Hence

(1.5.11)
1

2t
Em(N2

t ) =
1

t

∫ t

0

(pt−s1, f.Ssf)fs, Ssf(ẋ) =

∫ s

0

pvf(ẋ)dv.

Since the right hande side of (1.5.11) is dominated by 1
s

∫ t
0
sds.(f, f),N is of zero energy.

N ∈ N.

Example 1.5.8. A CAF with a Revuz measure µ ∈ S0 is zero energy.

Indeed, since µ ∈ S0, then Eẋ(At) ≤ etŨ1µ(ẋ) <∞ a.e and

Em(A2
t ) = 2Em(

∫ t

0

(At − As)dAs)

= 2 lim
n→∞

Em

(
n∑
k=1

(At − Akt/n)(Akt/n − A(k−1)t/n)

)

= 2 lim
n→∞

Em

(
n∑
k=1

(EXkt/n(At−kt/n))(Akt/n − A(k−1)t/n)

)

≤ 2 lim
n→∞

Em

(
n∑
k=1

(EXkt/n(At))(Akt/n − A(k−1)t/n)

)

= 2Em

(∫ t

0

EXs(At)dAs

)
≤ 2t

∫
I0

Ex(At)dµ(ẋ)

by the fact that for all α−excessif function h (α > 0) and for all positive measurable
bounded function f , if we denote by (fA)t =

∫ t
0
f(Ẋs)dAs; we have

Eh.m ((fA)t) =

∫ t

0

(

∫
I0

f(ẋ)psh(ẋ)dµ(ẋ))ds.Theorem 5.1.3 of [4],

and further∫
I0

Eẋ(At)dµ(ẋ) ≤ e−t
∫
I0

(U1
A1(ẋ)− e−tptU1

A1(ẋ))dµ(ẋ)→ 0, t→ 0,

where Uα
Af(ẋ) = Eẋ

(∫∞
0
e−αtf(Ẋt)dAt

)
for all measurable bounded function f .
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We are particularly interested in the sum of classes (II) and (III):

(1.5.12) A = M̃⊕N

namely, A conists of AF’s A such that

(1.5.13) At = Mt +Nt, M ∈ M̃, N ∈ N

Clearly A is a linear space of AF’s of finite energy. Morever, the expression (1.5.13) of
A ∈ A is unique because M̃∩N = {0}where 0 is the additive functional identically zero.
In fact if A ∈ M̃ is of zero energy, the Revuz mesure associated with < A > vanishes by
(1.5.8) and so does < A >. Hence A = 0 by (1.5.7). The following theorem is proved in
Theorem 5.2.2 of [4] and constitutes an important result of Dirichlet forms theory.

Theorem 1.5.9. For all u ∈ H1
e (I0; e−V ), the AF ũ(Ẋt)− ũ(Ẋ0) denoted by A[u]

t can be
expressed uniquely as:

(1.5.14) A
[u]
t = M

[u]
t +N

[u]
t where M [u] ∈ M̃, N [u] ∈ N.

As consequence of this Theorem, we have: for all u ∈ H1
e (I0; e−V ), since by (1.5.4)

e(A[u]) = ξ̇(u, u), and by (1.5.8) and (1.5.14) e(A[u]) = e(M [u]) = (1/2)µ<M [u]>(I0); we
get:

(1.5.15) (1/2)µ<M [u]>(I0) = ξ̇(u, u) for all u ∈ H1
e (I0; e−V ).

1.5.2 Martingale additive functionals

In this subsection we give some discussions in the decomposition called Ito-Fukushima
decomposition.

(1.5.16) ũ(Ẋt)− ũ(Ẋ0) = M
[u]
t +N

[u]
t ,M

[u]
t ∈ M̃, N

[u]
t ∈ N, u ∈ H1(I0; e−V ),

in (1.5.13). This decomposition may be regarded as a generalization of a Doob-Meyer
decomposition of supermatingales and Ito’s formula of semimartingales. The question in
this subsection is: in what conditions N [u]

t = 0 a.e? The answer is the following theorem.

Definition 1.5.10. A function u ∈ H1(I0; e−V ) is said to be ξ̇− harmonic if

(1.5.17) ξ̇(u, v) = 0 ∀v ∈ C, where C is some core of ξ̇.

Theorem 1.5.11. Let u ∈ H1(I0; e−V ) be a ξ̇− harmonic. Then

(1.5.18) Pẋ(N
[u]
t = 0) = 1 for almost all ẋ ∈ I0.
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Proof. Let us consider the following definitions:
Spectrum
Let (ξ̇, H1(I0; e−V ) be a regular and local Dirichlet form and let u ∈ H1(I0; e−V ). A
subset F ⊆ I0 is called a spectrum of u denoted by σ(u) if it is the complement of the
largest set G such that ξ̇(u, v) vanishes for any v ∈ H1(I0; e−V ) with support[v] ⊂ G.
Thorem 5.4.1 of [4]
For any u ∈ H1(I0; e−V ), the AF N

[u]
t vanishes on the complement of the spectrum

F = σ(u) of u in the following sense

(1.5.19) Pẋ(N
[u]
t = 0, t < σF ) = 1 q.e ẋ ∈ I0,

where σF = inf
{
t > 0 : Ẋt ∈ F

}
and if F = ∅ then σF = +∞.

By Theorem 5.4.1 of [4] to deduce Theorem 1.5.11, it suffices to show that for all
u ∈ H1(I0; e−V ), u ξ̇− harmonic, then F = σ(u) is empty. And we get Theorem 1.5.11.
It is not difficult because if ξ̇(u, v) = 0 for any v ∈ H1(I0; e−V ) then G = I0 and
F = σ(u) = ∅

Consequence: now, we can say more about the formulae (1.5.16). In fact for all
u ∈ H1(I0; e−V ), u ξ̇− harmonic, ũ(Ẋt) − ũ(Ẋ0) = M

[u]
t , where M [u]

t is a Martingale
additive functional, square integrable and of finite energy.

1.6 Construction of time-changed process by additive
functional

Let (ξ̇, H1(I0; e−V )) the regular and local Dirichlet form associated with the divergence-
form operator L̇, let

(
Ω,F, Ẋt, Pẋ

)
be the e−V (ẋ)dẋ symmetric continuous Markov pro-

cess associated and defined for almost all ẋ ∈ I0. Let H1
e (I0; e−V ) be the extended

domaine of ξ̇. Throughout this section we assume that all functions in H1
e (I0; e−V ) are

quasi-continuous.

We fix an arbitrary measure µ on I0 charging no set of zero capacity and let w be a
strictly positive and integrable function such that dµ(ẋ) = w(ẋ)dẋ. Let A be the PCAF
associated with µ by Proposition 1.5.5. We assume that µ is positive then support of µ
which is the smallest closed set outside of which µ vanishes, is I0. The support of A is
defined by:
let

R(ω) = inf {t > 0 : At(ω) > 0} and

supp[A] = {ẋ ∈ I0 : Pẋ(R(ω) = 0) = 1} .

If At(ω) is positive almost surely, then by denoting by N the subset of I0 such that for all
ẋ ∈ N the Markovian law Pẋ is well defined, N is also the support of A. By consequence
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the complementary of the support of A in the support of µ is negligible with respect to
Lebesgue measure. Since w is positive, the complementary of the support of A in the
support of µ is also negligible with respect to dµ.
We define the hitting function:

(1.6.1) HNu(ẋ) = Eẋ(u(ẊσN ))ẋ ∈ N,

where σN = inf
{
t > 0 : Ẋt ∈ N

}
.

In fact, σN = 0 a.e. Thus HNu(ẋ) = u(ẋ) a.e. The space:

(1.6.2) HN =
{
HNu : u ∈ H1

e (I0; e−V )
}
.

which is the space of projections, coincides with H1
e (I0; e−V ). We define a symmetric

form (˜̇ξ, H̃1(I0;w)) on L2(I0;w) by
(1.6.3){

H̃1(I0;w) =
{
φ ∈ L2(I0;µ) : φ = u − a.e on I0 for some u ∈ H1

e (I0; e−V )
}

˜̇ξ(φ, φ) = ξ̇(u, u) φ ∈ H1(I0;w), φ = u -a.e on I0, u ∈ H1
e (I0; e−V )

We may call (˜̇ξ, H̃1(I0;w)) the trace of (ξ̇, H1(I0; eV )) on I0 relative to µ. Let us also

define the time changed process
(

Ω, F̃, ˜̇X t, Pẋ, ẋ ∈ N
)

with respect to the PACF A by

(1.6.4) ˜̇X t = ẊA−1
t
, A−1

t (ω) = inf {s > 0;As(ω) > t}

Remark 1.6.1. A−1
t (ω) is F stopping time for all t ≥ 0.

Indeed,
{
A−1
t (ω) < s

}
= ∪n≥1

{
As−1/n(ω) > t

}
∈ Fs

Proposition 1.6.2.
(

Ω, F̃, ˜̇X t, Pẋ, ẋ ∈ N
)

is continuous Markov process on I0 called

time changes process, where F̃ = (F̃t)t>0, F̃t = FA−1
t

. F̃ is continuous and strictly
increassing family of σ−field. The Markovian transition function and the Markovian
resolvent kernel are:

(1.6.5) ˜̇P tφ(ẋ) = Eẋ

(
φ(ẊA−1

t
)
)
, ẋ ∈ N,

(1.6.6) ˜̇Rαφ(ẋ) = Eẋ

(∫ ∞
0

e−αtφ(ẊA−1
t

)

)
= Eẋ

(∫ ∞
0

e−αAtφ(Ẋt)dAt

)
.

In view of Theorem A 2.12 of [4].
Thus if we denote by U0

α,Aφ = ˜̇Rαφ on N , since µ(I0 − N) = 0 and U0
α,A is

µ−symmetric; by Corollary 6.1.1 of [4], ˜̇Rα and ˜̇P t are µ−symmetric. Furthermore

limt↓0
˜̇P tφ(ẋ) = φ(ẋ), ∀ẋ ∈ N , ∀φ ∈ C(I0). On account of section 1.3, Definition 1.3.1;˜̇pt gives a strongly continuous semigroup denoted by ˜̇P t on L2(I0, µ). The main theorem

of this section is the following.
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Theorem 1.6.3. Let
(

Ω,F, Ẋt, Pẋ

)
be a symmetric Markov process associated with a

regular Dirichlet space (ξ̇, H1(I0; e−V )) relative to L2(I0; e−V (ẋ)dẋ).

(i) The Dirichlet space on L2(I0;µ) associated with ( ˜̇P t)t>0 coincides with (˜̇ξ, H̃1(I0;w))
of (1.6.3).

(ii) (˜̇ξ, H̃1(I0;w)) is regular. Furthermore, if C is a core of (ξ̇, H1(I0; e−V )) then C is also

a core of (˜̇ξ, H̃1(I0;w))

The following corollary prove that the extended domain of the process
(

Ω,F, Ẋt, Pẋ

)
denoted byH1

e (I0; e−V (ẋ)dẋ) contains the extended domain of
(

Ω,F, ˜̇X t, Pẋ

)
denoted by

H1
e (I0;w).

Corollary 1.6.4. H1
e (I0; e−V ) = H1

e (I0;w).

Proof. The implication H̃1(I0;w) ⊂ H1
e (I0; e−V ) is obvious by definition of H̃1(I0;w).

And then H1
e (I0;w) ⊆ H1

e (I0; e−V ). Indeed, Let ϕ ∈ H1
e (I0;w) then there exists a

sequence (un) ⊆ H̃(I0;w) ⊆ H1
e (I0; e−V ) such that{

(un) is-ξ̇-Cauchy
un → ϕ a.e.

In the other hand, for all n there exists a subsequence
(
vkn
)
k≥0
⊆ H1(I0, e

−V ) such that
vkn → vn when k →∞. The almost sure limit of

(
vkn
)

when k →∞, n→∞ is ϕ. Recall
that

(
vkn
)
k≥0

is also ξ̇-Cauchy then ϕ ∈ H1
e (I0, e

−V ).
To prove that H1

e (I0; e−V ) ⊆ H1
e (I0;w), it suffices to recall that as we have consctruct

(˜̇ξ, H̃1(I0;w)) from (ξ̇, H1(I0; e−V ) to deduce that H1
e (I0;w) ⊆ H1

e (I0; e−V ) , we can
similarly do the same consruction to deduce that H1

e (I0; e−V ) ⊆ H1
e (I0;w).

The following Lemma is very important and will be used in chapter 3, in the proof of
convergence of corrector.

Lemma 1.6.5. Let w be a strictly positive and integrable function on I0 and let µ be, the
measure defined by dµ(ẋ) = w(ẋ)dẋ. Recall that Pw(.) :=

∫
I0
w(ẋ)Pẋ(.)dẋ. Then we

have, for any η > 0 and any f in the extended domain of ξ̇,

lim sup
ε↓0

Pw( sup
0≤t≤ε−2

∣∣∣εf( ˜̇X t)
∣∣∣ > η) ≤

e1

√
ξ̇(f, f)

η
,

where ξ̇ is the Dirichlet form associated to the process Ẋ .
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Proof. We refer to first part of chapter 5 of [4].
For a nearly Borel set A in I0, let σA = inf

{
t > 0 : Ẋt ∈ A

}
and pεA(ẋ) = Eẋ(e

−ε2σA).
Let

LA =
{
u ∈ H1

e (I0) : u ≥ 1 q.e on A
}
.

(q.e. means ’quasi everywhere’.) By (1.4.15) of Part 1.4.2 of chapter 1, pεA(x) is the
unique element of LA minimizing ξ̇ε2(u, u) on LA.

Since µ ∈ S0, the set defined in Section 1.4.2, we let Uε2µ the unique ε−potential
associated to µ. It satisfies:

(1.6.7)

∫
I0

Eẋ(e
−ε2σA)dµ(ẋ)dẋ = ξ̇ε2(p

ε
A, Uεµ)

≤
√
ξ̇ε2(Uε2µ, Uε2µ)

√
ξ̇ε2(p

ε
A, p

ε
A)

by Cauchy-Schwarz inequality.

Apply this inequality to A = {ẋ ∈ I0 : |f(ẋ)| > η}. We note that since f ∈ H1
e (I0),

then f
η
≥ 1 q.e. on A.

Thus, f
η
∈ LA and we obtain that

ξ̇ε2(p
ε
A, p

ε
A) ≤ η−2ξ̇ε2(f, f).

Moreover, we can write:

Pw( sup
0≤t≤ε−2

∣∣∣f( ˜̇X t)
∣∣∣ > η) ≤ Pw(

1

ε2
≥ σA)

=

∫
I0

Pẋ(
1

ε2
≥ σA)w(dẋ)

=

∫
I0

Pẋ(e
1−ε2σA ≥ 1)w(dẋ)

≤ e1

∫
I0

Eẋ(e
−ε2σA)w(dẋ)

We deduce from inequality (1.6.7) above that:

Pw( sup
0≤t≤ε−2

∣∣∣f( ˜̇X t)
∣∣∣ > η) ≤ e1

η

√
ξ̇ε2(Uεµ, Uεµ)

√
ξ̇ε2(f, f).

We obviously have ξ̇ε2(Uε2µ, Uε2µ) =
∫
I0
Uε2µ(ẋ)dµ(ẋ) < ∞ because Uε2µ is continu-

ous, taking its quasi-continuous version. And therefore

Pw( sup
0≤t≤ε−2

∣∣∣f( ˜̇X t)
∣∣∣ > η) ≤ e1

η

1

ε

√
ξ̇ε2(f, f).

Replacing η by η
ε
, we obtain

Pw( sup
0≤t≤ε−2

∣∣∣εf( ˜̇X t)
∣∣∣ > η) ≤ e1

η

√
ξ̇ε2(f, f) =

e1

η

√
ξ̇(f, f) + ε2 ‖f‖2

L2(I0;w),

and Lemma 1.6.5 is proved letting ε tend to 0.
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1.7 Conclusion
In this chapter by only the hypothesis: V measurable, eV and e−V integrable on I0 with
respect to Lebesgue measure, there exists a continuous and conservative Markov pro-
cess on I0

(
Ω,F, Ẋt, Pẋ, ẋ ∈ I0

)
, defined for almost all starting point ẋ ∈ I0, associated

to the divergence-form operator L̇ = eV (ẋ)div(e−V (ẋ)∇) defined on L2(I0; e−V (ẋ)dẋ).
The Chapter 2, which is independant of this one; prove one inequality of type-Sobolev,
with different weights and allows us to prove in chapter 3 that the rescalled process(
Xε
. = εX./ε2

)
satisfies a Invariance principle, where

(
Ω,F, Xt, Px, x ∈ Rd

)
is the lift-

ing process on Rd of
(

Ω,F, Ẋt, Pẋ, ẋ ∈ I0

)
.



Chapter 2

A Sobolev inequality

2.1 Introduction

This chapter deals essentially with real-variable methods in harmonic analysis, developed
by Alberto Torschinsky in [12]. However, it is very important to note that the theory
given in this book is done largely on the space Rd. Our first goal is to recall the results
on the unit torus of Rd denoted in this thesis by I0 and which is Rd/Zd. The results
that we recall here are Muckenhoupt’s theory of Ap weights, the results of Coifman-
Rochberg and Sawyer’s two weight maximal theorem. Thus, we define the fractional
integration of Riesz with some properties. We give the theorem of Welland which link the
maximal function of Hardly-Littlewood and the fractional integral of Riesz. The goal in
this chapter, is to prove one Sobolev inequality on the unit torus, with only the hypothesis
eV + e−V ∈ L1(I0; dẋ).
The chapter will be divided in two main sections. First, we develope the Muckenhoupt
theory of Ap weights as principle keys of the proofs in this chapter. In the second section;
we give some sufficient conditions to get a Sobolev inequality with different weights. A
first new result will be proved at the end of this chapter. It is the following Theorem:

Theorem 2.1.1. With the hypothesis eV + e−V ∈ L1(I0; dẋ); there exists a function w
strictly positive and integrable on I0, there exists r∗ > 2 and one constant c such that:(∫

I0

|f(ẋ)|r
∗
w(ẋ)dẋ

) 2
r∗

≤ c

∫
I0

|∇f(ẋ)|2 e−V (ẋ)dẋ.

for all function f defined on I0, centered and C1. The function w will be explicitly given
in the proof of the theorem.

We start recalling the results we shall need from from real harmonic analysis. We
refer to the book of A. Torchinsky [12] where all the material below can be found.

We recall that I0 is the unit torus Rd/Zd; dẋ is the Lebesgue measure. We use the
notation |I| for the Lebesgue measure of a measurable subset I ⊆ I0.

49
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2.2 Muckenhoupt’s theory for maximal functions and weights

2.2.1 The Hardy-Littlewood maximal theorem for regular measures
Let µ be a non negative Borel measure in I0, finite on bounded sets. We define for all
ẋ ∈ I0 and f in L1(I0;µ):

(2.2.1) Mµ(f)(ẋ) = sup
I⊆I0:ẋ∈I

1

|µ(I)|

∫
I

|f(ẏ)| dµ(ẏ),

where the I ′s are open cubes containing ẋ. Observe that the function Mµ(f) is non-
negative and measurable. Mµ is a sublinear operator.
Before discussing the properties of Mµ we recall some general definitions for sublinear
operator.
Definition
We say that a sublinear operator T defined on Lp(I0; dν) is weak-type from Lp(I0; ν) to
Lq(I0, dµ) if:

(2.2.2) λqµ {Tf > λ} ≤ c
(
‖f‖Lp(I0;dν)

)q
for some sonstant c.

We say simply weak-type (p, q) for p, q > 0

We ask the question: is f 7−→ Mµf of weak-type (1, 1) for the measure µ? In other
words, we can go about answering this as follows: let Oλ = {Mµf > λ}. Mµ is weak-
type (1, 1) means

(2.2.3) λµ(Oλ) ≤ c ‖f‖L1(I0;µ) .

Before stating the principal theorem of this part, we recall some definitions with re-
spect to Borel measure.

2.2.2 Definition
Definition 1: let µ be a non negative Borel measure in I0, finite on bounded sets. µ is said
to be regular if for all U, µ-measurable, then

(2.2.4) µ(U) = sup
K⊆U,K compact

µ(K).

Definition 2: µ is said a doubling measure, if for all open cube I of I0:

µ(2I) ≤ cµ(I),where c is independant of I.

Theorem 2.2.1. Let µ be a non negative Borel measure in I0, finite on bounded sets which
in addition is doubling and regular. Then the map f →Mµf is of weak-type (1, 1).
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Proof. We give the principal part of the proof of this theorem. Indeed, Oλ= {Mµf > λ}
is open since to each ẋ ∈ Oλ there corresponds an open cube Iẋ containing ẋ such that

(2.2.5)
1

|µ(Iẋ)|

∫
Iẋ

|f(ẏ)| dµ(ẏ) > λ

and consequently Iẋ ⊆ Oλ. In fact,

(2.2.6) {Mµf > λ} = Oλ =
⋃
ẋ∈Oλ

Iẋ.

We want to estimate µ(Oλ) in terms of the µ-measure of the set on the right-hand side of
(2.2.6); it is apparent that we need some control over this set. So, since, in addition µ is
regular; if K is a compact subset of Oλ now, there are finitely many I ′ẋs, Iẋ1 , Iẋ2 , ..., Iẋm
say, so that K⊆

⋃m
j=1 Ixj . We may assume that I ′ẋs satisfy: every Iẋk is such that Iẋk 6=⋃k−1

j=1 Iẋj . Since we are dealing with a finite number of cubes, there is one of largest
sidelength (if there is more than one just pick any); separate it and rename I1. Now, if any
of the remaning cubes, say I , intersects I1, since sidelength I ≤ sidelength I1, it follows
that I ⊆ 3I1, the cube concentric with I1 with sidelength three times that of I1; all these
cubes I can be discarded as well. We are thus left with a finite collection of open cubes,
each one disjoint with I1. Repeat for this family the procedure used to select I1, that is
select a cube with largest sidelength, call it I2, and discard all other cubes which intersect
it. After a finite number of steps we are left with a collection I1, I2, ..., Ik of disjoint open
cubes so that K ⊆

⋃k
j=1 3Ij . Thus

µ(K) ≤
k∑
j=1

µ(3Ij)

Besides, µ is a doubling measure. Then we replace µ(3I) by one constant multiplied by
µ(I) we obtain by consequence

(2.2.7) µ(K) ≤ c2

k∑
j=1

µ(Ij)

where c is the doubling constant.
But all I ′js satisfy (2.2.5). Whence combining (2.2.5) and (2.2.7), and since the I ′js are
pairwise disjoint, we get

(2.2.8) λµ(K) ≤ c2

k∑
j=1

∫
Ij

|f(x)| dµ(y) = c2

∫
⋃
Ij

|f(y)| dµ(y)

Finally (2.2.2) and the definition (2.2.4) give

(2.2.9) λµ(Oλ) ≤ c2 ‖f‖L1(I0;µ) .



52 CHAPTER 2. A SOBOLEV INEQUALITY

Simple examples show, for instance, that µ can not have atoms, but in fact much more
is true.

In the next paragraph, we discuss an important result which will allow us to show the
consequence of this weak-type result. It is:

Theorem 2.2.2. (The Marcinkiewicz interpolation theorem)
Assume that a sublinear operator T is definded inLp0+Lp1 and is simultaneously of weak-
type (p0, p0) with norm ≤ c0 and of type (p1, p1) with norm ≤ c1, for 1 ≤ p0 < p1 ≤ ∞.
If now p0 < p < p1 and 1

p
= (1 − η)/p0 + η/p1, 0 < η < 1, then T is also of type

(p, p) with norm ≤ c
(
1/(p− p0)(1−η)/p0

)
c1−η

0 cη11 . Here, c is an absolute constant ≤ 8e
1
e

independant of the mapping T .

As a consequence of this theorem we have:

Corollary 2.2.3. Let µ be as in theorem 2.2.1, then there is a constant c = cp independant
of f such that:

(2.2.10) ‖Mµf‖Lpµ ≤ c ‖f‖Lpµ , 1 < p <∞.

Proof. Mµ is weak-type (1, 1), and is bounded in L∞(I0). Thus the Marcinkiewicz inter-
polation theorem applies.

2.2.3 Relation between Ap weights and the Hardly-Littlewood max-
imal function

The Hardly-Littlewood maximal function has important application in the study of weighted
norm inequalities. Many results which will be used here, have been proved for the max-
imal function. For example, Theorem 2.2.1 above. Other results have been proved by
using the maximal function. We can cite the results of Mukenhoupt and the results of
Coifman-Rochberg on which we will give some discussions in the following.

2.2.3.1 Definition

Let f be a measurable function on I0. We assume that f is a non zero function, f ∈
L1(I0; dẋ) and not bounded.
We define the Hardy-Littlewood maximal function by:

(2.2.11) ∀ẋ ∈ I0;M(f)(ẋ) = sup
I⊆I0:ẋ∈I

1

|I|

∫
I

|f(ẏ)| dẏ,

where the I ′s are open cubes containing ẋ. It is well known that the function M(f) is
non-negative and measurable but not integrable (see exemple given in 4.2.1, Part(B) of
chaper 4). The definition is the same as in (2.2.1) except the measure µ is replaced by the
Lebesgue measure and by consequence since the Lebesgue measure is regular and has a
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doubling property; Theorem 2.2.1 holds for the maximal function defined in (2.2.11).
In the same way we define also the so-called local maximal function, for f measurable
and in L1(I0; dẋ).

(2.2.12) Mηf(ẋ) = sup
I⊆I0:ẋ∈I

1

|I|1−η
∫
I

|f(ẏ)| dẏ, η < 1.

We define the two Muckenhoupt’s conditions as follows:
1) Ap condition: let p > 1. We say that a non-negative function w ∈ L1(I0; dẋ) verifies
the Ap(I0) condition, and we write w ∈ Ap(I0), if there exists a constant c such that for
all cube I ⊆ I0: (

1

|I|

∫
I

w(ẏ)dẏ

)(
1

|I|

∫
I

w(ẏ)
−1
p−1dẏ

)p−1

≤ c, if 1 < p <∞.

1

|I|

∫
I

w(ẏ)dẏ ≤ c (ess inf
I
w) if p = 1.

The two constants above are called Ap constant (respect. A1 constant).
2) A∞ condition: we say that w verifies the A∞(I0) condition and we write w ∈ A∞(I0),
if for each 0 < ε < 1 there corresponds 0 < δ < 1 so that for all measurable subset E of
I we have

∫
E
w(ẏ)dẏ < ε

∫
I
w(ẏ)dẏ whenever |E| < δ |I|. And we prove the following

theorem which caracterises the A∞ condition and which will play a very important role
in the proof of theorem 2.1.1.

Theorem 2.2.4.

(2.2.13) A∞ =
⋃
p≥1

Ap,

Proof.

Proposition 2.2.5. (Reverse Holder)
Suppose that w ∈ A1(I0), then there is a positive number η so that

(2.2.14)
(

1

|I|

∫
I

w(ẋ)1+ηdẋ

) 1
1+η

≤ c
1

|I|

∫
I

w(ẋ)dẋ,∀I ⊆ I0

where c is independent of I , but not of course of η. We say w ∈ RH1+η.
This proposition corresponds to Theorem 3.5 chapter IX of [12]. The detailed proof

can be seen in that book. As consequence, we have also the following proposition.

Proposition 2.2.6. (Reverse doubling)
Suppose that w ∈ A1(I0) and let be the measure µ such that dµ(ẋ) = w(ẋ)dẋ. Then

there exists γ > 0 such that for all open cube I ⊆ I0 and measurable subset E of I

(2.2.15)
µ(E)

µ(I)
≤ c

(
|E|
|I|

)γ
where c is independent of E, I .
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Proof. By proposition (2.2.5) w ∈ RH1+η. Then Hölder inequality give,

µ(E) ≤
(∫

E

w(ẋ)1+ηdẋ

) 1
1+η

|E|
η

1+η ≤ c |I|
1

1+η

(
1

|I|

∫
I

w(ẋ)dẋ

)
|E|

η
1+η = c

(
|E|
|I|

) η
1+η

µ(I).

Now, let us start to prove the (2.2.13) above. The first inclusion
⋃
p≥1Ap ⊆ A∞ is

obvious because if w ∈ A1, the proposition (2.2.6) is applied.
We show that the converse is true. If w ∈ A∞, we have to find one p > 1 such that
w ∈ Ap. Let us use the following lemma.

Lemma 2.2.7. Assume that a non negative function w verifies∣∣{ẏ ∈ I;w(ẏ) < wI
Bk

}∣∣ ≤ cηk |I| all I , where c is independant of I , wI = 1
|I|

∫
I
w(ẏ)dẏ,

for some constant η and B such that 0 < η < 1 < B < ∞. Then, there is a p > 1 such
that w ∈ Ap.

Proof. Note that:∫
I

w(ẏ)
−1
p−1dẏ ≤

∫
[0,∞[

∣∣∣∣{ 1

w
> λ

}∣∣∣∣ d(λ
1
p−1 )

=

(∫
[0,B/wI [

+
∞∑
k=1

∫
[Bk/wI ,Bk−1/wI [

)∣∣∣∣{w <
1

λ

}∣∣∣∣ d(λ
1
p−1 )

≤ c

(
B

wI

) 1
p−1

|I|+ c
∞∑
k=1

(ηB
1
p−1 )k(wI)

−1
p−1 |I| ,

and choose p so large that ηB
1
p−1 < 1.

Before continuing the proof of the second inclusion, we recall the following definition.
Definition
We say that a point ẋ ∈ I0 is a Lebesgue point of f ∈ L1(I0; dẋ), where dẋ is the
Lebesgue measure, if

lim
r→0+

1

|B(ẋ, r)|

∫
B(ẋ,r)

|f(t)− f(ẋ)| dt = 0.

And the Lebesgue’s differentiation theorem allows us to say that if f ∈ L1(I0; dẋ) then
almost all ẋ ∈ I0 is a Lebesgue point of f . In other words, the set of ẋ ∈ I0 which are not
Lebesgue point is negligible.

Let us prove that A∞ ⊆
⋃
p>1Ap.

We fixe I and k, we define wI = 1
|I|

∫
I
w(ẏ)dẏ. Our objective is to find the appropriate η

which verifies the hypothesis of lemma 2.2.7.
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We observe that since w ∈ A∞, for ε = 1/2 we let δ, 0 < δ < 1 its corresponding, so that
for all measurable subset E of I we have

∫
E
w(ẏ)dẏ < ε

∫
I
w(ẏ)dẏ whenever |E| < δ |I|.

We set E =
{
ẋ ∈ I : w(ẋ) < wI

8k

}
. Observe that µ(E) < µ(I)

8k
< µ(I)

2
implies |E| <

(1 − δ) |I|. Now, since almost every ẋ ∈ E is a Lebesgue point of χE and Lebesgue
measure is regular we may assume that E is compact and each point of E is Lebesgue
point of χE . To each ẋ ∈ E we may assign an open interval Iẋ centered at ẋ such
that |Iẋ ∩ I ∩ E| = (1 − δ) |Iẋ ∩ I| (this is possible since for Iẋ large, Iẋ contains I
and |E| = (1 − δ) |I| and for Iẋ small Iẋ ⊂ I and |Iẋ ∩ I| / |Iẋ| → 1), Iẋ ⊆ cI , c
independant of ẋ and I . Let S = ∪ẋ∈EIẋ, since E is compact we may assume that S
is finite and choose I1 as an Iẋ in S of largest length. Then after I1, I2, ...Ik have been
chosen let Sk be the familly of the remaining I ′ẋs so that ẋ 6= ∪kj=1Ij and let Ik+1 be
largest interval in Sk. Observe that each y ∈

⋃
Ij belongs to, at most, two of the I ′js and

put E1 =
⋃
j(Ij ∩ I) ⊆ I . Then µ(E1) ≤

∑
j

∫
Ij∩I dµ(ẏ) ≤ 2

∑
j

∫
E∩Ij∩I dµ(ẏ) ( since

|E ∩ Ij ∩ I| = (1 − δ) |Iẋ ∩ I| implies µ(Ij ∩ I) ≤ 2µ(E ∩ Ij ∩ I) ) ≤ 4
∫
E∪Ij∪I dµ(ẏ)

(since each ẏ belongs to at most two of the Ij) ≤
∫
E
dµ(ẏ) ≤ 4µ(I)/8k.

In the other hand, the Lebesgue measure of E1 satisfies:

|E1| = |E|+ |∪j(Ij ∩ I ∩ (I \ E))| ≥ |E|+ 1

2

∑
j

|Ij ∩ I ∩ (I \ E)|

≥ |E|+ δ

2

∑
j

|Ij ∩ I| ≥ |E|+ (
δ

2
) |E1|

or |E1| ≥ |E|
η

. Now, if k ≥ 2, it is possible to start with µ(E1) < µ(E)/8k−1 and

repeat the above argument with E replaced by E1. This give E2 ⊂ I , µ(E2) ≤ µ(I)
8k−2

and |E2| > |E|
η2

; repeating the process k times we are done. This result is Muckenhoupt’s
[1974] and ensure that A∞ =

⋃
p≥1Ap

Proposition 2.2.8. Assume µ is a nonnegative Borel measure, finite on bounded sets de-
fined by dµ(ẋ) = w(ẋ)dẋ and assume that for some 1 < p <∞,

(2.2.16) λpµ({Mf > λ}) ≤ kp ‖f‖Lp(I0;µ) , for all f ∈ Lp(I0; dµ),

where k is some positive constant. Then, the Ap condition holds.

Proof. Fix an open cube I and consider for f ∈ Lp(I0; dµ) the quantity (1/ |I|)
∫
I
|f(ẏ)| dẏ =

|f |I which we may assume >0. Since

(2.2.17) inf
ẋ∈I

M(f1I)(ẋ) ≥ |f |I ,

|f |I must be finite for each I , for otherwise (2.2.16) can not hold unless µ is the zero
measure. Thus, if we put O = {M(f1I) > |f |I /2}, by (2.2.16) and by (2.2.17) it follows
that µ(I) ≤ µ(O) ≤ kp(1/ |f |I)p ‖f‖Lp(I0;dµ) which is equivalent to

(2.2.18) (1/ |I|)
∫
I

|f(ẏ)| dẏ ≤ kp
(

1/µ(I)

∫
I

|f(ẏ)|p dµ(ẏ)

) 1
p
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Since we have no a priori reason why w can not vanish on a set of positive measure,
we introduce the measure dν(ẏ) = dµ(ẏ) + εdẋ, ε > 0, to avoid unnecessary technical
difficulties. Clearly, ν is also absolutely continuous with respect to Lebesgue measure,
dν(y) = v(ẏ)dẏ, v > 0, and more importantly, (2.2.16) holds for µ replaced by ν with
constant independent of ε. Assume p > 1 first. In order to estimate

∫
I
v(ẏ)−1/(p−1)dẏ we

note that it equals ‖1/v‖Lp′ (I0;dν), p
′ = p/(p − 1), which, by Hölder’s inequality may be

estimated by

sup
‖f‖Lp(I0;dν)≤1

∣∣∣∣∫
I

f(ẏ)

v(ẏ)
v(ẏ)dy

∣∣∣∣p′ = sup
‖f‖Lp(I0;dν)≤1

∣∣∣∣∫
I

f(ẏ)dẏ

∣∣∣∣p′ .
Now by (2.2.18), which also holds for ν, it follows that for all f ∈ Lp(I0; dµ)∣∣∣∣∫

I

f(ẏ)dẏ

∣∣∣∣ ≤ c.k |I|
(

1

ν(I)

∫
I

|f(ẏ)|p dν
)1/p

≤ c.k |I|
ν(I)1/p

and consequently

1

|I|

∫
I

v(ẏ)−1/(p−1)dẏ ≤ c.k
1

|I|

(
|I|

ν(I)1/p

)p′
.

The last inequality gives Ap condition for p > 1.

2.2.3.2 A1 weights

As we have seen in Theorem 2.2.8, A1 is a necessary condition for the Hardy-Littlewood
maximal operator M to map L1(I0; dµ) into weak-L1(I0; dµ). It is also a sufficient con-
dition. This is the following first theorem of Muckenhoupt.

Proposition 2.2.9. Let µ be the measure defined by dµ(ẋ) = w(ẋ)dẋ and suppose w ∈
A1. Then M maps L1(I0; dµ) into weak-L1(I0;µ), with norm independant in A1.

Proof. First note that if w ∈ A1, then µ is doubling with doubling constant ≤ c (c is
the A1 constant of w); Indeed, since ( 1

|2I|)
∫

2I
dµ(ẏ) ≤ c ess infI w ≤ c( 1

|I|)
∫
I
dµ(ẏ), it

follows that µ(2I) ≤ cµ(I), c ≤ 2d(A1 constant of w). Moreover, since

1

|I|

∫
I

|f(ẏ)| dy =
µ(I)

|I|
1

µ(I)

∫
I

|f(ẏ)| dẏ

≤ c
1

µ(I)
(ess inf

I
w)

∫
I

|f(ẏ)| dẏ

≤ c
1

µ(I)

∫
I

|f(ẏ)| dµ(ẏ).

We also have thatMf(ẋ) ≤ cMµf(ẋ) where c is theA1 constant ofw. Thus {Mf > λ} ⊆{
Mµf >

λ
c

}
and by theorem (2.2.1) λµ({Mf > λ}) ≤ c(λ

c
)µ(
{
Mµf >

λ
c

}
) ≤ c3 ‖f‖Lµ
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Remark 2.2.10. Somes observations concerning A1 are obvious: for instance, A1 is the
limiting Ap condition as p→ 1+ and an equivalent way of stating A1 is

(2.2.19) Mw(ẋ) ≤ c.w(ẋ) a.e

What are the A1 weights? Can we give some examples or even characterize them? the
lecteur can find the answer in section (B) of the Appendix. Also, another important result
of this theory is the following proposition.

Proposition 2.2.11. (Coifman and Rochberg)
Let µ be a non-negative Borel measure so that Mµ(ẋ), defined by

Mµ(ẋ) = sup
I⊆I0:ẋ∈I

1

|I|

∫
I

µ(dẏ);

is not identically∞. Then for each 0 ≤ ε < 1, Mµ(ẋ)ε ∈ A1(I0).

Proof. Recall that Mµ(ẋ) = supẋ∈I(
1
|I|)µ(I). For a fixed open cube I

we estimate ( 1
|I|)
∫
I
Mµ(ẋ)εdẋ by Aε = (infIMµ(ẋ))ε as follows: for each ẋ in I we

divide those open cubes Q containing x into two families by setting J1 = {Q : |Q| ≤ 2 |I|}
and J2 = {Q : |Q| ≥ 2 |I|}. Thus

(2.2.20)
Mµ(ẋ) ≤ sup

Q∈J1

1

|Q|

∫
Q

dµ(ẏ) + sup
Q∈J2

1

|Q|

∫
Q

dµ(ẏ)

= A(ẋ) +B(ẋ), say.

The estimate of B(ẋ) is readily obtained; since for Q ∈ J2, we have 3 |Q| ⊇ I , it follows
that

1

|Q|

∫
Q

dµ(ẏ) ≤ c

|3Q|

∫
3Q

dµ(ẏ) ≤ c inf
3Q
Mµ ≤ cA

and,

(2.2.21) B(ẋ) ≤ cA.

where c is independent of µ. As for A(ẋ), let µ1 denote the restriction of µ to 6I i.e
dµ1(ẏ) = χ6I(y)dµ(ẏ), and note that:

(2.2.22) A(ẋ) ≤Mµ1(ẋ).

Thus on account of (2.2.20), (2.2.21) and (2.2.22) we get that
1

|I|

∫
I

Mµ(ẋ)εdẋ ≤ 1

|I|

∫
I

Mµ1(ẋ)εdẋ+ cAε

and it suffices to prove the desired estimate with Mµ replaced by Mµ1. But by Theorem
7.5 of chapter (iv) of [12], we readily see that:

1

|I|

∫
I

Mµ1(ẏ)εdy ≤ 1

|I|
c(weak-L norm of Mµ1)ε |I|1−ε

≤ c

(
1

|I|

∫
6I

dµ

)ε
≤ cAε

where c is a constant depending only on ε, and we have finished.



58 CHAPTER 2. A SOBOLEV INEQUALITY

2.2.3.3 Ap weights, p>1

Also, in theorem 2.2.8 Ap condition is necessary for the Hardy-Littlewood maximale
functionM to map Lp(I0; dµ) into Lp(I0; dµ). The following second theorem of Mucken-
houpt shows that it is also sufficient. The argument is similar to theorem 2.2.9. However,
a strong result holds.

Proposition 2.2.12. Let w a strictly positive and integrable function on I0 with respect to
Lebesgue measure. Suppose w ∈ Ap, p > 1 and we set dµ(ẋ) = w(ẋ)dẋ. Then M maps
Lp(I0; dµ) continuously into Lp(I0; dµ).

Proof. The proof is similar to proposition (2.2.9). Let I0 be fixed, let I ⊆ I0 such that
ẋ ∈ I .

1

|I|

∫
I

|f(ẏ)| dẏ ≤ 1

|I|

(∫
I

|f(ẏ)|p dµ(ẏ)

) 1
p
(∫

I

w(ẏ)
−1
p−1dẏ

) p−1
p

= ‖f‖Lp(I0;dµ) |I|
−1 |I|

p−1
p

(
1

|I|

∫
I

w(ẏ)
−1
p−1dẏ

) p−1
p

.

≤ cp |I|
−1
p ‖f‖Lp(I0;dµ)

(
1

|I|

∫
I

w(ẏ)dẏ

)−1
p

by definition of Ap condition.

Taking the supremum over I ⊆ I0 such that ẋ ∈ I we get

Mf(ẋ) ≤ ‖f‖Lp(I0;dµ) supI⊆I0:ẋ∈I

[
1

|I|
1
p

(
1

|I|

∫
I

w(ẏ)dẏ

)−1
p

]

= cp ‖f‖Lp(I0;dµ) supI⊆I0:ẋ∈I

(∫
I

w(ẏ)dẏ

)−1
p

⇒ |Mf(ẋ)|p ≤ cp ‖f‖pLp(I0;dµ)

(
infI⊆I0:ẋ∈I

∫
I
w(ẏ)dẏ

)−1

Taking integral on I0 with respect to dµ(ẋ) the result follows.

The consequence of this theorem is the Lp(I0; dµ) weak-type condition is necessary
and sufficient for the Hardy-Littlewood maximale function to maps from Lp(I0; dµ) to
Lp(I0; dµ).

2.3 Fractional integration
In this part, we introduce a new tol of harmonic analysis, the Riesz fractional integral.
This operator denoted by Iα operates on Lp(I0; dẋ) and has many similar properties as
the local maximal function of Hardy-Littlewood denoted here by Mη, following the hy-
pothesis on f . The precise statement is the following: for all real 0 < α < 1, for all
f ∈ Lp(I0; dẋ), 1 ≤ p < 1

α
, we define the Riesz fractional integral Iα by:

Iαf(ẋ) =

∫
I0

f(ẋ− ẏ)

|ẏ|1−α
dẏ, ẋ ∈ I0.
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Let us define Mη. For all f ∈ L1(I0; dẋ), η < 1, we define:

(2.3.1) Mηf(ẋ) = sup
I⊆I0;ẋ∈I

1

|I|1−η
∫
I

|f(ẏ)| dẏ.

We will recall here an important result of Welland (see Theorem 2.4 of chapter of VI of
[12]) , which gives the relation between the fractional integration and the local maximal
function of Hardy-Littlewood. We have then the following proposition which corresponds
to theorem 2.4 of [12].

Proposition 2.3.1. (Welland’s theorem)
Suppose that f ∈ L1(I0, dẋ), 0 < ε < α < α + ε < 1. Then there exists a constant c

independant of f such that

(2.3.2) |Iαf(ẋ)| ≤ c(Mα−εf(ẋ)Mα+εf(ẋ))
1
2

Proof. For all ε satisfying 0 < ε < α < α + ε < 1 we have:

Mα−εf(ẋ)Mα+εf(ẋ) ≥ 1

|I|1−(α−ε)+1−(α+ε)

(∫
I

|f(ẏ)| dẏ
)2

=
1

|I|2−2α

(∫
I

|f(ẏ)| dẏ
)2

=

(
1

|I|1−α
∫
I

|f(ẏ)| dẏ
)2

∀I ⊆ I0 : ẋ ∈ I.

We have then, (Mα−εf(ẋ)Mα+εf(ẋ))
1
2 ≥ 1

|I|1−α
∫
I
|f(ẏ)| dẏ ∀I ⊆ I0 : ẋ ∈ I .

(Mα−εf(ẋ)Mα+εf(ẋ))
1
2 ≥ supI⊆I0:ẋ∈I

1
|I|1−α

∫
I
|f(ẏ)| dẏ

In the other hand, we can see that there exists a positive constant c such that :

(2.3.3)
∫
I0

|f(ẏ)|
|ẋ− ẏ|(1−α)d

dẏ ≤ c sup
I⊆I0:ẋ∈I

1

|I|1−α
∫
I

|f(ẏ)| dẏ.

Indeed, ∀I ⊆ I0 : ẋ ∈ I ,

1

|I|

∫
I

1

|ẋ− ẏ|(1−α)d
dẏ ≤ c

1

|I|1−α
.

Thus ∀f ∈ L1(I0; dx),∫
I

|f(ẏ)|

(
1

|I|

∫
I

1

|ẋ− ẏ|(1−α)d
dẏ

)
dẏ ≤ c

∫
I

|f(ẏ)|
|I|1−α

dẏ

∫
I

|f(ẏ)|
|ẋ− ẏ|(1−α)d

dẏ ≤ c

∫
I

|f(ẏ)|
|I|1−α

dẏ ∀I ⊆ I0 : ẋ ∈ I.
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We get ∀I ⊆ I0 : ẋ ∈ I ,

(2.3.4)
∫
I

|f(ẏ)|
|ẋ− ẏ|(1−α)d

dẏ ≤ c sup
I⊆I0:ẋ∈I

1

|I|1−α
∫
I

|f(ẏ)| dẏ.

The inequality (2.3.3) holds by taking I = I0 in the left hand side of (2.3.4). With the
inequality (2.3.3) we obtain:

(Mα−εf(ẋ)Mα+εf(ẋ))
1
2 ≥ 1

c

∫
I0

|f(ẏ)|
|ẋ− ẏ|1−α

dẏ =
1

c
|Iα |f(ẋ)|| ≥ 1

c
|Iαf(ẋ)| ẋ ∈ I0.

2.4 Sobolev and Poincaré inequalities
In this part of this chapter, we show some applications of the theory of Muckenhoupt
weights. First we need some observations of general interest. In what follows I0 denotes
the unit torus Rd/Zd and I an arbitrary open subcube of I0. Let’s recall some definitions.
Definition:
Let w be a strictly positive and bounded function on I0. A integrable function f is said to
be centered if

∫
I0
f(ẋ)w(ẋ)dẋ = 0. Set dµ(ẋ) = w(ẋ)dẋ, we have:

Proposition 2.4.1. Suppose that f is defined on I0, centered and C1 there. Then there is
a constant c such that:

|f(ẋ)| ≤ c

∫
I0

|∇f(ẏ)|
|ẋ− ẏ|d−1

dy, ẋ ∈ I0, c independent of ẋ.

Proof. |f(ẋ)| − |f(ẏ)| ≤ |f(ẋ)− f(ẏ)|. Taking integral with the measure dµ(ẏ) we get:

|f(ẋ)|
∫
I0

dµ(ẏ)−
∫
I0

f(ẏ)dµ(ẏ) ≤ c

∫
I0

|f(ẋ)− f(ẏ)| dẏ because w is bounded.

≤ c

∫
I0

|∇f(ẏ)|
|ẋ− ẏ|d−1

dẏ, ẋ ∈ I where c is a dimensional

constant.

Let us prove the last inequality. It is easy to see that
|f(ẋ)− f(ẏ)| =

∣∣∣∫[0;1]
∇f(ẋ+ t(ẏ − ẋ)).(z − ẋ)dt

∣∣∣. We see at once that∫
I0
|f(ẋ)− f(ẏ)| dẏ ≤

∫
[0,1]

∫
I0
|∇f(ẋ+ t(ẏ − ẋ))| |ẏ − ẋ| dẏdt = A, say.

To bound A, we observe the line segment joining ẋ and ż is totally contained in I0, if we
put ż = ẋ+ t(ẏ− ẋ) then also z is in I0, dż = tndẏ and |ż − ẋ| = t |ẏ − ẋ| ≤ c.t.L where
L denotes the sidelength of I0, L = 1 and c a dimensional constant. Then

A ≤ c

∫
I0

|∇f(ż)| |ẋ− ż|
∫

[
|ẋ−ż|
c

,∞]

t−(n+1)dtdẏ

c

∫
I0

|∇f(ż)| |ẋ− ż| ( 1

|ẋ− ż|d
)dż.
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We have now

(2.4.1)
∫
I0

|f(ẋ)− f(ẏ)| dẏ ≤ c

∫
I0

|∇f(ż)|
|ẋ− ż|d−1

dż.

The conclusion follows.

We restate the estimates (2.4.1) in terms of maximal functions. We introduce the
following definitions: for f defined on I0 and ẋ ∈ I0, we consider the expressions
sup( 1

|I|

∫
I
|f(ẏ)− fI | dẏ), where I ⊆ I0 and ẋ ∈ I , fI = 1

|I|

∫
I
|f(ẋ)| dẋ; in order to

keep notations simple we still call this expression M̃f(ẋ). With this notation we have:

Corollary 2.4.2. Assume f is a function defined on I0 and C1 there and let I ⊆ I0. Then,

(2.4.2) M̃f(ẋ) ≤ cM 1
d
(|∇f |)(ẋ), ẋ ∈ I0

Proof. Fix ẋ ∈ I0 and let I contains ẋ. Then

(2.4.3)
1

|I|

∫
I

|f(ẏ)− fI | dẏ ≤
1

|I|2
∫
I

∫
I

|f(ẏ)− f(ż)| dẏdż.

We can see also, by the same proof as inequality (2.4.1) that

(2.4.4)
1

|I|

∫
I

|f(ẋ)− f(ż)| dż ≤ c

∫
I

|∇f(ẏ)|
|ẋ− ẏ|d−1

dẏ.

By inequality (2.4.4) , the right-hand side of (2.4.3) does not exceed

c
1

|I|

∫
I

∫
I

|∇f(ẏ)|
|ẏ − ż|d−1

dẏdż

But since we can easily see that:

1

|I|

∫
I

1

|ẏ − ż|d−1
dż ≤ c |I|

(1−d)
d ,

(2.4.2) holds and we are done.

We collect now some facts concerning the maximal functions which will be useful in
the sequel.

The next proposition relates to the continuity properties of the local function Mηf .

Definition 2.4.3. We say that two positive functions (w, v) are in Ap,q,η(I0), we write
(w, v) ∈ Ap,q,η(I0) if

(2.4.5) ∀I ⊆ I0,

(∫
I

w(ẋ)dẋ

) 1
q
(∫

I

v(ẋ)
−1
p−1dẋ

) p−1
p

≤ c |I|1−η .
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Proposition 2.4.4. Suppose w, v are positive, integrable functions in I0, and let dµ(ẋ) =
w(ẋ)dẋ, dν(ẋ) = v(ẋ)dẋ. Then for p > 1, s > 0, 0 < η < 1, (w, v) ∈ Ap,s,η(I0) implies
that for all 0 < r < s the local maximal function Mηf verifies

(2.4.6) ‖Mηf(ẋ)‖Lr(I0;dµ) ≤ c ‖f‖Lp(I0;dν) , where c is some constant.

Proof. I0 being fixed, let I a cube of I0 such that ẋ ∈ I .

1

|I|1−η
∫
I

|f(y)| dẏ ≤ 1

|I|1−η

(∫
I

|f(ẏ)|p dν(ẏ)

) 1
p
(∫

I

v(ẏ)
−1
p−1dẏ

) p−1
p

≤ c ‖f‖Lp(I0;dν)

(∫
I

w(ẏ)dẏ

)−1
s

by condition Ap,s,η(I0).

Taking the supremum over I ⊆ I0 we get

Mηf(ẋ) ≤ c ‖f‖Lp(I0;dν)

(
inf

I⊆I0,ẋ∈I

∫
I

w(ẏ)dẏ

)−1
s

⇒ |Mηf(ẋ)|r ≤ c ‖f‖rLp(I0;dν)

(
inf

I⊆I0,ẋ∈I

∫
I

w(ẏ)dẏ

)−r
s

.

Taking the integral on I0 with respect to dµ(ẋ) it follows

‖Mηf(ẋ)‖rLr(I0;dµ) ≤ c ‖f‖rLp(I0;dν)

(∫
I0

w(ẋ)dẋ

)(
inf

I⊆I0,ẋ∈I

∫
I

w(ẏ)dẏ

)−r
s

≤ c ‖f‖rLp(I0;dν)

The following Theorem, Sobolev’s embedding theorem; is the basis of the proof of
the main theorem of this chapter: Theorem 2.1.1. But we will se that that a rigorous veri-
fication of hypotheses is necessary.

Theorem 4.8 of chapter X of [12]: (Sobolev’s embedding theorem)
Let 1 < p < ∞ such that 1

p
− 1

d
≤ 1

s
< 1

p
. Let w, v two strictly positive functions such

that w ∈ A∞(I0) and (w, v) ∈ Ap,s, 1
d
(I0). Then for any q such that p ≤ q < s, and for

every u defined on I0, centered and C1 there,

(2.4.7)
(∫

I0

|u(ẋ)|q w(ẋ)dẋ

) 1
q

≤ c

(∫
I0

|∇u(ẋ)|p v(ẋ)dẋ

) 1
p

.

Proof. We set dµ(ẋ) = w(ẋ)dẋ and dν(ẋ) = v(ẋ)dẋ. First, observe that w is in Ap for
some p ≥ 1 since w is in A∞. By Proposition 2.2.5, there exists r > 1 such that:

(2.4.8)
(

1

|I|

∫
I

w(ẋ)rdẋ

) 1
r

≤ c
1

|I|

∫
I

w(ẋ)dẋ, I ⊆ I0,
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and consequently (wr, v) ∈ Ap,rs,η, where η = 1
d

+ 1
s
(1− 1

r
). That the statement holds for

0 < r < 1 as well is an easy consequence of Hölder’s inequality. Let now p ≤ q < s, and
let r > 1 be sufficiently close to 1 so that (2.4.8) holds and the corresponding η verifies
η < 2

d
≤ 1.

By proposition (2.4.1) it follows that∫
I0

|f(ẋ)|q µ(dẋ) ≤ c

∫
I0

(I 1
d
(|∇f |)(ẋ))qµ(dẋ) = A,

say. Consequently it suffices to estimate A. Since by Welland’s theorem we have that

I 1
d
(|∇f |)(ẋ) ≤ c (Mη1(|∇f |)(ẋ)Mη(|∇f |)(ẋ))

1
2

where η1 = 1
d
− 1

s
(1 − 1

r
). Taking integral with respect to the measure µ and applying

Hölder inequality with ( 2r
2r−1

, 2r); A may be estimated by

(2.4.9)
(∫

I0

Mη1(|∇f |)(ẋ)
rq

2r−1w(ẋ)
r

2r−1dẋ

)1− 1
2r
(∫

I0

Mη(|∇f |)(ẋ)rqw(x)rdẋ

) 1
2r

.

Moreover, since (wr, v) ∈ Ap,rs,η(I0), we recall that this condition means(∫
I

wr(ẋ)dẋ

)1/rs(∫
I

v(ẋ)
−1
p−1dẋ

) p−1
p

≤ c |I|1−η .

We have then (w(ẋ)r/(2r−1), v) ∈ Ap, rs
2r−1

,η1 . Indeed,(∫
I

w(ẋ)r/(2r−1)dẋ

) 2r−1
rs
(∫

I

v(ẋ)
−1
p−1dẋ

) p−1
p

≤
(∫

I

wr(ẋ)dẋ

) 1
rs
(∫

I

v(ẋ)
−1
p−1dẋ

) p−1
p

|I|
2r−2
rs

≤ c |I|1−(η− 2r−2
rs

) = c |I|1−η1 ,

by Hölder inequality with parameter (2r − 1, 2r−1
2r−2

).
By proposition 2.4.4, since q < s, means rq < rs, these operators satisfy:(∫

I0

Mη(|∇f |)(ẋ)rqw(ẋ)rdẋ

) 1
2r

≤ c ‖∇f‖
q
2

Lp(I0;dν) ,

and (∫
I0

Mη1(|∇f |)(ẋ)
rq

2r−1w(ẋ)
r

2r−1dẋ

)1− 1
2r

≤ c ‖∇f‖
q
2

Lp(I0;dν) .

By combining the two last inequalities we obtain,∫
I0

|f(ẋ)|q µ(dẋ) ≤ c ‖∇f‖qLp(I0;dν) .

The desired inequality follows.
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2.5 Proof of main theorem
Theorem 2.1.1
Let us now prove Theorem 2.1.1. We let

w(ẋ) = M(eV )(ẋ)−1,

and check that this function w satisfies all the properties of Sobolev-embedding theorem.
First observe that since eV ∈ L1(I0; dẋ), then w−1 = M(eV ) belongs to the weak

L1(I0; dẋ) space and therefore M(eV ) <∞ a.e. and w > 0 a.e. Also M(eV ) is bounded

from below by
∫
I0
eV (ẏ)dẏ and therefore w is bounded by

(∫
I0
eV (ẏ)dẏ

)−1

.

We shall apply Theorem 4.8 of chapter X of [12] with v(ẋ) = e−V (ẋ) and p = 2. In
order to do so, it is sufficient to verify that w ∈ A∞(I0) and (w, v) ∈ A2,s, 1

d
(I0) for some

s > 2.
We first prove that w ∈ A∞(I0): the result of Coifman and Rochberg quoted in propo-

sition (2.2.11) above implies that 1√
w

= M(eV )
1
2 ∈ A1. This implies that, for all I ,

1

|I|

∫
I

1√
w(ẏ)

dẏ ≤ c

(
inf
I

1√
w

)
,

for some constant c. Therefore

(
1

|I|

∫
I

w(ẏ)dẏ)(
1

|I|

∫
I

1√
w(ẏ)

dẏ)2 ≤ c2

(
1

|I|

∫
I

w(ẏ)

)
inf
I

1

w

= c2 1

|I|

∫
I

w(ẏ)

supI w
dẏ ≤ c2.

Therefore w ∈ A3(I0) and, using remark (2.2.4), w ∈ A∞(I0).
Let us now check that there exists s > 2 such that (w, v) ∈ A2,s, 1

d
(I0).

By definition of the maximal function, we know that for all I ⊆ I0 and for all ẋ ∈ I , then

w(ẋ) ≤ |I|
(∫

I

eV (ẏ)dẏ

)−1

.

Therefore

(2.5.1)
(∫

I

wẏ)dẏ

) 1
s
(∫

I

eV (ẏ)dẏ

) 1
2

≤ |I|
2
s

(∫
I

eV (ẏ)dẏ

) 1
2
− 1
s

.

We choose s = 2d
d−1

and the following verifications are easy:
1/2− 1/d ≤ 1/s < 1/2,
1/2− 1/s > 0,
2/s = 1− 1/d,
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and it follows from (2.5.1) that(∫
I

w(ẏ)dẏ

) 1
s
(∫

I

eV (ẏ)dẏ

) 1
2

≤
(∫

I0

eV (ẏ)dẏ

) 1
2
− 1
s

|I|1−
1
d .

Thus we checked the A2,s, 1
d
(I0) condition.

Now Theorem 4.8 of [12] implies Theorem 2.1.1 for any choice of r∗ such that 2 <
r∗ < s = 2d/(d− 1).

As consequence of theorem 2.1.1, we have the following inequality, called Poincare
inequality.

(2.5.2)
∫
I0

|f(ẋ)|2w(ẋ)dẋ ≤ c

∫
I0

|∇f(ẋ)|2 e−V (ẋ)dẋ,

which is deduced from theorem 2.1.1 with Holder’s inequality.

Remark 2.5.1. Here an elementary proof of theorem 2.1.1 when eV ∈ Lr for some r >
d/2 and w = 1
Indeed, the usual Sobolev inequality states that for all p ∈ [1, d[ then,

(2.5.3)
(∫

I0

|f(ẋ)|q dẋ
) 1

q

≤ c

(∫
I0

|∇f(ẋ)|p
) 1

p

for every function f , defined on I0, centered and C1 there and q = pd/(d − p). Choose
p ∈ [1, 2[ and apply Holder with parameters a = 2/p and b = 2/(2− p), we get that,(∫

I0

|f(ẋ)|q dẋ
) 1

q

≤ c

(∫
I0

|∇f(ẋ)|2 e−V (ẋ)

) 1
2
(∫

I0

e
p

2−pV (ẋ)dẋ

) 2−p
2p

Letting p approach 2d/(d+ 2) with p > 2d/(d+ 2), we then get theorem 2.1.1 with con-
stant w = 1 and provided that eV ∈ Lr(I0; dẋ) for some r > d/2.

Although this method seems to work only if eV belongs toLr(I0; dẋ) for some r > d/2,
it has the advantage of providing an explicit and simple expression of the constant in terms
of V .

2.6 Conclusion
A new weighted Sobolev type inequality for integrable potentials is proved in Theorem2.1.1.





Chapter 3

Homogenization for diffusions in
periodic potential

3.1 Introduction
We are interested here in diffusion processes on Rd d ≥ 2 driven by a linear second-order
divergence form operator of the type:

L :=
1

2
eV (x)div(e−V (x)∇) where V : Rd → R is measurable and periodic.

When V is assumed to be regular, the diffusion process generated by L can be con-
structed as a solution of the stochastic differential equation:

(3.1.1) dXt = dBt −
1

2
∇V (Xt)dt,

where (Bt ; t ≥ 0) is a standard Wiener process on Rd. The stochastic process (Xt ; t ≥
0) is then a semi-martingale and Itô’s stochastic calculus can be applied.

To make sense of equation (3.1.1) in the more general case where V is only assumed
to be measurable, we shall use Dirichlet form theory. In Section 3.2, we assume that eV

and e−V are both locally integrable, and show the existence of a Markovian law on path
space C([0,+∞);Rd) with generator L. The stochastic calculus developed in [4] will
play a key role.

Such equations as (3.1.1) model the motion of a passive tracer submitted to two ef-
fects: a diffusion movement represented by the Brownian motion B and an external force
described by the potential V .

Many works in the domain of homogenization theory addressed the question of the
long-time behavior of such diffusions. Two cases are generally studied: either the poten-
tial is periodic or it is a realization of a stationary random function. Clearly the first can
be seen as a special case of the second. Also many results hold for similar discrete models
where Rd is replaced by the grid Zd and one studies so-called random walks with random
conductances.

67
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Homogenization theory states that, under appropriate restrictions on V , solutions of
elliptic problems associated to the operator L on, say, a large ball, scale to solutions of
similar problems where L is replaced by an homogenized operator with constant coeffi-
cients, say

L̄ =
1

2

∑
i,j

(σ̄)i,j∂i∂j,

where σ̄ is a positive symmetric matrix, the so-called effective diffusivity.
In probabilistic terms, proving homogenization results amounts to showing the rescaled

process (X
(ε)
t := εXt/ε2 ; t ≥ 0) satisfies a functional central limit theorem

- or invariance principle. Namely one shows that the distribution of the process X(ε), on
the space of continuous functions from [0,+∞) which values in Rd, weakly converges to
the law of a Brownian motion with covariance matrix σ̄.

Let us now describe more precisely the different results that one finds in the literature
and that are relevant here.

We let I0 := Rd/Zd be the unit torus. The potential V is assumed to satisfy V (x+z) =
V (x) for all x ∈ Rd and z ∈ Zd. We may sometimes identify I0 with a cube in Rd.

We use the notation (Xt ; t ≥ 0) to denote the canonical process on C([0,+∞);Rd)
and Px to denote the law of the process generated by L with starting point x ∈ Rd. Also
denote with

Pu(.) :=

∫
I0

Px(.) dx,

the law of the process when starting with uniform law on I0, and more generally

Pw(.) :=

∫
Px(.)w(x) dx,

the law of the process when the initial law has density w with respect to dx.

In [7], the authors assume the function V is smooth. Observe it implies that V is
bounded. They use the stochastic differential equation (3.1.1) to define the process X for
any given initial point x ∈ Rd and establish the invariance principle under Px for any
x ∈ Rd.

These results were later generalized in [8] to the case of a measurable and bounded
potential V . Then the construction of the process is based on Dirichlet form theory. Ob-
serve however that when V is bounded, the operator L is then uniformly elliptic, so that
all kind of a-priori Gaussian bounds and Hölder regularity estimates are known to hold
for the fundamental solution of L. These in particular allow to define Px for all x ∈ Rd.
Another consequence is that it is then sufficient to prove the invariance principle under
Pu. Indeed one may combine Hölder regularity estimates and the invariance principle
under Pu to deduce it under Px for any x ∈ Rd.

The singular case - when V is not assumed to be bounded anymore - is considered
in [9] (as a special case of diffusions in a random environment). The authors assume
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that both eV and e−V are locally integrable and they use 2-scale arguments to show ho-
mogenization results and the central limit theorem under Pu: the law of Xt/

√
t under Pu

converges to the Gaussian distribution with covariance σ̄.
An alternative approach, which also applies to random environments, was previously

developed in [5]. It is based on the interpretation of the processX as an additive functional
of a reversible Markovian dynamics, the so-called process of the environment seen from
the particle. In our context, the process of the environment seen from the particle is
just the projection of X on the torus I0. Applying the general results from [5] in the
periodic setting, one gets a functional central limit theorem under Pu if V is such that
∇V is integrable and eV + e−V ∈ L1(I0; dx), see part 6 in [5]. It is quite possible that,
at the cost of some extra work, one can remove the assumption on ∇V and then, still
using the arguments in [5], obtain the invariance principle under the only assumption that
eV + e−V ∈ L1(I0; dx). Observe however that, as in [9], the approach in [5] can only give
averaged results under Pu and does not tell us anything on the behavior of the process
under Px for a given starting point x.

The question which interests us in this paper is to show the individual invariance prin-
ciple without assuming V is bounded. Namely we wish to show that, under Px, for a
given x, the process scales to Brownian motion. Note however that the approach through
Dirichlet form only provides a definition of Px for x outside a set of zero Lebesgue mea-
sure. The main result of this work is the following:

Theorem 1. Assume that eV + e−V ∈ L1(I0; dx). There exists a positive symmetric non-
degenerate matrix σ̄ such that for almost all x ∈ Rd, under Px, the family of processes
(X(ε) ; ε > 0) converges in distribution, as ε tends to zero, towards the law of a Brownian
motion with covariance matrix σ̄.

We note that the integrability condition eV + e−V ∈ L1(I0; dx) is reasonable. On
the one hand, it arises naturally when one tries to prove the existence of the process
through constructing its Dirichlet form, see Part 1.3. On the other hand, in the case
d = 1, it is known that the convergence of X(ε) towards a non-degenerate Brownian
motion holds if and only if eV +e−V ∈ L1(I0; dx), see [6]. It does not mean the condition
eV + e−V ∈ L1(I0; dx) is always necessary for the individual functional C.L.T. to hold.
Indeed one might think of examples of perforated environments, where V takes the value
+∞ on a set of non zero measure, and nevertheless the individual functional C.L.T. may
hold.

Our individual invariance principle for almost any starting point x corresponds to what
is known in the more general context of random environments as a quenched invariance
principle where one gets a functional C.L.T. for a given starting point and almost any
realization of the environment.

In the context of random walks with random conductances, a lot of effort was recently
made to get quenched invariance principles. In particular it was recently proved in [1]
that the quenched functional C.L.T. holds for random stationary conductances satisfying
some moment conditions. Observe however that the moment condition used in [1] is
much more restrictive than ours. In particular it gets worse as the dimension grows.
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Our strategy for proving Theorem 1 follows some classical steps: we rely on the
construction of the so-called corrector: this is a periodic function v : Rd → Rd such that
the process t → Xt + v(Xt) is a martingale with stationary increments under Px. It then
follows that the process X(ε) + εv(1

ε
X(ε)) satisfies the invariance principle, see Part 3.3.3,

and the key step of the proof of the Theorem consists in showing that the corrector part
εv(1

ε
X(ε)) tends to 0.

In order to control the corrector, and actually also in order to show its existence, we
rely on the following Sobolev inequality:

Theorem 2. Let V be a measurable function defined on I0 satisfying
eV + e−V ∈ L1(I0; dx). Then there exists a positive and bounded function w, there exists
r∗ > 2 and there exists a constant c such that:

(3.1.2)
(∫

I0

|f(x)|r
∗
w(x) dx

)2/r∗

≤ c

∫
I0

|∇f(x)|2 e−V (x)dx.

for all function f defined on I0, centered and C1 there.

Theorem 2 is the main theorem of chapter 2 (see Theorem 2.1.1) of chapter 2.

Once this Sobolev-type inequality got, we may copy the strategy of [3]: we derive a
first invariance principle for a time-changed version of the process X and finally prove
Theorem 1 in Part 3.3.

We believe the Sobolev inequality from Theorem 2 has its own interest.

3.2 Existence of diffusion process on Rd

We recall that I0 stands for the unit torus: I0 := Rd/Zd. We denote with dẋ the Lebesgue
measure on I0. When we say that a function is integrable on I0 without any further
precision, it is understood that this function is integrable with respect to dẋ.

In the sequel, C([0,+∞), I0) is the space of continuous functions defined on [0,+∞)
with values in I0 and (Ẋt ; t ≥ 0) is the canonical coordinate process on C([0,+∞), I0).

Let x ∈ Rd whose projection on I0 we denote with ẋ. Given a trajectory (Ẋt ; t ≥ 0)
in C([0,+∞), I0) such that Ẋ0 = ẋ, we let (Xt ; t ≥ 0) be the Rd-valued trajectory
obtained by lifting Ẋ . That is (Xt ; t ≥ 0) is the unique element in C([0,+∞),Rd)
satisfying X0 = x and whose projection on I0 coincides with Ẋt for all times t.

As we have said in "Introduction générale", we shall consider the divergence-form
operator L̇ on L2(I0; e−V (ẋ)dẋ), formally defined by:

L̇f(ẋ) =
1

2
eV (ẋ)div(e−V (ẋ)∇f(ẋ)).

Ours first goal in this section is to prove that there exists a diffusion process associated
with operator L̇ when eV and e−V are both integrable on I0. In other words, we want to
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prove the existence of a Markov law (Pẋ ; ẋ ∈ I0) on C([0,+∞); I0) with generator L̇.
Once this is done, we shall define the diffusion process in Rd by lifting the trajectory from
the torus to Rd. We first study the Dirichlet form associated with L̇.

Let f and g be a real-valued functions defined on I0. For i = 1...d, let ∂if denote the
the weak derivative of f in the i-th direction. Let f and g be such that for any i = 1...d,
then ∂if belongs to L2(I0; e−V (ẋ)dẋ). We then define the bilinear forms

(3.2.1) ξ̇(f, g) :=
1

2

∫
I0

∇f(ẋ) · ∇g(ẋ) e−V (ẋ)dẋ,

and, if f and g are further assumed to belong to L2(I0; e−V (ẋ)dẋ),

ξ̇1(f, g) := ξ̇(f, g) +

∫
I0

f(ẋ)g(ẋ) e−V (ẋ)dẋ.

More generally, for α > 0 and such functions f anf g, let

ξ̇α(f, g) := ξ̇(f, g) + α

∫
I0

f(ẋ)g(ẋ) e−V (ẋ)dẋ.

Let H1(I0; e−V ) be the set of functions in L2(I0; e−V (ẋ)dẋ) with all derivatives ∂if be-
longing to L2(I0; e−V (ẋ)dẋ).

In view of Proposition 1.3.3 in Sectionn 1.3 (ξ̇, H1(I0; e−V )) is a regular and local

Dirichlet form associated with L̇, where H1(I0; e−V ) := C∞(I0)
ξ̇1 be the completion of

C∞(I0) with respect to the norm ξ̇1. Indeed, we have proved that (ξ̇,H1(I0; e−V )) is clos-
able which implies that (ξ̇, C(I0)) is also closable. By consequence, applying Theorem
1.2.19 of chapter 1, (ξ̇, H1(I0; e−V )) is a closed form.

Following [4], part 1.5 of chapter 1, we also define the extended domain H1
e (I0; e−V ):

this is the set of measurable functions f on I0, such that |f | < ∞ a.e and there exists a
ξ̇-Cauchy sequence (fn) in H1(I0; e−V ) such that limn→∞ fn = f a.e.

Since (ξ̇, H1(I0; e−V )) is a regular and local Dirichlet form, there exists a Markov
law on C([0,+∞), I0) whose Dirichlet form is (ξ̇, H1(I0; e−V )). This law is denoted
with (Pẋ ; ẋ ∈ I0). It is uniquely defined for Lebesque almost all ẋ ∈ I0. The measure
e−V (ẋ)dẋ is reversible. The process thus defined is conservative. This property is proved
Subsection 1.3.1 of chapter 1. Its generator, in the L2 sense, is given by L̇. Let (Eẋ ; ẋ ∈
I0) denote the expectation with respect to (Pẋ ; ẋ ∈ I0).

Let x ∈ Rd and ẋ be its projection on I0. We denote with Px the law of the lifting of
the trajectory (Ẋt ; t ≥ 0) to Rd under Pẋ. Then Px is a probability on C([0,+∞),Rd).

Remark 3. One may ask whether H1(I0; e−V ) = H1(I0; e−V ). The answer is no. See
counterexample in part 4.3 of chapter 4.

In the sequel we will have to consider time-changed processes. We discuss this con-
struction now.
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3.3 Homogenization result: proof of Theorem 1

We show the invariance principle for X̃ and deduce the invariance principle for X us-
ing the relation (1.6.4) of Section 1.6. Indeed, we construct the time-changed process( ˜̇X t, t > 0

)
on the torus by the relation (1.6.4) and we denote by

(
X̃t, t > 0

)
the lifting

time of this of
( ˜̇X t, t > 0

)
. We ask the question: is

(
X̃t, t > 0

)
the time-changed pro-

cess of (Xt, t > 0) by the same additive function A defined in (1.6.4)? The answer is yes.
We will show this answer more clearly in Subsection 3.3.3.

3.3.1 Sobolev Inequality and time-changed process
Recall that the strictly positive bounded function w which satisfies Theorem 2 is w =
M(eV )−1 (see proof of Theorem 2.1.1 of chapter 2). Thus, w(ẋ) is integrable on I0 and
then the measure dµ(ẋ) = w(ẋ)dẋ has support I0 because it is strictly positive. Obviously,
It is a Radon measure and charges no set of zero capacity.
By Theorem 1.5.5 the unique PCAF denoted by A associated with µ is:

(3.3.1) At =

∫ t

0

w(Ẋs)e
−V (Ẋs)ds.

The measure µ is the Revuz measure of A.
We are now in condition the apply all the theory given in Section 1.6 of chapter 1. Let us
simplifly the definition of Dirichlet form in (1.6.3).
The Hitting function denoted by HNu(x) is equal to u(x) a.e, and in view of Theorem

1.6.3, the symmetric bilinear form
(˜̇ξ, H̃1(I0;w)

)
defined on L2(I0;w(dẋ)) by:

(3.3.2)

{
H̃1(I0;w) = {φ ∈ L2(I0;w(dẋ)) : ∃f ∈ H1

e (I0; e−V ) : f = φ a.e}˜̇ξ(φ, φ) = ξ̇(f, f).

is the regular and local Dirichlet form associated with
( ˜̇X t, t > 0

)
where

(3.3.3) ˜̇X t = ẊA−1
t
, A−1

t = inf {s > 0;As > t} .

In view of the definition of H1
e (I0; e−V ), we remark that the extended domain of ˜̇ξ coin-

cides with the extended domain of ξ̇. This property is proved in corollary 1.6.4 of chapter

1. Note that
(˜̇ξ, H̃1(I0;w)

)
admits C∞(I0) as a core (see Theorem 1.6.3).

From now on, we assume that eV and e−V are integrable on I0. We choose the function
w given by Theorem 2.1.1 of chapter 2.

Since C1 functions are dense in the domain of ˜̇ξ, it follows that equation (3.1.2) is true
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for any function f in H̃1(I0;w). Let ( ˜̇P t; t ≥ 0) be the semi-group generated by ˜̇X .

By construction, ( ˜̇P t; t ≥ 0) is a symmetric strongly continuous semi-group acting on

L2(I0;w(dẋ)). It is related to the process ˜̇X through the formula

˜̇P tf(ẋ) = Eẋ[f( ˜̇X t)],

for almost all ẋ ∈ I0, any time t and any measurable function f ∈ L2(I0;w(dẋ)).
As a consequence of Theorem 2, we have the following

3.3.2 Sobolev inequality and, existence and boundedness of density
of probability transition

Corollaire 3.3.1. For all positive time t, for almost every ẋ ∈ I0, the law of ˜̇X t under
Pẋ has a density with respect to the measure w(dẋ), say (˜̇pt(ẋ, ẏ); ẏ ∈ I0). The function
(ẋ, ẏ)→ ˜̇pt(ẋ, ẏ) is almost everywhere bounded on I0 × I0.

Proof. The proof follows a classical argument that can be found in the book [13] or the
papers [14] and [15] for instance.
We only sketch it here.

In the proof below, the value of the constant c may vary from line to line.
Choose r∗ from Theorem 2 and let p = r∗/2. Equation (3.1.2) then reads: for all C1

and centered function f , then

(3.3.4)
(∫

I0

|f(ẋ)|2pw(dẋ)

) 1
p

≤ c

∫
I0

|∇f(ẋ)|2 e−V (ẋ)dẋ.

Using first Hölder’s inequality with parameters 2p − 1 and (2p − 1)/(2p − 2) and then
(3.3.4) we deduce that

(3.3.5)

∫
I0

f 2(ẋ)w(dẋ) =

∫
I0

|f(ẋ)|2p/(2p−1) |f(ẋ)|(2p−2)/(2p−1)w(dẋ)

≤
(∫

I0

|f(ẋ)|2pw(dẋ)

)1/(2p−1)(∫
I0

|f(ẋ)|w(dẋ)

)(2p−2)/(2p−1)

≤ c

(∫
I0

|∇f(ẋ)|2 e−V (ẋ)dẋ

)p/(2p−1)(∫
I0

|f(ẋ)|w(dẋ)

)(2p−2)/(2p−1)

.

Using the density of C1 functions, inequality (3.3.5) can be extended for all centered

functions f ∈ H̃1(I0;w). Then
∫
I0
|∇f(ẋ)|2 e−V (ẋ)dẋ = 2˜̇ξ(f, f).

Let f ∈ L2(I0;w(dx)) and set ft := ˜̇P tf . Assume that f is centered. Then so is ft
for any t.

Let v(t) :=
(∫

I0
|f(ẋ)|w(dẋ)

)−2 ∫
I0
ft(ẋ)2w(dẋ).
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On the one hand, the function v satisfies

v′(t) = −2

(∫
I0

|f(ẋ)|w(dẋ)

)−2 ˜̇ξ(ft, ft).
Therefore, using (3.3.5), we have

v(t) ≤
(
−cv′(t)

)α
with α =

p

2p− 1
.

(We used the fact that∫
I0

|ft(ẋ)|w(dẋ) ≤
∫
I0

˜̇P t |f(ẋ)|w(dẋ) =

∫
I0

|f(ẋ)|w(dẋ).)

From this differential inequality, we deduce that v(t) is bounded by a constant, say
c(t), independently of f and therefore∫

I0

(˜̇P tf
)2

w(dẋ) ≤ c(t)

(∫
I0

|f(ẋ)|w(dẋ)

)2

.

The duality property gives:

∥∥∥˜̇P tf
∥∥∥
L∞

= sup


∣∣∣∫I0 g( ˜̇P tf)w(dx)

∣∣∣
‖g‖L1(I0;w(dẋ))

; g ∈ L1(I0;w(dẋ)), g 6= 0

 .

Thus we have using Hölder’s inequality again:∥∥∥˜̇P tf
∥∥∥
L∞
≤
√
c(t)

(∫
I0

|f(ẋ)|2w(dẋ)

) 1
2

∀t > 0.

As a consequence∥∥∥˜̇P tf
∥∥∥
L∞

=
∥∥∥˜̇P t/2( ˜̇P t/2f

)
‖L∞

≤
√
c(t/2)

∥∥∥˜̇P t/2f
∥∥∥
L2(I0;w(dẋ))

≤
√
c(t/2)

√
c(t/2) ‖f‖L1(I0;w(dx)) .

We deduce that:∥∥∥˜̇P tf
∥∥∥
L∞(I0)

≤ c(t/2) ‖f‖L1(I0;w(dẋ)) ∀t > 0.

This inequality extends to all non-negative functions f .
By taking f = 1A, with A any Borelian contained in I0 we deduce that the semi-group˜̇P is absolutely continuous with respect to the measure w(dẋ) with a density bounded by

c(t/2).
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3.3.3 Sobolev inequality and, construction and convergence of cor-
rector

We already defined the process (Xt ; t ≥ 0) as the lifting of (Ẋt ; t ≥ 0). Recall that the

process ( ˜̇X t ; t ≥ 0) is obtained from Ẋ by the time change A from equation (3.3.3). We
similarly introduce the process (X̃t ; t ≥ 0) as the time-change of X through the additive

functional A. Note that the projection on I0 of the trajectory of X̃ is then ( ˜̇X t ; t ≥ 0).

In this section, we prove the existence of a corrector to the process X̃ , i.e. we construct

a function v, defined on I0, such that M̃t := X̃t + v( ˜̇X t) is a continuous martingale under
Px for almost all x ∈ Rd.

We use the construction of the Dirichlet form ξ̇ from part 3.2, where the function w is
the one given by Theorem 2. In particular recall that H1

e (I0; e−V ) is the extended domain

of ˜̇ξ. Observe that the Sobolev inequality (3.1.2) implies that functions inH1
e (I0; e−V ) are

also in Lr∗(I0;w(dẋ)) and therefore in L1(I0;w(dẋ)).
We callH1

o,e(I0) the quotient space obtained by identifying functions inH1
e (I0; e−V ) when

they differ by a constant. Equivalently H1
o,e(I0) is the sub-space of centered functions in

H1
e (I0).

3.3.3.1 Construction of corrector

To start the construction of the corrector, we need the following proposition. Recall
that H1

o,e(I0) the quotient space obtained by identifying functions in H1
e (I0; e−V ) when

they differ by a constant. Equivalently H1
o,e(I0) is the sub-space of centered functions in

H1
e (I0; e−V )

Proposition 3.3.2. (H1
o,e(I0), ˜̇ξ) is a Hilbert space.

Proof. The proposition follows from the Poincaré inequality

(3.3.6)
∫
I0

|f(ẋ)|2w(dẋ) ≤ c

∫
I0

|∇f(ẋ)|2 e−V (ẋ)dẋ,

which is itself a consequence of (3.1.2) and Hölder’s inequality.

On the one hand, (3.3.6) implies that ˜̇ξ is a norm on H1
o,e(I0) and it is equivalent to ˜̇ξ1.

Since H̃1(I0;w) is complete with respect to ˜̇ξ1, and because the condition of being cen-

tered is closed in H̃1(I0;w), we get that (H1
o,e(I0), ˜̇ξ) is complete.

Remark 4. Observe, as above, that functions in H1
e (I0; e−V ) are also in L2(I0;w(dx)).

Therefore H1
e (I0; e−V ) = H̃1(I0;w).
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Construction of the corrector: for i = 1...d, consider the expression:

Li : f 7→ −1

2

∫
I0

∂if(x) e−V (x)dx .

Then Li is a continuous linear map on (H1
o,e(I0), ˜̇ξ).

We identify H1
o,e(I0) and its dual. Thus, there exists a unique vi in H1

o,e(I0) such that:

(3.3.7)
−1

2

∫
I0

∂if(x) e−V (x)dx =
1

2

∫
I0

∇vi · ∇f e−V (x)dx

= ˜̇ξ(vi, f),

for all f ∈ H1
o,e(I0).

The function vi is called the corrector in the direction i. We may also consider the
vector-valued corrector v := (v1, ..., vd) : I0 7→ Rd. We also define the function u =
(u1, ..., ud) from Rd to Rd by u(x) = x+ v(ẋ) (where ẋ is the projection of x on I0).

Proposition 3.3.3. The process (M̃t := u(X̃t) = X̃t + v( ˜̇X t) ; t ≥ 0) is a continuous
martingale under Px for almost all x ∈ Rd and satisfies

(3.3.8) 〈M̃〉t =

∫ t

0

e−V ( ˜̇Xs)

w( ˜̇Xs)
((δ +∇v)(δ +∇v))( ˜̇X t) dt ,

where ((δ +∇v)(δ +∇v))(.) is the matrix with (i, j) entry given by (δi +∇vi(.)) · (δj +
∇vj(.)) and δi is the unit vector in direction i.

Proof. We recall from [4], chapter 5, that for all functions f ∈ H̃1(I0;w), the process

t→ f( ˜̇X t) has a unique Itô-Fukushima decomposition under Pẋ, for almost every ẋ, as a
sum of two terms:

(3.3.9) f( ˜̇X t)− f( ˜̇X0) = M f
t +N f

t ,

where M f is a continuous martingale additive functional and N f is a functional of zero
energy. Besides, for f and g in H̃1(I0;w), one has the following expression for the square
bracket:

(3.3.10) 〈M f ,M g〉t =

∫ t

0

e−V ( ˜̇Xs)

w( ˜̇Xs)
∇f( ˜̇Xs) · ∇g( ˜̇Xs) ds.

See in particular example 5.2.1 and formula (5.2.46) in [4].
These formulas do not immediately yield a decomposition for the process M̃ . Indeed,

we could directly apply the Itô-Fukushima decomposition to the function v which belongs

to H̃1(I0;w) , but, although the process X̃ is also an additive functional of ˜̇X , it is not of
the form (3.3.9). In order to deal this difficulty, we rely on a localization argument.
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Let ẋ ∈ I0 and choose x ∈ Rd whose projection on I0 is ẋ. Let J0 be a closed cube
in I0 centered at ẋ. We identify J0 with a closed cube in Rd centered at x, say J1, and let
φ : J0 → J1 be the identification map.

We will denote with (c ˜̇X t ; t ≥ 0) the process obtained by reflecting ˜̇X on the bound-

ary of J0. The construction of c ˜̇X mimics the construction of ˜̇X in part 3.3.1 except that

we consider the bilinear form (3.2.1) on smooth functions with support in J0. Let c˜̇ξ be

the Dirichlet form of the process c ˜̇X .

Let τ be the hitting time of the boundary of J0. Note that the two processes c ˜̇X t and˜̇X t coincide in law until time τ . Besides, the two processes X̃ and φ(c ˜̇X) also coincide
until time τ . Thus we get that

(3.3.11) u(X̃t)− u(X̃0) = (v + φ)(c ˜̇X t)− (v + φ)(c ˜̇X0) ,

for times t < τ (in the sense that these two processes have the same law).
Now observe that the functions v and φ both belong to the domain of the Dirichlet

form c˜̇ξ. Thus the process (v + φ)(c ˜̇X) admits an Itô-Fukushima decomposition as

(v + φ)(c ˜̇X t)− (v + φ)(c ˜̇X0) = M
(0)
t +N

(0)
t .

On the one hand, the function ∂iφ is constant and equals the unit vector in direction i.

On the other hand, the function v satisfies equation (3.3.7). Thus we get that c˜̇ξ(f, v +
φ) = 0 for all smooth functions f supported in the interior of J0. In other words, the

function v + φ is harmonic for the process c ˜̇X killed at time τ . It implies that the process

(u(c ˜̇X t) − u(c ˜̇X0) ; 0 ≤ t < τ) is a local martingale and N (0)
t = 0 for all times t < τ .

Using (3.3.11), we conclude that the process (u( ˜̇X t) − u( ˜̇X0) ; 0 ≤ t < τ) is a local
martingale.

In order to prove that (u( ˜̇X t)− u( ˜̇X0) ; 0 ≤ t) is a local martingale for all times, one
iterates this reasoning using the Markov property. The computation of the bracket follows
from formula (3.3.10).

We show the invariance principle for X̃ and deduce the invariance principle for X
using the relation (3.3.3).

Let X̃(ε)
t := εX̃t/ε2 and ˜̇X(ε)

t := ε ˜̇X t/ε2 .

Proposition 3.3.4. There exists a positive symmetric non-degenerate matrix σ such that
for almost all x ∈ Rd, under Px, the family of processes (X̃(ε) ; ε > 0) converges in
distribution, as ε tends to zero, towards the law of a Brownian motion with variance σ.

The proof of Proposition 3.3.4 is in two steps:

First step: invariance principle for the martingale part.



78CHAPTER 3. HOMOGENIZATION FOR DIFFUSIONS IN PERIODIC POTENTIAL

We define uεi(x) = εui(
x
ε
) and let

M̃ i,ε
t := uεi(X̃

ε
t )− uεi(X̃ε

0),

M̃ ε
t := (M̃1,ε

t , ..., M̃d,ε
t ).

Lemma 3.3.1. There exists a positive symmetric non-degenerate matrix σ such that for
almost all x ∈ Rd, under Px, the family of processes (M̃ ε ; ε > 0) converges in distri-
bution, as ε tends to zero, towards the law of a Brownian motion with covariance matrix
σ.

Proof. We will need the invariance principle for continuous martingales. For the reader’s
convenience, we provide here the formulation of theorem 5.1 of [2].

Theorem 5.1 of [2] (Helland 1982)
Let mε be a family of continuous real-valued martingales with quadratic variation pro-
cesses < mε > satisfying the following condition:
(i) there exists a real number a > 0 such that for any t > 0, as ε tends to zero, then
< mε >t converges in probability to at.
Then, as ε tends to zero, the sequence of processes mε(.) converges in law in the uniform
topology to a Brownian motion with covariance a.

Let σ be the matrix with entries given by

(σ)i,j :=

∫
I0

(δi +∇vi(ẋ)) · (δj +∇vj(ẋ))e−V (ẋ)dẋ.

Note that, by construction,∇vj belongs to L2(I0; e−V (ẋ)dẋ).
In view of Proposition 3.3.3, we know that M̃ i,ε

t is a square integrable martingale
which quadratic variation

∫ t

0

|δi +∇vi|2 (
X̃

(ε)
s

ε
)

(
e−V

w

)
(
X̃

(ε)
s

ε
)ds =

∫ t

0

|δi +∇vi|2 (
˜̇X(ε)

s

ε
)

(
e−V

w

)
(
˜̇X(ε)

s

ε
)ds,

because V is periodic, |δi +∇vi|2 is periodic and w is also periodic.
More generally, for any vector e ∈ Rd, then e ·M̃ ε

t :=
∑

i eiM̃
i,ε
t is a square integrable

martingale with bracket

〈e · M̃ ε〉t =

∫ t

0

(∑
i

ei(δi +∇vi)

)2

(
˜̇X(ε)

s

ε
)

(
e−V

w

)
(
˜̇X(ε)

s

ε
)ds

By the ergodic Theorem for ˜̇X , for all t ≥ 0:

〈e · M̃ ε〉t −→ε→0 t.

∫
I0

(∑
i

ei(δi +∇vi(ẋ))

)2

e−V (ẋ)dẋ almost surely.
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Theorem 5.1 of [2], as recalled above, gives the invariance principle for the martin-
gales

(
e · M̃ ε

t ; t ≥ 0
)

with asymptotic variance e · σe. Since this is true for all direction
e, we deduce the invariance principle for M ε itself.

Second step:

3.3.3.2 convergence of the corrector

We have to show that the corrector part goes to zero in Px probability for almost all
x ∈ Rd. For that, it suffices to prove the following equality:

(3.3.12) ∀η > 0, lim sup
ε↓0

Px

 sup
0≤t≤1

∣∣∣∣∣∣εvi(
˜̇X(ε)

t

ε
)

∣∣∣∣∣∣ > η

 = 0.

Observe that (3.3.12) implies that, for all T and for all η > 0,

(3.3.13)

lim sup
ε↓0

Px

 sup
0≤t≤T

∣∣∣∣∣∣εvi(
˜̇X(ε)

t

ε
)

∣∣∣∣∣∣ > η


= lim sup

ε↓0
Px

 sup
0≤t≤1

∣∣∣∣∣∣εvi(
˜̇X(ε)

t

ε
)

∣∣∣∣∣∣ > η√
T

 = 0.

We have X̃(ε) = M̃ ε − v( ˜̇X(ε)

). Combining (3.3.13) with Lemma 3.3.1 yields Propo-
sition 3.3.4.

Now, let us prove (3.3.12). We have

Px

 sup
0≤t≤1

∣∣∣∣∣∣εvi(
˜̇X(ε)

t

ε
)

∣∣∣∣∣∣ > η

 ≤ Px

 sup
0≤t≤ε2

∣∣∣∣∣∣εvi(
˜̇X(ε)

t

ε
)

∣∣∣∣∣∣ > η

 (:= I)

+ Px

 sup
ε2≤t≤1

∣∣∣∣∣∣εvi(
˜̇X(ε)

t

ε
)

∣∣∣∣∣∣ > η

 (:= II).

We show that each term goes to zero.
The first term is

I = Px

(
sup

0≤t≤1

∣∣∣vi( ˜̇X t)
∣∣∣ > η

ε

)
and observe that

Px

(
sup

0≤t≤1

∣∣∣vi( ˜̇X t)
∣∣∣ > η

ε

)
→ 0 when ε −→ 0
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by continuity: the map t 7−→ vi(
˜̇X t) is continuous because vi is in the extended domain

of ˜̇ξ (see Theorem 1.4.10 of chapter 1).
The second term is equal to

II = Px

 sup
ε2≤t≤1

∣∣∣∣∣∣εvi(
˜̇X(ε)

t

ε
)

∣∣∣∣∣∣ > η

 = Px

(
sup

1≤t≤ε−2

∣∣∣εvi( ˜̇X t)
∣∣∣ > η

)
.

By the Markov property, the existence and the boundedness of the density at t = 1,
we get that:

II =

∫
I0

˜̇p1(ẋ, ẏ)w(ẏ)Py

(
sup

0≤t≤ε−2−1

∣∣∣εvi( ˜̇X t)
∣∣∣ > η

)
dẏ

≤ cPw

(
sup

0≤t≤ε−2

∣∣∣εvi( ˜̇X t)
∣∣∣ > η

)
.

We use the Lemma 1.6.5, proved in chapter 1, to show that this last term goes to zero
when ε goes to zero.

We claim that Lemma 1.6.5 implies that, for all η > 0, then

(3.3.14) Pw( sup
0≤t≤ε−2

∣∣∣εvi( ˜̇X t)
∣∣∣ > η) −→ 0 when ε ↓ 0.

Indeed, let vs = ˜̇P svi. Then vs is also in the extended domain of ˜̇ξ (see Lemma 1.3.7
of chapter 1) and we have:

(3.3.15)
Pw( sup

0≤t≤ε−2

∣∣∣εvi( ˜̇X t)
∣∣∣ > η) ≤ Pw( sup

0≤t≤ε−2

∣∣∣ε(vi − vs)( ˜̇X t)
∣∣∣ > η

2
)

+ Pw( sup
0≤t≤ε−2

∣∣∣εvs( ˜̇X t)
∣∣∣ > η

2
).

Note that vs(ẋ) =
∫
I0
vi(ẏ)˜̇ps(ẋ, ẏ)w(ẏ)dẏ ≤ c(s) ‖vi‖L2(I0;w(dẋ)) a.e ẋ ∈ I0 where

c(s) = supẋ,ẏ∈I0
˜̇ps(ẋ, ẏ). Therefore the second term in (3.3.15) vanishes when ε is small

enough. By Lemma 1.6.5 applied to the function vi − vs,

lim sup
ε→0

Pw( sup
0≤t≤ε−2

∣∣∣ε(vi − vs)( ˜̇X t)
∣∣∣ > η

2
) ≤ 2

e1

η

√˜̇ξ(vi − vs; vi − vs).
This last bound holds for any s > 0 and

lim
s→0

˜̇ξ(vi − vs; vi − vs) = 0

as follows from Lemma 1.3.7 of chapter 1.
Thus we are done with the proof of (3.3.14) and the proof of the convergence towards

zero of (II) and (3.3.12) follows.
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As in [3], we now deduce the invariance principle for X(ε) from the invariance princi-
ple for X̃(ε).

3.3.4 Invariance principle for X

In this part of the work, we deduce from the invariance principle for X̃ that the rescaled
process

(
Xε(t) = εX( t

ε2
)
)

converges in distribution to a Brownian motion. We recall
that a family of continuous processes (Y ε) is tight under P if and only if it satisfies the
following compactness criterion:

(3.3.16) lim
γ↓0

lim sup
ε↓0

P

 sup
|t−s|≤γ
0<s,t<T

|Y ε
t − Y ε

s | > R

 = 0

for all T > 0 and R > 0 (see [16], Theorem 7.5).
Consider the two sequences of processes (X(ε)) and (X̃(ε)). We recall that by defini-

tion of X̃:
X̃(ε)(t) = X(ε)

(
ε2(A)−1(tε−2)

)
Define Aεt := ε2At/ε2 .

The large time asymptotic of the time changed A is easily deduced from the ergodic
theorem as stated in the following Lemma:

Lemma 3.3.2. There exists a constant k such that, under Px for almost any x, the se-
quence of processes Aε almost surely converges to the process (kt; t ≥ 0) uniformly on
any compact i.e., for all T ,

(3.3.17) sup
t∈[0,T ]

|Aε(t)− kt| −→ε→0 0

Px a.e. for almost all x.

Proof. The ergodic theorem implies that

A(t)

t
=

∫ t
0
w(Ẋs)e

V (Ẋs)ds

t

−→t→∞(

∫
I0

e−V (ẋ)dẋ)−1

∫
I0

eV (ẋ)w(ẋ)e−V (ẋ)dẋ

=(

∫
I0

e−V (ẋ)dẋ)−1

∫
I0

w(ẋ)dẋ := k

Px a.e. for almost all x.
Observe that the map t 7−→ kt is continuous in [0, T ] and, for all ε, the map t 7−→ Aεt

is non-decreasing.
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Thus Dini’s theorem applies and we deduce the uniform convergence from the point-
wise convergence.

Lemma 3.3.3. For all T > 0 and all R > 0, we have

lim
ε→0

Px( sup
t∈[0,T ]

∣∣∣X(ε)
t − X̃

(ε)
kt

∣∣∣ > R) = 0,

for almost all x.

Proof. Since A(t) is bijective (continuous and strictly monotone), we have:

X̃
(ε)
t = X(ε)

(
ε2(A)−1(tε−2)

)
⇔ X

(ε)
t = X̃(ε)

(
ε2A(tε−2)

)
.

Choose θ > 0. If supt∈[0,T ]

∣∣∣X(ε)
t − X̃

(ε)
kt

∣∣∣ > R, then either supt∈[0,T ]

∣∣∣A(ε)
t − kt

∣∣∣ > θ

or supt∈[0,kT ];|t−s|≤θ

∣∣∣X̃(ε)
t − X̃

(ε)
s

∣∣∣ > R.
Lemma 3.3.2 implies that the probability of the first event tends to 0 as ε goes to 0. The

tightness of the sequence (X̃(ε)), see (3.3.16), ensures that the probability of the second
event can be made as small as wanted by taking θ close to 0.

The invariance principle for the sequence (X(ε)), i.e. Theorem 1, now clearly follows
from Lemma 3.3.3 and Proposition 3.3.4.

3.4 Conclusion:
We have proved a quenched invariance principle for diffusions evolving in a periodic po-
tential, without smoothness assumptions and without uniform boundedness assumptions
on the potential.

Remark 5. We note that if we consider the more general case:

L = div(A∇)

where A(x) is a d ∗ d-symmetric matrix satisfying the following hypothesis: A is periodic
and A ∈ L1(I0); there exists V , measurable periodic such that: eV ∈ L1(I0) and
A ≥ e−V Id, then the result of this paper holds for the diffusions associated with L.

Indeed, recall that the main result of this work is Theorem 1 and the main tool of
the proof is Theorem 2 proved in chapter 2. Furthermore, we can deduce easily that the
Dirichlet form associated with L̇ on L2(I0;A(ẋ)dẋ), is

(3.4.1)

{
İ(f, f) =

∫
I0
〈A(ẋ)∇f(ẋ),∇f(ẋ)〉 dẋ,

D(I) = C∞(I0)
İ1
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İ1(f, f) = İ(f, f) + ‖f‖L2(I0;A(ẋ)dẋ). The existence of the Hunt diffusion process on I0 is
easy and the proof is the same as in Proposition 1.3.3. This following Sobolev inequality
is got from Theorem 2 and the two hypotheses: eV ∈ L1(I0) and A ≥ e−V Id. It holds:

(3.4.2)
(∫

I0

|f(ẋ)|r
∗
w(ẋ)dẋ

) 2
r∗

≤ c

∫
I0

〈A(ẋ)∇f(ẋ),∇f(ẋ)〉 dẋ

for all function f defined on I0, centered and C1. The function w is exactly the one given
in Theorem 2.
We have proved the existence of Hunt process on Rd associated with L by lifting the tra-
jectory of Hunt process on the torus I0 associated with L̇ as done in the begining. We
consider, the Sobolev inequality (3.4.2). We copy line by line by starting at Section 3.3.1
to Conclusion, to get the invariance principle for diffusion assoiated with L.

Remark 3.4.1. One may compare our approach with the one used in [1].
We recall that [1] proves a quenched invariance principle for random walks with

random conductances under Lp integrability conditions on the conductances and their
inverses where p is much larger than 1.

The proof of [1] also relies on Sobolev inequalities. Since the environment may not be
periodic, there is no finite scale that controls everything. Therefore, rather than one single
Sobolev inequality, one needs a sequence of Sobolev inequalities on a growing family
of balls centered at the origin. In [1], these are obtained from the classical (discrete)
Sobolev embedding as in Remark 2.5.1. This explains why the integrability condition in
[1] is not optimal. On the other hand, combining our technics with those of [1] in the
random environment setting would require some information on the constant appearing
in our Theorem 2.1.1 of chapter 2.





Chapter 4

Appendix

4.1 Introduction
This chapter is devoted to give some supplements on the third chapters below.

4.2 (B) on chapter 2

4.2.1 The maximal function is not necessary integrable
In this part, we give a simple example which prove that the maximal function Mf is not
necessary integrable. Indeed, let d = 1, f(y) = χ(0,1/2)

d
dy

(−log(y)). Then f(y) ≥ 0 and
f ∈ L(T ; dx) where T = [−π; π]. Now for x ∈ (−1/2, 0) we

Mf(x) ≥ 1

2η

∫
(x−η,x+η)

f(y)dy, η > 0.

In particular setting η = 2 |x|, we get

Mf(x) ≥ 1

4 |x|

∫
(0,|x|)

f(y)dy =
1

4 |x|
1

−log(|x|)
,

and this function is not integrable in a neighborhood of 0.

4.2.2 A1 weight
As a first step, we consider powers of |x|, i.e |x|η. When d = 1 and η > 0, by letting
I = (o, b) we note that (1

b

∫
I
|x|η dx = bη

η+1
→ 0 when b → ∞ whereas infI |x|η = 0.

The positive power of |x|η are ruled out, but how about negative powers? We must have
−d < η ≤ 0 for otherwise |x|η is not locally integrable. But this is the only restriction.
Indeed, we have

85
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Proposition 4.2.1. Suppose that −d < η ≤ 0. Then |x|η ∈ A1(I0), more precisely there
exists a constant c independent of I such that

(4.2.1)
1

|I|

∫
I

|x|η ≤ c inf
I
|x|η .

Proof. Fix I and denote by I0 the translate of I centred at 0; we consider two mutually
exclusive cases, to wit (i) 2I0 ∩ I 6= ∅ and 2I0 ∩ I = ∅. In case (i) we have that 6I0 ⊇
I and ( 1

|I|)
∫
I
|x|η dx ≤ ( 1

|I|)
∫

6I0
|x|η dx ≤ c |x|

1
η , where c is a dimensional constant,

independent of I; clary (4.2.1) holds in this case. Case (ii) is easier, for then |x| is
equivalent to |y|, for x, y ∈ I; indeed we have |x| ≤ |x− y| + |y| ≤ c |y|, and the
opposite inequality follows by exchanging x and yabove. Thus |y|η ≤ c infI |x|η, all
y ∈ I , and averaging over y ∈ I , (4.2.1) holds for (ii) as well.

4.3 (C) On chapter 3

We have asked in Remark 3 of chapter 1 the question: is H1(I0; e−V ) = H1(I0; e−V )?
where

H1(I0; e−V ) := C∞(I0)
ξ̇1

and

H1(I0; e−V ) :=
{
f ∈ L2(I0; e−V (ẋ)dẋ) : ∀i, la derivée faible ∂if est dans L2(I0; e−V (ẋ)dẋ)

}
.

The answer is no here, see counterexample below, and in general the two spaces don’t
correspond (see [19]).

Counterexample

Let d = 2, fix I0 the unit torus of R2 and let Ω = {ẋ ∈ I0 : |ẋ| < 1} be the unit disc. We
choice the following structure of e−V .

(4.3.1) e−V (ẋ) =

{
a−1(|ẋ| ẋ1ẋ2 > 0

a(|ẋ|) ẋ1ẋ2 < 0

Where a(r) = rα, 0 ≤ α < 2
a(r), a(r)−1 ≥ c(ε) for r > ε.
Obviously, ∫

I0

e−V (ẋ)dẋ+

∫
I0

eV (ẋ)dẋ <∞.
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We remark also that
∫ 1

0
a(r)
r
dr < ∞. We require several test functions. In the polar

variables r = |ẋ| , θ = cos−1(ẋ1/r). We set

(4.3.2) u(ẋ) =


1 for ẋ1 > 0, ẋ2 > 0

0 for ẋ1 < 0, ẋ2 < 0

sin(θ) for ẋ1 < 0, ẋ2 > 0

cos(θ) for ẋ1 > 0, ẋ2 < 0,

ũ(ẋ) = u(−ẋ2, ẋ1) (a rotation through an angle of π/2),

g(ẋ) =

{
−∂ũ
∂ẋ2

,
∂ũ

∂ẋ1

}
.

By construction,

|u| ≤ 1, |∇u| < c/r,

∫
Ω

|∇u(ẋ)|2 e−V (ẋ)dẋ <∞⇒ u ∈ H1(I0; e−V ).

The vector field g satisfies:

g.∇u = 0, g.n|∂Ω = − ∂ũ

∂ẋ2

cos(θ) +
∂ũ

∂ẋ1

sin(θ) =
∂ũ

∂θ
,

where n is the outer unit normal vector to the boundary of Ω. Now, let us prove that
u /∈ H1(I0; e−V ). Assume that u ∈ H1(I0; e−V ) and let uε ∈ C∞(Ω) be a approximating
sequence of u. Then ∀ε ≥ 0, by divergence theorem

(4.3.3)
∫

Ω

∇uε(ẋ).g(ẋ)dẋ =

∫
∂Ω

uε(ẋ)g(ẋ).ndΓ = −
∫
∂Ω

uε
∂ũ

∂θ
dθ

Since uε|∂Ω → u|∂Ω in L2(∂Ω), taking the limite in (4.3.3) we get:∫
Ω

∇u(ẋ).g(ẋ)dẋ = −
∫
∂Ω

u
∂ũ

∂θ
dθ = −

∫ π/2

0

sin(θ)dθ = 1.

In other hand ∇uε → ∇u in L2(Ω, e−V ) and g ∈
(
L2(Ω, eV )

)2. Thus∫
Ω
∇uε(ẋ).g(ẋ)dẋ →

∫
Ω
∇u(ẋ).g(ẋ)dẋ = 0 by the identity ∇u.g = 0. This contradic-

tion shows that H1(I0; e−V ) 6= H1(I0; e−V ).

Invariance principal in one dimensional case.
The result given in this thesis, Theorem 1 and Remark 5 of chapter 3, which is proved
essentially by Theorem 2.1.1, main result of chapter 2; holds only for d ≥ 2: the diffu-
sion process associated with the divergence-form operator defined in (0.0.4), satisfies the
invariance principle. We ask the question: what’s happened if d = 1? The answer is yes,
and the proof is simple. Indeed, the hypothesis d ≥ 2 is used in this work only in the
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proof of Theorem 2.1.1. We prove without used harmonic analysis, that Theorem 2.1.1 of
chapter 2 holds also if d = 1 see below. Indeed,∣∣∣∣f(x)−

∫ 1

0

f(y)dy

∣∣∣∣ ≤ ∫ 1

0

|f(y)− f(x)| dy

≤
∫ 1

0

dy

∫ y

x

∣∣∣f ′(z)
∣∣∣ dz

≤
∫ 1

0

∣∣∣f ′(z)
∣∣∣ e− 1

2
V (z)e

1
2
V (z)dz

≤
(∫ 1

0

∣∣∣f ′(z)
∣∣∣2 e−V (z)dz

) 1
2
(∫ 1

0

eV (z)dz

) 1
2

= c

(∫ 1

0

∣∣∣f ′(z)
∣∣∣2 e−V (z)dz

) 1
2

⇒ ∀p > 2,
∣∣∣f(x)−

∫ 1

0
f(y)dy

∣∣∣p ≤ c
(∫ 1

0

∣∣f ′(z)
∣∣2 e−V (z)dz

) p
2
.

Taking the integral with respect to Lebesgue measure, the desired inequality holds.
Now we are in case where the Sobolev inequality proved in Theorem 2.1.1 in chapter 2
holds with w = 1. The Lebesgue measure satisafies all hypotheses of dµ in Section 1.6:
the Lebesque measure is positive finite on I0, charging no set of zero capacity. Thus the
construction of time changed process whose reference measure is Lebesgue measure can
be done as the same way as in Section 1.6 and the invariance principle for the process
(X,Px) associated wit L follows by copying line by line starting at Section 3.3.

4.4 Open problem
A problem which could be interesting is to see a random case: when the potential is a
realisation of the environment. Here we define a random media as a probability space
(Ω, F,Q) in which acts a group of measure preserving transformations G = {τx : x ∈
Rd} ie
the stationarity property: ∀x ∈ Rd and ∀A ∈ F,Q(τx.A) = Q(A),
the ergodicity property: If A = τx.A,∀x ∈ Rd, then Q(A) ∈ {0; 1}.
We consider, for a given ω ∈ Ω, the divergence form operator defined by:

Lω = div(A(., ω)∇).

One question could be to prove a quenched invariance principle for diffusion associated
with this operator, with the hypothesis:{

A stationary
A(0, .) ∈ L1(Ω, Q)
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We assume also that there exists V measurable periodic such that eV ∈ L1(I0) where I0

is the unit torus of Rd; and A(ω, x) ≥ e−V (x)Id for almost all ω ∈ Ω.
The reference of this work is the paper: random conductance model in a degenerate
ergodic environment. S. Andres, J-D Deuschel, and M. Slowik.
They study a continuous time random walk, (Xt, t ≥ 0), on Zd in an environment of
random conductances taking values in (0;∞). The law of the conductances is ergodic
with respect to space shifts. They prove a quenched invariance principle for X under
some moment conditions on the environment:

E(ω(e)p) <∞
E( 1

ω(e)q
) <∞

1
p

+ 1
q
< 2

d
d ≥ 2.

The key result on the sublinearity of the corrector is obtained by Moser’s iteration scheme.
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