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Introduction

The control of light propagation in optical fibers over long distances constituted
a major technological advance which participated in the digital revolution that
changed the world at the end of the 20th century. The transmission of infor-
mation and energy from one place to the other through such a space-saving,
flexible and affordable medium has found an immense variety of applications,
from telecommunications to industrial micro-machining. In particular, the field
of medical imaging has made admirable progress upon the use of optical fibers
for diagnosis tools called endoscopes. The word “endoscope” comes from an-
cient Greek �νδον (éndon) that means “in”, “within”; and σκοπέω (skopéō) that
means “I look”, “I examine”. The purpose of an endoscope is indeed to look
inside the human body, by introducing a fiber or a tube through natural orifices
into the organs the physician wants to observe. The light is sent from outside
into the body, and the information is transmitted the opposite way under the
form of images. In the majority of the endoscopes used on a daily basis and
all over the world, the observation technique is based on a simple white-light
illumination system and a small camera that acquires and transmits the images.
The success of this method is undeniable, as it improved the diagnosis for many
diseases.

However, it would be of great benefit for the diagnosis of several diseases if
endoscopy techniques could go beyond white-light imaging. For instance, in the
case of colorectal cancer, it is impossible to know whether a polyp (an abnor-
mal growth of tissue in a mucous membrane) is benign or precancerous from
a white-light observation. It is necessary to proceed to a biopsy of the polyp
to determine its nature, which is an invasive operation that could be avoided if
the imaging technique was able to analyze the structure on site. This is why
research is now focused on finding new contrasts in endoscopy, that could bring
structural, chemical, and biological knowledge about the tissue, on top of the
information provided by white-light imaging. Among the candidate contrasts
to be applied in endoscopy, nonlinear processes are of particular interest. A
wide range of nonlinear effects have been discovered and are now used in nu-
merous biology labs for microscopy. They take their origin in the simultaneous
absorption of several photons, and the emission of one photon of a different en-
ergy. For instance, two-photon excited fluorescence (TPEF), second-harmonic
generation (SHG) and third-harmonic generation (THG) are three phenomena
generating useful contrasts for the imaging of biological samples. They allow
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Introduction

to reveal structures and biological properties that are invisible in white-light
microscopy, sometimes without the need of staining the sample in any way. For
example, collagen fibers generate a strong endogenous SHG signal. Coherent
Raman scattering techniques, such as coherent anti-Stokes Raman scattering
(CARS) and stimulated Raman scattering (SRS), permit to go even further in
this direction. Indeed, they are inherently label-free as they probe the molecular
vibrations present in the sample.

In order to implement nonlinear microscopy techniques in endoscopic schemes,
several challenges have to be addressed. One of them comes from the fact that
generating nonlinear signals in a sample requires high excitation powers. This
problem has been solved for regular microscopy with the discovery and devel-
opment of pulsed lasers, which are able to generated ultra short pulses with
peak powers high enough to generate observable signals, while maintaining the
average powers at levels low enough to avoid photodamage. The propagation
of those ultra-short pulses in optical fibers is not trivial precisely because of
their high peak powers. In classical fibers, the light propagates in silica, whose
dispersion and nonlinear properties distort and broaden the high energy pulses.
Several strategies have been developed to circumvent this problem, taking in-
spiration from the research in the field of optical fibers.

In particular, the invention of photonic crystal fibers (PCFs) has widened the
range of possible technical options to tackle problems of ultra-short pulses fiber
delivery. Instead of having a core and a cladding made of two distinct materials
of different refractive index, PCFs have a micro-structured cladding surround-
ing either a solid or hollow core. The properties of such fibers then strongly
depend on the design of the micro-structure, resulting in an abundant produc-
tion of new fibers with new designs and new properties. Some of those fibers
are able to sustain the propagation of a soliton, a pulse that has the remarkable
property of preserving its shape throughout its propagation in the fiber. Soli-
tons possess a set of unique features that makes them of great interest for fiber
delivery and nonlinear imaging applications. In addition to the fact that their
shape and duration stay unchanged during the propagation, their wavelength
and delay are tunable by changing the power of the light at the input of the fiber.

In this work, several light sources based on soliton generation were designed
and realized for nonlinear spectroscopy and microscopy. This manuscript is or-
ganized as follows:

Chapter 1: A quick review of the different kinds of optical fibers is presented,
from the classical step-index fiber to the most recent PCFs. Then, the analyt-
ical expressions for pulse propagation in a single-mode fiber are derived from

6



Maxwell’s equations. From this analysis arises the concept of soliton. Finally,
the properties of solitons are presented and explained.

Chapter 2: The design and properties of a new fiber are presented. This fiber
was fabricated specifically to generate high energy solitons compatible with non-
linear microscopy. The fiber delivery abilities of the soliton-based scheme are
assessed by realizing TPEF and SHG images of biological samples. The spec-
troscopic capabilities of the system, provided by the wavelength tuning of the
soliton, are also explored.

Chapter 3: The delay shift of solitons depending on the variation of input
power is put to use in time-resolved measurement of transient absorption in a
pump-probe configuration. The delay scanning based on the MHz variation of
input power is shown to be equivalent to the mechanical delay scanning.

Chapter 4: A CRS setup based on soliton generation and spectral focusing
is presented. The soliton wavelength shift allows to get two synchronized beams
of different frequencies, that are then used as pump and Stokes. The femtosec-
ond pulses are chirped to achieve a good spectral resolution. Both CARS and
SRS signals are obtained, and a chemical equilibrium is monitored to prove the
interest of the method.

7





1 Chapter 1: Soliton propagation in optical fibers

1.1 Optical fibers

1.1.1 Classical optical fibers

Optical fibers are cylindrical dielectric waveguides in which light can propagate
at optical frequencies along its main axis. Since the first attempts to realize
optical guidance in a fiber in the beginning of the 20th century, several break-
throughs in the understanding, design and fabrication of optical fibers have
lead to a tremendously active field of research as well as to many applications.
In the telecommunication domain in particular, optical fibers have reached a
mass-production level and are now widely spread and used throughout the en-
tire world to transmit information. Other applications include sensing, medical
imaging, power transmission, or even illumination and decoration. On a more
fundamental level, optical fibers are used in research and industry, for example
in spectroscopy, optical imaging or fabrication of lasers and optical amplifiers.

The propagation of light in an optical fiber can be described in two main
ways. If the diameter of the core where the light propagates is big enough
compared to the wavelength of the light, a geometrical (or ray optics) approach
can be appropriate to describe some of the properties of the fiber. However, in
many cases, it is necessary to use electromagnetic theory to describe the set of
electromagnetic waves propagating in the fiber, called the modes of the fiber [1].

Ray optics representation

The first fiber design found to efficiently transmit light from one end to the
other consists in a cylindrical core of high refractive index (n1) where the light
propagates, surrounded by a cladding of low refractive index (n2) that traps the
light through total internal reflection. These fibers are called step-index fibers.
Most of the optical fibers are made of fused silica (SiO2), and the refractive
index difference can be slightly modified by chemical doping. The difference in
refractive index between the core and the cladding is often very small: pn1 ´
n2q{n1 ! 1.

Snell’s law of refraction predicts a total reflection of light at an interface
between two materials of refractive index n1 and n2 (with n1 ą n2), for incident
angles α ą αmin “ sin´1pn2{n1q (see Fig. 1.1). For those angles, the light
is transmitted through the fiber after multiple reflections. Therefore, there
is a cone of light at the input of the fiber for which the incident angles on
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1 Chapter 1: Soliton propagation in optical fibers

Figure 1.1: Light transmission in a step-index fiber based on multiple total-
internal reflections (TIR) at the interface between the core (refrac-
tive index n1) and the cladding (refractive index n2). The acceptance
cone is defined by the minimum incidence angle αmin allowing TIR.
The rays entering the fiber from outside this cone will experience
power loss due to refraction, and all their energy will be dissipated
in the cladding after few reflections.1

the interface core/cladding are higher than αmax, and for which the light is
transmitted. Outside of this cone, the light escapes through refraction in the
cladding. This cone of light defines the numerical aperture of the optical fiber.
By applying Snell’s law to the end of the fiber, the numerical aperture NA can
be written:

NA “ n sin
´π

2
´ αmin

¯

“
a

pn2
1 ´ n2

2q, (1.1)

where n is the refractive index of the outside medium. From the simple picture
described above, one could assume that any ray entering the fiber within the
cone defined by NA can be transmitted. However, when interference effects are
taken into account, it becomes clear that only a discrete set of rays are allowed
to propagate in the fiber. This is illustrated in Fig. 1.2(a): each ray corresponds
to one mode. The drawback of this kind of fiber is the intermodal dispersion.
Indeed, the will be a delay between the exit time of two modes, as the rays
follow different optical paths.

In graded-index fiber, the refractive index continuously decreases from the
central axis to the cladding. It is for example possible to design fibers with
a parabolic refractive index profile, where the rays are continuously deflected
instead of propagating along straight lines between two reflections. In this case,
the intermodal dispersion induced by the fiber is decreased because the difference
between the optical paths of small and large incident angles is minimized. In
graded-index fiber, the NA varies as a function of the radial distance. It is
maximum at the center and decreases when the rays enter closer to the cladding.

1Modified from image by Gringer, licensed under Public domain via Wikimedia Commons.
<http://commons.wikimedia.org/wiki/File:Optical-fibre.svg>
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1.1 Optical fibers

This results in less modes sustained by the fiber and less transmitted light
compared to a step-index fiber.

Figure 1.2: Typical dimensions, refractive index profiles, and rays paths in (a)
multimode step-index fiber, (b) multimode graded-index fiber and
(c) monomode step-index fiber. 2

Mode theory of cylindrical waveguides

The ray optics approach only gives a partial understanding of the light propa-
gation in a fiber. If the diameter of the core is very small, it is even completely
irrelevant. To go further, it is necessary to solve Maxwell’s equations to find the
solutions to the propagation equation that satisfies the boundary conditions.
We are interested in the propagation of the light along the main axis of the
fiber z, so an important parameter is the propagation constant β, which is the
axial component of the wavevector ~k (|~k| “ k “ 2π{λ).

Several kinds of modes can be sustained by the fiber. First, the guided modes
are the ones that were discussed above. They are trapped in the core of the
fiber and differ from each other by the electric field pattern along the fiber’s
cross-section.

The cladding modes originate from the light outside of the acceptance angle
that is then refracted and trapped in the cladding.

2Modified from image by Mrzeon, licensed under Creative Commons Attribution-Share
Alike 3.0-2.5-2.0-1.0 via Wikimedia Commons
<http://commons.wikimedia.org/wiki/File:Optical_fiber_types.svg>
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1 Chapter 1: Soliton propagation in optical fibers

Finally, the leaky modes are partially confined to the core region but are
attenuated as they propagate. The difference between guided and leaky modes
is set by the cutoff condition. A mode remains guided if

n2k ă β ă n1k, (1.2)

the lower boundary being the cutoff condition. If β ă n2k, the mode is leaky.
In classical fibers, this is equivalent to the TIR limit. As β is the projection of
n1

~k onto the z axis, its maximum value is n1k. The maximum angle allowed by
TIR satisfies sinpαq “ n2{n1. The projection of n1

~k onto the z axis then gives
β “ n2k as the minimum value of the propagation constant.

It is customary to introduce the V parameter, also called normalized fre-
quency:

V “ 2πa

λ
NA “ 2πa

λ

a

pn2
1 ´ n2

2q, (1.3)

where a is the radius of the core. Except for the fundamental mode, all modes
are cut off when β “ n2k, which happens at different values of V depending on
the modes. For V ă 2.405, only the fundamental mode is left, then the fiber
is monomode. The number of modes M in a multimode fiber can be estimated
by:

M « V 2

2
. (1.4)

This is the equivalent of the quantization of modes due to interferences in the
classical pictures. The number of modes (of angles in the ray optics interpreta-
tion) is limited, then if the core becomes smaller, the number of modes decreases
until only the one at α “ π{2 is left.

1.1.2 Photonic crystal fibers

A new kind of optical fibers was developed in the 1990s by the group of Philip St.
J. Russell [2], called photonic crystal fibers (PCFs). The core of a PCF is made of
a periodic arrangement of microscopic air holes running along the whole length
the fiber, otherwise made of silica. Their idea was to trap the light in a hollow
core by preventing its propagation in the cladding by the means of a 2-D photonic
crystal. Photonic crystals are periodically organized nanostructures that creates
“stop-bands”, or photonic band gaps (PBG), preventing the propagation of light
in one, two or three dimensions. However, depending on the design of the fiber,
the trapping of the light and its propagation in the core does not always come
from the PBG effect. Nevertheless, the name PCF is commonly used for all the
micro-structured fibers.

The properties of the fiber strongly depend on the design of the structure
of the core. Those properties can also be modified by changing the chemical
composition of the fiber, for example by doping the silica. A wide diversity of
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1.1 Optical fibers

PCFs has been fabricated and used for applications as diverse as fiber-optical
parametric oscillators and amplifiers [3, 4], artificial black holes [5] or intense su-
percontinuum generation [6, 7] for fluorescence microscopy [8], optical metrology
[9, 10] and optical coherence tomography [11, 12].

Modified total internal reflection

Figure 1.3: Scheme of a solid-core PCF. The light gray area is silica and the
darker inclusions are air holes. d is the diameter of a hole, and Λ is
the pitch.

The simplest kind of PCFs has a hexagonal pattern of air holes, with one hole
missing in the center (see Fig. 1.3), where the light propagates. The guiding
is due to the effective refractive index of the silica/air micro-structure (the
photonic crystal cladding) compared to the center, only made of silica. Those
two areas are equivalent to the cladding and core in classical optical fibers.
Two important parameters are the diameter of the hole d and the hole-to-hole
distance (or pitch) Λ. The mechanism of guidance is conceptually similar to
the TIR in classical fibers, but an advantage of PCFs is the possibility to tailor
some of their properties by changing d and/or Λ. For instance, the dispersion
of a fiber can be modified by changing the design. This is a big advantage
compared to classical fibers where the value of dispersion cannot be changed
too far away from the dispersion of the bulk material. In silica fibers, the
group-velocity dispersion (GVD) is positive until about λ “ 1.3 µm, which is
the zero-dispersion wavelength (ZDW) of silica. With PCFs, the ZDW can be
pushed down to optical frequencies.

Another remarkable feature of PCFs is their ability to exhibit single-mode
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1 Chapter 1: Soliton propagation in optical fibers

behavior for a wide range of wavelengths [13]. The V parameter can be written:

V “ 2πa

λ

a

pn2
S ´ n2

FSMq, (1.5)

where nS is the refractive index of silica, and nFSM is the fundamental space-
filling mode, which corresponds to the effective refractive index of the infinite
photonic crystal cladding without the core.

In classical fibers, V increases when λ decreases, so the fiber becomes multi-
mode at short wavelengths. In PCFs, nFSM is wavelength-dependent. Indeed,
nSFM is defined as the average index of the photonic crystal cladding, weighted
by the field distribution. At shorter wavelengths, the light is more concentrated
in the silica, which raises the effective refractive index and decreases the V pa-
rameter. Russell and co-workers showed that for d{Λ ă 0.4, a PCF can exhibit
an endlessly single mode behavior, the transmission range being limited only
by bend losses [14]. This phenomenon has been illustrated by the modal sieve
(or modal filtering) picture. Each mode can be characterized by its transverse
effective wavelength, which is defined as follows:

λi
eff “ 2π

a

k2n2
i ´ β2

, (1.6)

where ni is the refractive index of the material where the light propagates. This
is a measure of the characteristic size of the transverse component of the ~k

vector, and it indicates whether a mode is likely to be resonant with particular
features in the cross-section of the fiber. The fundamental mode has a high
transverse effective wavelength, so it stays trapped in the core. Conversely, the
higher-order modes have lower transverse effective wavelength, and they can
“escape” between the holes. If the holes are bigger (increased d{Λq, some higher
order modes can be also trapped.

Finally, one last advantage of PCFs over classical fibers resides in their small
core where the strong confinement of the light can lead to increased intensity,
which is useful for studying and using nonlinear effects. However, as the modal
filtering is only dependent on the d{Λ ratio, it is also possible to design fibers
with large cores, by scaling the whole structure. This is the principle of large-
mode area fibers, that are useful if one wants to avoid the nonlinear effects
caused by the presence of high powers in silica.

Photonic band-gap fibers

For fibers whose core refractive index is higher than the cladding refractive index
(like the ones that were just described), PBG guidance can occur, although in
practice TIR guiding dominates.
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1.1 Optical fibers

In the opposite case where the core refractive index is lower that the cladding
refractive index, TIR cannot operate. Then, the guidance relies only on the
PBG effect [15]. The periodic structures create forbidden zones in the fre-
quency/wavevector diagram through Bragg diffraction. This means that for
some wavelengths and directions of ~k, the cladding is a perfect 2D photonic
crystal and it allows propagation only along the main axis of the fiber.

Hollow-core photonic bandgap (HC-PBG) fibers. In HC-PBG fibers, the light
propagates in an air core [16–19]. A key parameter is again d{Λ, that corre-
sponds here to the air filling fraction of the photonic cladding. The width of
photonic band gaps increases for increasing d{Λ. In order to get broad trans-
mission bands, d{Λ has to be higher than 0.9. The broadest bands could be
achieved for d{Λ “ 1, but fabricating such a fiber is not feasible.

As the light propagates in air rather than in silica, the fiber can handle very
high powers. Consequently, HC-PBG fibers have been used for the fiber delivery
of high-energy pulses. The transmission losses of such fibers are theoretically
lower than those of conventional all-silica fibers, because the intrinsic transmis-
sion of air is much higher than the one of silica. Silica fibers have gone through
several decades of technological improvements and have come close to the limit
of Rayleigh scattering, with transmission losses as low as 0.15 dB/km. HC-PBG
fibers still suffer from losses due to surface roughness. Roberts and co-workers
[20] presented a low-loss HC-PBG (1.2 dB/km at 1600 nm) and showed that
the design of HC-PBG could be optimized to reach transmission losses of 0.1
dB/km. A trade-off between losses and modality also has to be found, as single-
mode HC-PBG have smaller cores and higher losses.

Kagomé fibers. The Kagomé fiber is an interesting type of hollow-core fiber.
Indeed, the light propagates in an air core surrounded by an air / silica micro-
structure, but the fiber does not have photonic band gaps. Its photonic cladding
is based on a kagomé lattice of silica [21, 22], whose pattern looks like a Star
of David. Its guiding properties are not fully understood, although theoreti-
cal studies have developed models to explain its behavior (e.g. [23]). Those
fibers exhibit higher losses than other HC-PBG fibers but they have a very wide
bandwidth of transmission, which can be put to use in several applications. For
instance, Ghenuche and co-workers have taken advantage of the large transmis-
sion window of a Kagomé fiber in Raman spectroscopy, where the excitation
and the collected signal were transmitted through the same fiber [24]. They
have also been used for high power laser beam transmission.

Solid-core photonic bandgap (SC-PBG) fibers. One limit of hollow-core fibers
is their fabrication, because the air-filling fraction has to be very high. The
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1 Chapter 1: Soliton propagation in optical fibers

designed fibers are often the result of a trade-off between desired properties and
feasibility. In SC-PBG fibers, the core is made of low-index silica, while the
photonic cladding is made of an array of high-index silica. For example, Luan
and co-workers demonstrated the first SC-PBG fiber with a core made of LLF1
glass and a photonic cladding made of inclusions of SF6 glass. [25]. The possi-
bility to dope silica with diverse rare-earth ions allows to design a wide range
of fibers with different properties. The use of SC-PBG fibers is promising in
fiber lasers [26, 27] and fiber amplifiers [28], or for the investigation and control
of nonlinear effects such as supercontinuum generation and soliton propagation
[29–31].

The explanation and understanding of the properties of the wide diversity
of PCFs often requires finite element method calculations, or other kind of
numerical simulations. However, the analytical description of some properties of
PCFs is possible in some cases. In the following, we will discuss the propagation
of a pulse of light in a single-mode fiber.

1.2 Propagation of a pulse of light in a fiber

1.2.1 The nonlinear Schrödinger equation

Propagation equation

Like any other electromagnetic phenomenon, the propagation of a pulse of light
in a fiber is governed by Maxwell’s equations. If there is no free current, no free
charge, and the medium is non-magnetic, they can be written:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

∇ ¨ D “ 0 (1.7a)

∇ ¨ B “ 0 (1.7b)

∇ ˆ E “ ´BB

Bt
(1.7c)

∇ ˆ B “ µ0

B
Bt

pε0E ` Pq (1.7d)

By combining Eqs. 1.7c and 1.7d, the propagation equation arises:

∇ ˆ ∇ ˆ Epr, tq ` 1
c2

B2E

Bt2
pr, tq “ ´µ0

B2P

Bt2
pr, tq, (1.8)

where Epr, tq is the optical electric field in the time domain, r being the spatial
coordinates and Ppr, tq is the polarization density, describing the reaction of the
medium upon excitation by the electric field.
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1.2 Propagation of a pulse of light in a fiber

Eq. 1.8 can be adapted into a form suitable for describing the propagation of
a pulse in a single-mode fiber by following several steps that will be detailed
hereafter [32, 33].

Linear problem

The polarization density is split into a linear and a nonlinear term: P “ PL `
PNL. First the nonlinear term is set to zero to determine the solution of the linear
problem, and then the nonlinear term will be treated as a small perturbation to
the system.

The polarization density represents the reaction of the medium upon excita-
tion by an electric field. More precisely, it quantifies the motion of the electrons
induced in the medium by the oscillation of the electric field. Due to the iner-
tia of the electrons, the first order susceptibility describing the response of the
medium is time dependent, which means that the reaction of the medium is not
simultaneous with the excitation. Thus, the linear polarization density can be
written:

PLpr, tq “ ε0

ż t

´8

χp1qpτqEpr, t ´ τqdτ, (1.9)

which is equivalent to the convolution:

PLpr, tq “ ε0rχp1qptq b Epr, tqs. (1.10)

Introducing Eq. 1.10 into the propagation equation 1.8:

∇ ˆ ∇ ˆ Epr, tq ` 1
c2

B2E

Bt2
pr, tq “ ´ε0µ0rχp1qptq b Epr, tqs. (1.11)

Using the formula for the derivation of a convolution product and the fact that
the delta Dirac is the neutral element of the convolution product, we finally get,
after factorization:

∇ ˆ ∇ ˆ Epr, tq ` 1
c2

„

`

δptq ` χp1qptq
˘

b B2

Bt2
Epr, tq



“ 0, (1.12)

where δptq ` χp1qptq “ εptq is the permittivity tensor.
For solving the linear problem, it is convenient to work in the frequency space,

by taking the Fourier transform of the electric field and of the permittivity:

Epr, tq “
ż

Ẽpr, ωqe´iωtdω (1.13)

εptq “
ż

ε̃pωqe´iωtdω (1.14)
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1 Chapter 1: Soliton propagation in optical fibers

By introducing Eqs. 1.13 and 1.14 into Eq. 1.12, it becomes:

∇ ˆ ∇ ˆ
ż

Ẽpr, ωqe´iωtdω ` 1
c2

„
ż

ε̃pωqe´iωtdω b B2

Bt2

ż

Ẽpr, ωqe´iωtdω



“ 0.

(1.15)
The second derivative with respect to time only acts on the exponential term:

ż

∇ ˆ ∇ ˆ Ẽpr, ωqe´iωtdω ` 1
c2

„
ż

ε̃pωqe´iωtdω b p´ω2q
ż

Ẽpr, ωqe´iωtdω



“ 0.

(1.16)
The convolution of the Fourier transform of two functions is equal to the

Fourier transform of the product of those functions:
ż

∇ ˆ ∇ ˆ Ẽpr, ωqe´iωtdω ´ ω2

c2

ż

`

ε̃pωqẼpr, ωq
˘

e´iωtdω “ 0. (1.17)

In principle,

ε̃pωq “
´

npωq ` i
αc

2ω

¯2

, (1.18)

where α is the absorption coefficient. However, we consider that ε̃pωq “ n2pωq,
as the losses are relatively small in silica fibers and will be taken into account
later in a perturbative manner. The relation of npωq and αpωq with the first-
order permittivity χp1q is explained in Appendix A.

With Eq. 1.7a and D̃ “ ε̃Ẽ, we can set ∇ ¨ Ẽ “ 0, because npωq does not
depend on spatial coordinates r both in the core and in the cladding. This
approximation, meant to work in step-gradient index fibers, holds in other cases
if index changes occur over length scale much longer than the wavelength.

Then, the factorization of the integral gives:
ż

ˆ

∆Ẽpr, ωq ` n2pωqω2

c2
Ẽpr, ωq

˙

e´iωtdω “ 0. (1.19)

To obtain the Helmholtz equation:

∆Ẽpr, ωq ` n2pωqω2

c2
Ẽpr, ωq “ 0, (1.20)

where ∆ is the Laplace operator (∆ ” ∇2).
The electric field is assumed to always stay polarized along the x direction,

so scalar quantities can be used instead of vectors in the following calculations.
Namely:

Epr, tq “ 1
2

`

Epr, tqe´iω0t ` E˚pr, tqeiω0t
˘

x̂, (1.21)

and the Helmholtz equation can be re-written in its scalar form:

∆Ẽpr, ωq ` n2pωqω2

c2
Ẽpr, ωq “ 0. (1.22)
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1.2 Propagation of a pulse of light in a fiber

We consider the propagation of a pulse of light at angular frequency ω0 in an
optical fiber, along the z axis. One strategy is to describe the electric field as a
product of two functions, in order to separate the variables:

Epr, tq “ DF px, yqApz, tq. (1.23)

In the frequency domain:

Ẽpr, ωq “ D̃F px, yqÃpz, ωq. (1.24)

F px, yq is a dimensionless distribution function, it describes the intensity
of the field in the cross-section of the fiber. This function is assumed to be
frequency-independent because we only consider quasi-monochromatic pulses,
which means that the spectral width ∆ω verifies the condition ∆ω{ω0 ! 1.
As ω0 „ 1015, this condition is fulfilled for all the pulses in this work. For a
100 fs sech-squared pulse centered around 800 nm, ∆ω{ω0 « 0.315λ{pc∆tq “
8.4 ˆ 10´3. The use of F px, yq is also justified by the fact that we assume a
single-mode fiber (or more generally, a waveguide with a mode structure). The
normalizing constants D and D̃ are introduced so that |Epr, tq|2 matches the
optical power.

Ãpz, ωq “ A0pωqeiβpωqz. (1.25)

βpωq “ npωqω{c is the propagation constant that characterizes the propa-
gation of the light pulse in the fiber. It can be expanded in Taylor’s series:

βpωq “ β0 ` pω ´ ω0qβ1 ` 1
2

pω ´ ω0q2β2 ` ∆β, (1.26)

where:

β0 “ βpω0q, (1.27)

β1 “ Bβ

Bω

ˇ

ˇ

ˇ

ˇ

ω0

, (1.28)

β2 “ B2β

Bω2

ˇ

ˇ

ˇ

ˇ

ω0

, (1.29)

(1.30)

and ∆β stands for the higher order terms. In order to understand what is the
physical meaning of the Taylor coefficients, one can assume a Gaussian profile
for A0pωq [34]:

A0pωq “ A0 exp
ˆ

´pω ´ ω0q2

4Γ

˙

, (1.31)
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1 Chapter 1: Soliton propagation in optical fibers

where A0 is the maximum value of the electric field.
By combining Eqs. 1.25, 1.26 and 1.31, the expression for the pulse becomes:

Ãpz, ωq “ exp
„

´iβ0z ´ iβ1zpω ´ ω0q ´
ˆ

1
4Γ

` i

2
β2z

˙

pω ´ ω0q2



(1.32)

The higher-order terms can be neglected as a first approach, as the pulse is
quasi-monochromatic. However in some cases this approximation does not hold
anymore. This point will be discussed in the following sections.

The time evolution of the pulse can be derived from the inverse Fourier trans-
form of Eq. 1.32:

Apz, tq “ 1
2π

ż `8

´8

Ãpz, ωqeiωtdω (1.33)

“ 1
2π

exp
„

iω0

ˆ

t ´ β0z

ω0

˙
ż `8

´8

exp ript ´ iβ1zqpω ´ ω0qs (1.34)

¨ exp
„

´
ˆ

1
4Γ

` i

2
β2z

˙

pω ´ ω0q2



dω

“
d

ˆ

1
π p1{Γ ` 2iβ2zq

˙

exp
„

iω0

ˆ

t ´ β0z

ω0

˙

exp
„

´ 1
1{Γ ` 2iβ2

pt ´ β1zq2



.

(1.35)

The first exponential is a phase term: it has no influence on the intensity
of the pulse. β0z represents the carrier-envelope phase, and corresponds to
the phase between the fast oscillations of the carrier and the envelope of the
pulse. This quantity evolves with time and space, and the phase-velocity can
be defined from this as vφ “ ω0{β0. The second exponential shows that the
pulse remains Gaussian when it propagates. However, there are two differences
between this pulse and the original pulse. First, the pulse is delayed by β1z.
The group velocity is defined from this as vg “ β´1

1 . Second, the new “width”
of the Gaussian can be written Γpzq such as 1{Γpzq “ 1{Γ ` 2iβ2. From this
complex quantity will arise a real part that leads to a change in the actual
width of the pulse, and an imaginary part that is responsible for the chirp of
the pulse. Indeed, β2 is called the group velocity dispersion, and it describes the
different velocities at which travel the several frequencies contained in the pulse.
The frequencies of a pulse arrive at a different time at a given point if space,
hence the analogy to the chirping of a bird that produces notes of ascending or
descending pitch. This will become clear when a more detailed calculation is
provided, in Section 1.2.3.
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1.2 Propagation of a pulse of light in a fiber

Let us now write the spatial Fourier transform of the electric field:

Ẽpr, ωq “ F px, yq
ż

Epβ, ωqe´iβzdβ (1.36)

“ F px, yqe´iβ0z

ż

Epβ, ωqe´ipβ´β0qzdβ (1.37)

“ Ãpz, ω ´ ω0qF px, yqe´iβ0z, (1.38)

β is of the same order of magnitude as β0, so |β ´ β0| ă β0. Then e´ipβ´β0qz de-
scribes a slowly oscillating wave with respect to the one described by e´iβ0z, and
Ãpz, ω ´ ω0q is the slowly varying envelope of the electric field in the frequency
domain.

Ãpz, ω ´ ω0q “
ż

Epβ, ωqe´ipβ´β0qzdβ, (1.39)

By introducing Eq. 1.38 into the Helmholtz equation (Eq. 1.22):
ˆ

B2

Bx2
` B2

By2
` B2

Bz2

˙

`

Ãpz, ω ´ ω0qF px, yqe´iβ0z
˘

`n2pωqω2

c2

`

Ãpz, ω ´ ω0qF px, yqe´iβ0z
˘

“ 0.

(1.40)

After taking the derivative with respect to z:

Ãpz, ω ´ ω0q
„ˆ

B2

Bx2
` B2

By2

˙

F px, yq


e´iβ0z

`B2Ãpz, ω ´ ω0q
Bz2

F px, yqe´iβ0z

´2iβ0

BÃpz, ω ´ ω0q
Bz

F px, yqe´iβ0z

´β2
0Ãpz, ω ´ ω0qF px, yqe´iβ0z

`n2pωqω2

c2
Ãpz, ω ´ ω0qF px, yqe´iβ0z “ 0.

(1.41)

As Ã is a slowly varying envelope, we can use the slowly varying envelope
approximation (SVEA). The SVEA is valid only if the pulse is long enough
that the envelope of the pulse varies slowly in time and space compared to a
period of its fast oscillations. More precisely, the variation of the slope of Ã

is slow with respect to the slope itself on a distance equal to the wavelength,
which means that the second derivative of Ã can be neglected. The use of the
SVEA here is justified because the shorter pulses that are considered here have
typical durations of 100 fs and wavelengths between 800 nm and 1 µm, which
corresponds to a period of about 3 fs.
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1 Chapter 1: Soliton propagation in optical fibers

With the SVEA, the second member of Eq. 1.41 can be crossed out. Addi-
tionally, we introduce β2

0 “ β2
0 ´ β̃2 ` β̃2 in the forth member of the equation.

Upon factorization, the expression becomes:

e´iβ0z

˜

Ãpz, ω ´ ω0q
„ˆ

B2

Bx2
` B2

By2

˙

F px, yq `
ˆ

n2pωqω2

c2
´ β̃2

˙

F px, yq


`F px, yq
„

´2iβ0

BÃpz, ω ´ ω0q
Bz

`
`

β̃2 ´ β2
0

˘

Ãpz, ω ´ ω0q


¸

“ 0.

(1.42)

The following system is finally obtained:

$

’

’

&

’

’

%

ˆ

B2

Bx2
` B2

By2

˙

F px, yq `
ˆ

n2pωqω2

c2
´ β̃2

˙

F px, yq “ 0 (1.43a)

2iβ0

BÃpz, ω ´ ω0q
Bz

`
`

β2
0 ´ β̃2

˘

Ãpz, ω ´ ω0q “ 0 (1.43b)

The first equation is an eigenvalue problem: it is possible to find the eigenval-
ues β̃2pωq corresponding to the eigenmodes F px, yq. This is for example done
for the fundamental mode of single-mode fibers of circular symmetry, the so-
lution being a a Bessel function, often approximated by a Gaussian function
of the form F px, yq « expr´px2 ` y2q{w2s. In PCFs of higher-order symmetry
(often 6), the fundamental mode differs a bit from a Bessel function. Then, the
calculation of βpωq often requires numerical simulations, or it can be measured
using white-light interferometry [35]. In the following, we will only consider the
case of single-mode fibers.

Nonlinear perturbation to the system

The nonlinearities can now be introduced in the second equation by adding a
small perturbation to the system.

The first order perturbation theory applies in the case of an eigenfunction /
eigenvalue problem such as:

H0Ψ “ EΨ, (1.44)

where H0 is an operator and E a number. Let us assume that, by solving this
problem, we found an eigenfunction Ψ0 corresponding to the eigenvalue E0. In
other terms we have:

H0Ψ0 “ E0Ψ0. (1.45)

Next we consider that the operator H0 undergoes a small perturbation and
becomes H0 ` ∆H. As the variation in the excitation of the system is small,
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1.2 Propagation of a pulse of light in a fiber

the characteristic response of the system is still described by the eigenfunction
previously found Ψ0, and only the eigenvalues are slightly modified. Then:

pH0 ` ∆HqΨ0 “ E 1
0Ψ0, (1.46)

where E 1
0 “ E0 ` ∆E. An expression for ∆E is given by:

∆E “ 〈Ψ0|∆H|Ψ0〉 (1.47)

“
ť

dxdy|Ψ0|2∆H
ť

dxdy|Ψ0|2 , (1.48)

which is the main result of the first order perturbation theory.

In the case of Eq. 1.43b, the operator is H “ ∆xy ` n2ω2

c2
, the eigenfunction

is F px, yq and the eigenvalue is β̃2. The first order perturbation theory states
that the small perturbation on npωq does not change the eigenfunction F px, yq.
However, the refractive index of the medium changes to:

npωq Ñ npωq ` ∆n, (1.49)

where:
∆n “ n2|E|2 ` iα{p2k0q, (1.50)

n2 being the nonlinear refractive index (in m2{W) and α is the absorption
coefficient. The relation of those two quantities with the third-order permittivity
χp3q is explained in Appendix A. Then the square of the refractive index changes
by ∆pn2q « 2n∆n, and the variation of the operator can be written:

∆H “ 2n∆n
ω2

c2
. (1.51)

The variation of the eigenvalue β̃2 is derived from Eq. 1.48:

∆pβ̃2q “
ť

dxdy|F px, yq|22n∆nk2
0

ť

dxdy|F px, yq|2 . (1.52)

The variation of the eigenvalue is: ∆pβ̃2q « 2β̃∆β̃. For sake of simplicity, we
write ∆β̃ “ ∆β. Then:

∆β “ ∆pβ̃2q
2β̃

(1.53)

“ nk2
0

ť

∆n|F px, yq|2dxdy

β̃
ť

|F px, yq|2dxdy
(1.54)

“ k0

ť

∆n|F px, yq|2dxdy
ť

|F px, yq|2dxdy
., (1.55)
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1 Chapter 1: Soliton propagation in optical fibers

because
βpωq
npωq “ ω

c
“ k0. β̃pωq then becomes β̃1pωq “ β̃pωq ` ∆β. ∆β can

easily be linked to previous parameters by writting:

∆β “ γ|Apz, tq|2 ` i
α

2
, (1.56)

where γ is the nonlinear coefficient (in W´1m´1), defined as:

γ “ n2ω0

cAeff

. (1.57)

Aeff is the effective area, commonly used in fiber optics:

Aeff “
`ť

|F px, yq|2dxdy
˘2

ť

|F px, yq|4dxdy
. (1.58)

When introducing Eq. 1.23 and 1.50 into Eq. 1.55:

∆β “ D2k0n2

ť

|F px, yq|4dxdy
ť

|F px, yq|2dxdy
|Apz, tq|2 ` i

α

2
. (1.59)

From this we can see that the normalizing constant D verifies 1{D2 “
ť

|F px, yq|2dxdy.
Upon the approximation β̃2 ´ β2

0 “ pβ̃ ` β0qpβ̃ ´ β0q « 2β0pβ̃ ´ β0q, Eq. 1.43b
becomes:

2ikβ0

BÃpz, ω ´ ω0q
Bz

“ ´2β0pβ̃ ´ β0qÃpz, ω ´ ω0q. (1.60)

β̃ is replaced by its Taylor expansion (Eq. 1.26):

BÃpz, ω ´ ω0q
Bz

“ i

„

pω ´ ω0qβ1 ` 1

2
pω ´ ω0q2β2 ` ∆β



Ãpz, ω ´ ω0q. (1.61)

By definition:

Apz, tq “
ż

Ãpz, ω ´ ω0qe´ipω´ω0qtdω. (1.62)

We first take the derivative of Eq. 1.62 with respect to z:

BApz, tq
Bz

“
ż BÃpz, ω ´ ω0q

Bz
e´ipω´ω0qtdω. (1.63)

With Eq. 1.61, the expression becomes:

BApz, tq
Bz

“
ż

i

„

pω ´ ω0qβ1 ` 1

2
pω ´ ω0q2β2 ` ∆β



Ãpz, ω ´ ω0qe´ipω´ω0qtdω.

(1.64)
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1.2 Propagation of a pulse of light in a fiber

If we separate the terms:

BApz, tq
Bz

“
ż

ipω ´ ω0qβ1Ãpz, ω ´ ω0qe´ipω´ω0qtdω

`
ż

i
1

2
pω ´ ω0q2β2Ãpz, ω ´ ω0qe´ipω´ω0qtdω

`
ż

i∆βÃpz, ω ´ ω0qe´ipω´ω0qtdω.

(1.65)

Now Eq. 1.62 is derived with respect to t:

BApz, tq
Bt

“ ´
ż

ipω ´ ω0qÃpz, ω ´ ω0qe´ipω´ω0qtdω (1.66)

and
B2Apz, tq

Bt2
“ ´

ż

pω ´ ω0q2Ãpz, ω ´ ω0qe´ipω´ω0qtdω (1.67)

By comparing Eq. 1.65 to Eqs. 1.66 and 1.67, the following equation appears:

BApz, tq
Bz

“ ´β1

BApz, tq
Bt

´ i

2
β2

B2Apz, tq
Bt2

` i∆βApz, tq. (1.68)

The term proportional to β1 is canceled when transforming to a reference
frame moving with the pulse at the group velocity, by applying the change of
variable t Ñ t ´ β1z.

In the following, for the sake of clarity, the slowly varying envelope of the
electric field in the time domain will be noted Epz, tq. If the absorption is
neglected, the usual form of the NLSE is recovered:

BEpz, tq
Bz

“ ´ i

2
β2

B2Epz, tq
Bt2

` iγ|Epz, tq|2Epz, tq. (1.69)

1.2.2 Fourier-transform-limited pulses

The temporal profile and the spectrum of a pulse of light are related to each
other by Fourier transformation. Therefore, there is a direct relationship be-
tween the pulse duration of an unchirped pulse and its spectrum, namely, the
broader the spectrum is, the smaller the pulse duration will be. If the pulse
propagates through a dispersive medium, the pulse duration can be larger than
the one given by the Fourier transformation of the spectrum, by it can never
be shorter. When a pulse has the shortest duration allowed by its bandwidth,
it is called a Fourier-transform-limited pulse. The pulse duration and band-
width are then linked by the time-bandwidth product, namely ∆t∆f “ C,
where C is a constant that depends on the shape of the pulse. For exam-
ple, for Gaussian pulses, C “ 2 ln 2{π « 0.441, while for sech-squared pulses
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C “ 4
`

ln
`

1 `
?

2
˘˘2 {π2 « 0.315, where the duration and bandwidth are

defined as the full-width at half maximum. Those factors are derived from
the properties of the Fourier transform, the detailed calculation is shown in
Appendix B for more details.

1.2.3 Separate effects of dispersion and nonlinearities

The NLSE shows that group-velocity dispersion (GVD, β2) and nonlinearities
(γ) are two phenomena playing a major role in the propagation of a pulse of
light in a fiber. Let us detail what are the effects of each of them on the pulse
propagation, independently from each other.

Group-velocity dispersion

The effects of GVD are exemplified here for Gaussian pulse because it is possible
to analytically Fourier transform a Gaussian. The analytical results are therefore
only applicable to Gaussian pulses, but the qualitative conclusions are valid for
any pulse shape.

γ is set to zero in the NLSE to study the effect of GVD alone.

BEpz, tq
Bz

“ ´ i

2
β2

B2Epz, tq
Bt2

. (1.70)

This equation can be resolved in the Fourier domain: the Fourier transform
of Epz, tq is Ẽpz, ωq and verifies:

BẼpz, ωq
Bz

“ i

2
β2ω

2Ẽpz, ωq. (1.71)

The solution is an exponential:

Ẽpz, ωq “ Ẽp0, ωqe i

2
β2ω2z. (1.72)

We consider a Gaussian pulse:

Ep0, tq “ E0 exp

ˆ

´t2

2τ 2

˙

. (1.73)

It is Fourier transformed to obtain Ẽp0, ωq, that is then introduced in Eq. 1.72.
The inverse Fourier transform can then be calculated:

Epz, tq “ E0

τ

pτ 2 ´ iβ2zq1{2
exp

ˆ

´ t2

2pτ 2 ´ iβ2zq

˙

(1.74)
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This can be re-written in the form:

Epz, tq “ E1pzq exp

ˆ

´ t2

Teffpzq2

˙

exp p´iφDpz, tqq , (1.75)

where:
E1pzq “ E0τ

pτ 4 ` β2
2z2q1{2

, (1.76)

Teffpzq “
ˆ

τ 4 ` β2
2z2

τ 2

˙1{2

“ τ

ˆ

1 ` β2
2

τ 4
z2

˙1{2

(1.77)

and

φDpz, tq “ ´t2β2z

τ 4 ` β2
2z2

` 1

2
tan´1

ˆ

β2z

τ 2

˙

. (1.78)

It is useful to introduce the dispersion length LD “ τ 2{|β2|, and then

Teffpzq “
ˆ

τ 4 ` β2
2z2

τ 2

˙1{2

“ τ
“

1 ` pz{LDq2
‰1{2

. (1.79)

The pulse remains Gaussian but its duration Teff increases during the propa-
gation along z.

The instantaneous frequency variation (or chirp) is the time derivative of the
temporal phase φDpz, tq:

δωpz, tq “ 2β2z

τ 4 ` β2
2z2

t. (1.80)

This equation shows a linear time dependence: this means that GVD induces
a linear chirp on the pulse as it propagates. If β2 is positive (normal dispersion),
at t ă 0 (the leading part of the pulse), δω ă 0, and for t ą 0 (trailing part of
the pulse), δω ą 0. In other words, the red travels faster than the blue (like
in the majority of the classical materials). On the contrary, if β2 is negative
(anomalous dispersion), the blue travels faster than the red. Teffpzq depends
on β2

2 , so in both cases, an initially Fourier-transform-limited pulse broadens
during the propagation.

In the case of photonic crystal fibers, the GVD can be positive or negative
depending on the wavelength. There can be one or several wavelengths for which
the GVD is zero, they are called the zero-dispersion wavelengths (ZDW). The
dispersion curves for two different PCFs are shown in Fig. 1.4 as an example.
Those fibers feature one anomalous dispersion range, two normal dispersion
ranges and two ZDW.

The spectrum can be calculated from Eq. 1.72 and 1.73:

Spωq “ |Ẽpz, ωq|2 “ E0πτ 2e´ω2τ2{2. (1.81)
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1 Chapter 1: Soliton propagation in optical fibers

Figure 1.4: Example of group-velocity dispersion for two solid-core PCFs and
interpretation for the propagation of the frequencies in the pulse.
Graph: Courtesy of Esben R. Andresen.

The spectrum is not z-dependent, it stays identical throughout the propaga-
tion. The only effect of GVD is the temporal broadening occurring because
the frequencies present in the pulse travel at different velocities in the fiber.
Similarly, the higher-order dispersion terms do not affect the spectrum. This is
easily seen from the fact that the dispersion amounts to multiplication of eiφpωq

onto Ẽpωq. The exponential cancels out upon taking the squared norm |Ẽpωq|2
to arrive at the spectrum. Figure 1.5(a) sums up the features of GVD that were
just described.

Self-phase modulation

The nonlinearities in the fiber cause a change of refractive index in the medium
that is proportional to |E|2. This is called the optical Kerr effect, because of its
similarities to the Kerr electro-optic effect, where an electric field is applied to a
medium and changes its refractive index in a quadratic way. Indeed, as already
discussed in Section 1.2.1, the nonlinear coefficient can be written γ “ n2ω0

cAeff

,
where n2 is the nonlinear refractive index such as ∆n “ n2|E|2.

β2 is set to zero in the NLSE to study the effect of nonlinearities alone.

BEpz, tq
Bz

“ iγ|Epz, tq|2Epz, tq. (1.82)

This equation can be solved in the time domain:

Epz, tq “ Ep0, tqeiγ|Ep0,tq|2z, (1.83)

with Ep0, tq “ E0e
´t2{p2τ2q. The temporal phase φNLptq “ γ|Ep0, tq|2z that

is imposed on the pulse is intensity dependent: it is maximum at t “ 0 and
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1.2 Propagation of a pulse of light in a fiber

Figure 1.5: Separate effects of (a) GVD and (b) SPM on an unchirped Gaussian
pulse propagating in a fiber along direction z. (a) The spectrum
stays unchanged, but the pulse temporally broadens when it prop-
agates. The GVD-induced chirp is linear. The scheme was drawn
for β2 ą 0, so the chirp is positive and the red wavelengths go faster
than the blue ones. If β2 ă 0, the pulse broadens in the same way,
but the chirp is negative and the blue goes faster than the red. (b)
The temporal profile stays unchanged, but SPM generates new fre-
quencies, and the spectrum broadens. The chirp has the shape of
the derivative of a Gaussian and its amplitude increases when the
pulse propagates. Because of this shape, one frequency can be trav-
eling with two different phases, which can cause constructive or de-
structive interference, hence the oscillating pattern of the spectrum.
The three examples of spectra drawn on the scheme correspond to
three values of the maximum nonlinear phase (1.5π, 2.5π and 3.5π).
As the spectrum broadens, the Fourier-transform-limited duration
of the pulse decreases, but the actual duration of the pulse stays
unchanged because of the chirp.

its shape follows the Gaussian profile of the pulse in the time-domain. The
nonlinear length LNL can be defined such as φNLptq “ z{LNL, with LNL “
1{pγP0q. As before, the instantaneous frequency is the derivative of the phase:

δωpz, tq “ 2γP0z

τ 2
te´t2{τ2

. (1.84)
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This effect is called self-phase modulation (SPM). The change of refractive
index induced by the intense optical electric field perturbs the propagation of
the pulse. In silica fibers, n2 ą 0 so δω ă 0 for t ă 0 at the leading edge
and δω ą 0 for t ą 0 at the trailing edge. As in the case of GVD for normal
dispersion, the red part of the spectrum goes overall faster than the blue part.
However, the dependence is far from being linear as it has the shape of the
derivative of a Gaussian.

The spectrum can be estimated from:

Spωq “
ˇ

ˇ

ˇ

ˇ

ż `8

´8

E0e
´t2{p2τ2qeiγ|Ep0,tq|2zeiωtdt

ˇ

ˇ

ˇ

ˇ

2

(1.85)

Simulations can show that this results in spectrum broadening. In other words,
new frequencies are continuously created during the propagation of the pulse.
The resulting spectrum for unchirped Gaussian pulse experiencing SPM consists
of several peaks that appear because each frequency can be generated with two
different phases, causing interferences. A first estimation of the broadening can
be made from Eq. 1.84. As suggested in Fig. 1.5(b), the spectral width can
roughly be estimated by δωmax in the chirp graph. By calculating the time
derivative of Eq. 1.84 and setting it to zero,

δωmax “
?

2e´1{2 γP0z

T0

. (1.86)

One can notice that |Epz, tq|2 “ |Ep0, tq|2 is not z-dependent, therefore the
pulse does not get broader or narrower when it propagates. However, as the spec-
trum broadens, the Fourier-transform-limited duration of the pulse decreases,
and one would recover the shorter pulse by compensating for the chirp induced
by SPM.

The analytical results above apply only to Gaussian pulses. However, the
qualitative conclusions stand for any pulse shape. Any temporal pulse shape will
remain unchanged under the action of SPM alone. Indeed, the SPM amounts
to multiplication of eiγt onto Epz, tq, and this factor disappears upon taking the
squared norm of Epz, tq. Figure 1.5(b) sums up the features of SPM that were
described above.

If the input pulse is initially chirped, the resulting spectrum can be drasti-
cally changed. In particular, under some conditions, a negatively chirped pulse
experiencing SPM in a fiber can result in spectral compression [36].

1.2.4 Combined effects of GVD and SPM

In many cases, both GVD and SPM are acting on the pulse and one cannot
separate their effects. The interplay between those two effects can result in
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1.3 Soliton dynamics

interesting features. To estimate the relative importance of GVD and SPM, the
parameter N is introduced:

N2 “ LD

LNL

“ γP0T
2
0

|β2| . (1.87)

If N " 1, the dispersion length is much longer than the nonlinear length, so
SPM dominates. On the contrary, if N ! 1, GVD dominates.

If N “ 1 and β2 ą 0, some temporal broadening appears, and the spectral
broadening is reduced compared to the SPM-only case. This can be qualita-
tively understood by looking at Fig.1.5: SPM generate new red frequencies at
the leading edge, and new blue frequencies created at the trailing edge. Because
of the positive dispersion, the already leading red components travel faster than
he already delayed blue components, which results in an extra temporal broad-
ening. On the other hand, the chirp created by GVD lowers the amplitude of
the one created by SPM, therefore, the resulting maximum nonlinear phase is
reduced and the spectrum broadening is slowed down.

If N “ 1 and β2 ă 0, the opposite situation occurs. The red components cre-
ated at the leading edge are going slower the blues components created at the
trailing edge, which acts against the temporal broadening of the pulse. Further-
more, the negative chirp induced by GVD acts against the spectral broadening
caused by SPM. In this case, the combined effects of GVD and SPM create what
will further on be called a soliton, which is a chirp-free pulse propagating in the
fiber without changing its shape.

1.3 Soliton dynamics

1.3.1 Soliton formation

Let us go back to the resolution of the NLSE (Eq. 1.69), to which an analytical
solution can be found in the case of anomalous dispersion (β2 ă 0). It can be
expressed as follows [33]:

Epz, tq “
a

P0 ¨ sech

ˆ

t

T0

˙

¨ exp

ˆ

i|β2|z
T 2

0

˙

, (1.88)

where P0 is the peak power of the pulse and T0 is its duration, defined with
respect to the full width at half maximum duration by TFWHM “ 2 lnp1`

?
2qT0.

This solution is independent of the propagated distance z apart from an oscil-
lating phase. This means that the envelope remains unchanged no matter the
propagation distance. This describes a fundamental soliton. As suggested be-
fore, soliton dynamics relies on the interplay between the two processes involved
in the NLSE: the anomalous GVD (β2) and the SPM created by the nonlinear
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Kerr effect (γ) act against each other in a balanced way, which ensures the
preservation of the pulse shape. For fundamentals solitons, N “ 1 and

γP0T
2
0

|β2| “ 1. (1.89)

There are also solutions for N equal to integers ě 2, corresponding to higher
order solitons. In these cases, the temporal and spectral profiles evolve in a
periodic fashion. The spatial period of this “breathing” is equal to z0 “ π{2LD.
For example, the temporal profile of a third-order soliton successively narrows,
broadens, splits in two parts, reshape itself into a unique peak, narrows again
and finally broadens back to its original shape. Over the same spatial period,
the spectrum also follows a cycle of narrowing, broadening, and change of shape
to finally come back to its original state. This can be partially understood by
thinking again of the counteracting effects of GVD and SPM. At the beginning,
as LD{LNL ą 1, the SPM dominates and it broadens the spectrum. The negative
GVD temporally compresses the central part of the pulse that is positively
chirped by the SPM, resulting in an intensity increase that affects back the
SPM (proportional to |E|2). The subsequent periodical evolution due to the
mutual interactions of GVD and SPM has been theoretically calculated [37]
and experimentally observed [38].

In practice, most of the time the input peak power P0 and width T0 do not
exactly match the fiber parameters so that N is an integer. Soliton perturbation
theory shows that such a pulse adapts its shape and width and evolves into a
soliton [39]. An input pulse whose N value is in the range Ñ ´0.5 ă N ă Ñ `0.5

(Ñ being an integer) will asymptotically evolve to a Ñ -order soliton. This is
also the case if the shape of the input pulse does not match the one of the
soliton. For example if the input pulse is Gaussian, the pulse will evolve into
a sech-square shaped one. Similarly, if the input pulse is negatively chirped, or
mildly positively chirped, it can evolve into an unchirped soliton. However if
the chirp is too large, the effect of the negative GVD is canceled and the balance
between GVD and SPM leading to soliton formation cannot occur. From this,
it is clear that the exact match between the input pulse and the fundamental
soliton is not required to launch a soliton, and the parameters of the input pulse
can widely vary and still evolve into a soliton-like pulse. However, this evolution
comes with a major drawback: part of the initial energy is lost under the form
of dissipative waves. To avoid this power loss, it is preferable that the input
pulse parameters are the closest possible to the soliton parameters.

1.3.2 Soliton self-frequency shift

For long enough pulses (ą 5 ps), the expression of βpωq (see Eq. 1.26 can be
truncated at second order. Indeed, for such long pulses, the peak power is
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usually not strong enough to generate significant higher-order effects.
However, for short pulses (ă 5 ps), the simplest form of the NLSE (Eq. 1.69)

is not sufficient to fully describe the behavior of solitons. In particular, the
delayed vibrational Raman response of the medium was previously neglected,
and turns out to play an important role in soliton dynamics. The full NLSE
can be re-written, taking into account the higher-order effects [33]:

BE

Bz
` i

2
β2

B2E

Bt2
´ iγ|E|2E “

8
ÿ

p“2

´piqp´1

p!
βi

BpE

Btp
´ γ

ω0

B
Bt

`

|E|2E
˘

´ iγTRE
B|E|2

Bt
.

(1.90)
On the left-hand side are the three terms already present in the classical

NLSE, while on the right-hand side are the terms accounting for higher-order
dispersion, self-steepening and intrapulse Raman scattering.

Higher-order dispersion, and in particular third-order dispersion β3 has to
be taken into account if the pulse is very short (ă 30 fs), when operating at
wavelengths close to the zero-dispersion wavelength (ZDW), i.e. for β2 « 0, or
in specific processes such as supercontinuum generation. However, for 100-fs
long fundamental solitons propagating at wavelengths far from the ZDW, it has
only little influence and can be treated perturbatively.

Self-steepening is a phenomenon that stems from the dependence of the group
velocity on the intensity. More precisely, the peak of the pulse has a higher
intensity and therefore goes slower than the wings of the peak that have lower
intensity. Without GVD, this effect leads to asymmetrical spectra and temporal
profiles. If the pulse propagates long enough, an optical shock can even be
created. This effect was found to be negligible in the pulses generated in this
work.

Conversely, intrapulse Raman scattering is the most important higher-order
effect that affects solitons. The parameter TR is related to the full Raman
response function of the medium Rptq, that takes into account the electronic
(instantaneous) and vibrational (delayed) Raman response:

TR “
ż 8

´8

tRptqdt. (1.91)

Intrapulse Raman scattering originates from the delayed Raman response of
the medium. When the pulse is very short (typically « 100 fs), its spectrum is
broad enough that an effect similar to stimulated Raman scattering can occur
between the blue and the red components, mediated by the vibration modes of
silica. Namely, the red part of the spectrum experiences a Raman gain, while
the blue part experiences a Raman loss. One can also understand this effect as
an energy transfer between the blue and the red part of the spectrum. As a
result, the soliton continuously redshifts along its propagation in the fiber, this
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1 Chapter 1: Soliton propagation in optical fibers

phenomenon is called soliton self-frequency shift (SSFS) [40, 41]. By setting all
higher-order parameters to zero in Eq. 1.90 and applying the variational method
that makes use of the Lagrangian formalism [42], it is possible to estimate the
variation of the central frequency of the soliton:

∆ωR9 ´ |β2|z
T 4

0

. (1.92)

The redshift increases proportionally with the distance traveled in the fiber:
the longer the fiber, the higher the final redshift at the output. Another con-
sequence of Eq. 1.92 can be brought out by recalling that when more power is
injected into the fiber, the duration of the pulse decreases (see Eq. 1.89). The
redshift is proportional to T ´4

0 , so the any small decrease of the duration of
the pulse translates to an enhanced redshift. This way, the wavelength of the
soliton can be tuned by changing the input power, while the duration of the
pulse remains almost constant.
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Figure 1.6: Example of increasing soliton redshift with increasing input power.
The peak at 800 nm is the residue from the pump laser.

It is important to note that femtosecond higher-order solitons are not stable
because of the combined effects of higher-order dispersion, self-steepening and
intrapulse Raman scattering, which leads to the breakup of these pulses into
their constituents. This is called the soliton decay. When the input power
becomes high enough to support a soliton with N " 1, the spectrum splits into
several bands, including one or several red-shifted fundamental solitons and
blue-shifted nonsolitonic radiation [43]. For this reason, the solitons that are
going to be discussed in the following are all fundamental solitons.
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1.3.3 Soliton delay

Due to the SSFS previously described, each soliton follows a trajectory in the
wavelength vs. z plane that depends on its peak power P0. Until then, the
β1 term in the NLSE was not taken into account because the pulse was always
described in a coordinate frame that travels at the group velocity vg “ β´1, so
that the zero of the time axis is always at the center of the soliton. However, it
is interesting to notice that two solitons of different P0 will experience a different
β1pzq, and there will be a delay between those two solitons at the output of the
fiber. Knowing the β1pλq of the fiber and the λpzq of the soliton, it is possible
to estimate the delay between the two solitons. This issue will be addressed in
more details in Section 3.2.

1.4 Conclusion

Solitons propagating in a fiber possess remarkable features that were detailed in
this Chapter. Their three main properties, useful for applications in nonlinear
microscopy and spectroscopy, are the following. First, solitons remain close
to being Fourier-transform-limited throughout their propagation, which means
that femtosecond pulses can be generated and delivered to a sample by the
same fiber. Second, their wavelength can be shifted by changing the input
power, through the modification of the soliton self-frequency shift. This can
be used for generating new frequencies, or get hyperspectral data. Finally, this
change of wavelength is associated with a delay shift, that can be useful in time
resolved measurements.
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microscopy

Since the first realization in 1990 [44], the development of nonlinear microscopy
techniques has lead to a powerful set of methods able to provide images of
biological samples carrying functional, quantitative and dynamic information
[45–47]. Although linear fluorescence microscopy remains one of the most widely
used ways of studying biological samples, nonlinear multiphoton microscopy has
been used to overcome some of the drawbacks associated with linear techniques.

However, the implementation of nonlinear microscopy techniques often relies
on bulky optics, and are therefore not always suited for in vivo experiments,
especially in the field of medical imaging. A way to circumvent this problem
is to use endoscopy techniques, where the light is sent and collected through a
tube or an optical fiber. Endoscopes have been used in association with white
light imaging techniques for decades. Since the first fiber-based endoscope was
invented in 1958 [48], years of development and improvement has resulted in
the establishment of endoscopes as widely used tools in the field of medical
diagnosis.

The implementation of the new contrasts brought by nonlinear processes in
an endoscope-like configuration that allows in vivo imaging is of great interest
for medical applications. Unfortunately, the generation and observation of non-
linear signals is not compatible with the propagation in the fibers classically
used in endoscopy, because of the deleterious effects of the propagation medium
that arise when the intensity of light is high, which is necessary for nonlinear
microscopy.

First, the properties and requirements of nonlinear microscopy techniques will
be briefly summarized, then the way previous studies tackled the problems of
fiber delivery for nonlinear microscopy and endoscopy will be presented, finally
the new approach that was developed during this work and the obtained results
will be detailed.

2.1 Properties of nonlinear microscopy

Nonlinear optical microscopy uses nonlinear light-matter interaction to gener-
ate contrast and produce images. The nonlinear processes involve the simul-
taneous excitation of a molecule by several photons, which is why nonlinear
microscopy is also called multiphoton microscopy. Conversely, conventional mi-
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croscopy uses linear interactions, for instance, absorption, scattering, refraction
and one-photon fluorescence. The energy diagrams of some of the processes used
in nonlinear microscopy are presented in Fig. 2.1, along with the energy dia-
gram for one-photon fluorescence, for comparison. In two-photon excited fluo-
rescence (TPEF), the light emission occurs after the vibrational relaxation of the
molecule, whereas for second-harmonic generation (SHG) and third-harmonic
generation (THG), the excitation and de-excitation are simultaneous. Nonlinear
microscopy has several advantages over linear microscopy [49].

As previously mentioned, nonlinear processes rely on the simultaneous ex-
citation of a molecule by several photons. As this is less probable than the
excitation of the molecule by a single photon, this implies a high excitation
intensity. In practice, when working with unamplified lasers, nonlinear signals
will only be observable if the light is tightly focused by a microscope objective;
then the processes are efficiently triggered only at the focus of the objective,
where the intensity is the highest. This results in an intrinsic optical section-
ing that improves the resolution along the optical axis (the z axis), allowing
3D-imaging without the need of a confocal setup. Moreover, the high intensity
requirement obliges the use of pulsed laser light for excitation. The use of pulsed
light excitation reduces the photodamage, because the time of light exposure is
reduced.

Furthermore, the energy of several photons are transfered to the molecule,
and this energy is released by the molecule in the form of a single photon of
higher energy. Consequently, the excitation occurs at higher wavelengths than
the emission. Typically, the excitation lies in the near-infrared (NIR) range,
between 800 and 1 µm. This is beneficial for at least two reasons: (i) it is a good
compromise between penetration depth that is better at higher wavelengths, and
optical resolution that is better at shorter wavelengths due to the diffraction
limit; and (ii) this range is ideally located between the high linear absorption of
hemoglobin and melanin in the visible, and the high linear absorption of water,
in the infrared. This feature, combined with the optical sectioning, reduces the
out-of-focus photobleaching: both the linear and the nonlinear absorption of
the out-of-focus regions are low. Another reason for the chosen wavelength to
be lower than 1 µm is the availability of good quality optics that is better in
the visible and NIR ranges.

Finally, endogenous nonlinear processes can abound in biological specimens,
which allows to obtain images without the need of staining. For instance, colla-
gen fibers produces a strong SHG signal. Techniques relying on coherent Raman
scattering are powerful label-free nonlinear methods, they will be discussed in
Chapter 4.

As suggested before, the implementation of nonlinear techniques in an endo-
scopic modality is problematic because of the high required intensities. The
propagation of short pulses with high peak powers is often perturbed by disper-

38



2.2 Fiber delivery for multiphoton microscopy

Figure 2.1: Energy diagram of (a) One photon fluorescence (1PF), and of three
nonlinear effects among the most commonly used in nonlinear mi-
croscopy. (b) Two-photon excited fluorescence (TPEF); (c) Second-
harmonic generation (SHG); (d) Third-harmonic generation (THG)

sion and nonlinear effects in the fiber itself. A critical point is then the delivery
of a short pulse (typically 100 fs long) to a sample through a fiber.

2.2 Fiber delivery for multiphoton microscopy

The key parameter in nonlinear optics is the peak power of the excitation pulse
in the focal volume. Nonlinear processes start to generate observable signals
when the applied electric field reaches values non negligible compared to the
interatomic electric field (typically, 1010 V/m). For example, let us consider an
applied electric field of 108 V/m. This value corresponds to an instantaneous
optical power of about 1 kW, for a beam at visible frequencies focused near its
diffraction limit. Then, the corresponding average power for a pulsed laser with
1-ps pulses at 80 MHz is about 80 mW (pulse energy 1 nJ), and it is about
8 mW for 100-fs pulses at 80 MHz (pulse energy 100 pJ). This rough estimation
emphasizes the advantage of short pulses in nonlinear microscopy: they allow
to increase the peak power without increasing the average power and the total
amount of energy sent to the sample, which is beneficial from the photodamage
point of view.

The need of ultra-short pulses in nonlinear microscopy imposes the use of
single-mode fibers in order to avoid the effects of mode dispersion present in
multimode fibers (see Section 1.1.1).

The typical values of group-velocity dispersion (GVD) and nonlinearity (SPM)
for classical step-index single-mode fibers strongly perturb the propagation of
short pulses. GVD and SPM temporally and spectrally modifies the pulse; at

39



2 Chapter 2: Fiber delivery for TPEF and SHG microscopy

the output of the fiber, it is often temporally broadened, chirped and distorted.
Atherton and Reed circumvented this problem by applying a strong negative
frequency chirp to the 100-fs pulse before the propagation in the fiber [50]. This
way, the duration of the pulse was increased to several ps to reduce the peak
power and limit the effects of SPM. The positive GVD in the fiber nearly restored
the pulse duration at the output of the fiber. Clark and co-workers presented a
different pre-compensation scheme [51]. The pulse was first spectrally broadened
through SPM in a SMF, then temporally compressed and negatively chirped by
a series of prisms. Finally, it is spectrally compressed in a second SMF, also
used for delivery. The SPM of the second fiber counteracted the effects of the
SPM of the first fiber because of the negative GVD in between, which was also
set to compensate for the positive GVD of both fibers.

The excitation and collection of the signals through the same fiber proved dif-
ficult with standard fibers because of the small overlap of the fundamental mode
with the back-scattered signal. This point was improved with the introduction of
double-clad fibers. Several groups designed two-photon fluorescence endoscopes
based on negatively pre-chirped pulses sent to the sample via double-clad SMFs
[52–54]. The scanning was done with piezoelectric actuators and the signal was
collected in the epi direction and transmitted to the detectors through the outer
multi-mode clad of the fiber.

The interesting new features of PCFs (see Section 1.1.2) were also put to use
for fiber delivery and multiphoton endoscopy in a double-clad geometry. Double-
clad solid-core PCFs transmitted negatively pre-chirped pulses in their core for
excitation and collected the signal by confining it in a second cladding made of
silica, by the means of an outer ring of air holes. Microelectromechanical system
(MEMS) mirrors were used for the scanning [55–57].

The common point of those techniques is that the pulse propagates in silica.
Pre-compensating systems have been developed to counteract the dispersion of
the medium, by the means of grating pairs, prisms, or other pieces of fiber.
This way, a negatively chirped pulse is brought back to its Fourier-transform-
limited shape after traveling through the positive GVD medium. However,
pre-compensation comes with a number of difficulties [58, 59]. First, it only
compensates for group-velocity dispersion, without considering the higher-order
dispersion or the nonlinearities, which may be a problem in some cases. Second,
any pre-compensation system only gives a transform-limited output pulse within
a narrow input parameter range. It is then difficult to adapt it for tunable
pulses for example, as the pre-compensation parameters will be different at
other wavelengths.

Hollow-core photonic bandgap fibers [60–63] are a possible solution to this
problem. In this case, the light propagates in air rather than in silica, so
it experiences a very low nonlinearity. Similarly, large mode area fibers [64]
were designed to minimize the effect of nonlinearities by allowing the pulse to
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propagate over a larger area, so with a lower power density. However, the tun-
ability provided by soliton redshift cannot be achieved in this kind of fibers.
Tunable solitons have been observed in hollow-core and large mode area fibers
[65, 66], but the input power requirements are too high for standard femtosec-
ond light sources available in many biology labs (see e.g. Ref. [67]). Indeed,
Ti:sapphire lasers commonly used for multiphoton microscopy are universally
high-repetition-rate (between 50 and 100 MHz) to facilitate high-speed image
acquisition [68]. This means that their pulse energy stays below about 50 nJ,
too low for the solitons in hollow-core fibers, that require input pulse energies
of several hundreds of nJ.

Recently, Er and Yb doped fiber lasers have been put to use in a new type of
all-fiber-optic endoscopes [69, 70]. These are very promising technologies that
allow the development of very compact systems. However, the maximum gain of
erbium is located at 1.55 µm and the maximum gain of ytterbium at 1.03 µm,
while a lot of applications in imaging of biological samples use wavelengths
between 800 nm and 1 µm, for the reasons detailed in Section 2.1.

2.3 A solid-core photonic bandgap fiber for high energy

solitons

As explained in section 1.3, solitons are intrinsically Fourier-transform-limited
at the output of the fiber. This is a convenient way of obtaining ultra-short
pulses at the tip of a fiber without the need of any pre-compensation system,
because the properties of the fiber themselves adjust the incoming pulse to shape
it into a Fourier-transform-limited soliton. Moreover, they possess features that
are useful in several schemes for nonlinear microscopy and spectroscopy: upon
variation of the input power, they are tunable over a wide range (typically
100 nm or more), and their delay can be adjusted over a few ps.

However, these features come with a number of drawbacks, including the
fixed power for a soliton at a given wavelength in a given fiber. Indeed, if more
power is coupled into the fiber, it will only result in further redshift through
SSFS. Equation 1.89 indicates that the power of the soliton depends on the ratio
|β2|{γ, which are parameters of the fiber. This was the guideline for a fiber design
developed at IRCICA laboratory in Lille (France) in order to obtain high-energy
solitons compatible with standard Ti:Sapphire lasers. Furthermore, the solitons
are expected to be in the 800 – 1000 nm range, which is of interest for nonlinear
microscopy.
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2 Chapter 2: Fiber delivery for TPEF and SHG microscopy

2.3.1 Preliminary study

A first fiber, hereafter referred to as SC-PBG-1, was already available at the
beginning of this work, as it was designed and fabricated in IRCICA for previous
studies [71–73]. Its ability to generate solitons adapted to nonlinear microscopy
was tested as a preliminary study. Fig. 2.2(a) shows the scanning electron
microscopy (SEM) image of the cross-section of the fiber. The structure is
based on silica, with a doubly periodic network of air holes and germanium
doped silica rods. The Ge-doped silica rods (light gray regions) have a diameter
of 2.19 µm and are separated by a pitch of 3.09 µm. Their refractive index profile
is parabolic with a maximum refractive index difference of 32 ˆ 10´3 relative to
the pure silica background (dark gray region). Air holes (black regions) of 2.33
µm diameter were added periodically to the cladding.

Figure 2.2: (a) Scanning electron microscopy (SEM) image of the core and pho-
tonic cladding of the SC-PBG-1 fiber. The dark gray area is the
silica, the light gray dots are the Ge-doped rods and the black dots
are the air holes. Courtesy of A. Kudlinski. (b) Image of the fun-
damental mode on a CMOS camera. (c) Spatial profile along the
dotted white line in (b). Dotted red line: Gaussian fit.

The setup used for testing the properties of SC-PBG-1 is shown in 2.3. A
80 MHz femtosecond Ti:Sapphire laser tunable between 800 and 1080 nm was
used as pump light. An aspheric lens of short focal length (f = 6.24 mm)
mounted on a 3-axis micrometric stage was used for coupling the light in a 10-
m portion of SC-PBG-1. To get coupling to the fundamental mode, the exit
end of the fiber was imaged on a CMOS camera, and alternative detection paths
allowed to measure power with a powermeter (PM) or a photodiode (PD), auto-
correlation trace with an autocorrelator (AC), and spectrum with an optical
spectrum analyzer (OSA).

Solitons are efficiently generated when the light is coupled to the fundamental
mode, so the coupling parameters are critical. To get coupling to the fundamen-
tal mode, the exit end of the fiber was imaged on a CMOS camera (DCC1555,
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2.3 A solid-core photonic bandgap fiber for high energy solitons

Figure 2.3: Optical setup for the characterization of the SC-PBG-1 fiber. PM:
powermeter, PD: photodiode, AC: autocorrelator, OSA: optical
spectrum analyzer.

Thorlabs) and the intensity of this mode was maximized. This mode is charac-
terized by a main lobe and six small side lobes. In practice, the optimization
is done by maximizing the intensity in the central lobe. This is why a CMOS
camera had to be used, as a mere power optimization would most of the time
only find local maxima, corresponding to the modes guided by the Ge-doped
silica rods. Figure 2.2(b) shows the image obtained on the CMOS camera after
coupling to the fundamental mode. Its spatial profile along the dotted white
line. Fig. 2.2(c) shows the fit of the spatial profile by a Gaussian function of
width 3.2 µm.

The anomalous dispersion region where the propagation of solitons is possible
starts at wavelengths higher than the zero-dispersion wavelength (ZDW) of SC-
PBG-1 that was measured to be 905 nm. Efficient soliton generation was only
observed from about 950 nm, as pumping wavelengths too close to the ZDW
leads to supercontinuum generation. The wavelengths of the spectrally sepa-
rated solitons were then between 1100 and 1250 nm. An example of spectrum is
presented in Fig. 2.4. The spectrum of the 1160 nm soliton is well fitted with a
sech-squared function, giving a spectral width of 14.8 µm. This corresponds to
a 96 fs Fourier-transform-limited duration. Unfortunately, the autocorrelation
could not be performed at this wavelength to confirm this value because of the
limited spectral range of the autocorrelator.

The power of the generated solitons was measured at several pump wave-
lengths, for several input power and soliton wavelengths. Two quantities are
then of particular interest: the soliton pulse energy, calculated from the soli-
ton power and repetition rate of the laser; and the soliton formation efficiency,
defined as the soliton power divided by the input power.

When the redshift increases, the energy of solitons increases as well, which
can be understood because of the increase in the input power. However, as the
input power and redshift increase, the soliton formation efficiency decreases.
The solitons are then more powerful but the losses are higher. The soliton
energies are between 200 and 600 pJ, which is of the good order of magnitude
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2 Chapter 2: Fiber delivery for TPEF and SHG microscopy

Figure 2.4: Spectrum of the light at the output of a 10-m portion of SC-PBG-1
pumped at 975 nm with 420 mW input power. Power of the soliton:
34 mW. Solid black line: experimental at, dashed red line: sech-
squared fit.

Figure 2.5: (a) Soliton energy and (b) soliton formation efficiency as a function
of soliton wavelengths for four pumping wavelengths from 975 nm
to 1050 nm.

for nonlinear microscopy. This also corresponds to a 3 to 5-fold enhancement
of the pulse energy for classical PCFs [74]. The soliton formation efficiencies
from 10 to 15 % are also relatively good. However, due to the high ZDW, the
wavelength range is higher than what is usually used in nonlinear microscopy.
For this reason, the design of the fiber was slightly modified to get a second
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SC-PBG fiber, descibed in the next section.

2.3.2 Design and characterization of the second SC-PBG

Figure 2.6: (a) SEM image of the cross-section of the core and photonic cladding
of the SC-PBG. The dark gray area is the silica, the light gray dots
are the Ge-doped rods and the black dots are the air holes. Courtesy
of A. Kudlinski. (b) Calculated |β2|{γ ratio for standard PCFs and
SC-PBG-2.

In view of the promising results detailed above, a second fiber (SC-PBG-2)
was designed and fabricated by A. Kudlinski in IRCICA. The strategy was to
modify the geometrical parameters of the fiber in order to have a high |β2|{γ

ratio, and get high energy solitons with a 800 nm pump laser. The SEM image
of the cross-section of the core and micro-structured cladding of SC-PBG-2 is
shown in Fig. 2.6(a). The Ge-doped silica rods have a diameter of 1.51 µm, are
separated by a pitch of 2.40 µm; and the air holes have a diameter of 1.47 µm.
Figure 2.6(b) compares the |β2|{γ ratio of this fiber (red line), obtained by finite
element calculations, with the typical values for standard PCFs (gray area). The
increase in the 850 – 1000 nm range is about an order of magnitude. Indeed, for
usual air / silica PCFs, high values of |β2|{γ require structures with small pitches
(Λ) and high air fraction (d{Λ), which make the fibers difficult to manufacture
and use. This constraint restricts the |β2|{γ ratio to small values. The high
|β2|{γ ratio should lead to high energy solitons in the desired wavelength range.
Moreover, the ZDW of the SC-PBG-2 is 760 nm, so the pumping at 800 nm
should allow soliton propagation.

The SC-PBG-2 fiber was first characterized spatially. NIR femtosecond pulses
(800 nm, 30 fs, 1 GHz) were launched in sections of the fiber of various lengths for
characterization at different input powers. The light was coupled into the fiber
with an aspheric lens. The aspheric lens was chosen and the beam diameter was
adjusted so that the coupling angle defined by the diameter and focal length of
the lens matched the numerical aperture of the fiber, of about NA = 0.2. After
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2 Chapter 2: Fiber delivery for TPEF and SHG microscopy

Figure 2.7: (a) Image of the output tip of the SC-PBG-2 fiber on a CMOS
camera, after maximization of the fundamental mode. Colorbar:
normalized intensity. (b) Spatial profile along the dotted white line
in (a). Dotted red line: Gaussian fit.

several trials, a lens of focal length f “ 11 mm and a beam diameter D “ 4 mm
were chosen.

Figure 2.7(a) shows the image of the tip of the fiber when the fundamental
mode is maximized, and Fig. 2.7(b) shows the spatial profile of this mode. The
central peak is well fitted by a Gaussian function of width 1.9 µm, showing that
the fundamental mode is Gaussian.

Next, the nonlinear properties of the SC-PBG-2 fiber were characterized. The
input power was controlled by a half-wave plate and a polarizing beam splitter.
The resulting solitons were filtered from the residue of the laser light at 800 nm
as well as blue-shifted dispersive waves by longpass filters (Semrock LP830RU
or Thorlabs FEL850) and some of their properties were measured, such as av-
erage power, spectrum (USB2000, Ocean Optics), and duration through their
autocorrelation trace (Mini, APE).

An example of output spectrum is shown in Fig. 2.8. The red-shifted soliton
is perfectly fitted by a squared hyperbolic-secant function (dotted red line).
The inset of Fig. 2.8 shows the autocorrelation trace for the 900 nm soliton
corresponding to the spectrum. For sech-squared pulses, the width FWHM
of the autocorrelation trace was divided by 1.54 in order to recover the pulse
duration, which in this case was found to be 90 fs. The Fourier-transform-
limited duration calculated from the Fourier transform of the spectrum with
the following formula (see Section 1.2.2):

∆tFTL “ 4
“
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`

1 `
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46
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valid for sech-squared pulses. The Fourier-transform limited duration corre-
sponding to the soliton spectral width ∆λ = 10.7 nm is ∆tFTL “ 80 fs. The
small discrepancy observed between this value and the measured duration can
be explained by the dispersion of the optics between the fiber and the auto-
correlator (lens, filter, halfwave plate), estimated to be about 800 fs2. The is
verified by a simple calculation described in Section 4.2.3. This confirms that
the soliton is Fourier-transform-limited at the output of the fiber.

Figure 2.8: Black line: spectrum of the output of the fiber. Dotted red line:
squared hyperbolic-secant fit of the soliton. Inset: autocorrelation
trace of the 900 nm soliton.

Figure 2.9(a) shows the measured energy of the solitons through the whole
tunability window, for five fiber lengths. The energy of the solitons are as high
as 120 pJ, which is compatible with nonlinear imaging applications. Shorter
fibers produce higher energy solitons, this is due to the losses that increase with
the propagation length. For comparison, the energy of one soliton generated in a
classical PCF (the one used for the experiments presented later on in Chapter 4)
was 30 pJ, at 875 nm and for a 50 cm piece of fiber. This is almost 3 times
lower than the power of th 875 nm soliton generated in the 3 m long SC-PBG-2
fiber.

The soliton formation efficiency is shown in Fig. 2.9(b). It is up to 20 % for
short soliton wavelengths, and it decreases with increasing soliton redshift. For
short fibers, it is approximately between 10 and 15 %, which is equivalent to
the first fiber, SC-PBG-1. For the longer fibers, it is extremely low (below 3 %).
This point will be adressed in the following.

For each measured point in Fig. 2.9(a), the effective |β2|{γ ratio is calculated
with Eq. 1.89(b). The power was measured with a regular powermeter, and
the obtained data were corrected to take into account the transmission of the
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optical filter that was used for separating the soliton from the rest of the output
light. Knowing that the solitons were Fourier-transform limited, their duration
was calculated from the measured spectra with Eq. 2.1. Figure 2.10 shows the
comparison between the experimental value, calculated in the way that was just
described; and the theoretical |β2|{γ ratio, obtained from finite element method
calculations that were performed for the design of the fiber.

Figure 2.9: (a) Energy of the soliton as a function of soliton wavelength for
fiber lengths from 3 to 30 m. The full lines are linear fits of the
experimental points for each fiber. Fiber input average powers were
(at 1 GHz): 420 – 1400 mW (3 m); 420 – 1360 mW (5 m); 200 –
1380 mW (10 m); 250 – 1300 mW (15 m); 200 – 1400 mW (30 m).
(b) Soliton formation efficiency as a function of soliton wavelength
for fiber lengths from 3 to 30 m.

A good agreement can be found between the simulation and the experiment
for fibers up to 10 m. However, in longer fibers, the calculated |β2|{γ ratios are
lower than the theory. In a similar fashion, the highest redshift accessible via
SSFS increases with fiber length, but it reaches a maximum value at L = 10 m
(see Fig. 2.11). Moreover, as it was mentioned before, the soliton formation
efficiency is also very low for the two longer fibers.

In fibers longer than 15 m, several mechanisms can explain the lower values
of the effective |β2|{γ, the end of the redshift and the low efficiency. First,
the third-order dispersion arising when the soliton gets closer to the PBG edge
decelerates the SSFS in the fiber [71]. Second, the attenuation experienced
by the pulse when it propagates increases the nonlinear length LNL “ 1{pγP0q
which is the characteristic length needed for the soliton to adapt to any changes.
At a certain point the soliton can no longer follow the changes in P0, ceases to
redshift, and temporally broadens under dispersion. In the end, the redshifted
pulse loses its soliton nature during propagation, and Eq. 1.89 is no longer valid.
Figure 2.11 can be interpreted as the redshift vs. fiber length. In view of the
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Figure 2.10: Theoretical |β2|{γ ratio (dark blue line) from finite elements calcu-
lations, and experimental values of this ratio (markers) retrieved
from measurement of the energy (data in Fig. 2.9(a)) and the re-
trieval of their duration from the Fourier transform of the spectrum
of the solitons, plotted against soliton wavelengths, for several fiber
lengths.

Figure 2.11: Redshift of the soliton at maximum input power for varying fiber
lengths. The dashed line is a guide to the eye.

above explanation, that soliton nature of the pulse can be seen as retained until
the plateau.

Finally, a 100 nm tuning range was obtained for the soliton. The length of the
fiber must be less than 10 m so that Eq. 1.89 is still valid and the output pulse
is Fourier-transform-limited. Then, the fiber length should be chosen according
to the tunability and power requirements for the application.
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Figure 2.12: Scheme of the microspectroscopy and microscopy setup. PBS: po-
larizing beam splitter, λ{2: half-wave plate, DM: dichroic mir-
ror, LP/BP filter: longpass/bandpass filter, PMT: photomultiplier
tube, APD: avalanche photodiode.

2.4 Two photon fluorescence and second harmonic

generation

One of the simplest ways to take advantage of the short duration of the pulses
obtained at the tip of the fiber is to directly send them to a sample and attempt
to generate nonlinear signals to provide contrast. This section sums up the
results obtained with this approach.

2.4.1 Experimental setup

We conducted two sets of experiments based on the excitation of the sample by
the optical solitons generated in the fiber. First we performed microspectroscopy
on liquid samples, and then we did microscopy on several samples, including
biological ones.

The solitons were generated by coupling 800 nm light from either a 80 MHz
(Chameleon from Coherent Inc., 150 fs) or a 1 GHz laser (GigaJet20 from
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Figure 2.13: TPEF spectra of a 170 µM solution of rhodamine 6G in water.
Black squares: reference spectrum, measured by exciting the sam-
ple with the tunable fs light directly coming from the 80 MHz
Ti:Sapphire laser (without passing through the fiber). Blue circles:
spectrum acquired under excitation with solitons generated in a
10 m SC-PBG-2 fiber pumped with a 800 nm, 1 GHz laser. Green
triangles: spectrum acquired under excitation with solitons gener-
ated in a 10 m SC-PBG-2 fiber pumped with a 800 nm, 80 MHz
laser.

LaserQuantum, 30 fs) into the SC-PBG-2 fiber. The 10 m fiber was used for
spectroscopic application because it displays the best trade-off between tunabil-
ity and soliton power, and the 3 m fiber was used for microscopy to get high
soliton power. As before, the soliton wavelength was controlled by changing
the input power, and it was filtered from residual and dispersive waves with a
long-pass filter to ensure that the soliton was the only excitation pulse reaching
the sample. For microspectroscopy, the light was focused on the sample by a
long working distance objective (Olympus 20x, NA = 0.45) and collected by
another objective (NA = 0.60) in the forward direction. We detected the TPEF
on an APD after a set of longpass and bandpass filters.

For microscopy, we used a high NA objective (Nikon 40x, NA = 1.15, water
immersion) and scanned the focus across the sample with galvanometric mirrors
to make TPEF and SHG images in an epi-detection scheme by using two PMTs
and an appropriate set of filters and dichroic mirrors.

A scheme representing the two setups combined is shown in Fig. 2.12.
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Figure 2.14: TPEF traces under excitation with 870 nm solitons at 1 GHz (blue
line) and 80 MHz (green line), with the corresponding signal to
noise ratios (in cps1{2). Powers at the focus: black curve: 15 mW;
blue: 5 mW; green: 2 mW.

2.4.2 Nonlinear spectroscopy

We investigated the TPEF response of an aqueous solution of rhodamine 6G
with the setup described above. We first compared the fluorescent levels and
the signal to noise ratios in the cases of the excitation by solitons generated in
the fiber at 80 MHz and at 1 GHz.

The TPEF signal at a given wavelength depends on pulse power, duration
and repetition rate frep in the following way [75]:

〈F 〉 9 P 2
av

frep ¨ T0

“ 4P 2
0 ¨ T0 ¨ frep, (2.2)

where Pav is the average power and P0 is the peak power. The energy and
duration of one soliton at a given wavelength is fixed by the fiber parameters.
Consequently, the only way to significantly increase the TPEF signal in this
scheme is to increase the repetition rate.

More specifically, we expect the fluorescence signal to scale linearly with the
repetition rate. If the TPEF photon count S1sol arising from excitation with a
single soliton has mean 〈S1sol〉 and standard deviation σ1sol, then it follows from
the properties of the standard deviation that the TPEF count rate arising from
a train of solitons at repetition rate frep has mean 〈S〉 9frep 〈S1sol〉 and standard
deviation σ9

a

frepσ1sol. We can then expect both the noise and the signal to
noise ratio to scale with the square root of the repetition rate.
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We measure a 10-fold increase of the fluorescence counts and a 4-fold increase
of the signal to noise ratio under a 12.5-fold increase of the repetition rate
(from 80 MHz to 1 GHz), as shown in Fig. 2.14. The experiment data seem
to generally follow the trend predicted by the above calculation. This indicates
that we observe only limited saturation effects in the sample when increasing
the repetition rate.

This emphasizes the advantages of increasing the repetition rate in terms of
signal level and signal to noise ratio. Previous studies also suggest that photo-
damage associated with multiphoton excitation fluorescence decreases when the
repetition rate increases while keeping a constant signal rate [76]. Indeed, for
some processes

Figure 2.13 shows the TPEF spectra of the same rhodamine 6G solution.
The two spectra (blue circles and green triangles) obtained with excitation by
solitons at 80 MHz and 1 GHz were normalized with respect to their average
power and repetition rate, taking into account the small saturation effect previ-
ously measured. The agreement between the two spectra is very good, proving
the reliability of the soliton as a light source with only little influence of the
parameters of the pumping laser (spectrum, duration, chirp). Another spec-
trum was performed as a control, using the fs pulse directly coming from the
80 MHz Ti:sapphire laser (black squares) for excitation. The spectra show a
good qualitative agreement. Our measurements are also consistent with the
two-photon absorption cross section values for rhodamine 6G found in the liter-
ature [75, 77]. However, no quantitative information can be retrieved from the
comparison between this spectrum and two first spectra because many param-
eters vary (spectral width, pulse duration, beam shape).

The speed of wavelength tuning is only limited by the capabilities of the
devices used to change the power at the input of the fiber. For example, with a
Pockels cell, one could get wavelength switching frequencies up to few MHz. In
the current configuration, the wavelength tuning is repeatable enough to operate
in an automated fashion over the course of a set of experiments (typically few
hours).

2.4.3 Nonlinear microscopy

To demonstrate the imaging capabilities of our system, we performed images
of several samples, including biological ones (see Fig. 2.15). We generated the
solitons at 1 GHz repetition rate in a 3 m fiber to operate at high excitation
power and low redshift (850–890 nm). We first tested the two epi-detection
channels separately to obtain images of samples known for their strong TPEF
and SHG signals, respectively. Figure 2.15(a) shows a TPEF image of a fixed
Drosophila embryo, where the formaldehyde fixation process is responsible for
inducing the fluorescence signal. Figure 2.15(b) shows the SHG image of BaTiO3
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Figure 2.15: 300 x 300 pixels TPEF and SHG images with 10 accumulations
each. (a) TPEF image of a fixed Drosophila embryo obtained with
a 870 nm soliton excitation and a 50 µs dwell time. (b) SHG image
of BaTiO3 crystals obtained with a 850 nm soliton excitation and
a 70 µs dwell time. (c) Composite image of fixed mouse tumor skin
tissue obtained with a 870 nm soliton excitation and a 70 µs dwell
time. TPEF is shown in red and SHG in green. Powers in the
sample plane: (a) 40 mW; (b) 50 mW; (c) 55 mW.

crystals. In both cases, the 50–70 µs dwell times that were used are comparable
with the ones typically used in nonlinear microscopy. The multiphoton signal
is about 10 times lower than images with standard Ti:Sapphire excitation. We
have identified the reason for this discrepancy to be the spatial profile of the
soliton that is singly-peaked but not Gaussian. The microscope we used was
not set up to compensate for this effect, which results in a bias against the
soliton in this context. We then used the two channels to perform a multimodal
image of a biological sample. Figure 2.15(c) shows a composite TPEF/SHG
image of fixed mouse tumor skin tissue showing structural features that are not
distinguishable in white light microscopy. The SHG emitting structures can be
identified as collagen fibers, whereas TPEF comes from the stratum corneum.
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2.5 Conclusion

Soliton generation and redshift in a solid-core photonic bandgap fiber was ap-
plied for the femtosecond fiber delivery in a microspectroscopy and microscopy
scheme. The fiber design was optimized to allow the generation of a high en-
ergy soliton, and the laws of soliton dynamics ensured Fourier-transform-limited
pulse at the exit end of the fiber, with no need of pre-compensation for disper-
sion. For those reasons, the soliton excitation scheme is efficient for the gen-
eration of observable nonlinear signals (such as TPEF and SHG) in the focal
volume. Furthermore, the power-dependent redshift of the soliton provides a
100 nm tunability range, opening the door to spectroscopic applications and
hyperspectral imaging.
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transient absorption

3.1 Transient absorption

Time-resolved spectroscopy has been used since the 1950s to study the dynamics
of physical, chemical, or biological processes. The first techniques to be used
were the accelerated and stopped flow method [78], based on the flowing of the
liquid sample in a tube, and the flash photolysis [79], relying on the emission
of a short flash of light from a high-pressure gas filled discharge tube. With
the first technique, it was possible to study the kinetics of biochemical reactions
at first on the millisecond scale, while the second technique improved over the
years to reach the nanosecond scale. The development of ultrafast lasers allowed
to push down this limit and access picosecond and femtosecond time scales. A
wide variety of techniques have been implemented so far for studying dynamic
samples, such as fluorescent lifetime measurements, pump-probe methods or
time-resolved coherent anti-Stokes Raman scattering.

The principle of pump-probe experiments is the following. Two synchronized
beams of light are sent to the sample. One of the beam passes through a delay
line, so that the relative position of the two pulse trains can be changed. Then,
the first pulse reaching the sample modifies its state, and this state is probed
by the second pulse, at different times depending on the position of the delay
line. The transient absorption of the probe beam caused by the action of the
pump beam on the sample is measured by monitoring the change of intensity of
the probe beam. This allows to release the constraint on the time response of
the detectors, and the time resolution depends on the pulse duration only. Fem-
tosecond resolution can then be achieved with the need of ultrafast detectors.
When scanning the delay stage, a time trace that probes the dynamics of the
process is recovered. Two types of setups are classically used. The first configu-
ration is a mono-color scheme, where the two beams come from the same laser,
are split in two, and recombined in the sample with different angles in order to
only detect the probe beam. The second configuration is a two-color scheme,
where the second beam is generated from the first one, with parametric gener-
ation, harmonic generation or supercontinuum generation, for example. Then
the excitation can potentially be done in a collinear configuration, with optical
filters to separate the beams. In a spectroscopic modality, the frequency of the
pump or probe beam can be changed to access dynamic spectral information.
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3 Chapter 3: Pump-probe measurements of transient absorption

Figure 3.1: Energy diagrams for (a) stimulated emission, (b) excited state ab-
sorption, (c) two-photon absorption and (d) ground-state depletion.

Several processes can contribute to transient absorption signal in pump-probe
experiments [80]. Each of them either increases or decreases the detected ab-
sorption of the probe beam. This change can be expressed in terms of change
of intensity of the probe beam ∆I or change of absorption ∆A, those two quan-
tities having opposite signs. In the following, the pump-probe signal is defined
as the change in intensity ∆I “ I2 ´ I1, where I2 is the intensity of the probe
beam when the pump beam is present, and I1 is the intensity of the probe beam
alone.

Stimulated emission. In stimulated emission, a photon impinging on a molecule
in an exciting state can de-excite it, causing the emission of a coherent photon,
identical to the first one. This is the basic principle of light amplification in
lasers. In a pump-probe scheme, the pump pulse brings the molecules to an
excited state (see Fig. 3.1(a)), so the efficiency of stimulated emission is higher
compared to the case where the probe beam is alone (∆I ą 0). The probe beam
is then interrogating the transient excited state of the molecule, and its lifetime,
typically in the picosecond range.

Excited state absorption. The pump beam brings the molecule to an excited
state, from which occurs the absorption of the probe beam (see Fig. 3.1(b)).
When the pump beam is absent, the absorption from the excited state does
not occur. The pump-probe signal is then negative (∆I ă 0). Like stimulated
emission, excited state absorption probes the lifetime of the excited state. Con-
versely, two-photon absorption is the simultaneous absorption of two photons
via a virtual state (see Fig. 3.1(c)). It also generates a negative pump-probe
signal, but its simultaneous nature ensure that no TPA signal persists when the
pump and probe pulses do not overlap anymore.

Ground-state depletion. In this case, the pump and the probe beam are both
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absorbed from the ground state (see Fig. 3.1(d)). When the pump beam is
present, its absorption is competing with the absorption of the probe beam,
finally the pump-probe signal is negative (∆I ă 0). In other words, the absorp-
tion of the pump beam causes a transient depletion of the population of the
ground states, which decreases the efficiency of absorption of the probe beam.

Other processes can further contribute to the measured pump-probe signal.
For example, cross-phase modulation (XPM) results from the change of re-
fractive index of the medium when strongly illuminated. This local change of
refractive index due to the pump beam acts as a lens for the probe beam. There-
fore, the divergence of the beam is slightly modified, which can be interpreted
as a gain or loss in signal if the detector does not collect the entire cone of
light emitted by the sample. Depending on the sample and the experimental
conditions, this effect can generate positive or negative pump-probe signal. A
second process that can be detected as well is the stimulated Raman scattering
(SRS). Due to the vibrational resonances of the molecular bonds in the sample,
an energy transfer occurs from the low wavelength beam to the high wavelength
beam. The origin and properties of SRS will be discussed in detail in Chapter 4.
Depending on the wavelengths of the pump and probe beams, the pump-probe
signal due to SRS can be either positive or negative. Like TPA, both XPM
and SRS are instantaneous processes, so their effects are present only when the
pump and probe pulses overlap.

Figure 3.2: Setup for nonlinear pump-probe microscopy. AOM: acousto-optic
modulator, PD: photodiode.

Nonlinear absorption has been observed by directly monitoring the intensity
of the probe beam, for example for studying photosynthetic systems (see for
instance the review from Berara and co-workers [81]). However, the power re-
quirements for directly measuring nonlinear absorption are high for processes
that give rise to absorption changes of the order of 10´3 and less, where the
noise coming from laser fluctuations start to overcome the signal. Fu and co-
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workers [82] presented in 2007 an alternative scheme to improve the sensitivity
of nonlinear transient absorption measurements. The pump beam is modulated
at a frequency f by an acousto-optic modulator (AOM), and the resulting mod-
ulation of the intensity of the probe beam is detected with a photodiode and
demodulated in a lock-in amplifier to recover pump-probe signals with a typical
sensitivity of 10´6. The scheme of the setup is shown in Fig. 3.2.

Warren’s group pioneered this field [83, 84] and used a transient absorption
microscopy setup for the study of melanin. Melanin is a pigment naturally
present in plants and animals [85]. In particular, there is melanin in human
hair, skin and eyes. In skin, melanin is produced and stored in cells called
melanocytes, which are responsible for skin color. Melanin plays a photoprotec-
tive role against UV light, by absorbing UV radiation and dissipating its energy
through non radiative decay [86]. UV exposure stimulates the production of
melanin in skin (this is the mechanism of sun tanning), and it also increases the
risk of melanoma, which is a form of skin cancer involving the abnormal devel-
opment of melanocytes [87]. There are two types of melanin in skin: eumelanin,
which is black, and pheomelanin, which is brown-red [88]. Both are polymers
that have close interactions with proteins and metal ions in melanocytes. Eu-
melanin and pheomelanin have different pump-probe responses that have been
studied [89, 90] and applied to melanoma imaging [91].

3.2 Pump-probe experiment with soliton delay

As mentioned in Section 1.3.3, a femtosecond soliton propagating and redshifting
through SSFS in a PCF is sensitive to a change of input power, that (i) modifies
the wavelength of the soliton at the output of the fiber, and (ii) also changes
its delay. The SC-PBG fiber described in Section 2.3.2 can then be used for
generation of the probe wavelength in a dual-color pump-probe, and for the
delay scanning realized before through mechanical stage translation.

The scheme of the proposed setup for transient absorption measurements in
a pump-probe configuration is shown in Fig. 3.3. It is very similar to the setup
used in Warren’s group (Fig. 3.2). The 1 GHz, 800 nm Ti:sapphire laser pre-
sented in Chapter 2 was used for generating both the pump and probe beams.
The 800 nm beam passes through the AOM for modulation at 1 MHz, it is the
pump beam. A mechanical delay line is placed on the path of the pump beam
in order to temporally overlap the pump and probe beam on the sample. On
the other arm of the setup, the probe beam is generated by soliton formation
and redshift in the SC-PBG-2 fiber. The delay scanning is obtained by changing
the input power with a Pockels cell and a polarizer. The Pockels cell turns the
linear polarization of the light, and the polarizer only let pass the light along
its main polarization axis, hence the intensity modulation. The Pockels cell’s
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3.2 Pump-probe experiment with soliton delay

Figure 3.3: Setup for nonlinear pump-probe microscopy with Pockels cell scan-
ning. The mechanical delay line on the pump arm was set up for
calibration of the Pockels scan and comparison between the two
scanning methods.

input voltage is changed through a National Instrument acquisition card, so the
power at the input of the fiber is modified in a controlled way. In order to control
the delay of the soliton at the output, the relationship between applied voltage
and delay through input power and soliton wavelength has to be studied and
calibrated. This calibration can be done by comparing the pump-probe traces
of a strongly absorbing sample first acquired by the scanning of the translation
stage on the pump beam and then by the scanning of the Pockels cell’s input
voltage.

SSFS induced delay

Figure 3.4: Trajectories of a few solitons in the λpzq plane for two different fiber
lengths. (a) L = 5 m; (b) L= 10 m.
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3 Chapter 3: Pump-probe measurements of transient absorption

The soliton wavelength changes through SSFS when the power at the input
of the fiber is modified. As a result, the trajectory of those two solitons in
the pλ, zq plane will be different. Many parameters of the fiber are wavelength
dependent, such as the group-velocity dispersion and the nonlinear coefficient.
In a similar way, the group velocity of the pulse is also wavelength-dependent.
Let us recall that the group velocity vg is related to the first order coefficient of
the Taylor development of the pulse’s spectral phase, β1 (see Eq. 1.26), in the
following way: vg “ β´1

1 . Knowing the fibers parameters as a function of λ, and
knowing the trajectory λpzq of each soliton, it is possible to estimate the delay
accumulated by the solitons when they experience a different series of group
velocities during their propagation. With Fig. 2.11, we can estimate what is
the trajectory of one soliton in a fiber of a given length, at maximum power.
As an approximation, we can consider that the trajectories for lower powers
have the same shape. It is then possible to compute the delay accumulated
by each soliton. Some of those estimated trajectories are shown in Fig. 3.4.
This calculation has been done for the SC-PBG-2 fiber, for which all the fiber
parameters are known.

Figure 3.5: Comparison between calculated and experimental relative delay of
redshifted solitons for four fiber lengths. The lines are the calculated
data, and the square markers are the experimental values.

The relative delay of shifted solitons has also been experimentally measured
for fibers of three different lengths. The comparison between calculation and
experiments are presented in Fig. 3.5 and shows a very good agreement. The
delay to wavelength relationship is close to linear for short fibers over a short
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range of soliton shift differences.
For pump-probe experiments, it is desirable to get the highest possible delay

shift per wavelength unit, because the transient response of a sample might
change if the probe wavelength is too much changed. In that respect, the longer
fiber would be the best as it provides the highest delay shift per wavelength
unit. However, the delay fluctuation due to small input power fluctuation or
small changes in the coupling are bigger in longer fibers. The time resolution of
the technique is linked to the duration of the pulses and its precision, so for this
practical reason, the 5 m fibers was chosen for performing the experiments. The
overlap between pump and probe was estimated at the sample plane by measur-
ing their cross-correlation on a BBO crystal. The width of the autocorrelation
was ∆tAC “ 180 fs, which approximately corresponds to two overlapping 120 fs
pulses.

3.3 Experimental results

As a first demonstration of feasibility, the pump-probe trace of an absorbing
sample was acquired by scanning a delay stage, for four different soliton wave-
lengths. The sample was chosen to be a diluted solution of black ink (Quink
black from Parker), because it gives a strong pump-probe signal and is readily
available. In order to compare them to each other, the pump-probe time traces
were normalized, and the origin of the delay axis was arbitrarily chosen at the
minimum of the signal for each trace. The results are presented in Fig. 3.6. In
the probe wavelength range 850 – 880 nm, no significant change in the pump-
probe trace. This means that for this sample and in this wavelength range, the
soliton delay shift can be used as a scanning mechanism.

However, a calibration procedure has to be followed in order to obtain the
same results from the scanning with the translation stage and the scanning via
soliton shift. Figure 3.7 shows eight scans that were performed with translation
stage scanning, for eight different soliton wavelengths. The delay shift is clearly
visible. However, this experiment also reveals the change in signal amplitude,
mainly due to the difference in transmission of the optics. This needs to be
taken into account in the signal processing step.

Figure 3.8 shows the amplitude and delay dependence to the soliton wave-
length shift obtained from the scans showed in Fig. 3.7. A linear fit perfectly
matches the delay to wavelength relationship, as predicted in Section 3.2. The
slope is about 0.15 ps/nm, so a delay scan of 4.5 ps in the investigated 30 nm
wavelength shift range. The characteristic time of the processes involved in tran-
sient absorption is about 1 ps, so the delay range is appropriate for pump-probe
experiments.

The amplitude to wavelength relationship is less obvious, as it depends on

63



3 Chapter 3: Pump-probe measurements of transient absorption

Figure 3.6: Normalized pump-probe trace of black ink (dilution factor 8), ac-
quired by scanning the delay stage with different soliton wavelengths.
For comparison purposes, the arbitrary origin or the relative delay
axis has been assigned to the minimum value of the pump-probe
trace, for each scan.

many parameters such as the optical power of the soliton that varies with the
wavelength, and the optical transmission of the optics. In this configuration,
a third-order polynomial functions seems to fit the data quite well. A zone of
constant amplitude is also observed for soliton wavelengths between 860 and
875 nm, which provides a 2.25 ps distortion-free delay range.

One of the most critical step of the calibration is the voltage to delay rela-
tionship. The voltage generated from the NI acquisition card is between -0.5 V
and +2 V, then it is linearly amplified by the Pockels cell amplifier to the -50 V
to 250 V range. This linearly turns the polarization of the light. The polarizer
then cuts the part of the light that is not along its main axis, which results in
a sine-square dependence of the intensity of the light on the applied voltage.
This is verified in Fig. 3.9(a), where the sine-square fit perfectly matches the
experimental data.

Figure 3.9(b) shows the most critical part of the calibration that is the link
between optical power at the input if the fiber and soliton wavelength. This
relation is not straightforward, as it depends on coupling efficiency and soliton
generation, which cannot be controlled. The best solution is then to carefully
establish a calibration table, that can be fitted with a fifth order polynomial
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Figure 3.7: Pump-probe traces of black ink (dilution factor 2) acquired by scan-
ning the delay stage, for eight different soliton wavelengths. Gain of
the lock-in amplifier: 106.

Figure 3.8: Calibration curves retrieved from Fig. 3.7. (a) Soliton delay as a
function of soliton wavelength. Black squares: experimental data,
red line: linear fit. (b) Maximum amplitude of the pump-probe sig-
nal as a function of soliton wavelength. Black squares: experimental
data, red line: third-order polynomial fit.

function for practical reasons. Then, this calibrated function can be used to
assign each data point acquired at a certain applied voltage value to a certain
delay.

In order to compare mechanical with voltage-induced delay scanning, several
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Figure 3.9: (a) Optical power after the Pockels cell and the polarizer as a func-
tion of the voltage applied to the Pockels cell amplifier. The black
squares are the experimental data and the red line is the sine-square
fit. (b) Wavelength of the soliton as a function of the voltage applied
to Pockels cell before amplification. Black squares: experimental
data, red line: fifth order polynomial fit.

Figure 3.10: Comparison between translation stage scan (solid lines) and Pockels
cell scan (squares), for four different concentrations of black ink.
Gain of the lock-in amplifier: 106.

pump-probe traces were acquired with both methods, on four solutions of black
ink of different concentration. The power at the sample were identical for the
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two sets of experiments: about 10 mW for each pump and probe beam. The
results are shown in Fig. 3.10. The solid lines represent the data acquired by
mechanically scanning the delay. For each curve, 150 points were taken with a
dwell time of 100 ms for the three most concentrated solutions, and 200 ms for
the solution with dilution factor 32. The time of acquisition has also to take
into account the communication time between the computer and the translation
plate, that added an extra 150 ms for each point. In total, the acquisition time
was 30 and 50 s per curve for 100 and 200 ms dwell time, respectively. The
square markers represent the data acquired by scanning through the change of
voltage applied to the Pockels cell. This time, 30 points were taken for each
solution. The dwell times per point varied with concentration in order to keep
a good signal to noise ratio: dwell times of 10, 50, 100 and 200 ms were used for
solutions with dilution factor 2, 4, 8 and 32, respectively. Although the dwell
times are comparable with the ones used in the previous configuration, the use
of the voltage scan allowed to considerably reduce the communication times.
Indeed, the total time of acquisition for 50 points with a dwell time of 100 ms
was about 5 s, so the communication time has become negligible compared to
the dwell time.

The agreement between the traces obtained with mechanical delay and voltage-
induced delay is very good, for the four tested solutions. This demonstrates the
reliability of the calibration procedure, and validates the technique as a powerful
method to recover pump-probe traces.

3.4 Conclusion

The interest of voltage-controlled soliton delay scanning for transient absorption
measurements in a pump probe configuration was demonstrated. This system
allows for faster acquisition, up to the MHz range, and an increased versatility
as any delay can be probed at any time upon the change of the voltage applied
to the Pockels cell. This way, strategies for more efficient sampling of the delay
traces can be designed, and applied for imaging of absorbing materials such as
melanin.
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4.1 Principles of coherent Raman scattering

Every molecule is made of molecular bonds that can vibrate in response to an
excitation. A molecular bond can be modeled by a harmonic oscillator, similar
to a mass/spring system for example. Then, each chemical bond possesses its
own resonance frequency that depends on the atoms that are linked and on
the environment of the bond (other atoms in the molecule, hydrogen bonds,
temperature, etc.) A molecule is characterized by a vibrational spectrum from
which it is possible to retrieve information about the bonds it contains and their
environment. Similarly, the vibrational spectrum of a mixture of molecules car-
ries information about its chemical composition. Two modalities are possible to
retrieve vibrational information from a sample. The first one is a spectroscopic
approach; the goal is to measure the vibrational spectrum of the sample. The
second is a microscopic approach; instead of probing the whole vibrational range,
an image of the sample is acquired, based on vibrational contrast. In practice,
the excitation has to probe one particular vibrational resonance in order to get
a map of presence of the molecular bond responsible for the probed resonance.
Those two modalities can be combined; this is hyperspectral imaging. Then, a
stack of images is retrieved, and the vibrational spectrum can be recovered for
each pixel in the image.

There are several ways of probing the vibrational spectrum of a sample. The
range of vibrational resonance frequencies of molecular bonds lie in the 10–
100 THz range, which corresponds to infrared wavelengths (3 – 30 µm). The
direct measure of the absorption of infrared light by a material to investigate
its vibrational spectrum falls into the field of infrared spectroscopy. The main
drawback of using infrared light for imaging applications is the bad spatial
resolution, which is proportional to the wavelength. One way to avoid working
in the infrared range for vibrational spectroscopy is to use the effect discovered
in 1928 by Nobel prize winner Chandrashekhara Venkata Râman [92, 93] and
physicist Leonid Issaakovitch Mandelstam [94], that is know as the Raman effect.

4.1.1 Spontaneous Raman scattering

When sending visible or near-infrared light to a sample, two different scattering
processes occur. Rayleigh scattering is an elastic process: the energy and mo-
mentum of scattered photons are preserved. A photon penetrating a medium
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Figure 4.1: (a) Schematic view of Stokes and anti-Stokes radiations generation
in a medium. χp3q is the third-order susceptibility of the medium
(see Section 4.1.2). (b), (c) and (d) Rayleigh and Raman scatter-
ing energy diagrams. In the case of (b) Rayleigh scattering, the
frequency does not change, whereas for Raman scattering, the light
is either redshifted (Stokes scattering) or blueshifted (anti-Stokes
scattering). (c) Stokes scattering: the pump photon interacts with
a molecule in the fundamental state, and some of this energy is
transfered to the molecule. In the end, the scattered Stokes pho-
ton is less energetic and the molecule is in an excited vibrational
state. (d) Anti-Stokes scattering: the pump photon interacted with
an already excited molecule, and the scattered anti-Stokes photon
takes some of the vibrational energy of the molecule. As this process
starts from the excited state, it is less probable, so the anti-Stokes
radiation is less intense than the Stokes one. Both the Stokes and
anti-Stokes fields carry with them the information about the energy
of the vibrational level that was excited.

whose particles are much smaller than its wavelength will keep the same energy
but its direction of propagation can change. In other words, the frequency of
the light experiencing Rayleigh scattering is unchanged, but it is scattered in
all directions.

On the contrary, Raman scattering is an inelastic process. The energy of the
photon changes: there can occur either a energy transfer from the matter to
the photon or from the photon to the matter. As a result, the photon can be
redshifted or blueshifted. More specifically, if one considers a molecular bond
with resonance frequency ΩR, the frequency ωP of the incoming photon can
be changed to ωP ` ΩR (blueshifted) or ωP ´ ΩR (redshifted). The redshifted
radiation is called the Stokes (ωS), whereas the blueshifted one is called the
anti-Stokes (ωAS). Those energy scheme of those two processes are compared
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to each other and to the one of Rayleigh scattering in Fig. 4.1. In principle,
Stokes scattering and anti-Stokes scattering have the same efficiency. In practice
however, it is not the case. Due to Boltzmann distribution, the probability of
a particle to be in a state of energy E is proportional to exp

´

´E
kBT

¯

, where kB

is the Boltzmann constant and T is the temperature. At room temperature, all
population is virtually in the fundamental level, because kBT is much smaller
than one quantum of vibrational energy. From this level, no anti-Stokes process
is possible. Therefore, intensity of anti-Stokes radiation is much smaller than
the intensity of Stokes radiation. In fact, both Stokes and anti-Stokes scattering
have a very low efficiency. The cross-section of spontaneous Raman is typically
14 orders of magnitude lower than the cross-section of fluorescence. Stimulated
Raman schemes described in the next section are a way to improve the efficiency.

4.1.2 Coherent Raman scattering

Figure 4.2: Energy diagrams of the four CRS processes.

In spontaneous Raman, one radiation is sent to the sample at ωP to detect
scattered radiations at ωS “ ωP ´ ΩR or ωAS “ ωP ` ΩR in order to get infor-
mation about the molecular vibration of resonance frequency ΩR.

In coherent Raman scattering (CRS), two radiations are sent at two frequen-
cies, called pump (ωP) and Stokes (ωS). Those two fields interfere, producing a
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beating at frequency Ω “ ωP ´ ωS. If the beating frequency matches the reso-
nance frequency of a molecular bond (Ω “ ΩR) , the vibration of this particular
bond is strongly enhanced compared to the other bonds vibrating in the sample.
Moreover, if coherent light is sent to the sample, all the excited molecules in
the excitation volume will vibrate in phase, which enhances the generation of
scattered fields. The cross-sections of coherent Raman scattering are typically
six orders of magnitude higher than the ones for spontaneous Raman scattering.
Four processes can be considered, generating fields at frequencies:

• ωP ` ΩR “ 2ωP ´ ωS “ ωAS,

• ωP ´ ΩR “ ωS,

• ωS ` ΩR “ ωP,

• ωS ´ ΩR “ 2ωS ´ ωP “ ωCS.

The first process leads to the generation of an anti-Stokes radiation, it is
called coherent anti-Stokes Raman scattering (CARS). The second and third
processes generate fields that interfere with the incident fields, they are respec-
tively called stimulated Raman gain (SRG) and stimulated Raman loss (SRL)
and are grouped under the common name stimulated Raman scattering (SRS).
The last process is called coherent Stokes Raman scattering (CSRS), but as
the frequency it generates is redshifted with respect to the excitation fields, its
detection can be made difficult because (i) it lies in the near-infrared where
detectors are less sensitive and (ii) there might be fluorescence from one or both
of the fields in the same spectral region, so this will not be discussed further.

CRS can be implemented in spectroscopic mode, by changing the frequency
of one of the two exciting beams. Then the probed frequency Ω “ ωP ´ωS scans
the vibrational spectrum of the molecule.

CRS can also be used in microscopy, by tuning the frequencies of the pump
and Stokes beams so that their difference matches the resonance frequency of a
targeted molecular bond. The observed signal then comes from the vibration of
this molecular bond, creating a map of the sample that highlights the regions
where this molecular bond is present. Quantitative aspects and possible artifacts
of CARS and SRS will be addressed later on.

Coherent anti-Stokes Raman scattering

Like in Section 1.2.1, the propagation equation can be obtained from Maxwell’s
equations. The difference with the calculation presented earlier is that here, the
nonlinear polarization is not treated in a perturbative manner. The Helmholtz
equation (Eq. 1.8) then becomes:

B2Ẽpz, ωq
Bz2

` n2ω2

c2
Ẽpz, ωq “ ´ ω2

ε0c2
PNLpz, ωq. (4.1)
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Once again, with the slowly-varying envelope approximation, the second deriva-
tive coming from the development of the Laplacian operator can be neglected.
The anti-Stokes field in the time domain is written: EASpz, ωq “ AASeipkAS´ωAStq`
c.c.. In the frequency domain, under the monochromatic approximation, this
translates to:

B2ẼASpz, tq
Bz2

«
ˆ

2ikAS

BAAS

Bz
´ k2

ASAAS

˙

eikASz. (4.2)

AAS is the integral of the delta function of the anti-Stokes field, considered
quasi-monochromatic and, with Eq. 4.1:

BAAS

Bz
“ iω

2nε0c
PASpωqeikASz. (4.3)

The nonlinear polarization associated with CARS is written [95]:

PASpωASq “ ε0χ
p3qp´ωAS : ωP, ´ωS, ωPqEPpωPq : E˚

SpωSq : EPpωPq, (4.4)

We consider a propagation along the z direction, with all the fields linearly
polarized in the same direction. The pump and Stokes beams are respectively
written EP “ APeipkPz´ωPtq `c.c. and EP “ APeipkP´ωPq `c.c.. With this, Eq. 4.4
becomes:

PASpωASq “ 3ε0χ
p3q
ASpωASqA2

PA˚
Se´ikASz, (4.5)

where χ
p3q
AS “ 2χp3q

xxyy. Then:

BAAS

Bz
“ 3

2

iωAS

nε0c
A2

PA˚
Se´i∆kz, (4.6)

with ∆k “ ∆~k ¨ ~ez “ p2~kP ´ ~kS ´ ~kASq, and the anti-Stokes intensity is:

IASpLq « |χp3qpωASq|2L2sinc2

ˆ

∆kL

2

˙

I2
PIS, (4.7)

L being the length of the material. The CARS signal if maximum for ∆~k “ ~0,
this is the phase-matching condition. In microspectroscopy and in microscopy,
the phase-matching condition is relaxed by using high numerical aperture objec-
tive so that many ~k are available and the CARS signal is efficiently generated,
as suggested by Zumbusch and co-workers in 1999 [96]. Equation 4.7 shows that
the CARS signal varies quadratically with the pump intensity and linearly with
the Stokes intensity.

The χp3q tensor represents the response from the material. It consists in two
parts, a resonant and a non-resonant one:

χp3q “ χ
p3q
R ` χ

p3q
NR. (4.8)
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The resonant contribution is the one that was already discussed in the previ-
ous section. The molecule is excited to a vibrational state by a pair of photons
(pump/Stokes), then this vibrational excited state is probed by another pump
photon, and an anti-Stokes photon is generated. However, photons at the same
anti-Stokes frequency can be generated by another pathway that does not de-
pend on the vibrational states of the molecule (see Fig. 4.3). The resonant CARS
is strongly enhanced when the difference between pump and Stokes matches a
vibrational frequency of the molecule. On the contrary, non-resonant signal will
be generated for any combination of pump and Stokes frequencies. Although
several groups have found ways to take advantage of it, the non-resonant back-
ground is often seen as a drawback. For example, in an imaging configuration
where one wants to locate a targeted compound in a sample, there will be non-
resonant signal even in places where the compound is absent.

Figure 4.3: Energy diagrams for the resonant and non resonant contributions to
the CARS signal.

With Eqs. 4.7 and 4.8:

IASpLq9
ˇ

ˇ

ˇ
χ

p3q
R ` χ

p3q
NR

ˇ

ˇ

ˇ

2

(4.9)
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ˇ

ˇ

ˇ
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p3q
R

ˇ

ˇ

ˇ

2

`
ˇ

ˇ

ˇ
χ

p3q
NR

ˇ

ˇ

ˇ

2

` 2χ
p3q
NRRe

”

χ
p3q
R

ı

. (4.10)

The resonant term χ
p3q
R contains the spectral information about the molecular

vibration. It can be related to the number of scatterers per unit volume N in
the following way:

χ
p3q
R “ N ¨ A

Ω ´ pωP ´ ωPq ´ iΓ
(4.11)
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where A, Ω, and Γ are the amplitude, angular frequency, and line width of the
vibrational mode. χ

p3q
NR only depends on the non resonant signal. It is spec-

trally flat because it is instantaneous in the time-domain, so the non resonant
background is assumed to be constant over the investigated range of vibrational
frequencies. The last term in Eq. 4.11 is a crossed term that results from the
interference between the resonant and the non resonant signal. One of the main
effect of this term is the spectral distortion of the CARS spectrum compared to
the Raman spectrum.

Due to the non resonant contribution, the signal is not proportional to the
concentration. If the resonance is strong, the first term is much larger than the
others and the dependence is nearly quadratic [97].

Stimulated Raman scattering

As already stated in previous paragraphs, the interaction of two excitation fields
whose frequency difference ωP ´ ωS matches the resonance frequency ΩR of a
molecular vibration generates four fields at ωP, ωS, ωP`ΩR and ωS´ΩR. For the
two last processes, it is easy to separate the generated fields from the exciting
fields as they do not have the same frequencies. However, the two generated
fields at ωP and ωS interfere with the exciting fields, and the observable signal
is the result of the interference.

By writing the equation for the nonlinear polarization density of the material
upon excitation by pump and Stokes radiation, one can get the expression for
the polarization density at the two frequencies of interest.

The polarization density of the medium at ωP and ωS are written

P pωPq “ 6ε0χ
p3q
R pωPq|AS|2APeipkPzq (4.12)

P pωSq “ 6ε0χ
p3q
R pωSq|AP|2ASeipkSzq, (4.13)

with χ
p3q
R pωPq “ χ

p3q
R pωSq˚. From these equations, one can calculate the fields

E
p3q
P and E

p3q
S that are generated and interfere with the exciting fields, with

E
p3q
P “ A

p3q
P eipkPz´ωPtq ` c.c. and E

p3q
P “ A

p3q
P eipkP´ωPq ` c.c.. The intensities at

the two frequencies of interest are then:

IP9|AP|2 ´ 2|APA
p3q
P | (4.14)

IS9|AS|2 ` 2|ASA
p3q
S | (4.15)

The pump field experiences a depletion, while the Stokes field experiences a
gain. This is why the two process are respectively called stimulated Raman loss
(SRL) and stimulated Raman gain (SRG).
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4.2 Spectral focusing

4.2.1 Spectral resolution

As explained in Section 1.2.2, there is a relationship linking the duration and the
bandwidth of unchirped Gaussian and sech-squared pulses. Let us rewrite the
time-bandwidth product that defines this relationship: ∆t∆f “ CTBP, where
CTBP “ 2 ln 2{π « 0.441 for Gaussian pulses and CTBP “ 4

`

ln
`

1 `
?

2
˘˘2 {π2 «

0.315 for sech-squared pulses. In the field of Raman spectroscopy, it is common
to use wavenumbers (ν̄, expressed in inverse centimeters) instead of frequencies.
The time-bandwidth product can be re-written this way:

∆ν̄ “ CTBP

1

c∆t
. (4.16)

Figure 4.4 shows the time-bandwidth dependence for Gaussian and sech-
squared Fourier-transform-limited pulses.

Figure 4.4: Optical bandwidth of Fourier-transform pulses with durations from
10 fs to 10 ps, for Gaussian and sech-squared shapes.

The Ti:Sapphire lasers that were used in the frame of this work deliver sech-
squared shaped pulses. This is also the typical pulse shape of solitons. Then, the
bandwidth for a 100-fs long pulse is about 100 cm´1, while it is about 10 cm´1

for a 1-ps long pulse.
In Raman spectroscopy schemes, the vibrational resonances are probed by

the beating between the pump and Stokes frequencies. The bandwidth of the
exciting pulses therefore define the spectral resolution of the measured Raman
spectrum. The typical width of vibrational resonances is about 5–10 cm´1. It
can be intuitively understood that in order to resolve the Raman lines, one
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should work with picosecond pulses so that the optical bandwidth matches the
width of the probed Raman lines.

One of the most used schemes for CRS indeed relies on ps/ps excitation at
80 MHz, because it provides high spectral resolution without degrading the sen-
sitivity [98]. However, several schemes have been developed to take advantage
of the properties of fs pulses while preserving spectral resolution. For example,
multiplex CARS uses a ps pulse train as pump and a fs supercontinuum gen-
erated in a fiber as Stokes to probe a broad spectral range in a single shot. In
single-beam CARS, a pulse shaper is used to periodically modulate the spectral
phase of a broadband fs pulse to target a specific molecular vibration. The
spectrum is then recovered by changing the period of the phase modulation and
Fourier-transforming the intensity signal [99]. The methods briefly presented
above are rather complex ways to use fs pulses for CRS spectroscopy. There
is a simple way to obtain spectral selectivity equivalent to the one of a ps/ps
system from a fs/fs source, it is called spectral focusing.

4.2.2 Principle of spectral focusing

The principle of spectral focusing is shown in Fig. 4.5. The two exciting fs
pulses are equally chirped through propagation in a dispersive system [100].
The group-delay dispersion then induced by such a system can be positive, for
example when the pulses travel in pieces of glass; or negative, for example by
using gratings or prisms pair in a double-pass configuration. This way, the
instantaneous frequency difference is the same over the whole overlap of the
two pulses and the instantaneous spectral width is much smaller than in the
transform-limited case. Therefore, the spectral resolution is dramatically in-
creased compared to the initial fs/fs configuration. The spectral resolution is
then defined by the chirp of the pulses: the more chirped the pulses are, the
higher the spectral resolution will be. It is then possible to optimize the chirp of
the pulses to match the spectral width of the targeted Raman line [101]. How-
ever, the increase of spectral resolution by chirping the pulses comes at the price
of decreased peak power, so there has to be a trade off between peak power and
spectral resolution. Typically, 100-fs long pulses chirped to a few picoseconds
are a good compromise. Spectral focusing also brings an additional feature to
the CRS setup: by changing the delay of one of the pulses, the instantaneous fre-
quency difference is changed. A small spectral scanning can then be performed
within the spectral bandwidth of the pulses.

As previously stated, the spectral resolution δν̄ depends on the duration of
the chirped pulses at the sample plane ∆tP (pump) and ∆tS(Stokes), whereas
the scanning range of the system δν̄ depends on the duration of the FTL pulses
∆tP,FTL and ∆tS,FTL. Andresen and co-workers showed that spectral focusing
with fs pulses gives the same signal as classical CRS with ps pules for identical
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Figure 4.5: Comparison of the optical bandwidths and spectral resolutions in a
CRS setup using as pump and Stokes (a) two unchirped picosecond
pulses; (b) two unchirped femtosecond pulses; and (c) two chirped
femtosecond pulses. (d) and (e): Principle of spectral focusing. By
moving a delay line with a motorized translation stage, the instan-
taneous frequency difference between pump and Stokes beams scans
the range of targeted vibrational frequencies.
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temporal envelopes [102]. As a first approximation:

δν̄ “ 0.315

c

d

1

p∆tPq2 ` 1

p∆tSq2 (4.17)

∆ν̄ “ 0.315

c

d

1

p∆tP,FTLq2 ` 1

p∆tS,FTLq2 . (4.18)

4.2.3 Chirping femtosecond pulses

Figure 4.6: (a) Reflection grating pair. (b) Transmission grating pair.

At optical frequencies, the refractive index of most materials decreases with
increasing wavelength. It means that when a pulse of light propagates in such
a medium, the leading edge of the pulse contains the most red wavelengths,
whereas the trailing edge of the pulse contains the most blue ones.

In a grating pair, the diffraction of the light associated with the geometry of
the system allows the reverse situation to happen. Indeed, the blue part of the
pulse has a shorter optical path than its red part (see Fig. 4.6). The group-delay
dispersion induced when a pulse of light passes through a grating pair is written
[103]:

Φp2q “ d2φ

dω2
“ ´ 4π2cD

ω3d2 cos3pθq “ ´ λ3D

2πc2d2 cos3pθq , (4.19)

where φpωq is the phase of the wave, λ is the central wavelength of the pulse
and ω is the angular frequency defined by ω “ 2πc{λ, D is the distance between
the two gratings, d is the groove spacing of the gratings (or pitch) and dθ is
the diffraction angle as shown in Fig. 4.6. This formula is valid for reflection
gratings as well as for transmission gratings.
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After the first pass in the grating pair, the pulse is negatively chirped in time,
but the spectral components are also spatially dispersed. The light is sent back
to the grating pair by the means of a retro-reflector to cancel this effect. As
a result, the final group-delay dispersion added to the pulse by the system is
doubled:

Φ
p2q
2 pass “ ´ λ3D

πc2d2 cos3pθq . (4.20)

Figure 4.7 presents the principle of the light source that is proposed for CRS.
The pump and Stokes beams are generated from the same fs laser. This makes
the setup more compact and less complex because no electronic synchronization
is required between the two pulse trains. Then, the Stokes wavelength is created
via soliton generation and soliton self-frequency shift. Then pump and Stokes
pulses are chirped in two separate grating pairs before they are recombined on
a dichroic filter, spatially and temporally overlapped and sent to the sample.
The spectral scan is obtained by moving a delay line mounted on a motorized
translation stage.

Figure 4.7: Principle of the CRS setup.

Previous works report spectral focusing setups with positively chirped pulses
using pieces of glass (see e.g. [104–106]), or negatively chirped pulses using prism
pairs or grating pairs (see e.g. [107]). In principle, negative or positive chirp
can be used for spectral focusing, although Andresen and co-workers suggested
that negative chirp could partially cancel time jitter effects [108]. In this work,
grating pairs were used to chirp the pulse, as they have several advantages over
pieces of glass.

First, the dispersion induced by the gratings can be much bigger than the
one induced by glass over the same distance. For example, two gratings with
600 lines per mm (d “ 1{1200 mm), separated by D “ 5 cm will add a group-
delay dispersion of 130,000 fs2 to a 800 nm pulse impinging on the surface of
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the first grating at normal incidence (θ “ 0). For comparison, 5 cm of SF57
glass adds 11,000 fs2 GDD to the same 800 nm pulse. Consequently, a much
more compact system can be obtained with grating pairs for the same amount
of induced group-delay dispersion.

A second point is the flexibility allowed by such a system. By slightly changing
the distance between the gratings, the group-delay dispersion can be modified in
order to adjust the chirp of the pulse. This is convenient for the fine adjustment
of the two chirps that has to be perfectly equal on the two pulses in order to
get maximum spectral selectivity. Moreover, the amount of group-delay disper-
sion needed to chirp a pulse is wavelength-dependent. In the spectral focusing
scheme, the investigated spectral range is limited by the bandwidth and dura-
tion of the chirped pulses. However, it is rather easy to change this range by
modifying the soliton wavelength. In this case, the GDD induced by the grating
pair on the Stokes pulse has to be adjusted to recover the same chirp as the
one induced on the pump pulse. For example, if the soliton is set to be cen-
tered around 870 nm, the range of accessible probed vibrational wavenumbers
is about 750 – 1150 cm´1. Other spectral regions can be reached by changing
the soliton redshift via a change of input power in the PCF and adapting the
inter-grating distance to the new wavelength on the Stokes arm.

The major drawback to using this system for chirping the pulses is the power
losses caused by the higher order diffraction on the gratings. For classical blazed
reflection gratings, the losses go up to 30 % per reflection, then the total power
loss for the 4 reflections amounts to about 75 %. This can be reduced by using
transmission gratings. Then the losses can be as low as as few percents per
transmission, which can result in a total loss of 10 – 20 % for 4 transmissions.

For Gaussian pulses, it is easy to calculate the FWHM duration of the pulse
after it passes through the grating pairs:

∆t “ ∆tFTL

d

1 `
ˆ

4 lnp2qΦp2q

∆t2
FTL

˙2

, (4.21)

where ∆tFTL is the Fourier-transform-limited duration of the pulse. For large
chirps, the duration tends to vary linearly with the added GDD. It is interesting
to notice the 1{∆tFTL dependence of the duration of the chirped pulse. The
shortest the FTL duration of the pulse is, the strongest the effect of the GDD
will be (see Fig. 4.8). This means that very short pulses are very sensitive to
GDD: they are easier to chirp and they result in longer final pulses. This means
that if the pulse is very short, the small GDD induced by the optics (e.g. lenses,
objectives) start to play an important role and have to be taken into account in
the calculation of the pulse duration at the sample plane.

For sech-squared pulses, the calculation can be numerically done in the fol-
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Figure 4.8: Calculated duration of pulses as a function of the GDD they experi-
enced, for two 800 nm pulses of 2 different Fourier-transform-limited
durations: 20 fs (blue line) and 100 fs (red line).

lowing way:

Eptq “ Ep0q sech

ˆ

2 lnp1 `
?

2q t

∆tFT

˙

(4.22)

Ẽpωq “ FTrEptqs “ Ẽp0q sech

ˆ

∆tFT

2 lnp1 `
?

2q
π

2
ω

˙

(4.23)

Ẽchirpedpωq “ Ẽp0qsech

ˆ

∆tFT

2 lnp1 `
?

2q
π

2
ω

˙

exp

ˆ

i
Φp2q

2
ω2

˙

(4.24)

Echirpedptq “ IFTrẼchirpedpωqs (4.25)

(4.26)

Then it is easy to compute the FWHM duration from the calculated chirped
pulse intensity. This calculation can also be done for Gaussian pulse, or any
other pulse shape, and gives the same results as the analytical formula.

4.3 Experimental setup

The two pulses required for CARS and SRS are generated from the same
Ti:Sapphire laser. Two lasers were successively used: the GigaJet20 from LaserQuan-
tum (1 GHz, 30 fs, 803 nm) pumped by a 532 nm, 10 W continuous laser (Co-
herent Verdi-V10); and Chameleon from Coherent Inc. (80 MHz, 150 fs, tunable
from 680 to 1080 nm), used at 800 nm. Both lasers deliver sech-square-shaped
pulses which are well suited to the soliton formation in the fiber, because of
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Figure 4.9: Detailed scheme of the optical setup. PBS: polarizing beam splitter,
PCF: photonic crystal fiber, AOM: acousto-optic modulator.

the inherent sech-squared shape of solitons. A half-wave plate and a polariz-
ing beam splitter separate the pump and Stokes beams and allow to tune the
wavelength of the soliton. It has to be noted that the SC-PBG fiber presented
in Section 2.3 was not used in this part of the work. The PCF that was used
instead has a 1.5 µm solid core and shows anomalous group-velocity disper-
sion (GVD) between 600 nm and 2000 nm, which covers the wavelength range
of interest (800 – 1000 nm). The pulses are chirped independently from each
other, with two pairs of either reflection or transmission gratings. After recom-
bination on a dichroic mirror, the beams are directed to an inverted microscope
(Nikon Eclipse TiU) where the light is focused on the sample by a 0.45 NA
objective (Olympus) and the signal is collected in the forward direction by a
0.6 NA objective (Olympus). The pump and Stokes beams have been optimized
so that they reach high power levels at the sample plane, respectively 50 mW
and 10 mW. The CARS signal at the AS frequency is spectrally filtered and
focused onto an avalanche photodiode (Perkin Elmer SPCM) for detection. For
the SRS mode, the pump beam is modulated by an acousto-optic modulator
(AA Opto Electronic) driven by a function generator operating at 1 MHz, the
Stokes beam is sent to a photodiode (DET10A Thorlabs), and a lock-in amplifier
(Signal Recovery) extracts the SRS signal at the modulation frequency. Thanks
to a set of filters and a parallel detection scheme via a National Instruments
acquisition board (NI USB-6351), CARS and SRS measurement pathways can
operate simultaneously. A detailed scheme of the setup is presented in Fig. 4.9.

83



4 Chapter 4: Coherent Raman scattering

4.4 Characterization on chlorobenzene

In order to characterize the optical setup, a series of experiments was performed
on liquid chlorobenzene, which is known for its strong Raman lines in the tar-
geted spectral range (950 – 1200 cm´1). For comparison purposes, the sponta-
neous Raman spectrum of chlorobenzene in this region was first measured with
a standard Raman spectrometer. The spectrum is shown in Fig. 4.10.

Figure 4.10: Raman spectrum of chlorobenzene.

Several Raman lines can be identified, they can be assigned to vibrational
modes of chlorobenzene [109]. The strongest line at 1007 cm´1 can be assigned
to a ring vibration mode (or in plane bending β-CCC). The lines at 1027, 1159
and 1175 cm´1 can all be assigned to in plane C-H bending modes (β-CH). The
1187 cm´1 line is assigned to a C-Cl stretching mode.

The setup was first used with the Chameleon laser and reflection gratings. The
pulses of the laser have a narrow spectrum: ∆λP = 6 nm, which corresponds
to a Fourier transform-limited (FTL) pulse duration ∆tP,FTL = 157 fs. The
soliton is inherently Fourier transform-limited at the output of the fiber (∆λS

= 11 nm, ∆tS,FTL = 73 fs at 872 nm). The GDD added to both pulses by
the grating pairs was carefully set by adjusting the inter-grating distance in
order to compensate for the different positive GDD added by the optics on
both pathways. This was first done by roughly estimating the required inter-
grating distance with Eq. 4.20. The fine adjustment was then found by acquiring
spectra and changing the position of one grating to obtain the narrowest lines in
the spectrum. Finally, the total GDD applied on pump and Stokes pulses was
estimated to be Φp2q “ ´45, 000 fs2, stretching them in time to ∆tP = 1.2 ps and
∆tS = 0.67 ps, respectively. With Eqs. 4.17 and 4.18, the spectral resolution
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Figure 4.11: (a) CARS spectrum of chlorobenzene acquired with the Chameleon
laser (80 MHz) and the reflection gratings (average of 8 scans).
Pump: 800 nm, 15 mW , Stokes: 872 nm, 0.3 mW. (b) CARS spec-
trum of chlorobenzene acquired with the GigaJet20 laser (1 GHz)
and the transmission gratings (average of 2 scans). Pump: 800 nm,
50 mW , Stokes: 872 nm, 10 mW.

and the scanning range are estimated to be δν̄ “ 18 cm´1 and ∆ν̄ “ 160 cm´1.
A CARS spectrum of chlorobenzene acquired in this configuration is shown

in Fig. 4.11(a). The spectral resolution is not good enough to resolve the 1007
and 1027 cm´1. This is because the pulses are not stretched to a long enough
duration. As the Fourier-transform-limited duration is rather high, especially
for the pump beam, more added GDD is required to significantly chirp the
pulses (see Fig. 4.8). More GDD could be added by increasing the inter-grating
distances, however it was decided not to try this option because the peak power
of the Stokes beam and the signal were already low in this configuration.

Instead, the Chameleon laser is replaced by the GigaJet20 laser. Its higher
bandwidth ∆λP = 25 nm corresponds to a shorter Fourier transform-limited
pulse duration (∆tP,FTL = 27 fs). The soliton generated in the fiber has also
a broader spectrum and a shorter Fourier-transform-limited duration (∆λS =
18 nm, ∆tS,FTL = 47 fs at 872 nm). The reflection gratings have been replaced
by transmission gratings to reduce the losses to 14 % per transmission, which
results in a loss of 45 % for 4 transmissions. This is still a high power loss, and
it is the price to pay for compacity and flexibility. By applying a total GDD of
Φp2q “ ´37, 600 fs2, the pulses are stretched in time to ∆tP = 1.6 ps and ∆tS

= 2.8 ps, respectively. As expected, the spectral resolution and the scanning
range are improved and estimated to be δν̄ “ 8 cm´1 and ∆ν̄ “ 450 cm´1.
The GHz repetition rate results in higher average power, so the total CARS
signal is overall higher. Figure 4.11(b) shows a spectrum acquired in the new
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configuration. It indeed shows an improved resolution, although it is not as
good as the predicted one because the spectrum is strongly distorted by the
nonresonant background.

The power dependence of CARS and SRS signals were measured to verify
the agreement of the experiment with the theory. Eqs. 4.27 and 4.28 recall the
expressions of CARS and SRS intensities versus the incoming pump (IP ) and
Stokes (IS) intensities (χp3q being the nonlinear susceptibility).

ICARS 9
ˇ

ˇχp3q
ˇ

ˇ

2
I2

PIS (4.27)

ISRS 9 Impχp3qqIPIS (4.28)

Figure 4.12: Dependence of (a) CARS and (b) SRS signal on pump power (black
squares) and Stokes power (red circles). The lines are the linear
fits of the experimental data. The measurements were done on the
1007 cm´1 Raman line of chlorobenzene. (a) Decimal logarithm of
the CARS signal (in 105 cps) divided by 105 cps) versus decimal
logarithm of the pump and Stokes power (in mW) divided by 1 mW.
The slopes of the linear fits shows the linear dependence of CARS
signal with Stokes power and its quadratic dependence with pump
power. (b) Decimal logarithm of the SRS signal (in µV) divided
by 1 µV) versus decimal logarithm of the pump and Stokes power
(in mW) divided by 1 mW. The slopes of the linear fits shows the
linear dependence of SRS signal with Stokes and pump powers.

In Fig. 4.12 are plotted the logarithm of CARS and SRS signals against the
logarithm of pump and Stokes powers, measured with the CRS light source
tuned to the 1007 cm´1 line of chlorobenzene. The slope of the linear fit of the
data match with what is expected from the theory. CARS signal is quadratic
with IP and linear with IS while SRS is linear with IP and IS.
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Figure 4.13: Dependence of CARS signal (black triangles) and SRS signal (blue
circles) on concentration of chlorobenzene diluted in chloroform.
The measurements were done on the 1007 cm´1 Raman line of
chlorobenzene. Black line: quadratic fit of CARS data points. Blue
line: linear fit of SRS data points.

Figure 4.14: CARS (solid black line) and SRS (dotted blue line) spectra of liquid
chlorobenzene.
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Figure 4.13(b) shows CARS and SRS signal dependencies with concentration
for a mixture of chlorobenzene in chloroform. While SRS shows a linear evo-
lution with concentration, the CARS signal is well fitted by a parabola. This
can be explained by the fact that chlorobenzene has a very high Raman polariz-
ability, therefore the resonant signal contribution overwhelms the non-resonant
one:

ICARS9|χp3q
R ` χ

p3q
NR|2 (4.29)

“ |χp3q
R |2 ` 2χ

p3q
NRRepχp3q

R q ` |χp3q
NR|2, (4.30)

where χ
p3q
R and χ

p3q
NR are the resonant and non-resonant susceptibilities, respec-

tively. For high concentration or strong Raman cross section, χ
p3q
R ąą χ

p3q
NR, then

IAS9|χp3q|2 « |χp3q
R |2 and the CARS signal is quadratic with the concentration

[97].

Figure 4.15: CARS spectrum of chlorobenzene acquired in 50 ms.

Figure 4.14(c) shows examples of CARS and SRS spectra. The non-resonant
background strongly distorts the CARS spectrum, resulting in broader peaks,
degraded spectral resolution (∆ν̄CARS « 30 cm´1), and a shift to lower wavenum-
bers of the maximum spectral position of each Raman line. The SRS spectrum
shows more detailed spectral features, in particular, the 1027 cm´1 Raman line is
now resolved (∆ν̄CARS ă 20 cm´1), and the non-resonant background is absent.

The CARS spectrum was recorded in 0.7 s with a 400 signal-to-noise ra-
tio (SNR), whereas 17 s were necessary to obtain a SNR of 15 in SRS for
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an integration time of the lock-in amplifier tint “ 100 ms. CARS spectra can
be acquired with a SNR of 70 in times as short as 50 ms, which corresponds
to 125 µs/cm´1(see Fig. 4.15). The only reason why CARS spectra were not
recorded in even shorter times was the fact that the maximum speed of the
motorized translation stage was reached. The SNR difference between CARS
and SRS modes are further discussed in Section 4.6.

4.5 Study of a chemical equilibrium

A simple chemical system consisting of two molecular species in equilibrium in
an aqueous solution was studied in order to demonstrate the performances of
this setup. More specifically, the acid-base equilibriums of aqueous phosphate
in water was considered.

Aqueous phosphate can exist in four different forms depending on the acid-
ity of its environment. Phosphoric acid is a weak acid, so the dissociation of
solid phosphoric acid in water is only partial. The prevalent form is aqueous
phosphoric acid (H3PO4). The pH of the solution is still very acid (close to
1). When adding a strong base to the solution, the pH increases and each
of the three hydroxyl groups of phosphoric acid will successively get deproto-
nated. The following species are created: dihydrogen phosphate ion (H2PO´

4 ),
hydrogen phosphate ion (HPO2´

4 ) and phosphate ion (PO3´
4 ). The three proto-

nation reactions are characterized by three equilibrium constants pKA1, pKA2

and pKA2, with

pKA “ ´ log

ˆ

rX´srH3O
`s

rXHs

˙

, (4.31)

where rXHs is concentration of the acid and rX´s is the concentration of the
base.

The presence or absence of the four species at different pH values can be
inferred from the results of a standard titration experiment. Figure 4.16(a)
shows the titration curve obtained by slowly adding a 3 M sodium hydroxide
solution to a 1 M phosphoric acid solution while monitoring the pH of the
mixture with a pH-meter. Figure 4.16(b) shows the relative molar fraction of
each of the four species calculated from the results obtained from the titration
curve.

For solutions between pH 4 and pH 9, an equilibrium involving dihydrogen
phosphate ion and hydrogen phosphate ion takes place in the solution:

H2PO´
4 ` H2O è HPO2´

4 ` H3O
`. (4.32)

It is assumed that the other forms of phosphate are only present in negligible
quantities, as explained in Fig. 4.16. The equilibrium constant for this reaction
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Figure 4.16: (a) Titration of 1 M aqueous solution of phosphoric by 3 M aqueous
solution of sodium hydroxide solution. (b) Relative molar fraction
of the four forms of phosphoric acid. (a) and (b) The full back dots
mark the points where pH “ pKA and the two species present in the
solution have the same concentration. The circled white dots mark
the equivalence points, where the pH is exactly halfway between
two pKA and there is only one of the four species present in the
solution. The grayed out area on both plots shows the range of pH
for which dihydrogen phosphate ions and hydrogen phosphate ions
can be considered as the only two species present in the solution.
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4.5 Study of a chemical equilibrium

is written:

pKA2 “ ´ log

ˆrHPO2´
4 srH3O

`s
rH2PO´

4 s

˙

. (4.33)

The main Raman lines associated with H2PO´
4 and HPO2´

4 are the PpOHq2

symmetric stretching at 874 cm´1 and PO3 symmetric stretching at 987 cm´1,
respectively. The goal is to monitor the equilibrium change between hydrogen
phosphate and dihydrogen phosphate (Eq. 4.32) by performing CARS and SRS
spectra in the 800 – 1100 cm´1 spectral region which is directly accessible with
the CRS setup.

Figure 4.17: (a) CARS and (b) SRS spectra of 4 M mixtures of phosphoric acid
and sodium hydroxide of different pH. Black arrows indicate the
H2PO´

4 (874 cm´1) and HPO2´
4 (987 cm´1) peaks evolution for

increasing values of the pH.

CARS and SRS spectra have been recorded on several solutions of various pH
that were prepared by mixing a phosphoric acid solution with sodium hydroxide
solutions (Fig. 4.17). The pH values of the solutions were measured with a pH
meter (Eutech Instruments) at room temperature. The three visible peaks cor-
respond to the two aforementioned vibrational features plus the PO2 symmetric
stretching at 1074 cm´1. The observed peaks are slightly shifted compared to
the values in standard conditions due to the high concentration that was used
here (4 M), in agreement with previous work [110]. Such high concentrations
were used because of the small cross sections of the addressed Raman lines.

In both CARS and SRS experiments, the general evolution of the two main
Raman peaks (874 cm´1 and 987 cm´1) are in qualitative agreement with their
expected behavior. Indeed, as the pH increases, the concentration of H3O` in
the solution decreases and the equilibrium is shifted to the right in Eq. 4.32,
hence the respective decrease and increase of the H2PO´

4 and HPO2´
4 peaks.
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Figure 4.18: Raman spectra of mixtures of phosphoric acid and sodium hydrox-
ide of different pH.

In Fig. 4.17 are plotted the CARS and SRS spectra that were obtained after a
deconvolution procedure that takes into account the fact that the spectral and
temporal overlap between the pump and Stokes pulses change when scanning
the delay. The raw spectra were then weighted by the crosscorrelation function
arising from the pump/Stokes overlap, resulting in the processed spectra shown
in Fig. 4.17. The crosscorrelation function was obtained in two different ways
for CARS and SRS. For CARS, it was assumed to be similar to the nonresonant
background that was recovered by making the spectrum of water. For SRS, the
overlap was estimated from the temporal shape of the pulses.

As previously mentioned, CARS spectra are strongly distorted by the inter-
ference between the resonant and the non-resonant contributions (Fig. 4.17(a))
whereas SRS (Fig. 4.17(b)) is expected to be proportional to the concentration.

In order to prove the ability of the system to get quantitative information
about the concentration, the decimal logarithm of the ratio between the H2PO´

4

(874 cm´1) and HPO2´
4 (987 cm´1) is plotted versus the pH value in Fig. 4.19,

where CARS, SRS and spontaneous Raman data are presented.
Whereas CARS is very distorted compared to spontaneous Raman, SRS shows

a good agreement with the Raman data, affirming its usefulness for quantifying
concentrations.

The conducted chemical equilibrium monitoring between dihydrogen phos-
phate and hydrogen phosphate ions under pH change proves to be in favor of
SRS for quantitative analysis. We emphasize here that the H2PO´

4 (874 cm´1)
and HPO2´

4 (987 cm´1) are particularly weak Raman lines that require 10 s
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integration time in spontaneous Raman to get a SNR of 10. This is in contrast
with the CH bands usually addressed in CRS technology that require a much
shorter (10 times less) integration time.

Figure 4.19: pH dependence of the decimal logarithm of the ratio between the
intensity of the H2PO´

4 (874 cm´1) and HPO2´
4 (987 cm´1) peaks

for CARS, SRS and spontaneous Raman. The dashed black line
corresponds to the linear fit of the spontaneous Raman data.

4.6 Signal-to-noise ratio

Ozeki and co-workers [111] have shown that the sensitivities of CARS and SRS
microscopy are theoretically similar if the SRS signal is shot-noise-limited. In
our CRS source, we consider that:

SNRSN
CARS

SNRSN
SRS

« 1, (4.34)

where SNRSN
CARS and SNRSN

SRS are the shot-noise-limited SNRs for CARS and
SRS, respectively.

We can assume that the CARS signal is shot-noise-limited, however this is
not the case for SRS. Noise measurements have shown that σtot{σSN “ 7 dB in
SRS, where σtot is the total noise and σSN is the shot noise. As a result, the
ratio between the total SNRs of CARS and SRS reads:

SNRtot
CARS

SNRtot
SRS

“ SNRSN
CARS

SNRSN
SRS

ˆ σtot

σSN

« 5. (4.35)
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The experimentally observed ratio is 25, a factor 5 higher than predicted by
Eq. 4.35. The outstanding factor can be explained by the difference in CARS
and SRS collection efficiencies (factor 3.5) due to the different transmission of
the optics at the two wavelengths. Additionally, the lock-in amplifier which
only permitted modulation frequencies up to 2 MHz may have contributed to
the electronic noise.

4.7 Conclusion

A compact CRS light source suitable to perform CARS and SRS vibrational
spectroscopy of liquid samples was realized. Fast spectral scanning was made
possible by tuning a delay line between two equally chirped pump and Stokes
pulses, the latter being generated as a redshifted soliton in a PCF. The CRS
source can address any vibrations up to 3000 cm´1 by means of soliton spec-
tral tuning and can perform ultrafast spectral scanning (down to 20 ms for
chlorobenzene sample) over a limited 400 cm´1 bandwidth. The ability of the
developed light source to monitor acid/base molecular equilibrium change be-
tween dihydrogen phosphate and hydrogen phosphate ions under pH change.
The system takes advantage of both fast signal acquisition in CARS and quan-
titative molecular concentration provided by SRS.
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In the first part of this work, the interest of a fiber-delivery scheme based on
the generation of optical solitons was demonstrated. The design of the SC-PBG
fiber made in IRCICA (Lille, France) was optimized to generate higher energy
solitons than in classical PCFs, by adjusting the geometrical parameters to in-
crease the group-velocity dispersion to nonlinear coefficient ratio. TPEF and
SHG images of biological samples were obtained. The time of acquisition and
signal-to-noise ratio were limited by the non-Gaussian shape of the beam in far-
field. The wavelength tunability of the soliton was proven useful to recover the
general features of the two-photon absorption cross-section spectrum of a fluo-
rescent dye. Finally, the increase of the repetition rate from 80 MHz to 1 GHz
was shown to improve the signal-to-noise ratio in TPEF measurements.The tun-
ability of solitons could be further exploited in a multi-spectral or hyperspectral
scheme. For instance, one could imagine a setup to obtain images of a biologi-
cal sample marked with two dyes that would be selectively excited one after the
other by switching the soliton wavelength at a high frequency.

The second part was dedicated to the time-resolved measurement of transient
absorption in a pump-probe configuration. The mechanical delay scanning was
successfully replaced by a high-speed voltage control of the soliton delay though
a Pockels cell. This opens the door to faster measurements, but also to custom
sampling strategies. This technique could be applied in the future for investi-
gation of melanoma, as melanin is a strongly absorbing substance.

Finally, a single oscillator CRS setup was realized, where the Stokes wave-
length was generated in the fiber through soliton soliton and SSFS. The spec-
tral resolution was recovered by chirping the femtosecond pulses to a picosecond
duration by grating pairs, following the spectral focusing strategy. CARS and
SRS spectra could be acquired over a 400 cm´1bandwidth, and the chemical
equilibrium between two molecular species in aqueous solution was monitored
upon pH variation. The signal-to-noise ratio was limited by the rather low en-
ergy of the solitons, as a regular PCF was used for this series of experiments. In
the future, it would be interesting to increase the soliton energy by generating
the soliton in a SC-PBG similar to the one that was used in the two previous
parts.

The present work focused on the fiber delivery part of the problem of applying
nonlinear microscopy to an endoscopic scheme and therefore can be seen as the
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first step in the design of a nonlinear endoscope based on soliton generation.
The development of a microscanning system would be the next step toward the
miniaturization of the required optics to scan the focus over a sufficient field-of-
view. Finally, the collection of the signal in the epi direction through the same
fiber could be done with a double-clad fiber.
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Appendix A

Permittivity, refractive index and absorption

coefficient

Linear case

Let us write again the propagation equation:

∆Epr, tq ´ 1

c2

B2E

Bt2
pr, tq “ µ0

B2P

Bt2
pr, tq. (36)

Assuming the polarization density to be linear, it is possible to show that:

∆Ẽpr, ωq ` εpωqω2

c2
Ẽpr, ωq “ 0. (37)

Ẽpr, ωq is the Fourier transform of the electric field Epr, tq, and:

εpωq “ 1 ` χp1qpωq “
ˆ

npωq ` iαpωq
2k0

˙2

, (38)

where χp1qpωq is the linear susceptibility, npωq is the refractive index αpωq is the
absorption coefficient.

From Eq. 38, we can draw:

npωq “ Re
´

a

εpωq
¯

“ Re

ˆ

b

1 ` χp1qpωq
˙

« Re

ˆ

1 ` 1

2
χp1qpωq

˙

« 1 ` 1

2
Re

`

χp1qpωq
˘

. (39)

And

αpωq “ 2ω

c
Im

´

a

εpωq
¯

« 2ω

c
Im

ˆ

1 ` 1

2
χp1qpωq

˙

« ω

c
Im

`

χp1qpωq
˘

. (40)
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Nonlinearities

In the frame of the perturbation theory, we can introduce a nonlinear polariza-
tion of the form:

PLpr, tq “ ε0

¡

χp3qpt ´ t1, t ´ t2, t ´ t3q...Epr, t1qEpr, t2qEpr, t1qdt1dt2dt3.

(41)
Unlike the linear response of a medium to the excitation of the electric field, its
nonlinear response can be assumed to be instantaneous:

PNLpr, tq “ ε0χ
p3q...Epr, tqEpr, tqEpr, tq. (42)

For the treatment of a nonlinear problem by using the complex notation, we
should note forget to include the complex conjugate part in the expression of
the fields. The electric field then writes:

Epr, tq “ 1

2

`

Epr, tqe´iω0t ` E˚pr, tqeiω0t
˘

x̂. (43)

By introducing Eq. 43 into Eq. 42, we get:

PNLpr, tq “ 1

8
ε0χ

p3q
`

Epr, tqe´iω0t ` E˚pr, tqeiω0t
˘3

x̂. (44)

The development gives:

PNLpr, tq “ 1

8
ε0χ

p3q
´

E3pr, tqe´3iω0t ` 3E2pr, tqe´2iω0tE˚pr, tqeiω0t

` 3Epr, tqe´iω0tE˚2pr, tqe2iω0t ` E˚3pr, tqe3iω0t
¯

x̂

“ 1

8
ε0χ

p3q
´

E3pr, tqe´3iω0t ` E˚3pr, tqe3iω0t

` 3|Epr, tq|2
`

Epr, tqe´iω0t ` E˚pr, tqeiω0t
˘

¯

x̂. (45)

The 3ω0 terms require phase matching and can be neglected in optical fibers.
Then:

PNLpr, tq “ 3

8
ε0χ

p3q|Epr, tq|2
`

Epr, tqe´iω0t ` E˚pr, tqeiω0t
˘

x̂. (46)

And, with Eq. 43:

PNLpr, tq “ 3

4
ε0χ

p3q|Epr, tq|2Epr, tqx̂. (47)

We can define εNL as:

εNL “ 3

4
χp3q|Epr, tq|2, (48)

II



and then:
PNLpr, tq “ ε0εNLEpr, tqx̂. (49)

We then have:

εpωq “ 1 ` χp1qpωq ` εNL “ 1 ` χp1qpωq ` 3

4
χp3q|E|2 (50)

Justification by Agrawal [33]: “ To obtain the wave equation for the slowly
varying amplitude Epr, tq, it is more convenient to work in the Fourier domain.
This is generally not possible as the equation is non linear because of the inten-
sity dependence of εNL. In one approach, εNL is treated as a constant during
the derivation of the propagation equation. The approach is justified in view of
the SVEA and the perturbative nature of PNL.”

The small perturbation induces the following changes for npωq and αpωq:
"

npωq Ñ npωq ` n2|E|2 (51a)

αpωq Ñ αpωq ` α2|E|2 (51b)

In a similar manner as in Eq. 39 and 40, we draw:

npωq “ Re
´

a

εpωq
¯

“ Re

˜

c

1 ` χp1qpωq ` 3

4
χp3q|E|2

¸

« Re

ˆ

1 ` 1

2
χp1qpωq ` 3

8
χp3q|E|2

˙

« 1 ` 1

2
Re

`

χp1qpωq
˘

loooooooooomoooooooooon

nlin

` 3

8
Re

`

χp3q
˘

looooomooooon

n2

|E|2. (52)

And

αpωq “ 2ω

c
Im

´

a

εpωq
¯

« 2ω

c
Im

ˆ

1 ` 1

2
χp1qpωq ` 3

8
χp3q|E|2

˙

« ω

c
Im

`

χp1qpωq
˘

looooooomooooooon

αlin

` 3ω

4c
Im

`

χp3q
˘

loooooomoooooon

α2

|E|2. (53)
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Appendix B

Thoughts on the time-bandwidth product

1 Gaussian pulse

Fourier transform of a Gaussian pulse:

e´at2 Ñ Ae´ω2{p4aq (54)

Full width at half maximum of a Gaussian pulse written E0e
´αx2

:

E0e
´αx2

1{2 “ E0{2 (55)

∆xFWHM “ 2x1{2 “ 2

c

ln 2

α
(56)

If we write the electric field in the time domain as follows:

Eptq “ Ep0qe´t2{τ2

, (57)

then in the frequency domain, the Fourier transform gives:

Ẽpωq “ Ẽp0qe´ω2τ2{4. (58)

In the experiments, what we deal with are the optical intensities:

|Eptq|2 “|Ep0q|2e´2t2{τ2

(59)

|Ẽpωq|2 “|Ẽp0q|2e´ω2τ2{2. (60)

Now we can write the full widths at half maximum for both time and frequency
domains.

∆tFWHM “2τ

c

ln 2

2
“ τ

?
2 ln 2 (61)

∆ωFWHM “2

τ

?
2 ln 2. (62)

From the last equation:

∆fFWHM “ ∆ωFWHM

2π
“ 1

πτ

?
2 ln 2 (63)

And finally:

∆tFWHM∆fFWHM “ 2 ln 2

π
« 0.441. (64)
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2 Sech-squared pulse

Fourier transform of a sech pulse:

sechpt{τq Ñ A sech
´π

2
τω

¯

(65)

Reciprocal function for a sech-square function sech2pyq:

yY “ argsech2pY q “ ln

˜

c

1

Y
`

c

1

Y
´ 1

¸

(66)

For Y “ 1{2 we have:

y1{2 “ argsech2p1{2q “ ln
´

1 `
?

2
¯

(67)

Full width at half maximum of a sech-squared pulse written E0 sech2px{µq:

∆xFWHM “ 2 ln
´

1 `
?

2
¯

µ (68)

Electric field in the time domain:

Eptq “ Ep0q sech

ˆ

t

τ

˙

, (69)

In the frequency domain, the Fourier transform gives:

Ẽpωq “ Ẽp0q sech
´π

2
ωτ

¯

. (70)

Optical intensities:

|Eptq|2 “|Ep0q|2 sech2

ˆ

t

τ

˙

(71)

|Ẽpωq|2 “|Ẽp0q|2 sech2
´π

2
ωτ

¯

. (72)

Full widths at half maximum:

∆tFWHM “2 ln
´

1 `
?

2
¯

τ (73)

∆ωFWHM “4 ln
`

1 `
?

2
˘

πτ
. (74)

From the last equation:

∆fFWHM “ ∆ωFWHM

2π
“ 2 ln

`

1 `
?

2
˘

π2τ
(75)

And finally:

∆tFWHM∆fFWHM “ 4
`

ln
`

1 `
?

2
˘˘2

π2
« 0.315. (76)
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Abstract

The implementation of nonlinear contrasts in an endoscopic scheme is highly desirable for biomedical ap-
plications. One of the issues that has to be overcome to realize a nonlinear endoscope is the propagation of
ultra-short pulses in an optical fiber. Indeed, nonlinear processes require high peak powers in the focal volume
in order to generate observable signals. Therefore, the pulses should have high energy, and be as short as
possible, which makes them sensitive to the dispersion and nonlinearities of the optical fibers. This results in
distortion and temporal broadening of the pulses. Most of the existing techniques of ultra-short pulses fiber-
delivery rely on complex pre-compensation systems to counteract these effects. In this work, we explore the
possibilities offered by the generation of high-energy solitons, launched by 800 nm pulses from a Ti:sapphire
laser into a custom-built solid-core photonic bandgap fiber, for nonlinear microscopy and spectroscopy. Opti-
cal solitons have the remarkable property of preserving their shape when they propagate in a fiber, and their
duration remains close to the minimum value physically allowed by their bandwidth, without the need of any
pre-compensation. Moreover, the wavelength and delay of the soliton can be tuned by changing the power at
the input of the fiber. Several soliton-based light sources were designed and realized, generating contrast in the
most prevalent nonlinear microscopy modalities: two-photon excited fluorescence (TPEF), second-harmonic
generation (SHG), coherent anti-Stokes Raman scattering (CARS), stimulated Raman scattering (SRS), and
transient absorption. TPEF and SHG images of biological samples were first realized by taking advantage of
the short duration of the solitons. By controlling the delay of the soliton, transient absorption measurements
were then realized in a pump-probe configuration. Finally, the wavelength tunability of the soliton was used to
generate the Stokes beam in a coherent Raman scattering setup based on the spectral focusing technique. The
capabilities of this scheme were demonstrated by performing CARS and SRS microspectroscopy to monitor a
chemical equilibrium in aqueous solutions.

Keywords : Nonlinear microscopy, nonlinear spectroscopy, fiber delivery, ultra-short pulses, photonic crystal
fibers, photonic bandgap fibers, optical solitons.

Résumé

La mise en œuvre de contrastes non linéaires dans un mode endoscopique est d’un grand intérêt pour des
applications dans le domaine médical. Un des problèmes à résoudre lors de la réalisation d’un endoscope non
linéaire concerne la propagation d’impulsions ultra courtes dans une fibre optique. En effet, les processus non
linéaires concernés nécessitent de grandes puissances d’excitation, réalisables seulement pour des impulsions
de très courte durée, et de grande énergie, qui sont déformés et allongés par la dispersion et les non linéarités
des fibres. La plupart des techniques d’illumination fibrées pour la microscopie non linéaire emploient des
systèmes de pré-compensation pour neutraliser les effets de ces phénomènes. Dans ce travail, nous explorons
les possibilités offertes par la formation de solitons de grande énergie, générés par l’éclairement d’une fibre
à bandes interdites photoniques à cœur solide par un laser titane-saphir pulsé. Les solitons optiques ont la
remarquable propriété de conserver leur forme lors de leur propagation dans la fibre, et leur durée reste proche
de la valeur minimum définie par la limite physique imposée par leur largeur spectrale, sans avoir besoin de
recourir à un système de pré-compensation. De plus, la longueur d’onde et le retard relatif des solitons peuvent
être accordés en changeant la puissance lumineuse en entrée de fibre. Plusieurs sources de lumière ont été
conçues et réalisées, pour générer de nombreux contrastes non linéaires, tels que la fluorescence à deux photons
(TPEF), la génération de seconde harmonique (SHG), la diffusion cohérente Raman anti-Stokes (CARS), la
diffusion Raman stimulée (SRS), et l’absorption transitoire. Des images d’échantillons biologiques ont tout
d’abord été réalisées en tirant profit de la courte durée des solitons. Dans un second temps, des mesures
d’absorption transitoire ont été menées dans une configuration pompe-sonde en contrôlant le retard des soli-
tons dans la fibre. Finalement, un montage de CARS et SRS basé sur le principe de focalisation spectrale a
été réalisé. Le décalage spectral du soliton a été mis à profit pour générer deux faisceaux synchronisés à deux
longueurs d’onde différentes, utilisés par la suite comme faisceaux pompe et Stokes. L’utilité de ce montage
a été démontré en suivant un équilibre chimique en solution aqueuse par des mesures de microspectroscopie
CARS et SRS.

Mots-clefs : Microscopie nonlinéaire, spectroscopie nonlinéaire, illumination par fibre optique, impulsions
ultra courtes, fibres à cristaux photoniques, fibres à bandes interdites photoniques, solitons optiques.
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