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Abstract

Coding the position of moving objects is an essential ability of the visual system in fulfilling

precise and robust tracking tasks. In daily vision, low contrast conditions introduce sensory

noise and transient interruptions or occlusions may temporally block the sensory flow. Moreover,

due to neural delays, the visual system has a retarded access to motion information and needs

to compensate for the induced positional error. This thesis is focused upon this question: How

does the visual system efficiently encode the position of moving objects, despite various sources

of uncertainty?

This study deploys the hypothesis that the visual systems uses prior knowledge on the

temporal coherency of motion (Burgi, Yuille, and Grzywacz, 2000; Yuille and Grzywacz, 1989).

We implemented this prior by extending the modeling framework previously proposed to explain

the aperture problem (Perrinet and Masson, 2012), so-called motion-based prediction (MBP).

This latter model is a Bayesian motion estimation framework implemented by particle filtering.

Based on that, we have introduced a theory on motion-based position coding, to investigate how

neural mechanisms encoding the instantaneous position of moving objects might be affected by

motion.

Results obtained in this thesis may be summarized in three contributions:

- First, we have modeled tracking of low contrast and interrupted trajectories, by stressing

on the velocity-dependent internal representation of motion. We have proposed that the

sustained neural activity during temporal absence of stimulus, reported by experimental

studies, can be explained as the dynamical integration of velocity information in position

coding (Khoei, Masson, and Perrinet, 2013).

- Second, we have modeled how the visual system may compensate for the positional error

caused by neural delays. To this aim, we have used an extended version of the MBP model,

the so-called diagonal model. This model could explain the misperception of the earliest

part of the trajectory of a moving dot (also known as the Fröhlich effect). It could also

explain the trajectory-dependent anticipatory response recorded from neural populations

in the early visual cortex.

- In the third part of results, we have explored motion-induced position shifts and in

particular the flash lag effect (FLE) as a well surveyed visual illusion. We have reproduced
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FLE and its various experimental aspects. Our account for FLE is mainly based on motion

extrapolation theory, but is also compatible with a mechanism of position persistence.

These theoretical insights suggest that motion-based position coding might be a generic neural

computation among all stages of the visual system. This mechanism might partially compensate

the accumulative and restrictive effects of neural delays in position coding. As a specific case

we have implemented the diagonal MBP model in a network of spiking neurons. Results

reproduced the anticipatory response of neural populations in the primary visual cortex of

macaque monkey (Kaplan et al., 2014). Our results imply that an efficient and robust position

coding might be highly dependent on trajectory integration and that it constitutes a key neural

signature to study the more general problem of predictive coding in sensory areas.

Keywords: Motion-Based Position Coding; Probabilistic Representation Of Motion; Motion

Coherency; Bayesian Model; Particle Filter; Predictive Coding; Motion Extrapolation; Motion

Anticipation; Neural Delays, Motion-Based Position Shifts; Flash Lag Effect
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Résumé

Le codage de la position des objets alors qu’ils sont en mouvement est une capacité essentielle

du système visuel dans l’accomplissement précises et robuste de tâches de suivi . Dans le système

visuel, des conditions de faible contraste introduisent de fait un bruit sensoriel. Aussi, les

interruptions transitoires comme les occlusions peuvent temporairement bloquer le flux sensoriel.

En outre, en raison des délais axonaux des neurones, le système visuel doit compenser l’erreur

de position induite par les délais. Cette thèse est centralisée sur cette question: comment est-ce

que le système visuel peut coder efficacement la position des objets en mouvement, en dépit des

diverses sources d’incertitude?

Cette étude déploie une hypothèse sur la connaissance a priori de la cohérence temporelle

du mouvement (Burgi, Yuille, and Grzywacz, 2000; Yuille and Grzywacz, 1989). Nous avons

ici étendu le cadre de modélisation précédemment proposé pour expliquer le problème de

l’ouverture (Perrinet and Masson, 2012). Ce dernier est un cadre d’estimation de mouvement

Bayésien mis en œuvre par un filtrage particulaire, que l’on appelle la prévision basé sur le

mouvement (MBP). Sur cette base, nous avons introduit une théorie du codage de position

basée sur le mouvement. En particulier, nous avons étudié comment les mécanismes neuronaux

codant la position instantanée de l’objet en mouvement pourraient être affectés par le signal de

mouvement le long d’une trajectoire.

Les résultats obtenus dans cette thèse peuvent être résumér en trois catégories:

- Tout d’abord, nous avons modélisé le suivi à faible contraste et suivant des trajectoires

interrompues, en insistant sur la représentation interne dépendant de la vitesse de mou-

vement. Nous avons proposé que l’activité neuronale soutenue pendant l’absence de

stimulus temporel qui est rapportée par les études expérimentales peut être réalisée grâce

à l’intégration de l’information de vitesse.

- Deuxièmement, nous avons modélisé la manière dont le système visuel peut compenser

l’erreur de position en dépit des délais neuronaux. Dans ce but, nous avons utilisé une

version étendue du modèle MBP, le soi-disant modèle diagonal. L’utilisation d’un tel modèle

nous a permis d’expliquer la perception erronée de la première partie de la trajectoire

(dite Fröhlich effet), ainsi que la réponse anticipée à une trajectoire enregistrée partir de

populations de neurones dans le cortex visuel précoce.
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- Dans la troisième partie des résultats, nous avons exploré les changements de position

induits par un mouvement. En particulier, nous nous sommes concentrés sur l’Effet de Saut

de Flash (FLE) comme une illusion visuelle de référence. Nous avons reproduit le FLE et

ses différents aspects expérimentaux. Notre modélisation du FLE est principalement basée

sur l’extrapolation du mouvement mais est également compatible avec le mécanismes de

persistance de la position.

Les connaissances th éoriques de cette thèse suggèrent que le codage de la position basé sur le

mouvement peut constituer un calcul neuronal générique parmi toutes les étapes du système

visuel. Cela peut en partie compenser les effets cumulatifs des délais neuronaux dans le codage de

la position. Comme un cas particulier, nous avons mis en uvre le modèle de MBP diagonal dans

un réseau de neurones impulsionnels et avons reproduit la réponse anticipée de populations de

neurones dans l’aire cortical V1 (Kaplan et al., 2014). Nos résultats indiquent qu’un codage en

position efficace et robuste peut tre fortement dépendant de l’intégration le long de la trajectoire.

Mots-clés: Représentation probabiliste du mouvement; Cohérence de trajectoire; Modèle

Bayésien; Filtre particulaire; Codage prédictif; Délais neuronaux, Effet de Saut de Flash
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Chapter 1

Motion-based position coding:

experimental evidences

Abstract

Processing and sensing the position of moving objects is one of the most complex tasks of

the visual system. From evolutionary point of view, it is essential for the survival of animals,

to be able to move and react successfully against predators or detect the correct position of

moving preys. The locality of moving targets can be estimated only with an accurate motion

processing and the related neural mechanisms can be studied from various point of views. In

this chapter, we will first review the basic knowledge on motion processing of visual system

and then we will focus on motion-based position coding of moving objects by referring to

existing experimental studies in the field.

1.1 Introduction

Many tasks in daily life are based on correct localization of moving objects, for instance,

actions like catching a moving target or avoiding it in dangerous situations. Dealing with

these situations needs a high degree of accuracy, specially in the case of high speed motions.

Indeed, retinotopic organization of the visual cortex makes it possible to estimate instantaneous

location of responding neural population to a moving stimulus with known properties. Obviously,

response properties will depend to the contextual information like detailed physical properties of

the stimulus, type of motion etc.

The influence of visual motion on object localization has been under study from various

aspects, but without a conclusive agreement. There is relatively clear knowledge about to-

pographical structure of visual cortex and vast amount of literature report characteristics of

tuning curves of neural populations in V1 and MT. Despite this, the type of utilized stimuli to

survey details of positional coding is most often simple and limited. This can be an advantage

which keeps experimental conditions rather under control. On the other hand, analyzing neural

response to these basic stimuli types is very useful and can be generalized to some other more

complicated motion types with a good degree of approximation.

1
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Dependence of position coding of moving target to properties of its motion can be studied

with different experimental frameworks, like measuring reaction times of subjects in locating

a certain moving target, or exploring difference between position coding of objects moving

with different motion characteristics. All these studies share a core question: knowing that the

arrival of stimulus in a particular position stimulates corresponding neural population, then how

dynamics of neural responses may be modulated by characteristics of the motion? This type of

questions can be addressed by studying motion-based position coding in the visual system.

Studying positional coding of moving objects is highly related with questions about neural

transfer delays and their conflicting consequence in accurate motion localization. In fact,

understanding neural mechanisms responsible for position coding also allows to better understand

the issue of delay compensation.

In this chapter, we will first briefly review the anatomy and function of earliest visual areas

involved in detection of motion and position coding. Then we will go through experimental

evidences about modulation of position coding by motion of the stimulus.

1.2 Motion representation in the visual system

For the visual system, motion of objects can be regarded as a systematic displacement of

distribution of light in the visual scene. This displacement is detected as early as retina and then

is followed by a chain of stimulation in all dedicated cortical areas. Therefore, initial motion

signals from the world encode slightest changes in the light equilibrium of a scene, and this will

be followed with various complex neural mechanisms in known compartments of the motion

processing path.

These mechanisms are origins of our motion perception and also sources of appropriate neural

commands to eyes to locate the target. Findings in anatomy of motion processing path, from

retina to higher areas, report a highly organized structure with specialized detectors. In this

hierarchy, each detector is sensitive to a determined part of the scene as its receptive field, and

is involved only in processing of a very particular aspect of moving object inside the receptive

field, like speed or direction.

Retina, early estimation of motion information: Visual processing machinery begins in

the retina at the moment when light hits photoreceptors. Specialized rod and cone photoreceptors

extract relevant information from the light signal and activate some chemical reactions in bipolar

cells. Via bipolar cells, stimulation reaches ganglion cells and is converted to the electrical neural

message. Ganglion cells occupy the inner most part of the retina and integration of their axons

forms the optic nerve, which transfers visual information from retina to thalamus and LGN

(lateral geniculate nucleus) and then to the cortex.

Retinal ganglion cells are divided into two different functional types: first M cells which have

bigger cell bodies, larger receptive fields and quick response characteristics even in low contrast

conditions, and second P cells, with smaller size of body and receptive field and slower response
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dynamics, and with sensitivity to high stimulus contrast.

In the particular case of moving objects, specific neural activities responsible for detecting

and coding of motion start at retina by activation of direction selective ganglion cells (DSGCs).

These cells have been found by Barlow and Levick (1965), just after discovery of direction

selective units in the primary visual cortex. They have a preferred direction for moving objects in

their receptive fields, and when stimulated with that direction they emit their strongest electrical

discharge. The whole population of DSGCs altogether covers all possible motion directions and

therefore for any motion direction in the visual field, there will be enough responding cells.

LGN, relay between retina and early visual cortex: The optic nerve then transfers

motion information to LGN. It is a part of brain thalamus and relays visual information from

eye to the early visual areas. The LGN includes six layers, numbered from 1 to 6 and 1 is the

inner most layer. It has a retinotopic organization which means adjacent points in the retina are

projected to adjacent points in LGN and all six layers of LGN have this organized structure.

These layers are distinct and organized followingly: M type ganglion cells are projected to two

inner layers and P cells are projected to layers number 3 to 6. Accordingly, mentioned layers of

LGN are called Magnocellular (ventral) and Parvocellular (dorsal) layers. Motion detection is

done mostly by M type ganglion cells and Magnocellular layers. These two neural pathways are

kept distinct by getting mapped into separate areas in V1.

V1, accurate decomposition of visual motion: V1 (early or primary visual cortex)

which is also known as striate cortex is the first destination of the visual signal after being

gated and modulated by LGN. During last decades a vast amount of research effort has been

dedicated to understanding its structure and function, as well as the analysis of its responses

to various moving stimuli. V1 has a retinotopically organized structure composed of highly

specialized sensory detectors, specially in the detection of orientation and direction. Furthermore,

all detector units are densely connected to others inside the area, via a complex network of

lateral interactions.

As a fundamental finding Hubel and Wiesel (1968) published the results of their experimental

study on the functional architecture of monkey striate cortex, in continuation of their previous

work on cat (Hubel and Wiesel, 1962). This work served as the most seminal research on the

visual cortex and opened huge insights to the systematic visual processing by the brain. They

conducted their experiments on lightly anesthetized macaque monkey by stimulation of retina

with light spots and patterns. With extracellular single cell recordings, they categorized the

cells based on their response properties: simple, complex and hyper complex cells .

The proportion of simple cells has been reported to be around 10% of whole recorded

population, and they have strong sensitivity to the orientation of presented stimulus in their

receptive fields. Their receptive field has an elongated shape with central ON region and two

surrounding OFF areas. Complex cells are the most common cell types in V1 and do not have
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this separated excitatory and inhibitory areas in their receptive fields (See Fig 1.1).

As a major finding they characterized two main axes for the organization of the cortex:

one is tangential to the surface of the cortex (pia) and corresponds to different selectivities

(Retinotopy), the other is perpendicular axis to the pia forming cortical columns. In a layered

structure, cells aggregated in a column do have common sensitivity to a particular property

of stimulus, like its orientation. Though depending on their position in the column they are

sensitive to a range of other aspects of the stimulation. Therefore hyper-columns in V1 are

formed by finely structured column with orientation selectivity gradually varied around a central

point. By dedicating a continuous color code to the range of stimulus orientations, one can show

this pinwheel-like organization in the visual cortex (See Fig 1.2).

The role of V1 in motion processing has been widely studied. V1 receives motion signals from

LGN and projects them to specialized detectors at retinotopic positions of cortex in presence

of a rich network of excitatory and inhibitory connections from surrounding areas, as well as

feedbacks from higher areas like MT.

Figure 1.1: Seminal results of Hubel and Wiesel, figure adopted from (Hubel and Wiesel,
1968), Left) orientation selectivity in V1 cells, the recorded cell shows the most sensitivity to
the orientation presented in the middle of the column. The sensitivity of cells to a range of
orientations is varied smoothly, as shown by the curve. Right) direction selectivity in V1 cells,
the recorded cell has the maximum sensitivity to the stimulus presented in the middle of the
column.
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Figure 1.2: Pinwheel structure of orientation selective functional columns in V1,
figure adopted from (Blasdel and Salama, 1986). Cells with similar orientation selectivity are
aggregated in functional columns and a continuous map of orientations forms a pinwheel. The
black bar represents 1mm of V1.

Motion processing in extra striate cortex: MT is the first area in extra striate visual

cortex and it is known to have a key role in motion processing with high selectivity of its cells

to speed and direction of moving objects. There are also various studies which emphasize the

functionality of MT in integration of local motion signals arriving from V1. Aperture problem

is a well known issue addressing questions on details of motion integration process by visual

system, and also differentiates exclusive functions of MT. Early motion signals are ambiguous

and non conclusive about direction of a moving object and this problem is solved in 100 ms by

area MT, where cells show coherent directional response coding global motion (Pack and Born,

2001a). Area MT+ is known to have a role in predicting the location of of moving objects (Maus,

Fischer, and Whitney, 2013; Maus et al., 2013).

1.3 Neural delays and predictive position coding

Neural delays are natural consequence of signal transfer from retina to cortical areas, plus sensory

processings (Nijhawan, 2002). This leads to expectancy of having a response latency, equal to

or greater than the delay. In theory, neural delays impose a time gap between the stimulation

of a specific position in the visual field and activation of the reciprocal neural population in

the cortex. Then, the most central question which would arise is that, whether they cause a

perceptional lag in the localization of moving objects, or the veridical position is inferred by

some compensatory mechanisms?

The significance of perceptual lag in localization of moving objects is almost denied by simple

behavioral evidences. The primate visual system is efficient enough in fulfilling subtle tracking

tasks and generating accurate and on time motor actions when needed. A classical example in

this context is a tennis player, which efficiently locates and hits the ball. These subtle motor

actions suggest the access of motor system to accurate sensory information from the visual
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scene. Otherwise a late action is expected to catch the target at the place it was about 100 ms

ago not now. In our daily vision, we always see the actual position of the target, or a well

enough approximation of it, and not its position in 100 ms ago. All these evidences reinforce

the hypothesis about existence of some compensatory mechanisms which at least moderates

the drawbacks of late arrival of motion information to the cortex, if they don’t cancel it out

completely.

Studying neural delays and the way that visual system may deal with them can provide

insights into the positional coding of moving objects in the brain. Clearly, retarded localization

of stationary stimuli does not have such a survival value for various species, but these delays

would play a crucial role in processing of moving objects. Hence, inferring the actual position of

stimulus from its previous path is regarded as a compensatory mechanism. The main debates

have been pushed toward the details of those possible mechanisms and also the candidate cortical

area that may implement that. Some studies suggest that it is mainly the motor system that

builds a well enough approximation of the actual position of stimului (Kerzel and Gegenfurtner,

2003; Nijhawan et al., 2004) and some others have put more effort on surveying the sensory

origins of corrective computations (See next sections). Altogether, it seems fair to believe that

both sensory and motor systems have their own contributions in those specific computations.

Positional coding has been central question of many studies (Krekelberg, 2001; Krekelberg

and Lappe, 2000; Krekelberg and Lappe, 2001; Krekelberg et al., 2000). It is bounded by

surveying the ’where’ pathway in the visual system, while neural delays highlight the importance

of the ’when’ pathway as well. A fairly understood structure and function of retinotopic map,

provides predictions of neural activities in target cortical positions. Although, it leaves questions

on numerous ambiguous aspects, associated with processing of more specific visual stimuli. One

of these questions is a more detailed correspondence between position of stimulus in a smooth

trajectory and the localization of neural activity in the cortex.

The relationship between neural delays and latency of response in positional coding of

stimulus and associated neural mechanisms have been under careful study for last two decades.

Some researches have reported shorter delays for moving objects than stationary ones (Whitney,

Cavanagh, and Murakami, 2000; Whitney and Murakami, 1998; Whitney, Murakami, and

Cavanagh, 2000). Though, latency of response is function of some stimulus properties like

its luminance (Purushothaman et al., 1998), as increasing the luminance of moving stimulus

is accompanied by shorter latencies in response (Pulfrich, 1922). Reduced neural processing

time, compensatory processes and anticipatory mechanisms associated with encoding of moving

objects also have been extensively discussed in the literature.

In this context, the Flash lag effect (FLE) as a visual illusion has shown great potential

in highlighting some aspects of those questions. In the next section we will review current

experimental and theoretical knowledge on FLE.
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1.4 The Flash lag effect

It has been longly believed that position coding of an object is independent from motion

processing, until some visual illusions provided evidences against this view. These illusions

suggest that having the same retinal position for two objects in the visual field does not necessarily

guarantee equal perceived position for both. Indeed, positional coding is likely to be affected by

some contextual information, like contrast or being in motion or static.

Most studies focused on the sensory origin of compensatory mechanisms are closely tied

with flash lag effect. FLE is a visual illusion which has been under study for a couple of

decades (MacKay, 1958; Nijhawan, 1994). It reveals a difference between localization of smoothly

moving stimuli versus stationary flashed ones. There are few different experimental setups of

FLE but all of them share the basic demonstration: a coherently moving stimulus is traveling

through a straight or circular path and somewhere in the trajectory a stationary flashed stimulus

appears at the exact same position of moving one (See Fig 1.3).

Physical setup of this simple experiment assures that when the stationary stimulus is flashed

both stimuli are at the exact same vertical location. While subjects would report a displacement

between two stimuli and moving one would be perceived significantly ahead. FLE does not

prove if we see the moving stimulus on the real or lagged position, but reveals the possibility of

quicker or at least different processing strategies for smoothly moving objects.

It is hard to deduce whether we see the moving stimulus with zero lag, but at least FLE

provides a strong evidence that moving objects are perceived more precisely with respect to

their real position. In an elegant experimental study on population response of visual cortex in

cat, Jancke et al. (2004) suggest that there are unavoidable transfer delays, but these delays

are shorter for smoothly moving objects (See Fig 1.5). As such, the representation of a smooth

trajectory develops a certain expectancy for approaching stimulation in positions ahead of

current location, while it would not be the case for a stationary flashing stimulus.

Flash drag effect is another illusory example which demonstrates how under certain conditions,

positional coding of stationary object can be influenced and dragged in the direction of contextual

motion (Maus, Fischer, and Whitney, 2013).

FLE was first observed by MacKay (1958) and then for more than three decades did not

receive much research attention. Nijhawan restarted working on the similar questions with a

challenging experimental setup and reported clear difference in the perception of moving and

strobing stimuli (Nijhawan, 1994). In his setup, a bar is moving angularly and two other strobing

bars appear aligned with that temporally, but they are perceived displaced. (See Fig 1.3).

Since then, various studies have surveyed this effect and multiple theories have been proposed

to account for that. Here we briefly review the most relevant studies:

Motion extrapolation and predictive localization of moving stimulus: Nijhawan

proposed a compensatory mechanism in early visual system, which extrapolates the future

position of predictably moving stimulus and potentially cancels out the effect of neural delays,
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Figure 1.3: Different demonstrations of flash lag effect, Left) FLE in angular motion,
adapted from (Schlag and Schlag-Rey, 2002), this set up originally studied by Nijhawan (Nijhawan,
1994). A central bar is moving with angular speed 30 r.p.m and two other strobing bars temporally
appear along with that. Most of subjects report a perceptual displacement between central bar
and strobing ones as it is depicted in right. Middle) FLE in linear motion, stimulus is moving
coherently and when it reaches to the middle of trajectory a stationary flashed square appears
parallel to that. Lower box illustrates the perceptual lag reported by subjects. Right) breaking
the flash lag experiment into two half cycles: flash initiated cycle and flash terminated cycle,
figure is adopted from (Nijhawan, 2002)

while there is no such a mechanism for flashing stimuli (Nijhawan, 1994). Results of this study

also suggested that brain may use different mechanisms in position coding of moving and flashing

objects, based on having a predictable trajectory behind or not. It also raised a new question on

the intrinsically different response latencies for two stimulus types: does the light information of

flashing stimulus arrive in the brain later than corresponding information for coherently moving

one? Or is there a facilitatory mechanism only for moving stimuli which reduces this delay

toward zero?

It sounds more correct to have the transfer delays in the same range for both stimuli, as they

are sent through the same physical path. Also one can decompose a smoothly moving object as

a densely packed trajectory of flashing stimuli, which their light information are sent in the row

from retina to the cortical areas. On the other hand, considering evolution of neural system to

be compatible with processing of natural scenes, developing a neural mechanism to overcome

neural transfer delays in processing of predictable trajectories represents more survival impact.

Thus, it makes sense to dedicate some supplementary mechanisms for quicker processing of

moving stimuli.

FLE also raises a philosophical question about the origin of response to each stimulus: is

the neural response to the flash really lagging behind? Or we perceive the moving stimuli

in an extrapolated position which is always spatially ahead? In the other words, is our per-

cept from the position of moving object matched to its actual position or even slightly ahead of it?

Different processing delays for moving and flashing stimuli: After proposition of

motion extrapolation as a candidate mechanism to correct positional error of moving objects,

the competency of this approach to account for various implementations of FLE has been

under question. For example it has been shown that perceived lags would be shorter for

higher frequency of flashing stimuli (Krekelberg, 2001), while this can not be explained with
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extrapolation mechanism.

Another useful effort to understand the nature of lags is to break the trajectory of moving

stimuli into two half cycles, including trajectories before and after appearance of flash (See

Fig 1.3). These trajectory pieces are called flash terminated and flash initiated cycles (Nijhawan,

2002). Studying FLE for two half cycles showed that the no lag is perceived in flash terminated

cycle, while the lag observed in flash initiated cycle is comparable to the one of standard FLE

setup.

The result observed in the flash terminated half cycle is at first thought in contradiction with

what one would expect from a motion extrapolation hypothesis. No matter if the stimulus is in

the end of trajectory, extrapolated position still needs to be ahead and produce a perceptual

overshot at the termination point. Results from another experiment conducted by Whitney and

Murakami (1998) show that the motion extrapolation idea is not compatible also with the cases

in which the trajectory is abruptly reversed at some point. They rather suggested that neural

delays are likely to be shorter for moving stimuli than stationary ones. The motion extrapolation

hypothesis is also unable to explain why a lag is observed at flash initiated cycle where the

moving object is at very early trajectory and still not very distinguished from stationary one.

Figure 1.4: Demonstration of Flash drag effect, figure adopted from (Maus, Fischer, and

Whitney, 2013): a stationary object aligned with a moving pattern is perceived dragged in

direction of pattern.

Temporal averaging and postdiction: Another theory proposed for FLE (Krekelberg

and Lappe, 2000) suggests a temporal averaging mechanism for the position of stimuli in a

window of 500 ms. According to this theory, position information are updated every 500 ms

by an averaged position during this period. Clearly, position of stationary flash would remain

constant during this period but for the moving stimulus a half distance positional lead will be

perceived. This approach does not light up the role of delays in motion processing of moving and

stationary stimuli. Also according to motion integration dynamics, 500 ms is a unrealistically
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Figure 1.5: Electrophysiological counterpart of FLE: recorded spiking activity in cat neural
populations of primary visual cortex to study positional coding of moving stimulus versus flashing
one, figure adopted from (Jancke et al., 2004)

long averaging window.

Eagleman and Sejnowski (2000) suggested that the visual system is likely to implement a

sensory integration mechanism called postdiction. In this mechanism, visual system collects

sensory information from the past and future to deduce about current position of the stimulus.

In the other words, when receptive field of a specific neural population is stimulated by a moving

or flashing stimulus, the corresponding neural activity would be slightly delayed, in order to

collect some information from receptive fields that are stimulated just after the current one.

According to the postdiction hypothesis, to interpret received sensory data at current time,

visual processing is looking ahead to future and “postdicts” the coding of position. Therefore,

every flash would act as a reset for motion integration process. Postdiction model explains why

no lag is observed in flash terminated cycle but fails to hold an account for the standard FLE.

Interpretation of FLE with postdiction model comes with allocation of an integration window

centered at t0 (time of flash). Then considering t0 as the integration restart time leads to a

shorter integration window for moving stimulus which starts at t0. Theoretically, the perceived

speed for moving object must be twice as its physical speed, while such a speed incrementation

has not been reported by subjects (Hick, 1950).

1.5 Motion extrapolation

The main shortage of motion extrapolation in explaining the FLE is its predicted overshoot at

the flash terminated cycle, which does not happen in reality. In later work by Nijhawan (2002)

this issue is discussed and the strengths of motion extrapolation as positional error corrector

is compared with other above mentioned mechanisms. Focussing on motion onset and motion

offset, reveals relatively higher importance of accurate motion offset than motion onset. In the

animal world, when the goal is catching a flying prey, positional error at motion onset would not

result in failure, as long as an efficient correction is applied somewhere later in the trajectory. For

example, when a fly occasionally stops for a very short while, without an accurate localization,
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a predator would lose the opportunity of hunting it.

On the other hand, Fröhlich effect (Fröhlich, 1923) which is regarded to share some explanation

with FLE, also illustrates that for a moving object with high speed the very early positions in

the trajectory are perceptually missed. Therefore, the position reported by subjects as motion

onset is significantly shifted toward the middle of the trajectory. Considering Fröhlich effect

versus correct perception of motion offset suggests that visual system invests more on the motion

termination processing than motion onset.

Nijhawan (2002) suggested that the positional overshoot predicted by motion extrapolation

can be canceled out by a special mechanism for registering motion termination. Therefore,

motion extrapolation still remains a competent candidate mechanism for FLE. Also, some other

studies on FLE have focussed on the separate analysis of moving object and stationary flash

stimulus and have reported results in favor of motion extrapolation and in contradiction with

the other proposed mechanisms. Fu, Shen, and Dan (2001) have conducted psychophysical

experiments to study the motion processing of two dots moving in opposite directions which

stop for 100 ms at the same position and then disappear. Their results show a perceptual lag

between the position of these dots, which is highly dependent on the blurring and velocity of

dots. Report of the lag in this experiment, without any flashing stimulus, questions the role of

flash as a reset for motion integration process. Consequently, competency of temporal averaging

and postdiction accounts for FLE is also questioned.

Here, we keep motion extrapolation as a demonstration of motion-based position coding

and in the next section we will review experimental evidences in favor of motion-based position

coding.

1.6 Modulation of position code by motion

Anticipation of moving stimuli by Retina: In an elegant study on ganglion cells of

salamander and rabbit Berry et al. (1999) have examined the contribution of retina in FLE and

compensation of photoreceptor transduction delays. Stimulating the eye with a moving bar,

they have surveyed the neural image on the retina composed of moving wave of spiking activity

in population of ganglion cells. Their result shows anticipatory response of ganglion cells to a

smoothly moving stimulus, versus response to a stationary flash. According to the recorded

neural image, the hill of firing activity over retina is spatially ahead of the leading edge of bar

and this is an evidence for motion extrapolation at retinal level.

This anticipatory response shows retina’s contribution to motion perception and also accounts

for FLE, though existence of similar mechanisms in cortex is also known. Motion extrapolation

in retina is limited to a certain range of speed and contrast of stimulus and can be explained

with nonlinear contrast gain control in M type ganglion cells and also properties of spatially

extended receptive fields. As an alternative view to position coding questions, one can elaborate

the systematic sweep of retina by the neural image of moving stimuli. This approach can be

also extended to exploring the smooth trajectory of neural activities in two dimensional cortical
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sheets.

As another experimental evidence, Schwartz and Berry (2008) have reported extrapolation

in retinal ganglion cells as an anticipatory mechanism to correct positional error. According to

these studies, the early compensation of delays in retina can have particular facilitation outcomes.

Motion based position coding in the early visual cortex: In an extensive study,

Whitney et al. (2003) have explored possible correlations between cortical representation of

position and perceived position. They have conducted fMRI and psychophysical experiments and

reported that necessarily there is no correlation between BOLD signal of represented position in

primary visual cortex and perceived position.

Jancke et al. (2004) have investigated FLE by recording spiking activity in neural populations

of primary visual cortex of cat (See Fig 1.5). As an electrophysiological counterpart to the

FLE, they have elaborated position presentation of stationary flashing stimuli versus coherently

moving ones and have illustrated a similar positional lag. Particularly, they have discussed about

pre-activation mechanisms that prepare the future positions in the trajectory.

Receptive field shift in the area V1 in response to moving stimuli: Neural response

to moving stimuli is thought to result from an interplay between intrinsic characteristics of

recorded neurons and dynamic setup of synaptic connection. Highly specialized detectors in the

visual cortex strongly respond to the relevant stimuli but the dynamics of their activity has

been known to be partially dependent to the more detailed properties of the stimulus. In a

single unit recording setup on anesthetized cat, Fu et al. (2004) have studied motion induced

modulations in receptive fields of the primary visual cortex. Their experimental and modeling

studies is consistent with the earlier fMRI study of V1 by Whitney et al. (2003) suggesting a

shift in receptive fields in a direction opposite to the motion direction (See Fig 1.7).

Asymmetry in receptive field profiles is more evident when they are compared for motions in

two opposite directions like rightward and leftward. This shift can also be representative of the

anticipatory activity implemented by long range synaptic interactions, after accumulation of

enough sensory evidence on the trajectory of motion.

Spatially asymmetric response to the moving patterns in visual cortex: Some

research efforts to clarify details of retinotopic position coding have addresses questions about

the information content of population response in visual cortex, while getting stimulated by

moving patterns. In most of experimental studies it is assumed that the peak of response

codes the position of objects, but Whitney and Bressler (2007) have shown that in addition to

peak, the pattern of response, like its asymmetry, also contains some meaningful information

which contributes in retinotopical position coding. In a fMRI experimental design, they have

developed a new technic based on spatial pattern of BOLD signal, to discriminate position codes.

The technic is able to discriminate positional responses to moving Gabor patterns at points of
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Figure 1.6: Flash lag effect in retina of salamander and rabbit, figure adopted from (Berry
et al., 1999): Population response of retinal ganglion cells to moving and flashed bar, (a) illus-
trates gradual increase and then decrease of firing rate in response to the flashing stimuli and
in (b) response of same cells to the rightward and leftward moving bars is shown along with
development of response to flashing one. Figures in (c) show that when response to the flash
reaches to its maximum, response to the moving stimulus is ahead in the direction of motion.
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Figure 1.7: Receptive field shift in V1 caused by motion of stimulus, figure adopted
from (Fu et al., 2004): B) illustrates response of six neurons in cat visual cortex to the stimulus
shown in A). Cell responses to the stimulus moving rightward and leftward are shown in gray
and black respectively, while the preferred direction of cells is leftward. ∆X is the measured
shift in center of receptive field and C) summarizes the range of shift versus receptive field size.
Filled circles correspond to the cells with significant shift
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their trajectory with tiny positional difference. This result suggests that retinotopic position

coding is modulated by visual motion and this effect may be implemented by long range neural

mechanisms.

Position codes of moving objects at different parts of their trajectory has different spatial

pattern and this may be an evidence for existence of a large scale code for trajectory motion.

In such a code, depending on how far the object is from the onset of motion, spatial profile

of response would be affected by long range modulations. As existence of a relatively precise

position coding in human pulvinar area has been reported (Fischer and Whitney, 2009), thus

early visual cortex may compute a more fine grained position map as well as coding the relative

position in the trajectory of moving objects.

Predictive position coding in V1 and V3A areas: Some experimental data have

reported motion induced mislocalization of moving objects at the end of their trajectory. This

perceptual effect, happens with no retinal input and may originate from cortically extrapolated

position responses, that is a forward shift in cortical representation of moving objects. To study

this effect, Maus et al. (2010) conducted an experiment with a moving stimulus in two conditions:

outward condition in which motion starts with lowest contrast and then contrast is gradually

increased and trajectory ends at highest contrast, and second, inward condition where stimulus

starts with highest contrast and gradually fades out at the end of trajectory.

They reported that in the inward condition where motion fades out at the end of trajectory,

the stimulus is perceived to disappear at positions that correspond to contrasts lower than the

luminance detection threshold.

They also assessed recorded responses in the retinotopic areas matched to extended part

of trajectory of fading stimulus and found that area V3A predictively codes for the position

of moving objects. These results also support the idea that V3A participates in anticipatory

position coding for moving objects by using information from trajectory, while the feedback to

V1 may also influence retinotopic position representation in V1. This study does not report any

significant predictive component in the position representation in V1. This is perhaps because

V1 has a more fine grained retinotopic map and also it is more driven by retinal input.

This insight is also consistent with another hypothesis: position coding of a moving object can

be distributed at different stages of cortical representation, depending on the relative position of

stimulus in the trajectory. As such, V3A may keep anticipating, where V1 codes the motion offset,

with complementary mechanisms to correct perceptual overshoots and overcome prediction errors.

Motion dependent presentation of space in areas MT and MT+: Area MT+ of

primates has been known for its coarse retinotopic organization and many studies focused on its

contribution to motion perecption. To explore the contribution of MT+ and V1/V2 areas in

positional lead of moving objects in FLE, Maus et al. (2013) disrupted the neural activity in

these areas by means of TMS (Transmagnetic Stimulation) and have measured the degree of
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perceptual lead for moving object. They have reported a considerable decrease in FLE by TMS

interruption of MT+ and no significant effect by conducting the same procedure in areas V1

and V2. Their results suggest that neural mechanisms responsible for position presentation of

moving objects are mainly implemented in the area MT+.

In a fMRI study, Maus, Fischer, and Whitney (2013) also emphasized that position coding

mechanisms in MT+ area are affected by motion based phenomena. They have reported that

receptive field properties of neurons can change with moving stimuli. These findings are consistent

with anticipatory position coding view, suggesting that in the area MT+ population receptive

fields and spatial coding are modulated by motion.

Another fMRI study in human area MT (d’Avossa et al., 2007) reported modulation of

BOLD responses by gaze direction.

1.7 Processing of trajectory motion

Positional extrapolation of motion trajectory is the most debated account for FLE. Indeed, it

provides very intuitive insights to the motion processing constraints of brain. There are some

sparse studies which have conducted relevant experiments and have offered evidences that some

motion-based phenomena govern position coding of trajectory motion.

Detection of trajectory motion by V1 and MT neurons: Mikami et al. (1986) have

explored spatiotemporal range of directional interactions in V1 and MT by stroboscopic flashing

stimuli. They presented stroboscopic flashing stimuli with varying spatial and temporal intervals

to measure the limits of directional selectivity in neural populations of V1 and MT. They report

that spatial interval limit for MT neurons is much larger than the same limit for V1 neurons,

while the temporal interval limit is the same for both V1 and MT populations.

The main finding of this study is the ability of direction selective cells in MT to code higher

speeds by integration of motion information over a bigger distance at the same time. Their

results indicate that MT neurons can interpolate between successively flashed stimuli and process

it as a trajectory, whereas V1 neurons stay irresponsive for this kind of motion.

Temporal recruitment along the trajectory of moving objects: Sensitivity of position

coding to the history of motion is not unexpected, as motion integration process itself needs

100 ms to be completed. To explore positional judgments by temporal recruitment of trajectory

information and extending the study of Nijhawan (1994), Krekelberg and Lappe (1999) conducted

an angular demonstration of FLE. The stimulus includes three inner dots in the middle of a

rotating bar and two occasionally flashing dots at each side. Flashing dot appeared along with

central part but subjects reported an angular lag between the two parts of the stimulus (See

Fig 1.8).

The experiment is repeated with different temporal visibility durations for the flashing part

and also over a range of angular speeds. Their results suggest that, longer visible trajectory
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enhances position perception of stimulus. The similar effect is observed in the dependence of lag

with respect to speed of the stimulus. In standard FLE experiment, the lag would increase with

the speed of moving stimulus, but this effect can be modulated by presenting flashing stimuli

over a longer spatial range. Consistently with the motion extrapolation hypothesis, they propose

that integrating along the trajectory of motion, including speed information, improves position

judgements, it is as well a potential mechanism for correction of neural transfer delays .

Figure 1.8: Angular counterpart of flash lag effect, figure adopted from (Krekelberg and
Lappe, 1999). Left) A rotating bar includes three central and fixed dots and two flashing dots
in each side of the bar. The actual and perceived positions respectively are shown by gray and
black and α is lag angle. Middle) α falls down to zero by increasing the trajectory length of
flashing dots. The main figures correspond to the data averaged over ten participants, while
inset is the result of a single subject and in one trial. Right) α increases with increase in speed
of rotation, the figure shows it for two different trajectory duration.

Motion anticipation and facilitatory neural mechanism in processing of smooth

motions: Focusing on delay compensatory mechanisms, motion extrapolation can be discussed

from some other aspects like trajectory anticipation or pre-activation of neural populations.

Pre-activation is development of response in neural populations which their receptive field is

very likely to be stimulated with respect to the history of trajectory. The classical receptive

field (CRF) of a neuron or a neural population is defined as a portion of visual field which its

stimulation leads to a strong neural activity in neuron or population. Knowing the retinotopic

map of visual cortex and for a given motion trajectory, one can predict which populations are

going to be activated.

Going further from basic knowledge on well studied neural populations in the visual cortex,

during last few decades there has been intense debates on more detailed sensory mechanisms

associated with the connection and interaction of different neural populations in a known area.

Different efforts to explore modulatory effect of stimulated populations on each other and on

non stimulated ones has brought some new terms in categorization of receptive fields. As most

studied ones, the terms of nCRF, eCRF and PRF respectively refer to none classical, extra

classical and population receptive fields. We will review relevant works for each of these categories.

Modulatory effect of coherent trajectory on motion processing: Given the extensive
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lateral, feedback and feedforward connections in the visual cortex, any study neglecting them

and their modulatory role in the response of each cell would end up in non-realistic conclusions.

Therefore, as suggested by some previous studies, most cells integrate the signals from their

CRF with the contextual sensory information from a more extended neighborhood, called the

non-classical receptive field (so called nCRF).

Guo et al. (2007) have recorded the activity of cells in V1 to study their relative sensitivity

to the stimuli inside their CRF, versus the more distant stimuli. They have shown different

modulations in response depending on the motion trajectory. This study suggests that each

neuron in V1 codes the information in its CRF, but importantly also contributes in coding of

larger scale spatiotemporal structure of the whole scene.

This study is compatible with Bayesian inference definition. In this context, network

connections of visual cortex can be assumed as an implementation of prior information on

the statistical regularities of physical world. Then direct input in the CRF of cell would be

equivalent of the current likelihood and the posterior inference on spatiotemporal structure of

neural response is affected by both (priors and liklihoods). With a simplified view, one can

consider that different motion trajectories activate different priors (as they travel trough different

network connections), therefore they do support arrival of a stimulus into a specific position, by

developing an anticipatory response before arrival of stimulus.

From this point of view, pre-activation of neural population is also discussable: if a stimulus is

moving smoothly between positions A and B, by progression along the path, neural populations

associated to the CRF at position B accumulate more evidence to predict arrival of stimulus

at their CRF. This gradual preparation appears as a rising phase in the response of cells,

before arrival of stimulus to their CRF and we refer to it as trajectory-dependent anticipatory

response (Benvenuti et al., 2011).
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Figure 1.9: Spatio-temporal prediction and inference by V1 neurons, figure adopted

from (Guo et al., 2007). Top) Different stimulation protocols 800 ms before arrival of stimulus

to the CRF, congruent: Stimulus has the same orientation inside and outside of CRF, incon-

gruent: orientation of stimulus is changed inside CRF, missing CRF: stimulus disappears

inside CRF, CRF only: there is no trajectory before arrival of stimulus to CRF, random

predictor: stimulus takes a random shuffled trajectory before arrival to CRF, Bottom) ori-

entation preference of cell at different protocols and the response at each orientation. Early

anticipatory response at preferred orientation and congruent trials is evident.

In some other studies, stimulation of the surrounding area has provided better understanding

of motion processing by CRF. For example, modulatory effect of peripheral stimulations on the

localization and temporal properties of neural response has been investigated (Alink et al., 2010).

The most general question of all these works is the detailed correspondence between the spread

of neuronal activity in the cortical area and the stream of motion in the visual field.

Coherent motion of a small stimulus excites many neural populations with overlapping CRFs

and motion trajectory is mapped to a progressive code of position presentation in the cortex.

As the selectivity of populations for the presented stimulus is not in a binary manner, it is more

appropriate to look at neural code as a response composed of “votes” by all involved populations

based on their preference. In a predictable motion, the hills of response are centered on the cells
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coding the veridical position of stimulus and are shifting toward other populations which are

connected to the next positions in the path.

Furthermore, some populations corresponding to more distant future in the trajectory, start

to accumulate their belief on approaching arrival of stimulus to their CRF. Long range lateral

connections in visual cortex are the most likely candidates for the propagation of information

toward ‘about to stimulate” populations. From this view, lateral connections alert about

increasing probability of stimulation in the positions farther ahead in the trajectory.

In end-stopping cells, response to a preferred stimulus can be attenuated or even eliminated,

if the surrounding area of CRF also gets stimulated with the same stimulus. Such a modulatory

mechanism is called extra classical receptive field (eCRF) effect and has been reported to happen

in V1, V2, V4 and MT in cortical areas (Harrison et al., 2007; Rao and Ballard, 1999). The

eCRF effect has been suggested to be a way to implement predictive coding in the brain.

As mostly in natural images the intensity difference between neighboring areas is low,

therefore response in CRF can be predicted from the neural code associated to eCRF. It has

been discussed as a processing strategy to decrease computations related to redundant and

predictable parts of the scene. Thus, eCRF probably acts as an error detector in processing of

coherent motion, generating a residual signal composed of the difference between reference input

signal and what has been predicted by an appropriate internal model. Then the residual signal

is reported to higher order cortical areas and the regulatory signal is sent to striate cortex via

feedback.

With similar questions Harrison et al. (2007) studied functional role of eCRF in striate

cortex with fMRI. They have investigated how global and contextual information may affect

local motion processing. By studying coherent versus incoherent motion they have found that

increasing coherency of motion will result in more suppression in the response. This study

also suggests that eCRF may enable the brain to implement predictive coding, by detection

of regularities in the sensory input and reporting it to higher areas. Another fMRI study has

reported that predictability of motion onset and motion direction would reduce the response in

V1 (Alink et al., 2010).

As a recent psychophysical evidence for predictive coding of smooth motion, Roach, McGraw,

and Johnston (2011) have conducted an experiment to study the modulatory effect of spatial

regularity of stimulus on its detectability. In this experiment, an elongated grating stimulus

with high contrast is illustrated as an inducer, and a small low contrast grating appears either at

leading or trailing edge. They have explored dependency of stimulus detectability to the relative

phase of inducer and target gratings. The results have been interpreted in the framework of

constructive or deconstructive interference between stimulus and internal prediction. Therefore,

small phase difference between induced and target stimuli would boost detectability of target as

a constructive combination between both, and will induce a forward prediction of the spatial

pattern.
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Figure 1.10: Forward prediction of spatial pattern, figure adopted from (Roach, McGraw,

and Johnston, 2011). A) stimulus configuration, two elongated bars are presented to the subjects

and a low contrast small stimulus would appear either at leading or trailing end of one of the

bars. Elongated gratings act as inducers to study detectability of low contrast target. B) relative

phase of two stimuli C) detectability of target stimuli at different phases, top left box illustrates

mean response of five other subjects. Red and black traces respectively correspond to trials in

which target appears at trailing and leading edges

Traveling neural waves in the visual cortex: Another line of research in the context

of trajectory processing and long range spatio temporal motion integration is to study traveling

waves in the visual cortex. There are experimental evidences that illustrate, for a localized

stimulus, a systematic stream of activity diffuses to populations corresponding to the more ahead

positions. This research area investigates large scale motion integration details by focusing on

the measurement of diffused activities. The typical method to do that, is placing an electrode in

a target population and study the development of response by stimulation of receptive field of a

more distant population. Studies related to traveling waves have used VSD imaging (Benucci,

Frazor, and Carandini, 2007; Bringuier et al., 1999; Grinvald et al., 1994; Slovin et al., 2002)
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and LFP analysis (Busse, Wade, and Carandini, 2009; Kitano et al., 1994; Nauhaus et al., 2008;

Ray and Maunsell, 2011). By measuring neural response in positions of the trajectory which are

ahead of stimulation point, they have found that more distance from the excited receptive field

and the electrode will elicit weaker and later response.

Two main candidate mechanisms have been proposed for traveling waves: first, the convey

of delayed excitation via long range connections, and second feedback from higher areas. On the

other hand the existence of traveling waves have been related to uncertainty in the stimulus.

For example, when the contrast of stimulus is low, motion integration processes need to collect

information over larger spatiotemporal windows before shaping the final neural code. Traveling

waves provide propagation of such a distributed activity. They appear also in spontaneous

activity of brain, but as soon as having a high contrast stimulus they do vanish.

1.8 Position coding in an interrupted trajectory

The continuous flow of information originating from the visual world is constantly fragmented

by different sources of noise, occlusions or blanks. For instance, the path of a moving object can

often be transiently blocked from the observer’s line of sight. However, one is still able to judge

the current position of a moving object during such periods of occlusion, as well as estimating its

future trajectory at its reappearance. This ability to transform such fragmented sensory inputs

into a correct continuous representation has been a major pressure in the evolution of visual

systems, because it leads to appropriate reactions matched to the physical evidences: it is vital

to accurately follow the trajectory of a fleeing prey and stabilize its image onto the retina in

order to catch it or, on the contrary, to escape from an approaching predator, despite the fact

that it can transiently disappear from the line of sight (Gollisch and Meister, 2010).

The problem of motion occlusion is a particular case of a more general problem in neuroscience:

extrapolation of interrupted trajectory. In the absence of sensory input, the visual system can

extrapolate the instantaneous position of a moving object from its past trajectory.

An essential clue to solve that problem is the prior knowledge that objects follow smooth,

coherent trajectories. Following the first law of newtonian mechanics, the trajectory of an object

is only perturbed by external forces. Since we know a priori that these forces are more likely

to be small compared to the inertia of an object of relevance, the trajectory of objects in the

physical world tends to follow smooth, straight trajectories. Such a prior knowledge may be the

basis of learning processes based on the prediction of the path of the trajectory.

During transient blanking, it is most likely that such processes (along with the knowledge

that the sensory input was indeed blanked and not definitively removed) are at the root of the

mechanisms underlying motion extrapolation. Their behavioral consequences are well known.

For instance, when a moving target disappears, smooth pursuit eye movements continue at the

same velocity during the initial period of occlusion (Bennett and Barnes, 2003) and such a feat

is only possible when observers have some knowledge on the path of motion (Graf, Warren, and

Maloney, 2003). Therefore, there must be some underlying neural computations but it is yet not
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clear how this can be done efficiently and where it is implemented in the visual system.

This perceptual phenomenon provides invaluable tools with which we may study the mech-

anisms of motion detection and draw inferences about the properties of underlying neural

populations. First, it is involved in different sensory modalities as sensory fragmentation exists

in vision but also for instance in haptic tasks (hence in the somatosensory system). Second,

it is a powerful mean to distinguish between the different computational steps of the visual

motion system. Object motion information is extracted along a cascade of feedforward cortical

areas, where area V1 extracts local motion information that is integrated in extra-striate middle

temporal (MT) and medial superior temporal (MST) areas.

Followingly, we will review experimental studies and theories about extrapolation of an

interrupted trajectory.

1.8.1 Extrapolation of interrupted motion trajectories: experimental evi-

dence

A classical way of studying motion extrapolation is by presenting a moving target that travels

behind an occluder for a short period of time. A seminal study used timing estimation by asking

participants to make a button press at the time they judge the occluded target to have reached

a particular point (Rosenbaum, 1975). Since then, this phenomenon has been studied at various

levels (behavioral or neural), across species and modalities. For instance, motion extrapolation

has been under study by focusing on various specific questions in physiology or behavior.

In physiology, motion extrapolation was shown to occur in retina (Berry et al., 1999;

Gollisch and Meister, 2010; Schwartz and Berry, 2008) or in higher cortical areas (Assad

and Maunsell, 1995). Behaviorally, motion extrapolation was studied in the context of target

catching (Nijhawan, 1994), apparent motion (Hogendoorn, Carlson, and Verstraten, 2008) and

trajectory extrapolation for occluded or disappeared stimuli (Makin, Poliakoff, and El-Deredy,

2009), perceptual extrapolation of blurred visual target (Fu, Shen, and Dan, 2001), in audio visual

targets (Wuerger et al., 2010), role of motion extrapolation in control of eye movements (Makin

and Poliakoff, 2011), and blurred targets (Fu, Shen, and Dan, 2001).

Motion extrapolation can be carried out for lateral motion, with the target moving across the

fronto-parallel plane, or for approach motion, when the object moves towards the observer (DeLu-

cia, 2004). Here, we investigate visual, lateral motion extrapolation as a generic paradigm to

challenge prediction algorithms and we will briefly review the relevant experimental evidences.

MT, MST and STS: The middle temporal (MT) and medial superior temporal (MST)

areas in the superior temporal sulcus (STS) of primates process visual motion and oculomotor

signals driving pursuit (see (Ilg, 1997) for a review) and are therefore key elements in motion

extrapolation. Early physiological studies in macaque monkey identified area MT as a specialized

module for visual motion processing (Allman, Kaas, and Lane, 1973; Dubner and Zeki, 1971).

This involves extracting the speed and direction of the moving object. MT neurons respond
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selectively to visual motion and tuned for local speed and direction of luminance features moving

in their receptive fields (Maunsell and Van Essen, 1983). Pack and Born (2001b) have shown

that the temporal dynamics of motion integration can be seen from time-varying firing rates.

They showed that neuronal responses quickly progress from local to global motion direction in

about 100 ms, suggesting that such mechanisms are dynamical and progressive.

These results pinpoint the key role of MT neurons in local motion analysis as well as global

motion integration. However, these neurons respond only when the retinal image motion is

present, while MST neurons maintain their firing activity when there is no retinal image motion;

for instance during a transient image occlusion (Newsome, Wurtz, and Komatsu, 1988) or during

tracking imaginary target covering the visual field in the outside of the receptive field which is

currently recorded (Ilg and Thier, 2003).

Posterior parietal cortex: Similar sustained activity during target occlusion has been

found in monkey posterior parietal cortex, and it is linked to an image motion prior to target

disappearance (Assad and Maunsell, 1995).

Retina: In another study, Schwartz and Berry (2008) have stimulated the retina of tiger

salamander with a periodically flashing stimulus and have found various firing patterns when a

flash is omitted. This sustained activity is known as “omitted stimulus response” (OSR) and

is explained by a model based on tunable oscillators which extrapolate the response to the

periodic stimulation, even at times matched to the missing stimulus. OSR has also been reported

in the flicker electroretinogram (ERG) of the human cone system (McAnany and Alexander, 2009).

Eye movements: The neural systems controlling smooth pursuit eye movements (SPEMs)

are likely to be critically dependent upon motion extrapolation, in close synergy with saccades (de

Xivry and Lefèvre, 2007). Several studies have shown that blanking a small moving target results

in a very typical temporal profile of eye velocity. Eckmiller and Mackeben (1978) investigated

smooth pursuit behavior in macaque monkey when a moving target briefly disappeared and then

reappeared. They found that monkeys are able to continue pursuing when the target disappears

for up to 800 ms. Using a similar paradigm, Becker and Fuchs (1985) showed that humans

maintain smooth pursuit up to 4 s after the disappearance of the target. They found that the

eye velocity rapidly decreased about 200 ms after target disappearance. This deceleration phase

lasted for about 280 ms and then the eye velocity stabilized at approximately 40% to 60% of

the normal pursuit velocity.

To develop an eye velocity related to the velocity of the target that preceded the extinction,

the subjects needed to see the motion for at least 300 ms. Becker and Fuchs (1985) referred to this

phenomenon as predictive pursuit. This mechanism can also be at play during other open-loop

responses such as anticipatory smooth tracking of a highly predictable target motion (Barnes

and Asselman, 1991).



Chapter 1: Motion-based position coding (experimental evidences) 25

There is an ongoing debate of whether the origin of motion extrapolation is within the

oculomotor control system (Makin and Poliakoff, 2011) or rather occurs at the sensory level.

Using event related potentials, Makin, Poliakoff, and El-Deredy (2009) have suggested on

electrophysiological grounds that both systems may be contributing.

Motion extrapolation seems to be a highly adaptable mechanism. We have already suggested

that such behavior may be related to the regularities observed in natural scenes. One may then

wonder how this may be affected by experimental conditions such as learning or reinforcement.

Becker and Fuchs (1985) had already examined the effect of training on predictive pursuit and

reported only a modest change, indicating that such a response could be under adaptive control.

Using an operant conditioning procedure, Madelain and Krauzlis (2003) found that human

subjects instructed to track a small spot, tend to follow it even during the absence of sensory

input. The speed decreased however to a smaller plateau value and subject often performed a

catch-up saccade to track the object again. Crucially, their performance increased across sessions

and subjects could pursue dots up to 4 seconds after the onset of a blank after intensive learning.

One important aspect for prediction to occur is that target trajectories must be regular and

clear.

In another study Bogadhi et al. (2011) investigated the aperture problem to probe the impact

of visual motion information at target reappearance. A moving tilted bar produces a small

direction bias at pursuit initiation in the direction orthogonal to the bar’s orientation. They

found a significant, albeit much smaller bias at target reappearance, as compared to pursuit

initiation. Moreover, they put in evidence a strong difference in the amplitude of such a bias,

depending on whether the blanking onset occurred in either the open- or closed-loop phase of

pursuit. The tracking direction bias introduced by the aperture problem was significantly less in

the late phase, suggesting that the oculo-motor system would switch from a preference for the

sensory input (early phase) to an internal (motor-based) signal in the late phase.

All these results raise the question of how we can model the different facets of motion

extrapolation in a common framework. What is the link between behavioral and neuronal

signatures of motion extrapolation? Visual motion information is primarily used for gaze

stabilization (Ilg, 1997; Kawano, 1999; Masson, Montagnini, and Ilg, 2010) and sensorimotor

transformation underlying smooth pursuit eye movements (Lisberger, Morris, and Tychsen,

1987). The fact that sustained activity in area MST was seen during transient occlusion of

a moving target supports the notion that the two phenomena are closely related (Newsome,

Wurtz, and Komatsu, 1988). On the other hand, since motion extrapolation is also seen in

lower level neuronal structures, such as the retina, this calls for a more generic computational

framework. Also, as motion extrapolation of interrupted trajectories is implemented at the scale

of a single cortical area, this would suggest that such a mechanism would be implemented by a

finely structured set of diffusive mechanisms.

A potential candidate is naturally the dense network of lateral interactions as found in

sub-cortical and cortical structures involved in sensory processing as well as sensorimotor control.



Chapter 1: Motion-based position coding (experimental evidences) 26

However, direct evidence for such neural mechanisms is still lacking.

1.8.2 Motion inertia and extrapolation of interrupted trajectory

A tightly coupled phenomenon is motion inertia, which might be regarded as the perceptual

equivalent of motion extrapolation for object identification. To put motion inertia in evidence,

it has been shown with the following experiment: when one object moves and breaks into

two trajectories, the trajectory that tends to be perceived as pursuing its motion is the one

corresponding to the least perturbation (acceleration or curvature). Equivalently, if a moving

object has been presented before, there is a strong perceptual tendency to continue seeing

it in the previous direction (Ramachandran and Anstis, 1983). These findings also imply

that the interactions between pairs of dots seen in sequence is affected by the history of their

interactions, suggesting that probably the neurons responding to motion are directionally coupled

in a feed forward way, which facilitates the perception of unidirectional movement (Anstis and

Ramachandran, 1987).

Assuming the existence of such a strategy, it needs to be clarified how such rules may be

related to the spread of neural activity and how a neural system uses accumulated information

from the trajectory of moving object in order to favor the detection of an unique, global motion.

This was studied by looking at how people may extrapolate motion on a straight line (Pavel,

Cunningham, and Stone, 1992). One can interpret that in a Bayesian way: as a prior, motion is

temporally coherent, and motion inertia is a built in strategy of the visual system to respect

this prior. As such, motion inertia and motion extrapolation certainly share some common

mechanisms.

1.8.3 Existing theories on extrapolation of interrupted trajectories

There are a variety of models proposing different mechanisms underlying motion extrapolation. A

first class of models are built upon control-like models of the visuo-oculomotor system (Robinson,

Gordon, and Gordon, 1986). Such models were refined to specifically address the problem of

motion extrapolation (Churchland, Chou, and Lisberger, 2003) by including additional layers in

a cascade model (Goldreich, Krauzlis, and Lisberger, 1992). These models may be subdivided

into those where the predicted signal is based of some motor command (Bennett and Barnes,

2003) and those that specifically use the adaptation of an internal model (Madelain and Krauzlis,

2003). Still, while these different behavioral models can fit some data very nicely, they lack a

global explanation of the mechanisms underlying motion extrapolation.

Most of these models share a common mechanism: during blanking, information is inferred

from past information using a smoothness constraint on possible trajectories. This is well

formulated by smoothing the inferred velocity in control models with an internal positive

feedback (Krauzlis and Lisberger, 1989; Robinson, 1973; Robinson, Gordon, and Gordon, 1986).

An engineering answer for such an adaptive system is a Kalman filter. It involves projecting

the current estimate of the system based on the prior knowledge and correcting the predictions
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based on the measurement. A mix of measurement and prediction is used to estimate the current

state based on their reliability reflected from their variances. Studies investigating sensory-motor

transformation already suggest a mix of measurement based signal and an internal signal based

on reliability, extracted from their respective uncertainties for an optimal performance in a motor

task (Beers, Wolpert, and Haggard, 2002). Similarly, this may be expressed in as a Kalman

filter, that is in a generic Bayesian framework with a clear hypothesis (Welch and Bishop, 1995).

Following the idea of Kalman filter and extending the work of Montagnini et al. (2007),

Bogadhi, Montagnini, and Masson (2013) proposed a hierarchical, recurrent Bayesian framework

to understand both motion integration as observed in smooth pursuit and also the predictive

nature of pursuit. Probabilistic inference has been successful in explaining motion perception to

a variety of stimuli (Weiss, Simoncelli, and Adelson, 2002). They are somewhat similar to some

of the engineering models proposed earlier (Nowlan and Sejnowski, 1995), but allow for a more

explicit formulation of the underlying hypothesis. Such a framework accommodates uncertainty

in the motion information in the measurement likelihoods (Hedges, Stocker, and Simoncelli, 2011;

Stocker and Simoncelli, 2006; Weiss, Simoncelli, and Adelson, 2002) and also expectation can be

represented through the prior which can alter motion perception (Sotiropoulos, Seitz, and Seriès,

2011). Representing uncertainty in the measurements and prior expectation gives a simple, yet

powerful framework to investigate predictive behavior of the system under investigation, possibly

to optimally adapt to changes in the measurements.

As shown by Wuerger et al. (2010) in a temporal localization task, the bias and variability

show similar patterns for motion defined by vision, audition or both. Such optimal integration

is consistent with a probabilistic representation of motion. The framework implements Bayesian

estimation utilizing motion measurements and motion prediction. To detect straight trajectories

with constant velocity, input motion can be temporally grouped and expressed in terms of a

Bayesian generalization of a Kalman filtering (Welch and Bishop, 1995), as standard Kalman

filter models are not able to account for psychophysical data.

A neural network model of described probabilistic framework shares interesting similarities

with known properties of visual cortex and qualitatively accounts for psychophysical experiments

on motion occluders and motion outliers (Burgi, Yuille, and Grzywacz, 2000). The approach

from Bogadhi, Montagnini, and Masson (2013) allows for a mix of prediction and measurement

based on their reliability, as measured from their respective variances. The combined estimate is

used to drive the pursuit response. The hierarchical framework allows to investigate the adaptive

behavior of pursuit as well as the role of prediction on motion integration as observed in pursuit

responses. However, this model may still be seen as an incremental refinement of previous results

and does not yield a generic account on the motion extrapolation mechanism.

Summary

In this chapter, we have introduced motion-based position coding as a theory which centralizes

a family of neural data on visual motion processing. After a brief review on principals of
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motion processing path, we have targeted the problem of neural delays and predictive position

coding as a compensatory mechanism. Then we have reviewed various experimental evidences

which demonstrate the influence of the motion signal on position coding. For instance, we have

elaborated FLE as a well studied visual signature with various proposed theories. We also

have reviewed the experimental studies associated with motion extrapolation in interrupted

or occluded trajectories. At the end we have briefly introduced some of proposed models and

theories for the coherent perception and tracking of interrupted trajectories.

In the next chapter we will focus on some computational models which are the most relevant

with motion-based position coding theory, as a base for our model and methods described in

chapter 3.



Chapter 2

Models of the predictive estimation

of visual motion

Abstract

In this chapter, after a review on principal models of visual motion estimation, we will

focus on the specific family of models based on a hypothesis on temporal coherency of

motion. In the second section the review will continue by introducing models consistent with

motion-based position coding theory.

2.1 Visual motion estimation: models

From the physics point of view, motion is defined as the change in position of an object with

respect to reference points in time and space. It is usually associated with other concepts such

as speed, direction and acceleration. More precisely, what matters for the visual system and can

be detected by photoreceptors in the retina, is the relative displacement of a coherent volume

against it’s background, which leads to a systematic move in the balance of luminance in the

visual scene (or optical flow). In the following sections we will introduce modeling studies on

detecting and estimating of visual motion.

2.1.1 Spatiotemporal energy models for perception of motion (Adelson and

Bergen, 1985):

Efforts to formulate the visual motion has lead to mapping it in terms of its spatiotemporal

components in x− y − t coordinates. An object moving in x− y coordination would have an

oriented trace in x − y − t space and the tilt of this trace corresponds to the motion speed

(See Fig 2.1).

Based on this idea, Adelson and Bergen (1985) proposed a motion energy model, to de-

code speed and direction by detection of their slanted spatiotemporal path. In Fig 2.2, the

spatiotemporal oriented path has been shown for different speeds and directions.

29
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Figure 2.1: Spatiotemporal components of motion in x − y − t coordinates, figure is
adapted from (Adelson and Bergen, 1985): A bar moving to right is leaving an oriented trace in
x− y − t space. b and c show the slanted continuous and discrete paths

Figure 2.2: Speed in motion energy model, figure is adapted from (Adelson and Bergen,
1985): the slope of oriented path shown in Fig 2.1 represents the speed of motion (figures a to e
are illustration of different speeds in X − T space). It can be detected by a spatiotemporally
oriented receptive field shown in f and g.
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In the motion energy model, spatial and temporal response of motion detector sub-units are

separable as shown in Fig 2.3. Then, the spatiotemporal impulse response of unit composed

of positive and negative lobes would filter the motion path and rebuild the motion trace in

x-y-t space (See Fig 2.4, b and c). These filters detect motion but are not direction selective.

Direction selective Gabor filters can be built by different combination of spatial and temporal

impulse responses as shown in Fig 2.3.

Figure 2.3: Motion detector units in motion energy model, figure is adapted from (Adelson
and Bergen, 1985): Left) a motion detector unit can be built by illustrated spatial and temporal
impulse responses. The resultant spatiotemporal transfer function of unit includes different
positive and negative lobes which are separable. Right) two spatial (a) and two temporal (b)
functions which are different from each there in phase and temporal shift are used to build
spatiotemporal filters illustrated in (c). Different direction selective filters can be built by
combination of these filters.

This motion energy model, by dedicating spatiotemporal transfer function to each unit,

develops a network of specialized oriented detectors which are sensitive to the direction of motion,

similar to simple cells in the early visual cortex. This model is matched to properties of the

human visual system and has been successful to account for a vast body of physiological and

psychophysical data and is used as a reference model visual motion detection.

Motion and correspondence problem: Physical displacement of objects in the visual

scenes can be regarded as difference in the position of objects in consecutive discrete frames.

Then detecting the motion will be a problem to solve: which features of a scene are most

representative and useful to be tracked and matched between each two temporal steps? This

problem is known as the Correspondence problem. For example a movie is a sequence of

discrete positions in discrete times which leads to Apparent motion and is perceived coherently.

The correspondence problem in this example is to match some visual features like edges and

corners constantly and infer a global velocity.
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Figure 2.4: Sinusoidal motion detection, figure is adapted from (Adelson and Bergen,
1985): an example of sinusoidal motion (rightward-leftward-rightward) detected by (top row)
spatiotemporal separable unit in Fig 2.3, (bottom row) spatiotemporal motion energy unit in
Fig 2.3.

In various motion detection models different matching criteria have been proposed to solve the

correspondence problem. Temporal coherency of motion or Motion coherence theory is

one of them. In Fig 2.5 an example of correspondence problem is shown along with estimated

velocity field of motion with motion coherency theory.

2.1.2 Temporal coherency of motion as a neural and computational con-

straint

Models of visual motion have been progressed in the direction of accounting for global motion

perception, given local detected motion signals. One of the most important research lines to

this aim is based on spatial integration of local motion with a large scale constraint known

as Motion coherence theory . This hypothesis assumes that moving objects in nature most

probably travel through smooth trajectories and rarely make sharp turns, therefore motion is

assumed to be temporally coherent.

Many important visual phenomena recorded by psychophysical experiments are explained

with this theory. Yuille and Grzywacz (1989) proposed a mathematical analysis of this theory

and modeled the optimal velocity field accounting for motion capture, aperture problem and

motion cooperativity. In their mathematical framework, smoothness of motion is implemented

by minimizing a cost function on estimated velocity field. They argued computational advantage

of smooth velocity giving rise to perception of coherent motion.

Motion cooperativity is an example of estimated velocity field for short range motion and is

explained by motion coherence theory. In motion cooperativity experiment, stimulus is set of

several moving dots in random directions and at each time step the directions are chosen from
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a uniform distribution with a slight bias on one specific direction (See Fig 2.6). According to

psychophysical evidences, subjects are able to perceive a global motion in the direction of bias.

Mathematical framework shown in equation set 2.1 estimates the correct velocity field for this

experiment:

Figure 2.5: Correspondence problem, figure adopted from (Yuille and Grzywacz, 1989):

correspondence problem solved by long range constraint of motion coherency. Squares and

triangles match to 3 features of moving scene in frames number n and n + 1. Out of all six

possible combinations, the match proposed by motion coherency theory is consistent with the

inference of the visual system.

E(~V (~r), ~Ui) =
∑
i

[~V (~ri)− ~Ui]
2 − λ

∫ ∞∑
0

cmD
m(~V )2

~V (~r) =
∑
i

βi
2πσ2

exp
−(~r − ~ri)2

2σ2
(2.1)

(λδij +Gij) βj = Ui , Gij =
1

2πσ2
exp
−(~rj − ~ri)2

2σ2

Where ~V (~ri) and ~Ui are respectively estimated velocity field and measured velocity of image

at the position of the ith dot. Then c, λ and σ are constant values.
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Figure 2.6: Motion cooperativity phenomena, figure adopted from (Yuille and Grzywacz,

1989): estimated velocity field for different values of σ and λ in equation set 2.1 . Hundred

moving dots are placed in a square, their horizontal velocity is chosen from a uniform distribution

between 1 and −1 and vertical velocities are chosen from the same uniform distributions which

is slightly biased for 0.25. For certain values of σ and λ estimated velocity field shows a global

upward velocity matched to the psychophysical results.

In another study, Grzywacz, Watamaniuk, and McKee (1995) have implemented a neural

network based on the same theory which detects coherent trajectory of a signal dot among many

noise dots. Relevant psychophysical experiments have been done by Watamaniuk, McKee, and

Grzywacz (1995b) and the results illustrates ability of human subjects in detection of signal dot

moving a pool of noise dots with brownian motion. The proposed model reports global response

out of network which smoothly varies over time and over characteristics of neurons including

preferred speed and direction, center and radius of their receptive field. This is reflected the

equation 2.2:

E(t) =
∑
~r,~u,s,λ

Rl(t : ~r, ~u, s, λ)−Rc(t : ~r, ~u, s, λ)

+

∫
~r,~u,s,λ

ψr(DrRc)
2 + ψs(DsRc)

2 + ψu(DuRc)
2 + ψλ(DλRc)

2 (2.2)

+

∫
~r,~u,s,λ

ψt

∫
ś
W (ś)

(∂Rc
∂t

+ ś5Rc · ~u
)2
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Where Rc and Rl are respectively estimated and measured response of network and E(t) is

the energy criteria to be minimized. ~r, ~u, s, λ are respectively center of receptive field, preferred

direction, preferred speed and size of receptive field. ψxs are corresponding constant to determine

relative importance of each term and Dx is differential operator.

Figure 2.7: Motion coherency in a neural network, figure adopted from (Grzywacz, Wata-

maniuk, and McKee, 1995): neural network response to a horizontally moving dot in a pool

of noise dots under brownian motion. Network includes 22 × 22 cells and response has been

recorded from three population of cells with different preferred direction at three time steps.

The diameter of dark blobs is proportional to the response.

In this network, local motion signals are made coherent in space and time and give rise to

detection of coherent trajectories. Fig 2.7 illustrates gradual coherence detection of network for

a signal dot moving rightward in a 22× 22 size network with a dense background of randomly

moving dots.

2.1.3 Temporal coherency of motion and probabilistic motion estimation

Extending previous studies on temporal coherency of motion, Burgi, Yuille, and Grzywacz (2000)

proposed a probabilistic framework for motion estimation. In this model, motion is defined as a

time varying signal including position and velocity components and is represented probabilistically.

Taking advantage of predictability of smooth motion trajectory, their probabilistic motion
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estimation theory utilizes Bayesian generalization of standard Kalman filter in order to integrate

visual motion.

In earlier works from the field of computer vision, it is common to demonstrate temporal

coherence of successive states of image luminance with a Markov chain and define motion

estimation problem in a Kalman recursive linear state estimator. Standard Kalman theory

ensures optimal combination of Prior knowledge on behavior of system and instantaneous

observed data known as Likelihoods. However, the Kalman theory makes the hypothesis of

Gaussian distributions for modeling variations in observed data and transition of successive

states. Thus, it can not fully account for psychophysical evidences on motion occlusion and

motion outliers or more complex scenes including multiple moving objects.

The Generalized Kalman filter proposed by Burgi, Yuille, and Grzywacz (2000) is a solution

for this limitations by applying non Gaussian probability distributions for nonlinear state

estimations. By emphasizing the temporal coherency of motion and smoothness of trajectories,

the theory also recruits Prediction as a powerful mechanism in temporal grouping of visual

data and to interpret the moving scenes. The estimated motion finally is composed of predicted

state updated by observed data.

In a most simplified Bayesian form, temporal coherence of trajectory would play the role of

Prior information in initial state to be corrected by observed Likelihoods in the next step.

Equations 2.3-2.4 respectively illustrate estimation and prediction steps of the algorithm, where

~xk and ~zk are state vector and observation vectors and Zk = ~z0, ~z1, ......, ~zk includes all observed

history of the trajectory. State estimation for future step employes Zk for predicting and then

~zk+1 to correct the estimation.

P (~xk+1|Zk+1) =
P (~zk+1|~xk+1)

P ( ~zk+1|Zk)
P (~xk+1|Zk) (2.3)

P (~xk+1|Zk) =

∫
P (~xk+1|~xk) P (~xk|Zk) d~xk (2.4)

This Bayesian formulation can be rewritten by definition of motion as an update in the flow

field on image during time step δ shown by ~v(~x, t). Then φ(~x, t) = {φ1(~x, t), φ2(~x, t), ...., φM (~x, t)}
illustrates local observation all over image at time t and equations 2.3-2.4 turn to the following

equations:

Estimation: P ((~v(~x, t)|Φ(t)) =
P [~φ(~x, t)|~v(~x, t)]

P [~φ(~x, t)|Φ(t− δ)]
P [~v(~x, t)|Φ(t− δ)] (2.5)
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Prediction: P [(~v(~x, t)|Φ(t− δ)] =

∫
P (~v(~x, t)|(~v(~x, t− δ)) P (~v(~x, t− δ)|Φ(t− δ)) d~v(~x,t−δ)

(2.6)

The main computational advantage of the theory shown in equations 2.5-2.6 is the spatial

factorability of probability distributions. It means that Prior and Observation distributions

are regarded as independent coherent state transitions and local observations allover the image

as illustrated by equations 2.7-2.8 .

Pp(~v(~x, t)|~v(~x′, t− δ)) =
∏
x

pp(~v(~x, t)|~v(~x′, t− δ)) (2.7)

Pl(φ(~x, t)|~v(~x, t)) =
∏
x

pl(φ(~x, t)|~v(~x, t)) (2.8)

Factorability assumption in formulation of motion estimation implies parallel computation

of motion and is derived from the independence of these measurements in each spatial point of

image for the cost of a reduction of spatial coherency. Burgi, Yuille, and Grzywacz (2000) also

have implemented this theory in a neural network with two layers for priors and observations of

motion. At each image pixel, the network includes banks of receptive fields tuned for all velocities.

Therefore at each spatial position two neural populations are coding for likelihoods and priors

having special tuning curve to respect temporal coherency demonstrated by equations 2.3-2.8.

The network implements state transitions in position and velocity based on prior on temporal

coherency of motion with a multiplicative modulation of likelihood functions by observation

layer (See Fig 2.8).

Fig 2.9 depicts network response to two well known psychophysical experiments: motion

outlier and motion occlusion. In outlier experiment distractor dots are not moving coherently

enough to gain confidence in motion estimation.

The probabilistic motion estimation network of Burgi, Yuille, and Grzywacz (2000) is an efficient

implementation of temporal coherency theory. Bayesian essence of network using motion

prediction and motion observations gives rise to emergence of global motion direction based on

stochastic local computations.



Chapter 2: Models of the predictive estimation of visual motion 38

Figure 2.8: Structure of a neural network based on temporal coherency of motion,

figure adopted from (Burgi, Yuille, and Grzywacz, 2000): neural network implemented by Burgi,

Yuille, and Grzywacz (2000) for motion estimation. Network includes two distinct layers for

measurement (observations) and estimation. 12 spatial positions have been shown in the x− y
plane and each position contains cells tuned for various velocities (only horizontal and vertical

velocities are indicated in the figure) measurement layer affects estimation by strong multiplicative

excitatory connections between cells with similar velocity preference and weaker ones between

less similar cells. Importantly, trajectory prediction is implemented in estimation layer, where

cells with similar velocity preference excite each other in row.
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Figure 2.9: Motion outlier and motion occlusion experiments in network model

of Burgi, Yuille, and Grzywacz (2000). Left) network response to motion outlier, a signal dot

moving rightward in a pool of distractor dots under brownian motion. Unlike distractor dots,

trajectory of signal dot has enough coherency to be detected by network. Right) A: stimulus

and simulated response to motion occluder. Stimulus is shown for the time step just before

entering to the occlusion area (t = 18) and occluder illustrated by downward moving dots. As

shown in B, during occlusion time the strong peak of estimated direction at 0◦ starts to fade

out and another peak is developed around 270◦ (motion direction of occluder dots)

2.2 Motion-based position coding: models

As reviewed in previous section, the systematic relation of position coding with the history of

ongoing motion is supported by various experimental evidences. A very typical experimentation

which reveals the difference in position coding of stationary flashed and moving stimuli is flash

lag illusion (FLE) that has been repetitively studied from many behavioral and physiological

aspects. Reproducing FLE in different experimental efforts usually has been accompanied with

new insights into the delay compensation mechanisms of the brain.
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Motion based coding of position is one of candidate mechanisms for FLE and is known as

motion extrapolation after proposition by Nijhawan (1994). The competency of this hypothesis in

explaining a vast body of behavioral and experimental data keeps it under continuous verification

leading to design of new models and experiments to find its limitations.

In chapter 1 we reviewed main experimental studies in the literature and here we will go

through proposed models based on this hypothesis. Motion extrapolation is observed as early as

the retina by recording firing rate of ganglion cells (Berry et al., 1999), and then it is supported

to be implemented in striate (Jancke et al., 2004) and extra striate cortex (Maus, Fischer, and

Whitney, 2013; Maus et al., 2013) and also at behavioral levels. As all neural populations

covering the visual path from retina to higher areas are of various cell types and network

properties, there are few proposed models, accounting for specific data of some studies and here

we will review a brief summary of them.

2.2.1 Internal models of visual perception

In a network model of inhibitory and excitatory cell populations, Erlhagen (2003) studied

position code of moving stimuli versus a brief localized flashing target. The model, implements a

mean field representation of network excitation and inhibition and proposes an efficient internal

model for representation of moving objects. This self stabilized internal model would accelerate

processing of moving objects by accumulation of sub-threshold excitatory activities and pre-

shaping the neural response in the positions which are not yet touched by the stimulus. The

notion of internal model is consistent with bottom-up and top-down contributions to motion

processing.

As such, the coded position for moving object at each time step would be a combination of

bottom-up sensory input and top-down internally represented input. Any mismatch between

these two input sources would be sent back to higher areas to correct the internal model.

Functional advantages of having an internal model for motion perception is explored specially

for a motion occlusion and FLE like experimental setups (See Fig 2.10, Fig 2.11 and Fig 2.12).

Position field simulations suggest coherent motion presentation whenever there is an inter-

ruption or occlusion in the sensory input. In this context, as demonstrated by FLE, neural

response to moving objects can be regarded as spatiotemporal overlapping wave patterns; which

prime activation of next positions in the trajectory. While a brief localized flash stimulus lacks

such a smooth state transfer.

This model, being consistent with the approach of Nijhawan (1994), emphasizes the competence

of the internal model in accounting for motion induced spatial extrapolation of moving objects,

and also for anticipatory neural responses to overcome neural transfer delays. In addition, this

framework introduces a common candidate mechanism for motion processing at early and middle

trajectory parts, by simulating the Fröhlich effect and FLE. (See Fig 2.13).
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Figure 2.10: Internal model of visual motion, figure adopted from (Erlhagen, 2003). Spa-
tiotemporal response properties in the field model A) u(x, t) is excitatory field response for a
localized flash response, the black square shows center of stimulus. The response increases to its
maximum and then fades away. B) u(x, t) is excitatory field response for a moving stimulus.
Response lags behind center of stimulus shown by black square

Figure 2.11: model simulation of FLE in the field model of Erlhagen (2003). A) Temporal
evolution of excitatory field response in the position of flash. Response to the flash (solid line)
lags behind the response of the moving object (dashed line). B) Dependency of FLE to contrast
simulated in the model.
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Figure 2.12: Motion occlusion in the field model, figure adopted from (Erlhagen, 2003).
A) Schematic demonstration of motion occlusion. B) Temporal continuity of excitatory field
response to occluded stimulus.

Figure 2.13: Model simulation of the Fröhlich effect, figure adopted from (Jancke and
Erlhagen, 2010): A) . Four successive snapshots from development of excitatory field at the
begining of trajectory. B) Dependence of Fröhlich effect to speed. Model results and experimental
data are respectively shown by pluses and asterisks.
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2.2.2 Model of motion anticipation in retina

Berry et al. (1999) proposed a model for quantitative description of light response of ganglion

cells, along with their experimental evidences on anticipatory response in retina. To study the

sensitivity of anticipation to contrast of stimulus, they recorded the spatial profile of anticipatory

response by ganglion cell populations (See Fig 2.14).

Figure 2.14: Gain control model for motion extrapolation in the retina, figure adopted

from (Berry et al., 1999). Left) gain control model for light response of ganglion cells in the

retina. The model is described in equations 2.9 - 2.10. The output of a spatiotemporal filter

will be applied to an exponential and gain control filter, then firing rate will be generated after

getting rectified with a nonlinear function. Right) contrast response of ganglion cells along with

model response, with and without gain control. Contrast range is shown in a and traces in b

correspond to gain control at each contrast condition.

Their data illustrates that at high contrasts anticipatory signature is more evident, causing

the peak of spatial profile to be ahead of leading edge of stimulus. This signature is described

with a contrast gain control model: receptive field of ganglion cell is represented with a weighting

function k(x, t) which integrates the input light in space and time and determines the firing rate.

The model stated by following equations includes a negative feedback. That is activated in case

of having a strong stimulation in long time, and reduces the gain and controls the response for

the continuation of stimulus stream.
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u(t) = g(v)

∫ ∞
−∞

dx

∫ t

−∞
dt́ s(x, t́) k(x, t− t́) (2.9)

v(t) =

∫ t

−∞
dt́ u(t́) B exp

(
− t− t́

τ

)
(2.10)

g(v) =

 1 v < 0
1

1 + v4
v > 0

F (u) =

{
0 u < θ

α (u− θ) v > θ

2.2.3 Diagonal neural pathway model for delay compensation

In a recent work on the role of sensory prediction in delay compensation, Nijhawan and Wu

(2009) updated the model of Berry et al. (1999) with more emphasis on the modulatory effect of

starburst amacrine cells on ganglion cell populations. The model (so called diagonal model) in

the level of mechanism unifies two well know accounts for delay compensation and FLE: motion

extrapolation approach and the account based on different processing delays for moving and

stationary objects. The theory proposes diagonal neural pathways between retinotopic positions

in retina and cortical positions corresponding to the slightly ahead positions in the trajectory of

moving object (See Fig 2.15). Thus, cortical neurons in the path of motion (which are predicted

to be stimulated soon) are primed and the response latency is reduced. The slope of the diagonal

pathway would match to the distance that stimulus is predicted to be traveling during delay

latency. Theoretically, the neural populations corresponding to the actual position of stimulus

would respond with a significantly reduced delay.

The model differs from the model of Berry et al. (1999) in its more detailed physiological

description by the association of gain control function with the activity of amacrine startburst

cells. Indeed, the very particular structure of starburst amacrine cells with a small soma and

dense dendritic tree emits an asymmetric inhibitory current field toward ganglion cells. For a

rightward stimulus, asymmetric inhibition depresses more ganglion cells that are in left hand

side of actual position of stimulus than the ones in the right hand side. Therefore, gain control

function dedicates more gain to the cells situated slightly ahead of stimulus and shifts the spatial

profile of response in the direction of motion (See Fig 2.16). This physiological mechanism is

consistent with the diagonal activation of future cortical positions to encode the actual position

of stimulus and to compensate for transfer delays.

The diagonal model is a comprehensive explanation of the motion extrapolation mechanisms

started in retina. It is consistent with physiological signatures and anatomical properties of retina

as well as being a more generic computational mechanism which is likely to be implemented in

other cortical areas for the aim of delay compensation and sensory prediction.
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Figure 2.15: Diagonal model of motion extrapolation, figure adopted from (Nijhawan
and Wu, 2009): Comparison of DL (different latencies for moving and stationary objects) and
diagonal motion extrapolation model. A, B, C,..., and Á, B́, Ć, .... respectively represent retinal
and cortical positions of stimulus. a) DL model illustrates the reduction of transfer delay by
priming the actual position of stimulus via lateral connections in the cortical area. b) diagonal
model illustrates activation of actual position of stimulus by spatial shifting of activity in the
retinal layer.

Figure 2.16: The implementation scheme of diagonal model in the retina, figure adopted
from (Nijhawan and Wu, 2009). a) illustrates the symmetric spatial profile of response in ganglion
cell to a horizontally moving stimulus, before modulatory effect of starburst amacrine cells. b)
illustrates the asymmetric inhibition imposed by starburst amacrine cells to ganglion cells. By
gain control and inhibition the symmetric response turns into the asymmetric one shown in c.
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2.2.4 Neural network models of FLE

In a simple feedforward network of leaky integrate and fire neurons Baldo and Caticha (2005)

have simulated FLE and various psychophysical attributes of that. The model does not explicitly

implement a specific theory and FLE arises from spatial advancement of activity in a network

of lateral connections by excitatory and inhibitory neurons. This model emphasizes top down

facilitation of neurons and facilitations generated by spatial interactions along a pathway, being

consistent with motion extrapolation account. This study has not investigated the influence of

velocity coding in spatial facilitations.

Other neural network models have addresses the question of neural delays and motion

extrapolation at single neuron level (Lim and Choe, 2006; Lim and Choe, 2008). In these models,

neurons are sensitive to the rate of change in the input and via extrapolative activations they

estimate the state of the external world at time = t + ∆t instead of time = t. Facilitatory

activity is derived from the present and past activity of network and synaptic efficacy implements

kind of smoothness constraint and coherency in the spiking activity. Therefore spiking activity is

extrapolated in the direction of change via STDP learning rule along with facilitated synapses.

Summary

In this chapter, we have reviewed the basic models of visual motion estimation. In the first

section we have focused on the classic motion energy model of Adelson and Bergen (1985),

then we have introduced the modeling studies based on temporal coherency of motion and

their application to well known problems in visual processing: correspondence problem, motion

cooperatively phenomena, motion outliers and motion occlusion.

In the second section we have focused on the the models consistent with motion-based

prediction theory, including an internal model of visual perception with a demonstration of FLE,

A model for motion anticipation in the retina, diagonal model for delay compensation and some

relevant neural network models.

Results of this thesis provides a generic computational framework to study the influence of

motion-based information on position coding of moving object. In the next chapter, we will

describe the basic methods of our study as well as computational details of the Motion-based

prediction (MBP) model.
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Chapter 3

Motion-based prediction

Abstract

In this chapter, we will first briefly review Bayesian motion estimation and Kalman

filtering as the most common frameworks in studying visual motion prediction. Then we

will introduced the CONDENSATION algorithm (Isard and Blake, 1998) as a generalization

of Kalman filter and a powerful particle filtering method in studying visual motion. Then

we will elaborate our motion-based prediction model from Bayesian master equations to the

implementation details. Finally we will discuss the novelty of the current implementation for

the objectives of this study.

3.1 Predictive coding in motion detection

From the point of view of evolution, there are two most fundamental abilities for all species to

survive: first they need to precisely locate preys to hunt, and second they must have efficient

reactions against predators. These basic survival conditions can be stated in a motion estimation

framework, as successful movements of the animal toward targets or away from enemies is rooted

in precise information about their instantaneous location.

Performance of neural systems in fulfilling these tasks is in conflict with the existence of

various sources of noise or delay in the delivery of information from physical world to processing

areas. This issue has attracted great research efforts and has led to development of a research

line as motion prediction. Motion prediction theory assumes that visual system takes advantage

of motion history to be prepared for processing of the most expected locations of moving objects.

Functional benefits of such a predictive system are validated by a wide range of neuronal and

behavioral evidences (See chapter 1), giving rise to development of relevant solid theoretical

frameworks. Bayesian motion estimation and Kalman filtering approaches are the most dominant

theories in motion prediction research.

In this section, we will briefly review the theoretical principles of predictive coding in motion

detection, as a base for our model and methods described in Section 3.2.

48
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3.1.1 Bayesian inference and Markov chain

Theories based on considering the brain as a Bayesian machine have grown fast during the

last decades, mainly because of the intuitive explanation that they provide, about the neural

structure, sensory processing and decision making. Central simplification in these models comes

by assuming that regularities of the external world, known by physical rules, are reflected in the

structure and processing patterns of the brain. This regularities are called prior informations

and this assumption leads to studying neural functions in a reduced and well defined state

space, composed of the most expected ones. Then the ultimate inferred posterior is created

by combination of priors and the most recent measurements from the world. Equation 3.1

summarizes the Bayesian inference for an unknown parameter, x:

posterior(x) = prior(x) ∗ likelihood(x) (3.1)

Another flexibility of Bayesian formulation of neural signatures is a probabilistic description of

state variables. According to neural recordings, different trials of the same stimulation will never

produce exactly the same responses, but they are rather distributed in a range definable with

statistical parameters.

Bayesian theory has been widely used to describe various behavioral and physiological data

sets in motion prediction. In some cases, Bayesian inference is applied to reproduce a specific

data set in physiology or behavior (Bogadhi et al., 2011; Hürlimann, Kiper, and Carandini, 2002;

Montagnini et al., 2007). These studies, for instance, are useful to examine the effect of variously

defined priors or to provide a better understanding from the way that the brain infers motion.

In another category of models, like the the network model of Burgi, Yuille, and Grzywacz

(2000), Bayesian inference is implemented in a purely theoretical framework, based on temporal

coherency of motion. Another elegant Bayesian model of motion estimation describes the

posterior velocity of image motion based on the prior information on luminance conservancy of

the image, which is associated with temporal coherency of motion (Weiss and Fleet, 2001).

In the current study, we also have temporal coherency of motion as the hypothesis but

implemented in a different framework. As we reviewed in chapter 1, this hypothesis is suitable

to explore more generic and large-scale properties of visual motion processing, by simulating

well known visual experiments. It also allows various experimental assessments, which may be

hard to test in real experimental setups.

Bayesian motion estimators are implemented as Markov chain, where every state includes

the instantaneous position and velocity of the moving object. In the Markov chain, motion is

dynamically estimated, based on likelihoods and most expected motion states. This expectancy

is determined by prior information about smoothness of motions in the nature. The achieved

posterior distribution represents the estimated motion at a specific moment. This dynamical
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z0 z”t · · · · · · zt≠”t zt

I0 I”t It≠”t It

Figure 3.1: Classic Markov chain for state transition of system: in the current study,
the estimated state vector is zt = {xt, yt, ut, vt} composed of position and velocity of moving
stimulus and instantaneous measurements from the image are represented by It

motion estimation has been illustrated in Fig 3.1 and is summarized in following equations:

estimation: p(zt|I0:t) ∝ p(It−δt:t|zt) · p(zt|I0:t−δt) (3.2)

prediction: p(zt|I0:t−δt) =

∫
dzt−δt p(zt|zt−δt) · p(zt−δt|I0:t−δt) (3.3)

Where zt = {xt, yt, ut, vt} is the state vector and motion signal, measured from a moving

object or estimated for a target motion, is represented in a probabilistic fashion. Meaning that,

instead of allocating a deterministic scalar to motion, one may describe it in terms of value of

belief about existence of motion with a specific velocity in a particular location. This description

of motion is also appropriate to depict the uncertain nature of activity propagation in the neural

system. In the visual areas with retinotopic representation of space, the tuning property of

neurons to a certain motion signal (including the position and velocity) is not deterministic and

rather it is considered like an uncertain estimation.

Equations 3.2-3.3 are master equations of our framework which instantaneously update

the estimated motion vector, based on measurements and expectations of the internal model.

Equation 3.2 illustrates Bayesian combinations of latest measurements of motion with the

most predicted state vector of the internal model. State transitions, as illustrated in Fig 3.1,

are determined by conditional probabilities p(It−δt:t|zt) and p(zt|I0:t−δt), where the former is

measurement pdf and latter refers to the the predicted state of motion.

3.1.2 Kalman filter as a motion predictor

The Kalman filter (Kalman, Rudolph, and Emil, 1960) is an optimal Bayesian estimator, in

which state estimation is fulfilled by means of the prior knowledge about operational principles of

the system, in combination with indirect and uncertain observations from its output. In Kalman

formulations, these two sources of information are stated as Process model and Measurment

model, respectively indicating to the predictive and corrective steps of the filter. The reliability

of each model is defined by additive Gaussian noises and a crucial point in Kalman filtering is

the relative contributions of these uncertainty sources in final state estimation. This is reflected
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in Kalman gain, used to adjust the internal precision of the filter. The gain is recursively

calculated to minimize the prediction error at each step and as such, the Kalman filter is the

optimal estimator for this formulation.

Kalman filtering approaches have been widely used to model the internal expected mo-

tion (Bogadhi, Montagnini, and Masson, 2013; Deneve, Duhamel, and Pouget, 2007; Xivry et al.,

2013) in the neural, behavioral and eye movement levels.

Despite successful and various applications of the Kalman filter, it has some limitations.

First, the process and measurement models need to be linear, and second, the additive noises in

both models are required to be Gaussian. It is not always easy to write system equations in

a Kalman format and use the classical algorithm to find the Kalman gain. Models based on

generalization of Kalman filter have been developed to deal with more complex systems, where

standard Kalman is not sufficient to model system nonlinearities.

3.1.3 Particle filtering and CONDENSATION algorithm

Particle filtering (PF) methods are a family of mathematical approximations which are used

to extend a range of Kalman-like applications. They may be addressed also as Sequential

Importance Sampling (SIS), Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo

(SMC) methods. The shared property of all these methods is that probability distribution

functions (pdfs) in the system and measurement models can be represented by a set of weighted

samples, so called particles. In these algorithms, measurements and estimation are done in

discrete time steps and the posterior is represented by an approximated sum of weighted particles.

The motion estimation algorithm that we have used in this work is a type of particle filtering

implemented by the CONDENSATION algorithm.

The CONDENSATION (Conditional Density Propagation) algorithm was first proposed

by Isard and Blake (1998) to model the tracking of curves in visual clutter. This algorithm

is based on a probabilistic representation of motion information and conditional propagation

of them in time. The main advantage of the CONDENSATION algorithm is that, unlike the

Kalman filter, there is no assumption on linearity of process and measurement models, and

of normality of perturbations, or uni-modality of input distributions. In CONDENSATION

algorithm, as illustrated in Fig 3.2, probabilistic distributions are represented by a set of samples.

The generality of the algorithm along with its simpler implementation than Kalman, makes it a

powerful candidate for a general state estimation model of predictive coding.

The CONDENSATION algorithm may be adapted to study motion-based prediction. Track-

ing of moving targets has been modeled in different efforts in machine vision and neuroscience

domains. A large family of works, as we have reviewed them in chapter 1, are built based on the

hypothesis of smoothness of motion trajectories. In this context, Kalman filtering approach as

an optimal recursive state estimator has been widely used. The CONDENSATION algorithm

provides a probabilistic representation of motion state space in a simpler framework and with

lower computational cost. Being stated in Markov chain guarantees being dependent only on the
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Figure 3.2: Weighted sampling in CONDENSATION algorithm, figure adapted from Is-
ard and Blake (1998): continuous posterior distribution has been represented by a set of weighted
circles.

preceding state and nearly real time motion estimation performance. In general, to study visual

signatures, particle filtering gives us flexibility to model motion integration at a more precise

level.

Motion-based predictive coding, as used as a theory in the context of this thesis, highlights

the importance of motion signal as a potential modulator of visual processing. Physical motion

of a stimulus, defined as a signal composed of position, speed and direction, after translation to

a sensory signal is accurately delivered to specialized neural populations in different areas of

the visual system. Our global motion perception originates from distributed neural map of the

motion, as a measurable physical signal.

In the next section we will describe our abstract motion estimation framework and allover this

chapter motion-based predictive coding will be referred to as MBP. This model bridges between

the coherency of motion trajectory and neural stimulation sequences in time and position. This

provides a simple and efficient abstract tool to investigate interaction between predictability of

motion trajectory and the coherency of the corresponding neural code.

3.2 Methods: MBP model implemented by CONDENSATION

algorithm

The basic framework used in this thesis was first developed to model the motion integration

process in the aperture problem (Perrinet and Masson, 2012). Master equations of the model

are equations 3.2−3.3 which represent probability distributions of the estimated motion and the

predicted motion, in terms of position and velocity components. The model uses elementary

motion detectors at its input layer similar to the ones proposed by Adelson and Bergen (1985),

and the generative model of Weiss, Simoncelli, and Adelson (2002) for the conversion of luminance
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Figure 3.3: Estimated motions in three different frames of the trajectory, illustrated
as a distribution of weighted particles. For simplicity we have plotted only one tenth of all
particles. Stimulus is a horizontally moving Gaussian dot which is displaced one spatial unit in
one temporal period (in this example it starts to move from x = −0.5 to x = 0.5, at speed = 1).
The relative magnitude of particles represents the estimated speed A) estimated motion in the
first frame is completely random (initialization of the algorithm) B) estimated motion in 10th
frame is relatively concentrated on the position of stimulus with a reasonable dispersion around
physical motion C) estimated motion in 40th frame is well placed in the center of dot with a
low variance around its direction. In B and C two sample particles have been highlighted with
green and red markers (p1, p2), representing respectively for high weighted and low weighted
local estimations.

to motion measurements. The temporal coherency theory of Burgi, Yuille, and Grzywacz (2000)

is implemented as prior knowledge or motion state transfer model.

In this section we will first describe approximation of estimated motion by the CONDENSA-

TION algorithm and steps of particle filtering. Then we will explain internal model of motion

and finally we will elaborate the luminance-based motion detection procedure.

3.2.1 Weighted samples of estimated motion

We have used particle filtering to approximate probabilistic representation of motion. This

decreases the computational cost of the model by removing unnecessary calculations as well as

giving biologically plausible interpretations to the model.

Indeed, probabilistically estimated motion p(z|I0:t) (calculated in equation 3.2) can be

approximated by p̂(z|I0:t) as follows:

p̂(z|I0:t) = p̂(~x, ~V |I0:t) ≈
∑
i∈1:N

wi · (δ(~x− (xi, yi)), δ(~V − (ui, vi))) (3.4)

In this framework, we represent estimated motion as a set of N particles defined as πi =

{xi, yi, ui, vi} for i ∈ {1, 2, ....., N}, with corresponding normalized positive weights w =

{wi}i∈1:N ,
∑

i∈1:N wi = 1.

Fig 3.3 illustrates an example of estimated motion represented by particle sets.

Model initialization: Stimulus of the model is a movie composed of certain number of
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frames presenting a horizontally moving target. In most of experiments of this thesis, the

stimulus is an image of a Gaussian dot. At very first frame of the stimulus, before having any

measurements available, the model is randomly initiated. In other words, it is assumed that

at the frame number 1, position measurements are random probability distributions over the

possible range, and velocity measurements are composed of random samples from a certain range

of slow speeds and directions between 0 and 2π. (See Fig 3.3-A).

3.2.2 Internal model: Motion coherency

After initialization of particles at frame number 1, the distributed particles allover the luminance

profile go under smooth trajectory prediction. The predictive step is done by the internal

representation of motion that favors smooth trajectories. Having zt = {xt, yt, ut, vt} as the state

vector then p(zt|zt−δt) in the equation 3.3 can be calculated based on temporal coherency of

motion at each step, implemented by equations 3.5-3.6:

xt = x(t−δt) + u(t−δt) · (δt) + νx

yt = y(t−δt) + v(t−δt) · (δt) + νy (3.5)

ut = γ · u(t−δt) + νu

vt = γ · v(t−δt) + νv (3.6)

νx, νy ∝ N (x, y; 0, DX · δt) (3.7)

νu, νv ∝ N (u, v; 0, (σ−2
p +D−1

V )−1 · δt) (3.8)

Where νx, νy are Gaussian distributions of position blurring andDX ·δt is blur value sampled at

each time step. Blurring of velocity is done with a sample from νu and νv, Gaussian distributions

with standard deviation of (σ−2
p +D−1

V )−1 · δt. This standard deviation is combination of two

other standard deviations (σp and DV ) respectively matched to the prior information on slowness

and smoothness of motion.

Equations 3.5-3.6 compose a generative model to implement smoothness of the trajectory at

each step. Particles at each frame are transported by these equations and then are weighted

based on motion measurements.

3.2.3 Luminance-based detection of motion

The motion detection task in the model is done based on the luminance profile of successive

frames. After initialization at frame number 1 particles are transported by the generative model.

Then at the frame number 2 predicted particles are weighted based on available measurements.

In this step, mismatch between predicted position of target (suggested by each particle) and real

position of it in the current frame is measured. The particles (the quality of estimations) are

weighted based on their mismatch, which is stated in terms of luminance energy.



Chapter 3: Model and methods (Motion-based prediction) 55

At each frame, to compute luminance mismatch energy associated with each particle we

translate the reference image with estimated velocity of each particle. A local estimator particle is

represented as πi = {(xi, yi, ui, vi), wi} for i ∈ {1, 2, ....., N}. To be able to asses the contribution

of estimated velocity at the exact estimated position of the particle, we need to calculate p(It|πi)
(It is luminance information). To this aim we approximate this probability by defining a Gaussian

mask, Mπi , around πi in 2-D visual space:

Mπi = exp−(x− xi)2 + (y − yi)2

2 ∗ σ2
RF

(3.9)

Where σRF is the standard deviation of the mask which may be interpreted as the radius of the

positional receptive field centered on the particle (the radius of red and green areas in Fig 3.5).

The value of σRF will affect the precision of measurements and eventually the estimated motion

(See Fig 3.6). Having It as the reference image, the luminance mismatch and energy of each

particle is given by:

Eπi = ||(It − Îπi(t−δt)) ∗Mπi ||2 (3.10)

then particles are weighted based on their energy:

ẃi = exp(
−Eπi ∗ C2

2
) + ε (3.11)

where C is an measurement contrast factor which controls the number of high weighted

particles and (ε� 1) ensures that none of weights will be zero. Final weights are normalized

over all particles, as stated in equation 3.12.

p(It|πi) ' p̂(It|πi) = wi =
ẃi∑

i∈1:N ẃi
(3.12)

Fig 3.4 and Fig 3.5 illustrate the evaluation procedure of particles. In Fig 3.4 two frames

have been chosen (frame numbers 11 and 41) and for each frame two sample particles are shown

from estimated motion at previous frames (frames number 10 and 40 respectively). Particles

(p1 and p2) are indicated with green and red markers and the gray circle matches to the actual

position of stimulus, which is the reference of evaluation. Green and red circles indicate the

stimulus position as predicted by p1 and p2.

Fig 3.5 illustrates the luminance energy mismatch for p1 and p2, previously indicated in

Fig 3.4-A. The position of each particle is marked with a Gaussian mask of the same color.

Mismatch at each case is a crescent resultant from subtraction of two circles (actual position

and predicted position). Estimation by p1 is very close to the reference, resulting in a very thin

mismatched area. While, mismatch area associated to p2 is bigger (its direction is far enough

from horizontal). Then according to equations 3.10 and 3.12, p1 and p2 respectively get high

and low weights.

Fig 3.8 illustrates luminance distribution of a Gaussian dot as stimulus, versus noisy mea-
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Figure 3.4: Motion measurements to evaluate four sample particles illustrated in
Fig 3.3: in each figure p1, p2 respectively symbolize high weighted and low weighted local
estimations. Green and red circles are matched to the positions of stimulus predicted by p1 and
p2. Gray circles represent the actual location of stimulus at next frame, which is the reference
to evaluate particles.
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Figure 3.5: Evaluation and weighting of local motion estimations based on their
likelihood: the actual position of stimulus in the next frame has been shown with gray circle
(reference image), while green and red circles are predicted position of stimulus by each particles.
The likelihood of each particle is determined by subtraction of reference image and the circle of
corresponding color. Overlap between subtracted area and the Gaussian mask centered by the
particles defines energy of each particle. A) The resultant crescent by the subtraction (reference
image - green circle) is very thin and located on the tail of green mask. This particle has little
luminance energy. B) The area (reference image - red circle) is a crescent with a significant
surface and overlap with the red Gaussian mask. This particle contains high luminance energy.
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surements of it due to the mask described in equation 3.9. In Fig 3.7 estimated position of

stimulus have been shown along with instantaneous location of luminance.

3.2.4 Particle resampling

After measurement, evaluation and dedicating relative weight to local motion estimators, weights

will go under a resampling algorithm. The resampling step is done to avoid a usual numerical

problem in particle filtering, known as particle impoverishment. The problem is associated with

presence of particles with small weights in the estimated motion.

We have used a classical resampling routine similar to the one used in the CONDENSATION

algorithm (Isard and Blake, 1998). Allover this study we had resampling factor equal to 100%,

meaning that the total number of particles remains the same from the first frame to the end. By

resampling, particles based on their weights are either eliminated or duplicated. In fact similar

to the histogram equalization algorithms, it gradually reduces the difference between weights

(quality of local estimations). This has been illustrated in Fig 3.9, where weight distributions

gets unified by advancing in frame numbers.
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Figure 3.6: The effect of σRF in estimated motion: the figure illustrates the estimated

motion in a specific point in the trajectory of stimulus, while σRF is changing between 0.1 and

0.45 of the screen (the visual area covering whole path of the stimulus). The inset includes the

Gaussian fits of each condition. The shaded area indicates the temporal period in which that

specific point is covered by the luminance of stimulus. The peak of confidence is small because

this example shows the confidence of the estimated position in a small positional bin. In the

tracking states the instantaneous integral of confidences over positional bins matched to the

surface of the stimulus would be 1.
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Considering that weights represent relative quality of estimations, resampling algorithm

moves toward creating more particles around high weighted ones and decreasing the number

of particles with lower weights. To this aim Cumulative Weight Function (CWF) is calculated

(See Fig 3.10). With low resolution, CWF seems to grow linearly between 0 and 1 and over all

particle. Evidently, very localized assessment of CWF will reveal non equal contribution of each

particle. As shown in Fig 3.11, CWF is sampled by a unified rate equal to r = 1
N (where N

is number of particles), indicated by blue dotted lines. Any particle with considerably bigger

weight than the rate is likely to be sampled more than once, and on the other hand, particles

which cause a small jump in CWF are likely not to be sampled at all. Two example particles in

the index range of [0, 10] have been marked by green and red diamonds, where green is sampled

twice and red is not sampled. Sampling a certain particle index twice means replicating its

estimated coordinates and labeling it with a index coming from one of removed particles.
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Figure 3.7: Estimated position of stimulus versus luminance distribution, shown for

sampled frames from the trajectory: stimulus is moving from −0.5 to 0.5, green shadowed areas

refer to luminance while estimated position is plotted by black solid lines. For visibility we have

multiplied the value of estimated peaks with a factor around number of particles.
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Figure 3.8: Luminance of the stimulus and luminance measurements: Top) Luminance

profile of a Gaussian dot as stimulus, a frame matching to a position in the middle of trajectory

Middle) Luminance distribution of Gaussian dot over position(X), where each colored trace from

red to purple corresponds to luminance at position(y) between −1 and 1 Bottom) Luminance

measurements from stimulus with the Gaussian mask of each local estimator, as described in

equation 3.9
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Figure 3.9: Weight distribution of particles in three sample frames of stimulus: due
to resampling weights are gradually moving toward a unified distribution
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Figure 3.10: Weight distribution of particles in frame No 4 and corresponding Cu-
mulative Weight Function, as it is clear from weights, increments in CWF are not necessarily
equal, even though it looks linear between 0 and 1.
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Figure 3.11: Particle resampling: CWF illustrated in Fig 3.10 has been shown for two
localized parts, including 10 first and 10 last particles (note broken axes). As the resampling
factor is 100%, the total number of particles is kept at each frame (1024 allover this study).
The weight range (0, 1) is divided to 1024 segments (dotted blue lines) and the intersection
of each segment with CWF determines the resampled particles. High weighted particles (like
the one marked with green diamond) will have two intersections with segments, versus some
other particles with no intersection (compare with the particle marked with red diamond). This
resampling routine at each frame will eliminate less confident particles and replicate the particles
with high confidence.
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Simulation details: All simulations were conducted using a cluster of Linux nodes and

python environment (version 2.7), with Numpy (Oliphant, 2007) and Scipy modules (respectively

versions 1.6.2 and 0.10.1). Visualizations were performed in Matplotlib (Hunter, 2007). All

scripts are available upon request.

3.3 Computational advantages and biological implications

In this section we will summarize the advantages of our modeling framework for the purpose of

this study.

Position of motion as a random variable: There is one main difference of this imple-

mentation with previous studies which results in a more complete representation of motion.

Indeed, previous models as Burgi, Yuille, and Grzywacz (2000) and Weiss, Simoncelli, and

Adelson (2002) and some other feedforward models proposed for studying motion detection

are lacking an important biological constraint in detection and estimation of visual motion.

This constraint is about the subtle way of mapping motion information from physical world via

specialized receptive fields to the visual processing areas.

In the motion detection models developed for computer vision purposes, it is usually neglected

that visual motion is composed of successive stimulation of neighboring positions on the trajectory

of moving objects. In the previous feed forward models, motion is estimated as a velocity

distribution over the whole visual space and position of motion does not play any role in the

estimations. Therefore, if one shuffle all local velocity estimations, the global readout of motion

would remain still the same.

In the current implementation, position of motion is an important piece of information

to be considered, meaning that all local measurement and estimations have precise biological

meanings and indeed there is a distance based dependency between local information. Based on

the temporal coherency hypothesis, for the visual system motion is a distributed stimulation

along a coherent path and spatial arrangement of local motion in the visual field matters.

In MBP model, position of motion is a random variable which along with velocity defines the

motion. Thus, in the probabilistic representation of motion instead of P (~V (~x)|I) we use P (~x,~v|I)

(where I is the image luminance information). This representation of motion is consistent

with retinotopic representation of motion and can base a more realistic, functional model to

study visual computations. In addition, motion estimation problem moves from technical opti-

mization issue to an abstract predictor of neural activation in specific parts of the retinotopic map.

Generalized motion estimator: As we mentioned earlier in this chapter, the biggest

advantage that comes with Generalizations of Kalman filters is their ability to deal with

non-Gaussian and non unimodal inputs and non Gaussian noise as system and measurement

perturbations. In the CONDENSATION algorithm (Isard and Blake, 1998) and the particle

filter used in the current study, multi modality adds flexibility and precision to the model and

makes it a more competent candidate to study visual motion. Particularly, studying motion
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integration with a particle filter, provides new theoretical insights on the non isotropic and

asymmetric propagation of local motion estimators toward a global decision-like motion. As the

base model of the current study, Perrinet and Masson (2012) have elaborated various aspects

of motion integration by modeling the aperture problem. For instance, as they proposed, in

tracking stimuli with more complex shape like a tilted bar, particle filtering of motion results in

emergence of two line endings. This interesting feature arises solely from the dynamics of the

model, instead of an ad hoc constraint.

In addition, as having multimodal posterior distribution is a feature of particle filters, the

current model is able to deal with tracking multiple objects in one scene. Theoretically, this type

of experimental setups in model are useful for provide predictions about the relative tracking

quality of multiple object based on the difference in their contrast, shape and trajectory.

Discrete time state estimation and computational cost: Particle filtering algorithm

uses the power of Markov chain to model motion dynamics, therefore provides discrete time

propagation of state densities. On the other hand, as an efficient and precise enough approxima-

tion, motion states are represented by weighted samples of posterior probabilities. The efficient

approximation of estimations is a big advantage of the current framework, as it decreases the

computational cost dramatically. In addition, with a certain complexity and fixed number of

particles the model is able to deal with a range of stimuli from simple dots to real-world videos

(See Fig 3.12).

Particles as abstract receptive fields: Abstract motion estimator used in this study

is structurally compatible with motion processing in the visual system. In the model, esti-

mated motion as a posterior probability includes a set of weighted particles, probabilistically

distributed over certain positions and with certain velocities. The two dimensional posterior

may be considered as a predictor for specifications of neural activity in retinotopic areas of the

visual system. While tracking a smoothly moving stimulus, the position and velocity of particles

are continuously updated, based on smoothness constraint and instantaneous sensory input.

This simple framework depicts a crude image from relative stimulation of receptive fields lying

over the trajectory of the stimulus. Indeed, the position of each particle may be considered as

the center of the activated receptive field, where the associated weight quantifies the relative

contribution of that receptive field in the population response.

Simple map of physical motion into neural activity: The current implementation

provides a particular framework to highlight the encoding of physical motion into probabilistic

neural activity. In fine grained maps for estimated position and velocity of stimulus, one can study

the contribution of different components of the motion signal in modulation of corresponding

neural response. In chapters 3 and 4 we have elaborated these three configurations of the model

as MBP, PX (position-based prediction) and PV(velocity-based prediction) models. Indeed,
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Figure 3.12: Snapshots of different moving stimuli tested on model: from top left to
bottom right: dot, tilted bar, multiball, walking cartoon, grating and a natural video. The inset
illustrates the distribution of estimated directions for motion.
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PV model would be equivalent to the models like Weiss, Simoncelli, and Adelson (2002) and

PX model in principal is similar to the model of Tlapale, Masson, and Kornprobst (2010). In

various cases we have highlighted the difference of MBP model with these two models as control.

Furthermore, the spatiotemporal readouts of the model are particularly informative in studying

the effect of delays in position coding. We have explored these type of questions in chapter 5.

Prediction as a large scale constraint: Prediction of motion trajectory as a large scale

constraint may modulate the temporal and spatial distribution of neural activity, independent

from detailed and neural connections specific to each visual areas. The current framework,

implements the internal model of smooth trajectories, with a particular emphasis on the coherency

of neural activity being caused by prediction. In this context, it is important to study the role

of strong and weak internal models on the precision and quality of positional code.

Indeed, simple transport of position and velocity information in predictable smooth trajecto-

ries explains a large range of visual computations. Implementation with particle filter brings

the advantage of studying mentioned transports in probabilistic distribution of local motion

estimators. In the current framework, by a set of local motion estimators we are able to highlight

the importance of local positions of a global motion in the efficient motion tracking.

Generic sensory computations: The motion-based prediction hypothesis implemented

with particle filtering is precise enough to provide insights to visual computations and also generic

enough to be a base toward asking similar questions on sensory integration of other modalities.

First, as an abstract model for visual motion, it explains some shared neural mechanisms

among different motion processing stages of the visual system. For instance, diagonal motion

extrapolation that we have proposed in chapter 5 can partly be implemented from retina to the

higher level processing areas like MT, independent from neural specifications and connection

properties of each area. Likewise, visual motion integration elaborated by this model has a

counterpart in motion integration of somatosensory and tactile senses.

Summary

In this chapter, we described the implementation details of the motion-based prediction model.

We elaborated motion detection, motion measurements, motion prediction and motion estimation

steps. In the next chapter we will use the MBP model and two control configurations of it (PV

and PX models) to study robust motion estimation in noisy or fragmented trajectories.
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Chapter 4

Motion-based prediction and robust

tracking of moving objects

Abstract

As we discussed in previous chapters, prior knowledge on the smoothness of motion

can be implemented in a robust motion estimation framework. In other words, gaining

enough knowledge from trajectory of moving object can lead to emergence of an internal

representation for the trajectory, which keeps predicting the motion by less reliance on the

instantaneous sensory input. In this chapter, we have surveyed the functional advantages

of such a velocity-dependent internal representation. We have challenged the MBP model

(motion-based prediction), during temporal absence of target or at the presence of other

sources of uncertainty. To this aim, we have explored the sufficiency and competency of two

other incomplete configurations of the model in robust tracking. These control models are

configured by excluding one ingredient of motion : PX (position-based prediction) model

and PV (velocity-based prediction) model. Furthermore, by assuming prior information on

statistical slowness of motion, we have tested how each configuration behaves, with weak

and strong preferences for slow motions.

According to our results, even for a simple stimulus such as the one that we have used (a

gaussian dot), PX model provides a non efficient internal representation and a weak tracking.

Between PV and MBP configurations, MBP model has a more robust tracking than PV

model over a wider contrast range.

Also, in simulations of a blanked trajectory, we assessed how internal representation

may play as a mechanism to fill the gap between trajectory fragments, and in the efficient

estimation of motion at reappearance of stimulus. In this case, MBP model provides an

efficient internal representation and quicker catch up at trajectory restart point. We also have

explored the interaction between prior information on the slowness of motion and contrast

of stimuli. Having a very strong prior preference on slow speeds does not let tracking to

develop, even in the MBP model.

Our results in this chapter suggest that, the velocity dependent internal representation

of motion, as implemented by MBP model, may serve as motion extrapolation mechanism

to keep sensory coherency in the case of fragmented trajectories, as well as providing an

efficient catch up of the stimulus after reappearance.

67
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4.1 Problem statement: Internal representation of motion and

tracking

Efficient and robust tracking of moving stimului is reflection of the precise sensory information

about the position and velocity of target. Under realistic situations, motion trajectories are

likely to be fragmented or temporally occluded or to be embedded in a low contrast context.

These are situations in which smooth sensory flow is perturbed but visual system is still able to

keep coherency and efficiency of motion perception. (See Fig 4.1)

This suggests existence of an internal representation for motion which may emerge after

accumulation of enough knowledge from the trajectory, to make a robust neural code against

transient sensory perturbations. Such a representation is also consistent with theories on

temporal coherency of motion. Statistically, most of motions in the physical world are smooth

and predictable. This fact has been the base for a theory on temporal coherency of motion (See

chapter 2) and consequently some theoretical works have studied efficiency of neural codes of

moving object from this point of view.

As we reviewed in chapter 1, there are experimental studies on assessing neural activity or

behavioral efficiency in situations in which the visual motion trajectory is transiently disappeared

or occluded. Here, we mention two most relevant experimental studies with similar questions:

As an example of behavioral studies, in a recent work Bogadhi, Montagnini, and Masson

(2013) have recorded eye movements in tracking blanked motion trajectories. They report that

for short absence of stimulus, velocity of eyes drops down to a certain level (between 40%-60%

of target velocity), and catches the moving stimulus efficiently after reappearance (See Fig 4.2).

Assad and Maunsell (1995) recorded the activity of neurons in parietal posterior cortex of monkey

to study the inferred motion during temporal disappearance of stimulus (See Fig 4.3 and Fig 4.4).

They have found some neurons which stay active during absence period of stimulus. Results of

this study suggest that, even when stimulus is not present, there may be a neural mechanism to

monitor the displacement or keep an abstract representation of the stimulus.

In this chapter, we have studied robustness of estimated motion in presence of uncertainty

sources like in transient disappearance of stimulus and low contrast conditions. To this aim, in

an abstract Bayesian framework, we have disentangled the relative importance of position and

velocity informations in motion tracking performance and coherency of internal representation.

We also have assessed the role of prior information on slowness of motion in robust tracking in

low contrast conditions.

This chapter is organized as follows: First we will have a brief introduction to the relation of

motion-based prediction theory and motion extrapolation. Then in Section 4.3 we will review

the principals of the MBP model and other configurations (PX and PV) used to survey tracking

and internal representations of the trajectory. Section 4.4 includes the results of the study and

finally in Section 4.5 we will conclude our finding in this chapter.
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Figure 4.1: The problem of motion extrapolation in the fragmented trajectories: as
an object moves in visual space (as represented here for commodity by the red trajectory of
a tennis ball in a space-time diagram with an one-dimensional space on the vertical axis), the
sensory flux may be interrupted by a sudden and transient blank (as denoted by the vertical, gray
area and the dashed trajectory). How can the instantaneous position of the dot be estimated
at the time of reappearance? We show below the typical eye velocity profile that is observed
during Smooth Pursuit Eye Movements (SPEM) as a prototypical sensory response. It consists
of three phases: first, a convergence of the eye velocity toward the physical speed, second, a drop
of velocity during the blank and finally, a sudden catch-up of speed at reappearance, as it is
suggested by Becker and Fuchs (1985).

Figure 4.2: Eye movement recordings from a recent study, figure adopted from Bogadhi,
Montagnini, and Masson (2013). The stimulus is a horizontally moving tilted bar which is
blanked for 400 ms during its early trajectory. Traces with different colors correspond to
different start time of blank. Start and end of blanks have been shown with dashed and solid
lines, respectively. a) horizontal and vertical eye velocities, recorded from a naive subject, b)
horizontal and vertical eye velocities recorded from a non-naive subject
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Figure 4.3: Experimental protocol of Assad and Maunsell (1995) to study inferred
motion during transient absence of stimulus: neuronal firing rates of primate parietal
posterior cortex have been recorded for three stimulus types including full vision, occlusion and
blink. Time is shown in the horizontal axes and the horizontal line represents the fixation point.
In full vision trials, after initial fixation stimulus appears in a distance from fixation point. Then
it starts to move toward it, meanwhile the spiking response is recorded for the shaded duration.
In occlusion trials initially stimulus appears at the same position of full vision trial but then it
disappears and reappears close to fixation point, as if it was moving behind an occluder for the
absence period. The presence and absence of stimulus is marked with on and off notations and
spiking activity is recorded for the absence period which is shaded. Each blink trial includes
an arbitrary sequence of four stationary blinks of stimulus, meaning that after absence period,
stimulus reappears at the disappearance position and spiking activity is monitored during off
periods shown by dashed area.
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Figure 4.4: Finding of Assad and Maunsell (1995) in experimental protocol illustrated

in Fig 4.3: a) Histogram of relative response of recorded cells in parietal posterior cortex to

occlusion and blink stimulus types. b) Population PSTH of 46 recorded units for each stimulus

type and also residual response (occlusion-blink). Start of trial is marked by vertical line and

transient absence of stimulus is marked with dotted lines.

4.2 Motion-based prediction and motion extrapolation

As we reviewed in chapter 2, the relation between smoothness of motion (temporal coherency) and

efficiency of neural presentations of motion has been extensively studied. Yuille and Grzywacz

(1989) have shown that the efficiency of motion integration is highly dependent on the smoothness

of the trajectory of the stimulus. Also, according to behavioral data, humans can detect a target

dot moving in a smooth trajectory embedded in randomly moving dots, while the target dot is

not distinguishable from noise in each frame separately (outlier detection).

Considering temporal coherency of motion during occlusion of stimulus (the case without

sensory measurements), velocity estimation is degraded and probabilities are diffused in space

and time. However, a model based on temporal coherency may still have enough momentum or

motion inertia to propagate estimations about the position of the target. This process will break
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down if the occluder gets too long but the motion inertia effect of target motion on distractors

is visible (Watamaniuk, McKee, and Grzywacz, 1995a). Inertia of estimated motion will lead to

extrapolation of motion trajectory, to fill transient gaps of sensory flow.

Such a prior on the temporal coherency of motion can be defined in a probabilistic framework

(See chapter 3). As a consequence, motion-based prediction comes into play, that is, including

both the position and velocity from the trajectory of motion to predict the future.

In motion-based prediction, the retinotopic position of motion is an essential piece of

information to be represented. By explicitly including the interdependence of local motion

signals between neighboring times and positions and knowing the current speed along a smooth

trajectory, incoherent features are explained away, while coherent information is progressively

integrated. This context-dependent, anisotropic diffusion in the probabilistic representation of

motion also results in the formation of a tracking behavior favoring temporally coherent features.

Herein, we will challenge such a model to account for the different properties of motion

extrapolation in interrupted and noisy trajectories.

4.3 Model: motion-based prediction

In this chapter, to study neural and behavioral signatures of motion extrapolation in interrupted

trajectories, we emphasize on the ingredients of motion-based prediction: position and velocity

of motion. In simulation of relevant experimental data on eye tracking, we also have studied PV

configuration of the model. PX configuration also has been used to asses sufficiency of previous

position information in precise estimation of the trajectory. In addition, we have explored

the role of prior information on slowness of motion in the estimated velocity of tracking and

particularly tracking during the absence of stimulus. Further more, we have assessed robustness

of tracking to noise in all configurations: PX, PV and MBP model. All these studies have been

repeated for strong and weak priors on the slowness of motion.

Master equations in the model as described in chapter 3 are:

p(zt|I0:t−dt) =

∫
p(zt|zt−dt) · p(zt−dt|I0:t−dt) · dzt−dt (4.1)

p(zt|I0:t) = p(It−dt:t|zt) · p(zt|I0:t−dt)/p(It−dt:t|I0:t−dt) (4.2)

Generative model of motion coherency defines dependence between successive state vectors

of motion z = (x, y, u, v) and p(zt|zt−dt) is computed based on that:

xt = xt−dt + ut−dt · dt+ νx

yt = yt−dt + vt−dt · dt+ νy (4.3)

ut = γ · ut−dt + νu

vt = γ · vt−dt + νv (4.4)
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with

νx, νy ∝ N (x, y; 0, DX · dt) (4.5)

νu, νv ∝ N (u, v; 0, (σ−2
p +D−1

V )−1 · dt) (4.6)

νx, νy are Gaussian distributions of position blurring where DX · δt is blur value sampled at

each time step. Blurring of velocity is done with a sample from νu and νv Gaussian distributions

with standard deviation of (σ−2
p +D−1

V )−1 · dt.
Similar to prior information on smoothness of motion, to be more realistic, one can define

a constraint on statistically significant slowness of natural motions. As defined in (Weiss,

Simoncelli, and Adelson, 2002) prior information in slowness and smoothness of motion can be

formulated in velocity prediction, by standard deviation as (σ−2
p +D−1

V )−1 · dt (See equation 4.6).

Setting σp
−1 = 0 is equivalent to having no prior on slow speeds.

This constraint can be reflected as γ in equation 4.4 and is defined as γ = (1+
D2
V
σ2
p

)−1. Clearly

this factor plays as a gain for tracking and varies depending on the configuration of the model.

The update rule (see (Perrinet and Masson, 2007) for a derivation) assumes independence of the

prior on slow speeds with respect to predictive prior on smooth trajectories.

Equation 4.2 estimates motion at each time step by Bayesian combination of measured

evidence (p(It−dt:t|zt) in the window between t− dt and t) with what is predicted by internal

model of trajectory expressed in equation 4.1. Based on this, PX, PV and MBP models can be

explained as in following:

Position-based prediction (PX configuration): In this configuration of model, only

position estimation benefits from internal model and velocity estimation is mainly shaped by

measurements. The value of DV needs to be high, to largely diffuse velocity distribution at each

step, therefore motion estimation is independent from velocity information.

Velocity-based prediction (PV configuration): In this configuration, only velocity

estimation uses internal model and position estimation is not benefited from that. Value of DX

is high and according to equations 4.3 and 4.4, internal model of trajectory diffuses position

information.

Motion-based prediction (MBP configuration): This model utilizes both components

of motion signal, position and velocity, for trajectory estimation. (DX .dt) and (DV .dt) are set

respectively to 1 and 1.5.

4.4 Results

This section includes results of our investigations on the role of prediction in extrapolation of

trajectory, in the presence of different sources of uncertainty, such as a transient disappearance of

the target and high background noise. We tested the dependency of the model upon prediction

versus current sensory input. Results are presented in three categories: motion estimation of

trajectory (without blank) in presence of increasing levels of background noise, motion estimation
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of blanked trajectory with PX, PV and MBP models, and motion estimation of blanked trajectory

with background noise. Stimulus is a horizontally moving dot with constant speed and we have

used traces of estimated velocity as output of MBP and PV models, as well as histograms of

estimated velocity and position in all three configurations of the model.

4.4.1 Predictive tracking in the presence of varying noise levels

Robustness of tracking: We tested the robustness of the model when using more realistic

conditions such as low contrast (or low signal-to-noise ratio) inputs. This approach is similar to the

previous psychophysical work on temporal coherency and predictability of motion (Watamaniuk,

McKee, and Grzywacz, 1995a). Below, we report the performance of two model configurations

(PV and MBP) when gradually increasing the level of background noise to an horizontally

moving dot. We first did it for a fully visible trajectory in order to estimate the contrast (or

SNR) thresholds at which the tracking states of the model change.

We measured the estimated velocity averaged over 20 trials when the input image was

corrupted by an independent and identically distributed Gaussian noise (see Figure 4.5). In

order to first explore the role of prediction for overcoming the distracting effect of noise, we set

our motion estimation routine to the PV configuration to minimally rely on position predictions.

To do so, we chose a DX value high enough so that the model did not favor any estimation in

particular. We then repeated the same experiment but with the MBP model. We found that

including motion-based prediction led to a more precise tracking than in the PV case, at both

low and high levels of noise. Also, we found a range of contrast in which the MBP model was

still maintaining perfect tracking while the PV model was in the no tracking state.

Two particular aspects shall be noticed. First, with the PV model, increasing the noise level

gradually decreased the convergence rate of the motion detection process. Second, with the

MBP model, we observed a binary response mode (i.e. the dot is either tracked or not tracked).

In the tracking state, the convergence rate was found to be dependent upon the level of noise, as

in the PV configuration. Increasing noise up to a certain level results in a shift of the onset of

the tracking state, until the model reached the no tracking state.

Our results in Figure 4.5 are similar to the outlier detection experiment observed in psy-

chophysics by Watamaniuk, McKee, and Grzywacz (1995a), where a horizontally moving dot

was surrounded by many other distractor dots with random movements. This psychophysical

study showed that the temporal coherency of the target dot rendered it detectable with a high

confidence, as measured by a tenfold increase of detection threshold. Our modeling results are

consistent with this behavioral observation. As a consequence, we similarly found a binary

tracking response in the sense that tracking is rather good, up to some noise level. Therefore we

have either tracking or not tracking states. Furthermore, increasing the noise level imposes a

delay on emergence of tracking state which is reflected in smooth slowing of initial raising in

velocity traces. To summarize the effects of noise, we plotted the efficiency of the model with and

without prediction in position (i.e. the MBP and PV models) for a range of contrasts and fitted
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them with the Naka-Rushton function (Naka and Rushton, 1966) that can adequately describe

the different aspects of motion integration (See (Perrinet and Masson, 2007)) (see figure 4.6).

The gain was defined as the average estimated speed and contrast as the signal-to-noise ratio.

The contrast response functions were plotted for both early and late phases of tracking (as

defined in figure 4.5). In the early phase (red curve), both models have very different best-fit

contrast saturation values (C50 of 10.35 and 27.37, respectively) and exponents ( n of 7.7 and

2.19, respectively). Interestingly, one can see in the late phase (blue curve) a global increase in

contrast gain for both models, as illustrated by a leftward shift of the curves. The PV model

led to a change in only the contrast saturation parameter (from C50 = 7.71 to n = 3.42), while

the MBP model exhibited a significant change both in half-saturation (C50 = 7.15) and slope

(n = 20.89) parameters of the contrast response function. This is characteristic of the emergence

of the tracking behavior in the MBP model and complements the analysis done by (Perrinet

and Masson, 2012).

As a consequence, we have demonstrated here that this model is sufficient to explain some

well-known static non-linear computations such as the gain control mechanism implemented

by divisive normalization (Rust et al., 2006; Simoncelli and Heeger, 1998). These are essential

components of neural computations and we show here that they may emerge from a predictive

coding formulation instead of an explicit descriptive mechanism.
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Figure 4.5: Estimated velocity of PV and MBP configurations averaged over 20

trials: the stimulus is a horizontally moving dot with u = 1 which includes different noise

values at background and no blank in trajectory. Colors from dark to light correspond to

the response to the stimulus with noise levels between 0.01 to 0.2. Top) Estimated velocity

of PV configuration while motion estimation only benefits from predictions in velocity of

stimulus. Bottom) Estimated velocity of motion-based prediction MBP configuration, where

estimation is predictive in both position and velocity of motion. This configuration tracks well

up to approximate noise value of 0.13 and after that enters into the “no tracking” state. For

PV configuration this state transfer happens at noise value 0.06. As noise increases, in both

configurations we observe a slower convergence in estimated velocity and more importantly a

temporal shift of the emergence of tracking.
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Figure 4.6: Response gain functions are plotted with best-fit Naka-Rushton functions

for both PV and MBP models: increasing contrast produces a sigmoidal increase in response

gain whose shape changes with both time and model configurations. Similar to the psychophysical

reports by Watamaniuk, McKee, and Grzywacz (1995a), gain and half-saturation values increase

from the early to late tracking phases. There is an increase in the slope of the contrast response

curve in the late response of the MBP configuration, indicating a transition from no-tracking to

tracking states.
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Figure 4.7: Estimated velocity at different σp and contrasts: Top row) PV model

Bottom row) MBP model

Robustness of tracking and prior information favoring slow speeds: After surveying

contrast sensitivity of motion-based prediction, we have studied how preference of internal model

for slow speeds may affect tracking in low contrast conditions. To this aim, we have calculated

estimated velocities by PV and MPB models for four contrast levels and three σp (variance
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of speed distribution centered by zero, stated in equation 4.6). Also, histograms of estimated

positions by PX, PV and MBP models were calculated, for mentioned contrasts at low and high

σp values.

Fig 4.7 includes estimated velocities. According to this figure, the MBP model in high

enough σp is robuster against noise. Figs 4.9- 4.10 illustrate histograms of estimated position by

PX, PV and MBP models at strong σp, where following Figs 4.12- 4.13 are the same results by

imposing weak σp.
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Figure 4.8: Histograms of estimated position (x, y) by PX model at eight contrast
levels and σp = 10: stimulus is a dot moving horizontally from (−0.6, 0) to (1, 0), dashed white
line indicates the center of stimulus
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Figure 4.9: Histograms of estimated position (x, y) by PV model at eight contrast
levels and σp = 10: stimulus is a dot moving horizontally from (−0.6, 0) to (1, 0), dashed white
line indicates the center of stimulus
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Figure 4.10: Histograms of estimated position (x, y) by MBP model at eight contrast
levels and σp = 10: stimulus is a dot moving horizontally from (−0.6, 0) to (1, 0), dashed white
line indicates the center of stimulus



Chapter 4: Results (Motion-based prediction and robust tracking of moving objects) 82

-0.6

0.2

1.0

x

-0.6

0.2

1.0

x

-0.6

0.2

1.0

x

20 60 100
Time (Frames)

-0.6

0.2

1.0

x

0 Max

-0.6

0.2

1.0

y

-0.6

0.2

1.0

y

-0.6

0.2

1.0

y

20 60 100
Time (Frames)

-0.6

0.2

1.0

y

0 Max

Figure 4.11: Histograms of estimated position (x, y) by PX model at eight contrast
levels and σp = 100: stimulus is a dot moving horizontally from (−0.6, 0) to (1, 0), dashed
white line indicates the center of stimulus
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Figure 4.12: Histograms of estimated position (x, y) by PV model at eight contrast
levels and σp = 100: stimulus is a dot moving horizontally from (−0.6, 0) to (1, 0), dashed
white line indicates the center of stimulus
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Figure 4.13: Histograms of estimated position (x, y) by MBP model at eight contrast
levels and σp = 100: stimulus is a dot moving horizontally from (−0.6, 0) to (1, 0), dashed
white line indicates the center of stimulus
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4.4.2 Extrapolation of motion information in a blanked trajectory

Motion estimation in the temporal absence of stimulus: In this set of model experiments

we used as an input the movie of a single dot translating along a straight trajectory and that is

transiently blanked after a short period of visible displacement. This situation is similar to those

used in the previous physiological (Assad and Maunsell, 1995), behavioral (Bogadhi, Montagnini,

and Masson, 2013) and theoretical studies (Burgi, Yuille, and Grzywacz, 2000). By doing so,

we can challenge the dynamics of information being accumulated along the occluded trajectory

that is, in absence of sensory input. We measured the estimated positions and velocities of dot

motion at time windows located just before, during and after the blank.

In Figure 4.14, we plot the histogram of the estimated positions and velocities obtained with

the three different models: PX, PV and MBP. Remember that PX and PV were obtained simply

by choosing high values of DV and DX , respectively.

In Figure 4.14, for the earliest frames, velocity histograms first spread over a larger area but

progressively fit into a narrow band centered on the physical velocity (u = 1 and v = 0, see

rightmost columns). This strongly suggests a convergence of the estimated motion direction

towards the veridical movement of the stimulus. During the blanking period marked by vertical

white dashed lines, the histograms illustrate different states. In the PX control model (upper

row), velocity estimations (u and v) are largely scattered around zero, favoring the occurrence of

slow speeds. Because of the measurements, the estimations still became narrower and centered

on the physical velocity of stimulus, both before and after blanking. During blanking, estimated

positions diffused in an isotropic manner (two leftmost columns).

With both PV and MBP model configurations, the dynamics of velocity estimations paused

during blanking and distributions were maintained around the last estimated values computed

right before target disappearance. At stimulus reappearance, the distributions immediately

resume their convergence. The estimated positions (x and y) computed with the MBP model

exhibited a dynamics similar to velocity estimations, suggesting the existence of an internal

model that updates the estimations with a slow diffusion. By contrast, in the PV control model,

there is no prediction to update the next stimulus position and therefore estimation histograms

spread across all possible positions (see second row, left columns). This difference between PV

and MBP model performance is summarized in Figure 4.15. We plot the estimated velocity

obtained with each model (mean and standard deviation) together with the control condition

where the dot was continuously visible. Clearly, when the stimulus reappeared after blanking,

motion-based predictive estimation tend to converge immediately back to the control speed, with

a quick catch-up. Such dynamics was more sluggish with the PV model (blue curve): motion

integration did resume but at roughly the same slope as observed at the onset of the blank.

Note that we did not plot the performance of the PX model in Fig 4.15, because of the very

large variability of estimated velocity observed across trials (See Figure 4.14).

Moreover, the rather small difference observed between PV and MBP models is due to the

simplistic dot motions used in the present study. As explained earlier in chapter 3, the sensory
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Figure 4.14: Histograms of estimated motion for a horizontally moving dot with
a blanked trajectory under three predictive configurations of the model: blanking
period is indicated with dashed white lines and each row represents full motion estimation under
the configuration denoted by the inner title. Each plot illustrates the probability distribution
function of a relevant variable (vertical axis) with respect to time (horizontal axis) as in Figure 4.1.
The color bar on top indicates the value of probability as it is estimated for each frame (one
column in each image). In each configuration, the two left columns correspond to estimated
positions (x and y) while the right columns represent estimated velocities (u and v). At the
earliest frames, for all configurations, estimated variables are scattered in a rather wide area
but then gradually converge to the veridical solution (x, y, u, v) = (1, 0, 1, 0)). (First row) PX
configuration: motion estimation is only predictive in position of motion and not in velocity.
(Second row) PV configuration: Motion estimation is only predictive in velocity of motion
and not in position. (Third row) MBP configuration: in this configuration, motion estimation
is predictive in both position and velocity of motion and predictive information is transported
anisotropically using the velocity information (compare variable x with configurations PX and
PV).
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Figure 4.15: Estimated velocity in PV and MBP configurations of Figure (4.14):
estimation is measured as the response of the model to a horizontally moving dot with u = 1 and
a short blank in the trajectory. Blanking period has been shown with shaded area. The trace in
black dashed lines represent the control condition in which trajectory of stimulus includes no
blank. Error bars show standard deviation of error over 20 trials. Note the quick catch-up after
reappearance of stimulus in MBP configuration.

layer of both models is made of a bank of motion energy filters which are highly efficient in local

detection of straight dot translations. Choosing a high value for DX and DV in PV and PX

models is then equivalent to switching to basic sensory level without prediction in position and

velocity respectively. That is to say, our working hypothesis imposes a large scale coherency

constraint on stimulus trajectory as reflected in the range of values for DX and for DV . Still, we

can observe the temporal dynamics of motion estimation as already shown with more ambiguous

inputs (Perrinet and Masson, 2012).

Motion estimation during blank, with prior information favoring slow speeds:

To study how trajectory estimation during blank may be modulated by prior information on

slowness of the trajectory, we have simulated estimated velocities by MBP and PV models for a

range of σp, from very strong to very week. The results have been summarized in Fig 4.16. In

the top left panel, the scheme of σp has been plotted, from strongest (lightest hue) to weakest

(darkest hue). The top right figure, includes the estimated velocity by MBP model in a control

condition (no blank in the trajectory) and for a range of σp. Bottom left and bottom right

figures respectively correspond to estimated velocities by PV and MBP model, in a blanked

trajectory and for shown range of σp. Duration of blank has been marked with dashed lines.

Two figures shown in the bottom are extension of Fig 4.15 for different levels of preference for

slow speeds.

Results of control model highlights necessity of imposing a moderate enough σp in the

MBP model. Indeed, even in the case of highly detectable stimulus (high contrast dot), strong

preference of internal model for slow speeds may cease emergence of tracking (note traces with
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Figure 4.16: Velocity estimation by PV and MBP models for range of σp (prior
information on slowness of velocity): in all four panels, traces with lightest and darkest
colors correspond to the strongest and weakest σp, respectively. Top left): strength of prior
information on velocity, ech trace is a gaussian with standard deviation of σp and mean = 0
Top right): estimated velocity by MBP model in control condition (no blank in the trajectory),
Bottom left): estimated velocity by PV model in a blanked trajectory, Bottom right):
estimated velocity by MBP model in a blanked trajectory

lightest color). Meanwhile, the results of PV and MBP models on blanked trajectories suggest

importance of σp in velocity drop during absence of stimulus. The velocity traces have been

produced with a very simplistic ocular motor plant, integrating and averaging estimated velocity

allover positions. If we interpret our results in the context of experimental data shown in Fig 4.2,

two signatures of estimated velocity needs to be discussed: First, the fair slope of velocity

decrease during the blank and second, quick catch-up of stimulus at the end of blank. In PV and

MBP models, the velocity drop, similar to the experimental data, happens for strong enough σp,

where this desired value would result in poorer tracking and catch-up after blank. For precise

motion estimation after reappearance of stimulus, MBP model shows better performance than

PV model. (compare velocity catch-up at the end of blank for both models).
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4.4.3 Motion extrapolation in noisy blanked trajectory

In the last series of experiments, we combined two different sources of uncertainty by simulating a

noisy dot moving along a partially blanked trajectory. We have shown that motion extrapolation

requires enough accumulation of information from the observed trajectory parts, to allow the

emergence of the tracking state. Moreover, we found that there is a contrast threshold for

reaching this tracking state. Since our goal is to investigate the temporal evolution of the

information that is accumulated from the observed trajectory, by imposing two independent

sources of uncertainty (i.e. noise and blanking) we can highlight the differences between predictive

and non predictive motion estimation.

As in the previous sections, we quantified the efficiency of motion estimation by the estimated

velocity of the tracking responses (see figure 4.17). We extend the results shown in figure 4.15 by

now using blanked trajectory with low noise to higher levels of noise. As we mentioned before,

a quick velocity catch-up as illustrated in figure 4.15 indicates the emergence of a tracking

state after stimulus reappearance. Such catch-up was still visible in the presence of strong

noise levels, at least up to a certain threshold. We expected a general degradation of motion

extrapolation by increasing noise level and consequently a lower tracking performance, down to

the no tracking state. For contrasts lower than contrast thresholds, no such velocity catch-up

was observed and the models in fact remained in the no tracking state (see figure 4.17). At

all noise levels, incorporating position prediction as in the full MBP model revealed several

differences in performance, when compared to the PV model. In particular, the MBP model was

less sensitive to noise and its dynamics at intermediate signal-to-noise ratio was brisker than the

PV model. Indeed, the MBP model remained able to match the stimulus trajectory after target

reappearance in the presence of relatively high noise level (up to 0.11). In comparison, the PV

model remained in the no tracking state for noise levels higher than 0.05.

In summary, we found that making the motion extrapolation task more difficult by mixing two

uncertainty sources deteriorates the tracking response. This can be explained by an insufficiently

accumulated information about dot trajectory in the noisy and blanking conditions. This is

evidenced by the comparison of responses at corresponding contrasts between figure 4.5 and

figure 4.17.

The MBP model takes advantage from predictions in position and velocity domains, in

comparison to the PV case and can accommodate higher noise levels before losing its tracking

ability. In addition, a stronger internal representation of motion is maintained during blanking

in this case (see MBP estimations in Figure 4.14). It also more quickly converges to the true,

physical motion after reappearance. These results call for similar experiments to be done

psychophysically by combining these different sources of uncertainty.
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Figure 4.17: Motion extrapolation with sensory noise: stimulus is a horizontally moving

dot with u = 1 which includes a blank as shown with shaded area. In addition there is a sensory

noise and colors from dark to light correspond to noise levels increasing linearly between 0.01

to 0.2. Top) Estimated velocity of model under PV configuration while motion estimation

only benefits from predictions in velocity space. Bottom) Estimated velocity of motion-based

prediction MBP configuration, where estimation is predictive in both position and velocity of

motion. In both configurations, increasing noise corrupts tracking performance and after blank

response converge only for noise values under a threshold and then enters to no tracking state.

This threshold for PV and MBP configurations are 0.05 and 0.11 respectively. Note that the

quick catch-up after reappearance of stimulus never appears in PV but only in MBP in the cases

in which a tracking state stabilized before blank.

4.5 Conclusion and Discussion

In this chapter we have explored the competence of motion-based prediction (MBP model) in

robust motion estimation. After studying the effect of contrast and σp (preference for slow

speeds) in robust tracking, particularly we have focused on the problem of fragmented motion
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trajectories. In this section, we conclude implication of our results and the accordance with

some experimental data.

4.5.1 Motion-based prediction and robustness of tracking

To explore the model dynamics, we tested the robustness of MBP model by adding background

noise in different trajectory conditions. Increasing the background noise induced at some

threshold value a sharp change in the dynamics, the model shifting from tracking to no tracking

states. Such sharp transition as a function of signal-to-noise ratio is consistent with behavioral

studies (e.g. (Spering et al., 2005)) showing a strong nonlinear relationship between pursuit gain

and contrast (see (Masson and Perrinet, 2012) for a review). Interestingly, this sharp nonlinearity

of the transition between tracking and non-tracking states —and which is classically implemented

by some well-known static non-linear computations such as divisive normalization (Rust et al.,

2006; Simoncelli and Heeger, 1998)— emerges here as a property of the dynamical system.

The theoretical link between Bayesian inference and divisive normalization has been already

suggested by several studies (e.g. (Barthélemy et al., 2008; Hürlimann, Kiper, and Carandini,

2002)).

Current results emphasize that dynamical inference as implemented here can also reproduce

the temporal dynamics of normalization mechanisms through lateral interactions (Reynaud,

Masson, and Chavane, 2012). Further work remains to be done to validate this analogy in

particular with respect to the adaptation of this non-linearity to the dynamical statistics of the

input.

Another issue that we explored is the dependence of robust tracking to σp (preference for slow

speeds). To do so, we have studied contrast dependency of tracking in strong and weak σp values.

Estimated velocity results highlight that for the same value of σp (weak prior on the slowness of

motion), tracking by MBP model tolerates higher noise levels. Results of estimated positions by

PX, PV and MBP models in strong and weak σp values may be concluded as following:

First, in the cases with very strong prior on the slowness of motion, PV model can track the

stimulus only at very high contrast, estimated position by PX model lags behind the instantaneous

position of stimulus and in lower contrasts this lag happens earlier in the trajectory. The MBP

model has better tracking performance than PX, but for low contrast stimului it stops tracking

at the end of trajectory. For weak σp, tracking of PX and MBP models is accurate but PV

model still is able to track only at highest contrasts. Our results on tracking in low contrast are

compatible with results of Weiss, Simoncelli, and Adelson (2002) about slow tracking in noisy

conditions.

Our model investigates at an abstract level, the computational advantages of anisotropic

diffusion of information within a probabilistic representation of motion. Previous work from Burgi,

Yuille, and Grzywacz (2000) has suggested that there are multiple analogies of this computing

architecture with the structure of neural computation in cortical areas. They originally proposed

a constructive approach to implement such motion-based prediction with neural fields. However,
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their implementation was limited by severe constraints on the simulation of such neural-networks

on classical computers. Indeed, this parallel structure is rather not optimal for a sequential

computer and necessitate a large amount of memory to achieve a sufficient precision. Hopefully,

the advent of novel computational architectures (clusters, neuromorphic hardware) will foster

the precision of the implementation of such models in a more biologically realistic fashion.

4.5.2 Motion-based position coding in fragmented trajectories

We investigated the role of motion-based prediction in motion extrapolation during target

blanking. This is a condition frequently used in psychophysical, behavioral and neuronal studies

to measure how the brain maintains an accurate representation of target motion, despite large

fluctuations in the input (e.g. (Assad and Maunsell, 1995; Becker and Fuchs, 1985; Bogadhi,

Montagnini, and Masson, 2013)).

First, we probed the dynamics of motion extrapolation by measuring the impact of a transient

absence of the stimulus, as imposed by a short blank in the trajectory of the stimulus. We found

a prototypical temporal pattern characterized by a pause in the motion integration process

during the blank and a quick recovery of the actual position of the dot. This model behavior

was largely different when turning off the anisotropic component of motion-based prediction.

In this PV incomplete model, at the end of the blank, the integration dynamics resumed at a

convergence rate similar to the one observed at the initial target motion onset. This difference

can be explained by the fact that the full model can maintain a nearly accurate representation

of the target trajectory in both position and velocity domain. In this regard, the MBP model is

more consistent with both physiological (e.g. Assad and Maunsell (1995) and Newsome, Wurtz,

and Komatsu (1988)) and behavioral (e.g. Becker and Fuchs (1985), Bennett and Barnes (2003),

and Bogadhi, Montagnini, and Masson (2013)) observations. Interestingly, the comparison

between PV, PX and the MBP model further highlights the need of both position and velocity

informations for correctly maintaining and predicting an accurate representation of target motion,

an aspect that has been already introduced at the theoretical level (Burgi, Yuille, and Grzywacz,

2000; de Xivry and Lefèvre, 2007; Perrinet and Masson, 2012).

In addition, we have explored the role of σp (preference for slow speeds) in motion estimation

during blank. According to experimental results (Becker and Fuchs, 1985; Bennett and Barnes,

2003; Bogadhi, Montagnini, and Masson, 2013), velocity of eye starts to drop at the beginning

of blank and then stabilized in a level around half of target velocity and then after reappearance

of stimulus starts to grow quickly. In our results, we have reproduced this velocity slope during

blank by PV and MBP models. Even though that stronger σp would result in quicker drop of

velocity during blank but meanwhile degrades the estimated motion even at the presence of

stimulus.

An important issue was to answer to the question raised by the experimental study of Assad

and Maunsell (1995). In monkeys, while MT does not represent motion during the blank, it

seems that such information can be preserved in upstream cortical areas such as MST (Newsome,
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Wurtz, and Komatsu, 1988). This later result is compatible with our approach, where neurons

remain active during the transient disappearance of the stimulus, but it is still largely not known

how and why such a dichotomy would emerge in the visual system. We demonstrate that a two

layer model where motion information is primarily extracted locally before being diffused along

a particular path can provide a solution. Such architecture presents the advantage of mixing

different spatial and temporal scales and can be implemented in many biological systems, from

retina to the cortex.

A last advance of our model is its ability to reproduce the dynamics of different brain

responses to transiently occluded target, from neuronal activity up to highly accurate behaviors

such a voluntary pursuit eye movements. Thus, our model has the potential to unify different

approaches that were previously proposed to understand motion extrapolation in fragmented

trajectories. For instance, recent behavioral experiments imposing a blank during the straight

trajectory of a tilted line shows complementing results in the light of results of Bogadhi,

Montagnini, and Masson (2013). Indeed, they show that if the object is tracked long enough

and the blank is short enough, the bias that is characteristic of the aperture problem (the eye

following first the direction perpendicular to the segment) disappears. This data is well fitted

by a two-layer Bayesian network stacking a sensory and a motor level. They explain motion

extrapolation as a feed-back loop from the representation of the position of the eye to the sensory

stage. Our model proposes that a complementary mechanism could be motion-based prediction

and that the sensory representation of motion is sufficient to explain motion extrapolation during

blank.

As we were careful to study the early stage of the tracking response (such that there can be

no feedback from a motor stage), we predict that such systems should work in synergy and allow

a more complete modeling of motion extrapolation. The main novelty of such scheme is that a

simple generic framework —motion-based prediction— may explain a large range of mechanisms

that are often explained by the explicit modeling of specialized computations.

Many low-level classical problems such as motion extrapolation, the aperture problem or

anticipation poses fundamental questions about the computational properties of large-scale

networks of neurons. Moreover, their signatures can be found in many different species or

neuronal architectures. They are shared by different sensory systems and can therefore be used

as a way of unifying the search for generic computations using population codes. Complementing

the previous work on the aperture problem (Perrinet and Masson, 2012), we have shown here

that the same architecture can solve another instance of low-level uncertainties, extrapolating

current trajectories in the absence of sensory evidence. This study demonstrates the need to

elaborate generic computational solutions that can eventually be implemented through realistic

mechanisms such as divisive normalization mediated by lateral interactions.
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Summary

In this chapter, we have focused on the question of robust tracking and interrupted trajectories.

With motion-based prediction model, we have studied motion estimation at fragmented trajec-

tories, during transient absence of stimulus and after reappearance. MBP model simulations

is accompanied by PX and PV models as control configurations. The scope of this chapter

extends to the questions like how contrast and prior preference of slow speeds may affect motion

estimation of fragmented trajectories. In the next chapter we will introduce a modified version

of MBP model (so called diagonal model) to deal with neural delays.



Chapter 5

Diagonal model:

delay compensation and anticipatory

response

Abstract

In this chapter, we have focused on the problem of neural delays and the expected error

in the position coding of moving objects. We have presented a modified version of the MBP

model, so called diagonal model, that estimates the instantaneous position of moving objects,

based on delayed motion measurements. With the diagonal model, we have introduced a

delay compensation phase in trajectory processing and explained two main visual signatures:

the trajectory-dependent anticipatory response and the Fröhlich effect. Our results highlight

that motion information accumulated from the trajectory of a moving object may serve as a

correction mechanism for positional errors caused by neural delays.

5.1 Problem statement: positional error caused by neural de-

lays

It takes a definite time for the visual system to convey the luminous signals captured from

visual scene to different layers of visual cortex. In humans, this time is estimated to be around

100 ms (Nijhawan, 1994). It is composed of two terms: a fixed delay caused by axonal transfer

of sensory signals known as neural transfer delay, and the delay associated with processing time.

Existence of these unavoidable delays suggests that we may always perceive moving scenes with a

permanent lag and behind their actual position. This would introduce inefficiencies in the visual

system for subtle tracking tasks and the accurate, on-time detection of the position and speed

of objects. A tennis player is a good example: the successful motor action is produced to hit

the moving target (the ball), in spite of delayed arrival of information (See Fig 5.1). Therefore,

there may exist some compensatory mechanisms in the neural representation of motion.

Studying neural delays is also related with development of anticipatory response in neural

populations. This may happen in populations which are very likely to have the stimulus in their

95
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τs · ~V

τm · ~V

~V

Figure 5.1: The problem of neural delays for a tennis player: player needs to track the
instantaneous position of target and emit an accurate motor action to hit it somewhere ahead of
the current position. In the image, ~V is the velocity of target ball and the circle with solid edges
corresponds to the physical position of ball at a specific moment. The player appears to be
looking at the solid circle and getting prepared to hit the target in the position of dashed circle.
On the other hand, according to inevitable delays in the dynamic of sensory and motor systems,
the instantaneous sensory information about the position of the ball arrives with a delay of (τs)
and yet, there is another delay between sensory information delivery and emission of a suitable
action (τm). How a tennis player is accurate enough 1) to look at the “correct” position of ball
with delayed sensory information? 2) to be efficient enough to hit the ball on time?

receptive field in the near future, based on the history of motion.

In this chapter, we have studied predictive motion processing of smooth trajectories in a

generic probabilistic framework for motion estimation (See chapter 2). Using the motion-based

prediction algorithm for motion estimation and considering neural delays, we proposed a diagonal

model for predictive motion estimation at current time, having access to the sensory information

associated to some time steps before.

In particular, in line with experimental works on anticipatory aspects of motion integration

in the visual cortex (Benvenuti et al., 2011; Guo et al., 2007), we investigated the dependence of

estimated motion on the length of trajectory, at specific points of motion path. We found two

distinct regimes in motion estimation of a smoothly moving target: first regime is in the early

trajectory, in which position of stimulus is estimated with low confidence and with delay. In this

phase, there is an evident anticipatory signature in estimated motion and it is dependent on the

relative position of the estimated point. In the second regime which governs the late trajectory,

tracking has already emerged and estimation confidence is maximum and all points in the late

trajectory have very similar anticipatory profile.

Our findings on smooth trajectory estimation can be associated with a distinct size of

population receptive fields in visual cortex: all specific positions laid on the early trajectory

can represent the retinotopic position of neural activity which is in the range of horizontal
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connections, while the positions in the late trajectory are pre-stimulated with the whole range

of horizontal connections (limited length of horizontal connections, limited size of population

receptive fields).

Furthermore, we studied the role of position estimation and velocity estimation separately

and found that excluding velocity information from motion estimation process deteriorates

the estimation significantly. In this regard, we are able to explain the Fröhlich effect as well:

misperception of earliest parts of the trajectory may be caused by non-precise estimation of

velocity.

This chapter is prepared in the following order: first we have a brief introduction on the study

of trajectory prediction, and then section 5.3 provides description of MBP model and diagonal

implementation of it. Section 5.4 includes our results in modeling of spatiotemporal processing

of smooth trajectory. Finally, section 5.5 concludes our findings and explains advantages and

limitations of our approach, in comparison with the studies reviewed in chapter1.

5.2 Smooth prediction of a trajectory and motion-based posi-

tion coding

In this section, we briefly highlight the important aspects of trajectory prediction and the way

that we have approached them in the following sections.

Bayesian framework and internal model of motion: In chapter 1, we reviewed some

studies done on compensatory mechanisms for neural delays, motion anticipation and facilitatory

mechanisms in processing of coherent predictable trajectories. Considering these studies, it is

encouraging to define a generic, large-scale framework to explore the shared neural mechanism

among all mentioned signatures of predictive coding. Some of previous works, addressed questions

on how predictability of a stimulus may affect neural processing at different levels and various

cortical areas (See chapter 1). Also there are some modeling efforts to define notion of internal

model in visual perception (Changizi, 2001; Changizi and Widders, 2002; Erlhagen, 2003) and

to explain the shared mechanisms in different processing aspects of trajectory motion.

Indeed, an internal model of visual perception can be well expressed in a Bayesian framework

and one can explain successive steps of motion computations in terms of Bayesian Priors

and Likelihoods. Then interactions of internal model (shaped by priors on smoothness and

slowness of motion) with instantaneous sensory likelihood would result in posterior distribution.

Estimated motion including probability distributions of position and velocity of stimulus, is

posterior of such a Bayesian inference.

In the current framework, we have studied such an internal model for coherent trajectories.

This allows investigations on predictive localization of stimulus and dependence of motion pro-

cessing to the trajectory and contextual information. This is also related to the questions about

localization of neural activity. For instance, characterization of stimulated neural populations,
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directly from delayed arrival of sensory information and the knowledge of the trajectory. Partic-

ularly, we stressed the role of velocity information to explain quicker and facilitated processing

of coherently moving objects. We keep internal predictive representation of motion as a central

hypothesis and aim to explain facilitating neural phenomena that might result from that as well

as contributions to delay compensation.

Accumulation of trajectory information: Our modeling framework provides precise

probability distributions on the position and velocity of stimulus. As the stimulus moves along

the trajectory, the spatiotemporal distribution of probabilistic position code is varied. Indeed,

positions ahead of the current location of stimulus start to accumulate belief about approaching

arrival of stimulation. For positions distributed on different parts of the trajectory, we surveyed

the development of anticipatory response as a pre-activation alert from an approaching stimulus.

Motion extrapolation in early and late trajectory: To extrapolate the estimated re-

sponse based on a delayed arrival of input, the internal representation is engaged to overcome

uncertainty and to provide a more reliable and robust sensory encoding. For a reasonable range

of delays, the model builds up the position of the stimulus at the current time based on the last

observed input and ends up with a correct estimation, taking advantage of the motion signal.

In results (section 5.4), we have focused on gradual increase of estimation confidence in the

trajectory. Considering delays, a time lag is expected at estimation of the earliest part of the

trajectory (Fröhlich effect) (Fröhlich, 1923), while for a highly detectable moving object far

enough from its initial position the correct estimation is already there.

5.3 Diagonal model: motion-based prediction with axonal de-

lays

As mentioned in the previous section, our main objective in this chapter is to study the role of

predictability of trajectory on the dynamics of position coding and development of anticipatory

response in neural populations. As we described in chapter 3, the internal Bayesian model

reflects our expectancy from the visual scene based on prior information on coherency of motion

(See chapter 2 for detailed description of model and implementation). To study the effect of

delays, the framework integrates sensory information associated with some steps before, with

what is suggested by internal model.
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z0 z”t · · · · · · zt≠”t zt

I0 I”t It≠”t It

zδt · · · · · · zt−δt zt

z0 zδt−τ · · · · · · zt−δt−τ zt−τ

Iδt−τ It−δt−τ It−τ

Figure 5.2: Diagonal Markov chain: Top) classic Markov chain for state transition of

system: in current study, the estimated state vector is zt = {x, y, u, v} composed of position and

velocity of moving stimulus and measurements are performed from the image at current time, It.

Bottom) Diagonal model of motion-based prediction: considering τ as neural delay, there is no

measurement at t = 0 and ultimate state estimation at any time step is zt. Diagonal scheme

of motion estimation includes two steps: first, the motion state zt−τ is estimated based on

smoothness constraint and delayed sensory information It−τ , then according to a prior knowledge

on late arrival of sensory information, the response is extrapolated for a period of virtual blank

(duration = τ), without sensory measurements.
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zt zt+δt

· · · zt−τ zt−τ+δt · · ·

It−τ It−τ+δt

· · · zt zt+δt · · ·

zt−τ zt−τ+δt

It−τ It−τ+δt

Figure 5.3: Two different modes of diagonal Markov chain: Left) diagonal model, pushing

mode Right) diagonal model, pulling mode

5.3.1 Diagonal model and delayed access to sensory input

Considering neural delays, predictive position coding can be implemented by “pushing forward”

the population response in the direction of motion such as to compensate the delay. Our

model uses motion signal including position and velocity of moving object to extrapolate the

trajectory response to the positions which are most likely to be covered by the stimulus. As

illustrated in Fig 5.2, classical Markov chain for state estimation of stimulus can be redrawn

in a diagonal fashion. Diagonal scheme of motion states illustrates the dependence of the

extrapolated state z(t) to the state suggested by delayed motion information z(t− τ), where τ

is the (known) value of delay. Note that the earliest part of the trajectory is necessarily missed

(motion estimation starts at t = δt − τ > 0 , as there is no sensory information before), but

the next states should become realistic estimations of the actual, present position of stimulus

and trajectory and prediction overcomes the restrictive effect of delay. The diagonal model

of motion extrapolation was originally proposed by Nijhawan and Wu (2009) to explain the

detailed mechanism of motion extrapolation by retinal ganglion cells (See chapter 2). Here we

use it as an abstract rule in predictive motion estimation.

As described in chapter 3, motion (position and velocity) is described by the state vector

zt = {xt, yt, ut, vt}, such that the master equations of the model are:

estimation: p(zt|I0:t) ∝ p(It−δt:t|zt) · p(zt|I0:t−δt) (5.1)

prediction: p(zt|I0:t−δt) =

∫
dzt−δt · p(zt|zt−δt) · p(zt−δt|I0:t−δt) (5.2)

Considering delayed access to sensory input in diagonal model (See Fig 5.2), the current state

p(zt|I0:t−τ ) can be predicted using an extrapolation step, ”pushing” the past state to the present.
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As a consequence, master equations of diagonal model can be written as:

estimation: p(zt−τ |I0:t−τ ) ∝ p(It−τ−δt:t−τ |zt−τ ) · p(zt−τ |I0:t−τ−δt) (5.3)

prediction: p(zt−τ |I0:t−τ−δt) =

∫
dzt−τ−δt · p(zt−τ |zt−τ−δt) · p(zt−τ−δt|I0:t−τ−δt) (5.4)

extrapolation: p(zt|I0:t−τ ) =

∫
dzt−τ · p(zt|zt−τ ) · p(zt−τ |I0:t−τ ) (5.5)

As can be seen from these equations, this mode is similar to Eqs. 5.1 and 5.2, except that these

are delayed by τ , the known sensory delay. This information p(zt−τ |I0:t−τ ) is then “pushed”

forward in time using the extrapolation step. We finally obtain the estimate of motion at the

current time, knowing the information acquired until t− τ , that is p(zt|I0:t−τ ).

This ”pushing” mode is consistent with the diagonal model (see Figure 5.3-Left) and

is the most intuitive. It may be however more practical (in particular for neural network

implementations) to derive a set of predictive steps that would directly act on the estimation on

the state at the current time p(zt|I0:t−τ ). Note that:

p(zt|I0:t−τ ) =

∫
dzt−τ · p(zt|zt−τ ) · p(zt−τ |I0:t−τ ) (5.6)

∝[

∫
dzt−τ · p(zt|zt−τ ) · p(It−τ−δt:t−τ |zt−τ )] · p(zt−τ |I0:t−τ−δt) (5.7)

∝[

∫
dzt−τ · p(zt|zt−τ ) · p(It−τ−δt:t−τ |zt−τ )]

·
∫
dzt−τ−δt · p(zt−τ |zt−τ−δt) · p(zt−τ−δt|I0:t−τ−δt) (5.8)

Regrouping terms, it comes:

p(zt|I0:t−τ ) ∝
∫
dzt−τ · p(zt|zt−τ ) · [

∫
dzt−τ−δt

· p(zt−τ |zt−τ−δt) · p(It−τ−δt:t−τ |zt−τ ) · p(zt−τ−δt|I0:t−τ−δt)] (5.9)

Noting that the term within brackets can be written as a prediction from t− τ to t, we have:

p(zt|I0:t−τ ) ∝
∫
dzt−δt · p(zt|zt−δt) · p(It−τ−δt:t−τ |zt) · p(zt−δt|I0:t−τ−δt) (5.10)

where

p(zt|zt−δt) · p(It−τ−δt:t−τ |zt) · p(zt−δt|I0:t−τ−δt) =∫
dzt−τ · p(zt|zt−τ ) · [p(zt−τ |zt−τ−δt) · p(It−τ−δt:t−τ |zt−τ ) · p(zt−τ−δt|I0:t−τ−δt)] (5.11)
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Assuming p(It−τ |zt−δt) = p(It−τ |zt) for vanishingly small δt:

prediction: p(zt|I0:t−τ ) =

∫
dzt−δt · p(zt|zt−δt) · p(zt−δt|I0:t−τ ) (5.12)

estimation: p(zt−δt|I0:t−τ ) ∝ p(It−τ−δt:t−τ |zt) · p(zt−δt|I0:t−τ−δt) (5.13)

extrapolation: p(It−τ−δt:t−τ |zt) =

∫
dzt−τ · p(zt|zt−τ ) · p(It−τ−δt:t−τ |zt−τ ) (5.14)

We call this second mode the “pulling” mode. These modes share the same processing logic but

they offer different implications about the manner that internal model and likelihoods might be

implemented:

In pushing mode motion state zt−τ is estimated based on delayed sensory input It−τ−δt:t−τ

and smoothness of motion. Duration δt is step size of estimation and τ represents the imposed

delay. Equation 5.3 calculates the probability of a desired motion state, using likelihood of that

state (measured by delayed sensory information), and predicted weight given by equation 5.4.

In the next step, the estimated motion is extrapolated for a period of virtual blank (duration =

τ ), while there is no sensory measurements (see Figure 5.3-Right). Thus, extrapolative step

shown by equation 5.5 is purely predictive with the smoothness constraint and prior information

of the value of delay τ (see section 5.3.2).

In pulling mode the probabilistic representation is different, the current state is directly

estimated based on the delayed measurements and extrapolative step is hidden in the probability

p(zt|I0:t−τ−δt). Under the stationarity assumption for prediction, both modes are mathematically

equivalent and produce probabilistic representation of instantaneous state based on delayed

measurements. Information about the estimate of motion (position, velocity) at time t knowing

the sensory information observed between 0 and t− τ is contained in the pdf p(zt|I0:t−τ ). As we

saw it can be computed using the diagonal model in push mode and summarized in the following

master equations:

p(zt|I0:t−τ ) ∝
∫
dzt−δt · p(zt|zt−δt) · p(It−τ−δt:t−τ |zt) · p(zt−δt|I0:t−τ−δt) (5.15)

p(It−τ |zt) =

∫
dzt−τ · p(zt|zt−τ ) · p(It−τ |zt−τ ) (5.16)

Equations 5.15 and 5.16 are master equations of diagonal model which provide probabilistic

distribution of estimated motion state zt, based on delayed motion measurements It−τ . In the

following part we describe how the pdf functions p(zt|zt−τ ) and p(zt|zt−δt) are computed.
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5.3.2 Motion-based prediction

Predictive representation of motion favors smooth trajectories in two steps: first, temporal

coherency of motion at each step, represented by p(zt−τ |zt−τ−δt) or p(zt|zt−δt), is calculated:

xt−τ = x(t−τ−δt) + u(t−τ−δt) · (δt) + νx

yt−τ = y(t−τ−δt) + v(t−τ−δt) · (δt) + νy (5.17)

ut−τ = γ · u(t−τ−δt) + νu

vt−τ = γ · v(t−τ−δt) + νv (5.18)

νx, νy ∝ N (x, y; 0, DX · δt) (5.19)

νu, νv ∝ N (u, v; 0, (σ−2
p +D−1

V )−1 · δt) (5.20)

As we described in chapter 3, νx, νy are Gaussian distributions of position blurring where

DX · δt is blur value sampled at each time step. Blurring of velocity is done with a sample from

νu and νv Gaussian distributions with standard deviation of (σ−2
p +D−1

V )−1 · δt, where σp is the

standard deviation of prior information on slowness of motion.

Then p(zt|zt−τ ) is calculated by a predictive extrapolation of estimated motion (equations

5.21-5.22). The estimated motion is extrapolated forward, for the duration of τ and based on

the knowledge from trajectory and a prior knowledge on the fixed delay τ :

xt = xt−τ + ut−τ · (τ) + ωx

yt = yt−τ + vt−τ · (τ) + ωy (5.21)

ut = γ · ut−τ + νu

vt = γ · vt−τ + νv (5.22)

ωx, ωy ∝ N (x, y; 0, DX · τ) (5.23)

ωu, ωv ∝ N (u, v; 0, (σ−2
p +D−1

V )−1 · τ) (5.24)

As defined in (Weiss and Fleet, 2001), prior information in slowness and smoothness of motion

can be formulated by standard deviation as (σ−2
p +D−1

V )−1 ·dt on velocity. Here, γ = (1 +
D2
V
σ2
p

)−1

is the damping factor introduced by the prior and γ ≈ 1 for a high value of σp. The update rule

(see (Perrinet and Masson, 2007) for a derivation) assumes independence of the prior on slow

speeds with respect to predictive prior on smooth trajectories.

5.3.3 Neural interpretation of diagonal model

Motion-based prediction in diagonal fashion can be implemented in a two-layered neural network.

Fig 5.4 illustrates the simplest demonstration of the algorithm in a neuronal structure. Source
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x

(xi , Vi )

axonal delay τij

xi ≈ xj − Vj · τij
Vi ≈ Vj

Source Layer

Target Layer

x

v

(xj , Vj )

Figure 5.4: Schematic of neural implementation of diagonal model, diagonal delay
compensation can be demonstrated in a two-layered neural network including source (input)
and target (predictive) layers. Source layer receives delayed sensory information and encoded
position and velocity in the source layer (xi, Vi) stimulates the neural populations corresponding
to the corrected position of stimulus (xj , Vj) in the target layer. Degree of correction depends
on the precision of encoded velocity and the prior knowledge of neural delay τij

layer provides neural predictions and activates specific populations of the target layer. In

particular, mapping between source and target layers is anisotropic, depending on the estimated

velocity and neural delay τ . For instance, in the case of rightward motion, the target layer may

be interpreted as a neural population which gets stimulated by sensory information received by

some lefthand neurons. Note that diagonal representation does not change fundamentally the

MBP model that we presented in chapter 3 and (Khoei, Masson, and Perrinet, 2013). This new

representation, at abstract level, introducs a prior knowledge on delay τ . As a consequence, it

provides distinct layers for demonstration for delayed arrival of stimulus and predictive neural

activities.

We have implemented diagonal model in a spiking neural network (SNN) via anisotropic

connections (Kaplan et al., 2014). The SNN model demonstrates the anisotropic diffusion of

predicted neural activations and reproduces the same family of results that we present in the

next section.

5.4 Results

This section includes our results in two sub-sections: first, we have studied the development of

an anticipatory response for the delayed arrival of stimulus in diagonal MBP model, and in the

second part, we have extended the previous results and studied the spatiotemporal profiles of

predictive processing for smooth trajectories. In all results described in this chapter, we have
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Figure 5.5: Anticipatory response of V1 populations, studied by Benvenuti et al.
(2011) Left) Stimulation protocol of (Benvenuti et al., 2011). A coherently moving stimulus
(green bar) is approaching to the CRF of target population at V1 of macaque monkey. The
experiment is repeated for three different trajectory lengths (1.5◦, 3◦, 6◦), each shown with a
different color, where the speed of motion is 6.6◦/sec. Right) Spiking response of neural
population (CRF) to each stimulation condition has been illustrated by the corresponding color.
Horizontal axis indicates time after arrival of stimulus in CRF. Anticipatory signature of this
data is evident by development of response at time t < 0: in red and blue stimulation conditions,
response to the moving bar started before arrival of stimulus to CRF. We have studied how
MBP diagonal model may explain such a signature.

studied estimated position for a horizontally moving dot presented during 128 frames. All results

have been averaged over 10 trials and estimated positions are calculated as histograms over the

whole range of trajectory, where the range is divided into 400 positional bins.

5.4.1 Delayed arrival of stimulus and probabilistic anticipatory response

As described in chapter 1, there are experimental evidences to support existence of anticipatory

neural mechanisms in processing of an object moving in a coherent trajectory (Guo et al., 2007;

Roach, McGraw, and Johnston, 2011). In another study, the existence of similar mechanism has

been reported in extra cellular recordings of V1 populations of macaque monkey (Benvenuti et al.,

2011). In Fig 5.5 simple experimental protocol of this study has been shown as well as recorded

profile of anticipatory response. In the experimental protocol, averaged population response has

been recorded from an Utah array located in V1 of a macaque monkey. The stimulation protocol

includes a moving bar approaching to the receptive field of recorded population with different

trajectory lengths. As it is evident in neural responses, a neural population starts to develop

an anticipatory response before arrival of stimulus to its CRF and having a longer trajectory

before stimulation of CRF would result in earlier onset of rising phase of anticipatory response.

Inspired by these data, we have estimated instantaneous position of stimulus by MBP and PX

diagonal models.

As described in the previous section, the diagonal model processes delayed sensory information
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by forward extrapolation of estimated positions and starts to prepare a response by extrapolating

the delayed state, taking advantage of previous position and velocity of stimulus.

To study this experimental framework with our modeling approach, we have simulated a

counterpart experiment within the model. In an electrophysiological experiment Benvenuti

et al. (2011) recorded from a target neural population, while a moving stimulus approaches the

CRF with different trajectory lengths. In modeling framework we have studied development of

probabilistic confidence about arrival of stimulus in target positions ahead of current position of

stimulus. From this view, having a long trajectory before arrival to CRF would be equivalent to

studying a more distant position in the trajectory.

Figs 5.6 and 5.7 include results of delayed MBP and PX models with τ = 100 ms, where

the stimulus is a horizontally moving dot and each frame of movie stimulus has been arbitrarily

assigned to 10 ms of biological time. Fig 5.6 illustrates histograms of estimated position, during

the period that the stimulus moves between -1 and 0. In MBP model, estimated position is

corrected very early in the trajectory, just after receiving the first measurements (τ = 100 ms).

Estimated position by PX model is less precise and stays lagged behind the veridical position of

stimulus.

We have further explored the estimated position in the early part of trajectory. As illustrated

in Fig 5.7, we have chosen three successive positions of trajectory to study temporal distribution of

estimated response in those points. In progressive responses (left column) the time corresponded

to the arrival of stimulus center in that position has been illustrated with dashed lines of matched

color. In centered responses (right column), as zero in time axis matches to the arrival time of

stimulus in the under study positions, development of belief about arrival of stimulus on target

position is more evident.

Comparison between diagonal MBP and PX models reveals that, by progression of the

stimulus in the length of trajectory, MBP model systematically grows the confidence of correct

position estimation. While PX model provides a delayed and poor estimation of position, no

matter how far the current position is from the beginning of the trajectory. In other words,

excluding velocity information from the estimation algorithm results in a motion estimation

model which equally processes the positions in early and late trajectory (See right bottom plot

in Fig 5.7). Here, we have replicated the experimental data on macaque monkey (Benvenuti

et al., 2011). The diagonal MBP framework, compensates the imposed delay τ , at the beginning

of trajectory. Also the temporal distribution of estimation position shows dependency to the

relative location of the point in the trajectory. In the next section, we further study this emergent

property of this probabilistic model.
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Figure 5.6: Estimated position of stimulus by delayed MBP and PX models with

τ = 100 ms, the stimulus is moving between -1 and 0 and the hue shows the probability

of estimated positions (dark blue and red respectively correspond to the lowest and highest

probabilities). Instantaneous position of the stimulus is marked by dashed black line, where

white line matches to the delayed measurements from position of stimulus.
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Figure 5.7: Estimated position of stimulus by delayed MBP and PX models at three

successive points of trajectory, simulating the experimental protocol described in Fig 5.5.

Stimulus is a dot moving in a coherent path and inset plots depict the relative position of studied

points. Left) progressive response: estimated response has been illustrated as it develops over

time, dashed lines are matched to the arrival time of stimulus to that specific position. Right)

centered response: estimated response centered by arrival time of stimulus to the each of three

positions (white dotted line), white dashed line corresponds to the time in which model receives

measurements of stimulus being present in each of the three position (τ = 100 ms).



Chapter 5: Results (Diagonal model) 108

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0

start

early trajectory middle trajectory late trajectory

Figure 5.8: Spatial range of trajectory sampled in number of discrete positions: early,
middle and late trajectories are color coded.

5.4.2 Predictive processing of smooth trajectory: spatiotemporal extrapola-

tion of motion

According to Fig 5.7, the diagonal MBP model provides a predictive representation of motion

by anisotropic diffusion of belief at future positions in the trajectory, where PX lacks such a

mechanism. This model also suggests a large scale constraint on the anticipatory response of

neural populations before arrival of stimulus into their CRF. In next figures, we have extended

this result by elaborating the estimated position allover the trajectory, and for different delay

values. As shown in Figure 5.8, the position of stimulus in the trajectory is color coded and in

one period it moves from reddish positions toward blueish ones. Temporal profile of estimated

positions at each point of the trajectory is illustrated with the corresponding color.

Fig 5.9 shows the dynamics of estimated response at sampled points of the trajectory by

progression of stimulus along the path, for PX and MBP diagonal models with τ = 100 ms. As

mentioned earlier, MBP model corrects the positional error at early trajectory by developing

anticipatory response, where estimations of PX model lag behind the physical position of the

stimulus, until the end of trajectory. MBP model also uses information from the trajectory to

grow the estimation confidence and reaches its maximum just after middle of trajectory, while

this effect is not visible in PX model.

In Figs 5.10 and 5.11, motion estimations of two models have been illustrated for three delay

values (each column) and few samples from early, middle and late trajectory (each row). Black

dashed lines in Figs 5.10 and 5.11 indicate the time in which the center of stimulus arrives in

that specific position of the trajectory (actual physical position of stimulus). White dashed lines

indicate the delayed position of stimulus, the one that is available for the model via measurments.

In MBP model and in the case with delay τ = 0 ms, estimation confidence grows by time and

by advancing in the trajectory. Also the time in which estimated position reaches to its peak

matches to the arrival time of stimulus center to each position.

Imposing more delay results in misestimation of the earliest trajectory (the difference between

peak time and black dashed line in couple of early positions), where this position mismatch

between real position of stimulus and estimated position is corrected quickly for next positions

and the effect of delay is compensated. In PX model, even in the case with no delay τ = 0 ms,



Chapter 5: Results (Diagonal model) 109

peak of estimated positions happens later than the time matched to the arrival of the stimulus

in that position. For the cases with bigger delays, estimated position is matched to the delayed

stimulus information and lags behind the actual position.

Comparison of MBP and PX models reveals robustness of MBP estimations for higher delay

values as well as having a saturated response for late enough positions of the trajectory. What

we have studied in previous part to simulate anticipatory response of neural populations in V1

can be seen in the reddish part of trajectory, where the width of the temporal profile is sensitive

to the distance from the start point of the trajectory.

Figs 5.12-5.13 illustrate the spatial distributions of estimated positions in diagonal PX and

MBP models with τ = 100 ms. The temporal path of the stimulus is shown in the inset plot

and estimated position at each time step is of the same color. All traces are subtracted from the

actual position of the stimulus, thus the black dashed line corresponds to the center of stimulus.

On the other hand, having a delay equal to τ = 100 ms means that at each time step the motion

measurements would be associated to the position of stimulus at t− τ . This delayed position has

been marked with dashed white line. Allover the trajectory, estimated position by PX model is

behind the physical center of stimulus, while MBP model after few initial frames corrects the

positional lag.

5.4.3 Dependence of delay compensation with respect to the contrast

In Fig 5.14 we have studied MBP and PX model responses for varying contrast levels and in

different parts of the trajectory. The aim of this experiments was to reveal the effect of contrast

in delay compensation mechanism. In these figures the spatial distribution of the estimated

response at three different segments have been illustrated: averaged spatial distributions over

first 5 frames (delay correction phase), and over middle and late trajectories. Dashed black and

white lines respectively correspond to the actual and delayed centers of stimulus. According

to these results, in the early part of trajectory and for MBP model, higher contrast leads to

quicker delay compensation (bigger spatial extrapolation), where it is not the case for PX model.

In middle and late parts of the trajectory, as delay has been already compensated, the center of

responses in all contrast levels is the same and matched to the actual center of stimulus. On the

other hand, the spatial profile of response in PX model, as described in Fig 5.10 and 5.11, is

always lagging behind the actual position of stimulus and delay is not reduced. Particularly,

unlike the early trajectory estimations by MBP model, there is no contrast dependent lead in

response.
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Figure 5.9: Temporal distribution of estimated positions by diagonal models (τ =
100 ms): as shown in the inset plot, stimulus is a gaussian dot moving from reddish positions in
the early trajectory toward bluish ones in the late trajectory. Estimations at sampled positions
of trajectory have been illustrated with the corresponding color. The first temporal profile
is slightly ahead of start point of trajectory, as the first estimation starts at t = τ (Fröhlich
effect). All traces are centered by the time in which actual center of stimulus arrives to that
specific position (black dashed line). The relative time in which model receives delayed motion
information is indicated by white dashed line. Top) PX model: estimated positions allover
the trajectory are delayed and of the same profile shape, Bottom) MBP model: estimated
positions at early trajectory are delayed but gradually this delay is compensated, as it is evident
by shift of peak time toward zero. Also the shape of temporal profile is dependent on the length
of the trajectory behind each position.
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Figure 5.10: Temporal profile of estimated positions by diagonal PX model: each
column illustrates estimated profiles from start to the end of trajectory for PX model with a
delay value noted as τ . As shown in the inset plot, the spatial range of motion trajectory is
sampled and shown with a spectrum of colors from red to blue. For clarity, trajectory is divided
to three part and estimated profiles at sampled positions of each part are plotted. Profiles are
centered by the time in which actual center of stimulus arrives to that position. Hence, temporal
lag of estimated position is reflected in the distance between peak of profile and dashed black
line. White dashed white line indicates the time in which model receives delayed arrival of
sensory information (t = τ). Results of PX model suggests that even at the case with τ = 0 the
positional response is slightly lagged behind the actual position of stimulus. For τ > 0 peak of
response is matched to the white dashed line. Estimated positions by PX model are poor and
delayed and of the same shape for any arbitrary position in the trajectory. Note that in second
and third columns where τ > 0, plotted profiles are start from estimated position of stimulus at
t = τ (just after Fröhlich effect)
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Figure 5.11: Temporal profile of estimated positions by diagonal MBP model: position
of stimulus in the trajectory is color coded and estimated position by model at each sampled
position is plotted by the corresponding color. Each column includes estimated profiles along the
trajectory by MBP model with a delay noted as τ on the top. For clarity, the profiles have been
plotted in three part. All profiles are centered by the time in which actual center of stimulus
arrives to that position. White dashed line indicates the time in which model receives delayed
arrival of sensory information. Note that in second and third columns where τ > 0, plotted
profiles are starting from position of stimulus at time = τ (just after Fröhlich effect). According
to the results of MBP model, for τ > 0, earliest estimations are lagged behind actual position of
stimulus (reddish profiles), but the positional error is corrected quickly and in the middle and
late parts of trajectory profiles are centered by the actual center of stimulus, despite delayed
arrival of motion information.
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Figure 5.12: Spatial distribution of estimated positions in the PX model with τ =
100 ms: spatial distribution of estimated positions as stimulus moves along the trajectory shown
in inset. Time steps of motion estimation are matched to the color spectrum from red to green.
All traces are subtracted from the actual position of stimulus, thus black dashed line indicates
the center of stimulus and white dashed line corresponds to delayed position of stimulus. Top):
rightward motion Bottom): leftward motion
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Figure 5.13: Spatial distribution of estimated positions in the MBP model with
τ = 100 ms: spatial distribution of estimated positions as stimulus moves along the trajectory
shown in inset. Time steps of motion estimation are matched to the color spectrum from red
to green. All traces are subtracted from the actual position of stimulus, thus black dashed
line indicates the center of stimulus and white dashed line corresponds to delayed position of
stimulus. Top): rightward motion Bottom): leftward motion
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Figure 5.14: Estimated positions at early, middle and late parts of the trajectory, and
at three different contrast levels. Stimulus is a dot moving in rightward direction and each panel
corresponds to averaged response over corresponding temporal areas. Contrast levels are color
coded and black and white dashed lines respectively indicate the actual and delayed positions of
the stimulus. Top) PX model, Bottom) MBP model
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5.5 Conclusion and Discussion

In this chapter, we have introduced the diagonal MBP model, as an effective mechanism to

compensate positional error caused by neural delays. The questions that we have addressed are

progressively fit in three following categories, each corresponding to one experimental setup on

the MBP and PX diagonal models. First we have simulated delayed arrival of visual input and

studied the role of delays in position coding of smoothly moving objects. As a specific case,

we have simulated the anticipatory response of neural populations in V1 to a simple straight

trajectory and its dependence on the length of the trajectory. Second, we have extended the

same experiments to explore how predictive position coding may be changed at different parts

of trajectory and with respect to a range of delay values. In the third part we have explored

how delay compensation phase might be affected by contrast.

Herein, we will conclude and discuss the implications of our results.

Predictive extrapolation of response to delayed visual input In the first part of

results we have simulated the anticipatory signature of the population response in V1. Our

results highlight the importance of a large scale and trajectory dependent constraint serving

as delay compensation mechanism. That may be implemented as diffusion of belief about

appearance of stimulus in trajectory positions distant from retinal or cortical position of stimulus.

The Diagonal MBP model that we have proposed for trajectory processing is a potential candidate

to modulate spatiotemporal distribution of neural code for anticipatory objectives.

To this aim, we have examined the dynamical development of position coding at three

successive positions of the trajectory, which are laid at different distances from the beginning

point. This would be the counterpart to the experimental setup in which stimulus enters to the

target CRF with three different trajectory lengths. These results are in qualitative accordance

with extracellular responses recorded from populations in V1 (Benvenuti et al., 2011). In the

next step, to study temporal profile of estimated response at different parts of the trajectory,

we have imposed different delay values for both MBP and PX models. In the MBP model,

knowledge about the velocity of the stimulus, allows to extrapolate the position code from the

position provided by delayed information. However, as shown in Figure 5.11 there is a delay

compensation phase at the earliest part of the trajectory.

According to Figure 5.2, motion is defined by its state vector z = (x, y, u, v) and at t = τ ,

first information from trajectory (corresponding to the position and velocity of stimulus at

time = 0) arrives to the system. Then z(τ), as the first position estimation, is an extrapolated

response from delayed information. For very early positions in the trajectory, as the estimated

velocity is not accurate enough, the extrapolated position estimations are still temporally lagging

behind the center of the stimulus. This delay is gradually corrected by improvement of velocity

estimation (note the shift of peak position in early trajectories of Figure 5.11 and Figure 5.9).

The correction of positional error by MBP model is also evident in Figure 5.13.

Furthermore, the dependence of temporal profile of response with respect to the length of
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trajectory, as experimentally observed in V1 populations, is seen in early trajectory of Figure 5.11.

Our results highlight two distinct temporal phases in the processing of smooth trajectories:

an early phase and a late phase. In the early phase, the delay is compensated by spatial

extrapolation of delayed sensory information. Then for the rest of trajectory, extrapolated

position estimations are matched to the actual position of the stimulus. In the early phase,

the temporal distribution of estimated position is sensitive to the distance of actual position of

stimulus from the start point of the trajectory. In late phase, tracking has already emerged at its

maximum probability and position estimations are transferred in space with a saturated shape.

The trajectory dependent anticipatory signature of estimated motion is in accordance with

the experimental results from (Guo et al., 2007) and (Benvenuti et al., 2011). On the other

hand, the most commonly accepted mechanism for anticipatory response of neurons in the early

visual cortex is diffusive role of horizontal connections (Angelucci et al., 2002; Stettler et al.,

2002). However, these connections have a limited spatial distribution and conduction speeds.

For motion trajectories longer than a threshold, an increase in the length of trajectory would

not change the modulatory effect of lateral connections on population response. In MBP model,

this effect can be explained by saturated profile of position estimations in the late trajectory.

Delay compensation and Fröhlich effect : Delay compensation in the early trajectory

and misestimation of earliest positions is consistent with Fröhlich effect (Fröhlich, 1923). With

Motion-based position coding, perceptual miss of earliest positions in the trajectory may be

explained by initial delay time, as there is no sensory information before time = τ . Extrapolated

estimations in MBP model begin at time= τ , in which system starts to compensate the effect of

delay.

As we reviewed in chapter 1, there are various experimental evidences from the retina,

primary visual cortex and MT+ area supporting motion-based position coding of moving objects.

Our MBP model provides a generic abstract framework implementing predictive extrapolation

of smooth trajectories, without any specification about neural properties of one region in the

visual path. Indeed, considering prediction as a large scale mechanism, provides a powerful

framework to simulate crude and abstract population responses and to study a range of questions.

In this context prediction is able to modulate spatiotemporal properties of neural responses.

Internal model of trajectory motion, implemented by motion-based and systematic extrapolation

of responses to delayed inputs results in a coherent representation of motion, even for the cases

of stimuli with short transient absence (as results in chapter 4).

It is worth to mention that if in theory, the internal MBP model is able to overcome neural

transfer delays, in reality this delay is just significantly reduced and probably never reaches to

zero. Though, there is no way to make sure that if our perception is completely matched to the

actual motion or just it is an efficient enough approximation of it.

Considering the retinotopic map, a stimulus moving in a coherent path (a straight line)

triggers successive neural hills of activity in neurons whose receptive fields are centered on the
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trajectory. In this chapter, we have explored how the motion of the stimulus may impose a large

scale constraint on the modulation and shift of the neural code in the cortical space. Therefore,

we have addressed questions on correspondence between physical position of the stimulus and

probabilistic significance of the neural code by populations specialized for that specific position.

Our framework, by anisotropic diffusion of the probabilistic confidence to following positions,

may explain the spread of neural activity in cortical areas, based on the relative distance between

each area and the cortical position of the stimulus.

We have studied the effect of contrast in characteristics of position code in early, middle

and late trajectories in PX and MBP models with τ = 100 ms. The MBP model suggests that

higher contrast would lead to quicker delay compensation in early trajectory (see the peaks’

order in Figure 5.14), which is consistent with results of Berry et al. (1999) on dependence of

motion extrapolation to contrast in retinal cells. Although this dependence only holds in the

early trajectory and for late enough positions there is no effect of contrast on peak location of

position code.

In all parts of study we have used PX model as a control to MBP model, to highlight the

effect of motion-based position coding versus position-based models such as (Tlapale, Masson,

and Kornprobst, 2010).

Summary

In this chapter, we have studied dependence of position coding of smoothly moving objects on

their trajectory. In continuation to the MBP model described in chapter 3, we have introduced

the diagonal model to simulate neural transfer delays. In the next chapter, we will use this

model to study flash lag effect as a motion-induced position shift.



Chapter 6

Motion-induced position shifts as

consequence of prior information on

smooth trajectories

Abstract

Our perception from smooth motion is rooted in the continuous flow of sensory information,

coming from systematic displacement of eyes to follow the moving object in the visual scene.

Some of experimental studies on motion processing, provide various evidences to highlight

the difference in position coding of moving objects versus stationary transient stimuli (See

chapter 1). Evidences of motion induced-position shifts and the flash lag effect, as a

prototypical example of this domain, suggest the facilitatory role of predictable motion in

position coding of moving object and compensation of neural delays. This category of studies

disentangles the contribution of motion and more precisely the velocity signal in coherency

of predictive neural activity. In this chapter, we have used the diagonal model to simulate

the flash lag effect and three known variants of it (standard FLE, flash initiation FLE and

flash termination FLE). Our results highlight that motion-induced position shifts like FLE

may be considered as a direct consequence of the facilitatory and extrapolative aspect of

predictive position coding.

6.1 Problem statement: Motion-induced position shifts

As we studied in chapter 5, there may exist some compensatory mechanisms in the neural

representation of motion. The flash lag effect (FLE), from category of motion-induced position

shifts, is a well studied visual illusion linked with the concept of neural delays.

Motion-induced position shifts may be caused by facilitatory motion processing mechanisms.

As reviewed in chapter 1, various behavioral and experimental studies on FLE suggest existence

of a facilitatory and predictive mechanism in motion processing to compensate the neural

delays by extrapolation of motion in smooth trajectories. Visual perception is supposed to stay

unaltered, unless the neural system receives enough evidences about a considerable change in

the world state. In other words, the internal representation of the world will be kept or updated

119
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by perception of changes (MacKay, 1958). In processing of smooth motion trajectories, as there

is no significant change in the state of the world (namely direction of motion), the internal

presentation is likely to be progressive to code for the most expected positions of the stimulus.

From this view, FLE can be regarded as a motion-induced position shift, caused by a position

corrective mechanism for trajectory motion.

There are evidences on occurrence of a counterpart effect on color, luminance and spatial

frequency. Similar to motion-induced position shifts, coherent changes in some other features

of visual stimulus like color, luminance and spatial frequency can lead to a continuous and

progressive change in the visual perception and cause observations similar to FLE (Sheth,

Nijhawan, and Shimojo, 2000). These visual signatures highlight that perception of smooth

change in the sensory data can be reflected in a coherent neural representation and facilitated

neural processing, for instance by delay compensations mechanisms.

In chapter 5, we found that excluding velocity information from the motion estimation process

deteriorates it significantly. Our findings in estimation of smooth and predictable motions can

also explain the sensory origins of FLE: in accordance with the hypothesis of Nijhawan and Wu

(2009) and experimental studies of FLE (Berry et al., 1999; Jancke et al., 2004), we suggest that

predictive extrapolation of trajectory motion via a simple internal model may be responsible to

the delay compensation and FLE.

This chapter is prepared in the following order: first we have a brief introduction to FLE and

its various explanations, and then section 6.3 includes our results in modeling of FLE. Finally

in the section 6.4, we will conclude our findings and explain advantages and limitations of our

approach in comparison with the studies reviewed in chapter1.

6.2 Flash lag effect (FLE) and different theories

As we reviewed in chapter 1, studies on FLE suggest that positional coding of objects is likely

to be affected by some contextual information like contrast or being in motion or static. Thus,

for a stationary and a moving stimulus, having the same retinal position at the same time

will result in different perceived positions. That is likely to be induced by motion signal. The

FLE was first discovered by MacKay (1958) and after that it did not attract much research

attention until 1994, when Nijhawan started to study similar questions (Nijhawan, 1994). In an

experimental setup which assured perfect alignment of both moving and stationary stimuli at the

same time, this study reported that most subjects perceive the moving object to lead in space.

Nijhawan (1994) proposed motion extrapolation as a hypothesis to explain FLE. According to

this hypothesis, the visual system is predictive and takes advantage of trajectory information

to be prepared for upcoming flow of moving stimulus and also to be able to correct positional

errors caused by neural delays.

In the last two decades, this approach has been criticized by various challenging experimental

setups by Nijhawan (Nijhawan, 2002; Nijhawan and Wu, 2009; Nijhawan et al., 2004) and

others (Eagleman and Sejnowski, 2000; Krekelberg et al., 2000; Schlag et al., 2000; Whitney
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and Murakami, 1998; Whitney, Murakami, and Cavanagh, 2000) (See chapter 1 for a complete

review).

The main flaw of motion extrapolation theory is that it can not account for some particular

experimental observations on FLE, for instance when the flash appears at the end of the trajectory

of a moving object. In this case, motion extrapolation predicts a perceptual overshoot same

as standard FLE, while there is no report of such an effect in the conducted experiments. In

general, motion extrapolation acts as an inertial constraint in detection of sudden changes in

the status of motion, like motion termination or motion reversal. Therefore it can not explain

the relevant experimental data.

One alternative hypothesis for FLE is based on different processing latencies of the moving

and stationary objects (Jancke et al., 2004; Purushothaman et al., 1998; Whitney and Murakami,

1998; Whitney, Murakami, and Cavanagh, 2000). This account assumes that the visual system

processes the moving object with more efficient mechanisms and this causes the percept of lag

in FLE. The improved processing of moving objects may have multiple origins but there is no

evidence to support any significant difference in processing latency of moving and stationary

objects. Also, sensory information of both stimuli are supposed to be transferred via the same

physical path and therefore there can not be a big difference in transfer and processing time.

Instead, the efficiency in processing of moving stimuli can be rooted in the primed state of

cortical areas for predictable stimulus.

Some other studies have explored FLE from the aspect of position persistence for the flashing

object (Krekelberg, 2001; Krekelberg and Lappe, 2000). According to this hypothesis, motion

information are slowly averaged within a 500 ms window, therefore, the perception at the position

of flash is persisted while the averaged position for moving object will be ahead. The main flaw

of this account is that, regarding the dynamics of motion integration 500ms is unrealistically

long.

Finally, one other hypothesis that have been in discussion as a potential mechanism underlying

FLE is postdiction (Eagleman and Sejnowski, 2000). This account assumes that visual system

collects information not only from the past of a visual event but also from its future. In other

words, the neural response associated with position of a moving stimulus at a certain time

is modulated by the position of stimulus during a temporal window centered by that time.

Postdiction theory can explain why FLE does not happen in flash terminated cycle but is not

successful in accounting for the standard FLE. In postdiction model, the flash is regarded as a

reset for motion integration, thus observers are expected to perceive a change in the speed of

moving object as well as the spatial lag of the flash. If we consider both moving and flashing

stimuli to have the same neural delay as ∆t, then flash occurs at t = t0 and is observed at

t = t0 + ∆t. During this time, the sensed position of moving object is moved between x = ∆s

(behind the position of flash) to x = σs (where σs is measured value of the flash-lag effect).

Thus, to cause the effect, the constant speed of moving object must change from V = ∆s
∆t to

V́ = ∆s+σs
∆t . Humans are good enough in the perception of speed increments, but in the case of
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FLE such a perception of speed increment was never reported by any subject (Nijhawan, 2002).

Our theory to explain FLE is consistent with the motion extrapolation account. Results

presented in the next section illustrate our simulations on FLE and its various experimental

aspects by diagonal models (See chapter 5), and in particular by stressing on the role of

velocity-based information.

6.3 Results

This section includes our results on modeling FLE with motion-based prediction (MBP) and

position-based prediction (PX) models. In all results described in this chapter, we have studied

estimated position for a horizontally moving dot, presented during 128 frames. All results have

been averaged over 10 trials and estimated positions are calculated as histograms over the whole

range of trajectory, where the range is divided into 400 positional bins.

6.3.1 Motion based prediction and the flash lag effect (FLE)

Our results in chapter 5 highlight the crucial role of motion-based position coding, as an effective

delay compensation mechanism for trajectory motion. In the same context, one could provide

an explanation for potential sensory origins of FLE as a well studied visual illusion. Our

modeling approach emphasizes different manipulation of stationary and trajectory motion by

the sensory system, and explores advantages of motion-based position coding in a simple and

generic framework.

Our experimental procedure to simulate FLE in the model can be explained by Fig 6.1.

Similar to frequently used experimental setup in the previous studies, we have simulated standard

and half cycle flash lag demonstrations: standard FLE experiment is composed of a moving

stimulus and a stationary flash that appears in perfect alignment with it in the middle of the

trajectory. In the case of half cycle FLEs, the flash appears either in the beginning or at the end

of trajectory (Nijhawan, 2002). As shown in the Fig 6.1, we have done six experiments in the

model: three described FLEs for rightward and leftward motion.

Results of rightward motion experiment on MBP model are illustrated in Fig 6.2. It includes

estimated positions of flash and moving stimulus, at standard FLE setup as well as flash initiation

and flash termination half cycles of FLE.

For rightward motion, the dot starts from x = −0.8 (the position of initial flash ) and moves

toward x = 0.8 and disappears in this position (the position of termination flash). For leftward

motion, the dot starts from x = 0.8 (the position of initial flash ) and moves toward x = −0.8

and disappears in this position (the position of termination flash). In all experiments, flash lasts

for %4 of trajectory length (5 frames out of 128) and estimated responses are histograms with

400 bins over the range of (−1, 1). Each row in Fig 6.2 illustrates estimated positions for the

flash or moving stimulus, for the 5 frames that the flash lasts. As it is evident in the figures,

during the time that response to the stationary flash is developed, estimated position for the
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Figure 6.1: Experimental setup of FLE model: in six different experiments, each of two
moving dots (in rightward and leftward directions) are aligned with each of stationary flashing
dots. Based on the position of flash experiments are called flash initiated FLE, standard FLE
and flash terminated FLE.

moving object is shifted in the direction of motion. For flash initiation half cycle (red plot),

where flash appeared in the beginning of trajectory of moving dot, during flashing frames the

confidence of estimation is increased and it is centered at the center of the flashing dot. For the

moving object at the beginning of its trajectory, during the same time frames, confidence of

estimated positions is growing along with a smooth shift of peak in the direction of motion. The

similar effect is seen for middle and late trajectories (blue and green plots). Except that, for

these positions, estimations have already reached to their maximum confidence.

Figs 6.3-6.6 summarize results of standard FLE from spatial and temporal aspects:

FLE in position: In Figs 6.3 and 6.4 estimated positions for stationary flashing stimulus,

and stimuli moving in rightward and leftward directions are illustrated. Responses are obtained

from diagonal models, respectively with τ = 0 ms and τ = 100 ms, and averaged over frames of

flashing period. In the MBP model, just after the end of flash, position estimations of moving

stimuli are ahead of flash position. Estimated positions by PX model, as it is expected from

previous results, are even slightly behind the center of stimulus.

Spatial lead of moving object is more evident in Fig 6.4 with τ = 100 ms. This figure shows

that, by the time that response to flash reaches to its maximum (t = τ + end frame of flash),

the response to the moving stimuli is considerably shifted in the direction of motion. Indeed,

as the moving object is in the middle of its trajectory, in the response of diagonal MBP model

the positional error has been already corrected. Therefore, at the starting frame of flash, the

position of moving object aligned with flash is correctly estimated. While the response to the

flash starts to develop at (t = τ + start frame of flash) and grows until (t = τ + end frame of

flash). During this time, estimated positions of moving object moves forward. This result of

diagonal MBP model highlights the importance of the motion signal and velocity of motion in

differentiation of two stimuli appearing in the same location at the same time.
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Figure 6.2: FLE in MBP model (τ = 0 ms): Top) flash initiated FLE, Middle) standard
FLE and Bottom) flash terminated FLE in rightward motion. Each row includes estimated
position for flash and moving stimulus at five frames of flash. Frames from start to the end of
flash are plotted with light to dark colors. Dashed and dotted lines respectively match to the
center and radius of flashing dot.
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Figure 6.3: Spatial response in PX and MBP models of standard FLE with τ = 0 ms,
for rightward and leftward motions: each trace illustrates spatial distribution of estimated
position averaged over flashing frames. Dashed and dotted lines respectively match to the center
and radius of flashing dot and each curve is average of estimated positions over five flashed
frames.

Figure 6.4: Spatial response in PX and MBP models of standard FLE with τ = 100 ms:
each trace illustrates spatial distribution of estimated position averaged over temporal range
(flash start + τ , flash end + τ . Dashed and dotted lines respectively match to the center and
radius of flashing dot and each curve is the average of estimated positions over five frames of the
flash.
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FLE in time: In Figs 6.5-6.6, the temporal dynamics of the estimated response in the

location of the flash are illustrated. The temporal profiles are averaged over all positional bins

covering the location of the flash. For the moving object, the responses are bell shaped, as the

confidence hill is supposed to move to the next positions in the trajectory. Where, responses

to the flash are damping with a slow dynamics, depending on the strength of σp, prior on slow

speeds (See Equation 5.24). This inertia effect can be considered as position persistence of

flashing stimulus. In Figure 6.5, for MBP model with τ = 0 ms, at time corresponding to the

beginning of flash (left dotted line), estimation confidence of flashing object starts to rise, while

response to the moving object is already at its maximum confidence.

Standard FLE versus flash initiated half cycle: In Figs 6.7 and 6.8 we have compared

MBP models of standard FLE and flash initiated FLE for τ = 0 ms and τ = 100 ms. The

spatial lead in both FLEs is in the same range, but the effect can be interpreted to be stronger

in the standard FLE, as the estimation confidence of moving object in the middle of trajectory

is higher than beginning.

Figs 6.9-6.10 illustrate the temporal profile of flash initiation FLE by MBP models with

τ = 0 ms and τ = 100 ms. In the case with τ = 0 ms, after beginning of flash, the posi-

tional response for both stimuli starts to grow similarly. Then, in the position of the flash,

response of moving stimuli drops and estimation confidence moves toward next positions in

the trajectory, while the confidence of estimation for flashing stimulus damps slowly. Imposing

τ = 100 ms in the MBP model of flash initiated FLE (Fig 6.10) leads to different temporal

profile: at time t = τ after beginning of flash, the positional response for both stimuli is the

same, but response of moving stimulus drops quicker. As diagonal MBP model of moving object

aims to correct positional error at the earliest part of trajectory, the estimation confidence is

quickly shifted from the position of the flash toward the positions supported by the velocity signal.

Positional inertia of stationary flash: Fig 6.11 illustrates the dependence of temporal

dynamics of flash response to σp (preference to slow speeds). According to the equation 5.24,

imposing a stronger prior information of slowness of motion will result in a more temporally

resistant response for flashing stimulus. Comparing this sluggish damp in temporal response of

flash with the quick transfer of response to the moving stimulus reveals a position persistence ef-

fect similar to what has been discussed in some studies (Krekelberg, 2001; Krekelberg et al., 2000).

Dependence of FLE with respect to the speed: In Fig 6.12 dependence of spatial lead

of moving stimulus to the speed has been shown. In the reference speed (v = 1) the lead is very

small and then it is linearly increased with speed.
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Figure 6.5: Temporal response in MBP and PX models of standard FLE with τ = 0 ms
: each trace illustrates temporal distribution of estimated position, summed over position bins
corresponding to the location of the flash. Solid and dashed lines respectively correspond to
moving and flashing stimuli. Duration of flash has been marked with red dotted lines.
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Figure 6.6: Temporal response in MBP and PX models of standard FLE with τ =
100 ms: each trace illustrates temporal distribution of estimated position, summed over the
position bins corresponding to the location of flash. Solid and dashed lines respectively correspond
to moving and flashing stimuli. Duration of flash has been marked with red dotted lines. As the
flash happens in the middle of trajectory, positional error caused by delay is already corrected,
and response of MBP model for moving object at the position of flash is accurate.
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Figure 6.7: Comparison of standard FLE and flash initiated FLE: MBP model with
τ = 0 ms (Top): standard FLE (Bottom): flash initiated FLE. Each trace illustrates spatial
distribution of estimated position averaged over flashing frames. Dashed and dotted lines
respectively match to the center and radius of flashing dot.
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Figure 6.8: Comparison of standard FLE and flash initiated FLE: MBP model with
τ = 100 ms, each trace illustrates spatial distribution of estimated positions averaged over
temporal range (flash start + τ , flash end + τ), dotted and dashed lines correspond to the radius
and center of dot stimulus. (Top) standard FLE, (Bottom) flash initiated FLE.
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Figure 6.9: MBP model of flash initiated FLE with τ = 0 ms: each trace illustrates
temporal distribution of estimated position averaged over the position bins corresponding to the
location of flash, solid and dashed lines respectively correspond to moving and flashing stimuli.
Duration of flash has been marked with red dotted lines.
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Figure 6.10: MBP model of flash initiated FLE with τ = 100 ms: duration of flash has
been marked with red dotted lines and each trace illustrates temporal distribution of estimated
position, averaged over the position bins corresponding to the location of flash, solid and dashed
lines respectively correspond to moving and flashing stimuli. At the time that response to flash
starts to develop, the estimated response for the moving object at the starts to drop. It implies
that in the position estimation of moving object, the confidence of estimation is pushed to the
more forward positions, as it is evident in Fig 6.8
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Figure 6.11: Dynamics of estimated position for flash stimulus: each trace shows estima-
tion confidence on the position matched to center of flash. After the end of flash, the estimation
confidence drops with a dynamics dependent on the prior preference for slow speeds.
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reference speed the lead is nearly zero and it increases with increase in the speed
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Dependence of FLE with respect to the contrast of flashing stimulus: As we

mentioned earlier, decreasing the contrast of moving stimulus will result in the later emergence

of tracking state (See Fig 5.14). Therefore, decreasing the contrast of both stimuli in the case

of standard FLE is equivalent to decreasing only the contrast of flashing stimulus. We have

explored dependence of FLE to the contrast of flash and the results are summarized in Figs 6.13,

6.14 and 6.15.

Fig 6.13 illustrates estimated response for a stationary flash stimulus at three different

contrast levels and for flash duration%4. The spatial profile of responses has been averaged over

flashing frames. Evidently, the peak of response depends to the contrast of stimulus.

Fig 6.14 includes the peaks of flash response in MBP model, in a grid of different contrasts

and durations for the flash. These are peaks of positional response (similar to the peaks in the

Fig 6.13). If we consider a certain value as detectability threshold of flash (marked for each

contrast), the grid shows that in lowest contrast threshold is reached for a longer flash and

causes the bigger positional lead.

Fig 6.15 illustrate development of estimation confidence in the position of flash, at 3 conditions

marked in Fig 6.14. If we consider a detectability threshold for the response of the flash (0.7,

for example), in lower contrast we need to keep the flash for longer duration to achieve the

threshold.

Figure 6.13: MBP model, spatial distribution of estimated response to a stationary

flash dot: response has been averaged over flashing frames and dotted lines indicate the size of

stimulus with a center shown by dashed line.
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Figure 6.14: MBP model, positional lead of moving stimulus at different contrast:
Left) color level at each cell of grid represents the peak of model response, at the position
matched to the center of flash and averaged over the flashing frames (integral of response at each
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Figure 6.15: Response of MBP model to flashing stimulus at 3 different contrasts:
each trace illustrates development of confidence at positional bins matched to the position
of flash. Defining a threshold for detectability of flash (for instance 0.7) highlights the later
detectability for the stimulus with lower contrast.
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6.4 Conclusion and Discussion

In this chapter, we have studied the role of prediction in spatiotemporal explanation of motion-

induced position shifts. As a well known framework we have modeled flash lag effect (FLE) in

three experimental setup including: standard, flash-initiated and flash-terminated. Experimental

and modeling studies on FLE are closely related to investigations on delay compensation and

predictive position coding mechanisms. Based on our results on motion based processing of

trajectory motion (See chapter 5), we have modeled FLE from the aspect of predictability of

trajectory.

As reviewed in chapter 1, there are few main accounts for explanation of FLE: motion

extrapolation, latency difference account which assumes existence of different latencies for

flashing and moving objects, temporal averaging and postdiction mechanism. Each of these

accounts have their own strengths and limitations. Our approach is in the direction of motion

extrapolation account which was first proposed by Nijhawan (1994) and for about two decades

has been under debate and discussions. Our model takes advantage of motion-based position

coding to differentiate moving and stationary flashing objects by velocity of motion signal.

The MBP model is a generic motion estimation algorithm that by using position and velocity

information of trajectory, gives insights about the position and quality of neural response to

flashing and moving stimuli.

Our results on FLE suggest how motion properties (mainly velocity) of stimulus may shift

neural code in the corresponding population of neurons. For instance, according to our results

in delay compensation, knowledge about the velocity of the stimulus may effectively shift the

neural code from the populations that just received delayed input, toward the populations that

are predicted to be stimulated at time t+ τ . In simulation of FLE on the MBP model we have

imposed a short flash (lasting for %4 of trajectory length) at early, middle and end of trajectory.

These cases would be matched to the three main demonstration of FLE in previous studies

known as flash initiated FLE, standard FLE and flash terminated FLE. MBP model explains

the spatial lead of a moving stimulus observed in FLE by shift in the positional response of

moving object in the direction of motion.

The summary in Figs 6.3 and 6.6 reveals the difference of MBP and PX model (using or not

using velocity signal in motion estimation) in accounting for the spatial lead of moving object.

Estimations by PX model, are always slightly behind the position of stimulus, even for the case

with no imposed delay (τ = 0).

All FLE experiments are simulated under two circumstances for each of MBP or PX models:

τ = 0 ms and τ = 100 ms. As shown in Figs 6.2 and 6.3, the spatial lead in position code

of moving stimulus is evident in the case with τ = 0 ms. Although according to Figure 6.4

this spatial shift is increased for the case with τ = 100 ms. In the temporal domain, at the

start time of flash and in the positional bins matched to the position of flash, estimation confi-

dence by MBP model is at the maximum level, where the response to flash starts to develop

(See Figure 6.5). Imposing a delay as τ = 100 ms, as illustrated Figure 6.6, reveals that in
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standard FLE and in the middle of trajectory, estimated position of moving object is matched

to the actual position of stimulus, where response to the flashing stimulus starts to rise with delay.

Experimental evidences of FLE: Our approach in modeling FLE is consistent with exper-

imental evidence of Berry et al. (1999) about motion extrapolation in retina. Their experiment

on ganglion populations of retina provides insights to neural origins of FLE at the retinal level.

They have reported that, during development of the response to flashing stimulus, response to

moving object is shifted in the direction of motion. We have reproduced their experimental data

with an abstract model without any neural specification. In addition, another experimental

study (Jancke et al., 2004) provides evidence about the similar shift in the neural populations of

cat visual cortex. We suggest that, predictive advancement of neural code towards the neural

populations which their receptive field is slightly ahead of current position of stimulus, can be a

general processing rule in the visual cortex.

Flash initiated cycle of FLE: Indeed, one may expect a smaller spatial lead for moving

object in flash initiation cycle, as in earliest frames of moving object position estimation by

MBP model is still lagged behind the actual position of stimulus. Considering the dynamics of

trajectory processing with MBP model, this is not the case anymore and few frames of flash

duration is enough for position code of moving object to compensate the delay and match to

the actual position of stimulus. From this perspective, the MBP model does not predict any

significant difference in the amount of spatial lead simulated in flash-initiated, standard and

flash-terminated cycles of FLE. On the other hand, obviously direct relation of spatial lead with

the length of flash is suggested by our model. The results that we have shown in Figs 6.7- 6.8

may also be interpreted in another way: the standard FLE can be considered to be stronger

than flash initiated FLE, as estimation confidence is higher for moving object in the late enough

parts of trajectory (far from start point).

FLE and dependence on contrast: Another important aspect in experimental studies of

FLE is dependence of spatial lead on the contrast. In fact, as MBP model works based on belief

accumulation from trajectory and without any specific contrast gain control mechanism, having

low contrast would only result in later emergence of tracking state (saturated profile shape).

From this perspective, MBP model highlights two points in contrast dependence of FLE: 1- at

flash initiation cycle, higher contrast would result in bigger spatial lead of moving object. 2-

at standard and flash terminated cycle (late enough positions in trajectory of moving object),

dependence of spatial lead on contrast can be explained by contrast of flashing stimulus.

In Figs 6.14 and 6.15, we have summarized dependence of FLE on the contrast of flashing

stimulus. Consistent with the relevant experimental evidences (Kanai, Sheth, and Shimojo, 2004),

model response to a flashing stimulus with low contrast will take longer to reach detectability

threshold. Thus, moving stimulus will advance further in the trajectory and cause a bigger
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positional lead.

Shortcomings of motion extrapolation theory: In the literature, two main shortages

of motion extrapolation account in full explanation of FLE are raised: first, it was found

experimentally that the spatial lead of moving object in flash initiation cycle is comparable

with the spatial lead observed in standard FLE setup. While one excepts that, at very early

trajectory two objects should not be differentiable enough. Our results on existence of the same

spatial lead amount in flash initiation cycle answers this apparent contradiction: duration of

flash is enough for moving object to take advantage of motion signal in its trajectory and to

correct the positional error caused by neural delays.

Second shortage of motion extrapolation is in accounting for flash termination cycle: experi-

mentally, no spatial lead or perceptual overshoot is observed for flashes at the end of trajectory,

while motion extrapolation hypothesis would predict such an effect. Indeed, this is a limitation

of our MBP model too: the internal model of motion develops an inertia after gaining confidence

about the trajectory, possibly filling a blank in the trajectory (Khoei, Masson, and Perrinet,

2013). Thus, it is less sensitive to changes of the stimulus status, such as a sudden stop. Motion

extrapolation is a successful explanation for maintenance of coherent motion perception (See

chapter 3), but meanwhile can produce unrealistically long trajectory estimation, after disap-

pearance or any status change of moving object. This shortage can be observed in very slow

drop of estimated position of flash in Figs 6.5- 6.6.

As argued by Nijhawan (2002), we also agree that predictive motion extrapolation is a

powerful hypothesis for motion estimation of smoothly moving objects, but as soon as having

a significant status change in the stimulus some other supplementary mechanisms may come

to play and cease extrapolation of the trajectory. For instance, modifications of the model to

integrate a hierarchical generative model including a higher level representation of the end of a

trajectory (or of an occluder) would allow to integrate both cases (Adams, Perrinet, and Friston,

2012) and is compatible with an implementation including axonal delays such as (Perrinet,

Adams, and Friston, 2014).

It is worth to mention that if in theory, the internal MBP model is able to overcome neural

transfer delays, in reality this delay is just significantly reduced and probably never reaches to

zero. From this perspective, one can imagine that we perceive the moving object ahead of a

flashing one because trajectory motion supports reduction of neural transfer delays for moving

object, and not for stationary one. Though, there is no way to make sure that if our perception

is completely matched to the actual motion or just it is an efficient enough approximation of it.

Thus, not having perceptual overshoot in the end of trajectory is justified: with a more realistic

motion extrapolation, when a moving stimulus stops, in a very short while our perception

catches it in the real position without any spatial lead. This approach matches the findings

of Jancke et al. (2004): moving (predictive) objects are indeed processed quicker than flashing

(unpredictive) objects but still with a fixed, axonal delay.
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Chapter 7

Conclusion and discussion

Scope of the study

In this thesis, we have investigated visual signatures emerging from motion-based position coding

of moving objects. We have used a Bayesian motion estimation framework (implemented by

a particle filtering method) with a central hypothesis on temporal coherency of motion and

we have explored the complementary role of velocity based information in efficient coding of

position.

Motion-based position coding theory proposes a predictive coding mechanism, based on

an internal model of motion and smooth trajectory. As it is generally believed, in retinotopic

visual areas there is a systematic correspondence between stimulated receptive fields in the

physical world and activation of neural populations. Therefore, the location of neural activity

and specifications of activated populations is predictable. Here, using a motion estimation

framework, we have explained this predictability by mapping the motion trajectory to the flow of

neural activity. To this aim we have estimated the position of neural activity by a motion-based

prediction model (MBP, predictive in position and velocity). Two other configurations have

been used mainly as control models, to highlight the difference in accuracy of estimations by

excluding one of motion components: position-based prediction model (PX, predictive only in

position) and velocity-based prediction model (PV, predictive only in velocity).

In this chapter we will summarize our theoretical findings and will discuss implications and

limitations of our results in the context of recent literature.

7.1 Modulation of position coding by temporal coherency of

motion

According to the classical knowledge about retinotopy and the existence of hyper-columns (Hubel

and Wiesel, 1968), motion is mapped into a systematic diffusion of neural activity in the visual

cortex. The neural activity codes the instantaneous position and velocity of moving objects, by

a dynamic and smooth scan of corresponding neural populations. Basic anatomical properties of

137
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visual areas along with a hypothesis on temporal coherency of motion, impose some constraints

on relevant theoretical and modeling studies. Temporal coherency of motion proposes a model

for investigating neural mechanisms behind the processing of short and long term motion. It has

been successful in explaining some visual signatures and psychophysical evidences, including

motion cooperativity (Yuille and Grzywacz, 1989), motion outliers (Watamaniuk, McKee, and

Grzywacz, 1995b), motion inertia and occlusion (Burgi, Yuille, and Grzywacz, 2000; Khoei,

Masson, and Perrinet, 2013) and aperture problem (Perrinet and Masson, 2012; Yuille and

Grzywacz, 1989).

Studies with a hypothesis on temporal coherency of motion (Grzywacz, Watamaniuk, and

McKee, 1995; Watamaniuk, McKee, and Grzywacz, 1995b; Yuille and Grzywacz, 1989) have

considered motion estimation as an optimization problem. As we reviewed in chapter 2, in

these frameworks velocity is estimated by a smoothing constraint on speed and direction

domains, which is compatible with neural structure of visual areas and their optimal function.

Mathematical description of this hypothesis bridges between physical origin of sensory information

and specifications of neural codes, which can be implemented into neural networks simulating

specific region of the visual system (Burgi, Yuille, and Grzywacz, 2000).

The MBP model used in this study, implements a type of temporal coherency of motion

and provides a framework to explore fine grained maps of estimated position and velocity. In

addition it highlights the contribution of the velocity signal in position coding. Our results show

how excluding velocity information from motion estimation may lead to impaired or delayed

position coding.

7.1.1 Motion extrapolation in blanked or occluded trajectories

In chapter 4 we have challenged the robustness of estimated motion in conditions with low sensory

confidence, like having interruption in the trajectory or high levels of background noise. We have

used motion extrapolation theory (Nijhawan, 1994) to explain the coherency of estimated motion,

its dynamics during transient absence of the stimulus and motion catch-up after reappearance.

As we reviewed in chapter 1 and chapter 4, motion extrapolation and motion inertia (Anstis and

Ramachandran, 1987) are similar theories in line with motion coherency. Indeed, extrapolation

of moving objects and inertia of estimated motion may be built-in visual mechanisms, to respect

motion coherency as a natural regularity.

In this part of the study, we have proposed that motion extrapolation can be supported by

an internal model of trajectory and we have investigated the efficiency of MBP and PX models

in holding the efficient internal representation. Also we have used the PV model and according

to our results, the MBP model supports quicker catch-up of motion after transient absence of

the stimulus.

In all model experiments, we have used a Gaussian dot as stimulus. To study the specific role

of each motion component, we have kept the stimulus simple and controlled. In fact, one may

suppose that a Bayesian motion estimator would be efficient enough in dealing with simple and
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easy-to-track stimuli, even by having a weak and incomplete internal model for motion. This

theoretical expectation arises from an assumption on strong effect of sensory data (Bayesian

likelihoods) in driving motion estimations. Our findings in chapter 4 and (Khoei, Masson, and

Perrinet, 2013) answers to this family of questions. According to our results, the difference

between PV and MBP models is slight in simple tracking of stimulus (though estimation by MBP

model is more precise), where PX model provides a poor estimation of position and velocity.

This suggests that velocity information is a fundamental ingredient for precise position coding.

7.1.2 Velocity dependent representation of invisible motion

To study the extrapolation of the trajectory during a short transient absence of the stimulus,

we have compared the behavior of the three above mentioned models (MBP, PX and PV).

The implication of the MBP model results is compatible with experimental findings on motion

extrapolation, while it is not the case for PX and PV models. Estimated position and velocity

by MBP model during the blanking period of stimulus is kept largely coherent, in the sense

that estimated position is transported in the direction of motion. For longer durations of blank

estimated position and velocity start to diffuse slowly, resulting in a decrease in estimation

confidence.

According to experimental evidences, neural populations in the area MST keep their firing

activity during short absence of the stimulus (Newsome, Wurtz, and Komatsu, 1988). Such

a sustained activity is also reported in the parietal posterior cortex of monkeys (Assad and

Maunsell, 1995) during transient occlusions of the target, in OSR (omitted stimulus response) in

the retina of the tiger salamander (Schwartz and Berry, 2008), and in flicker electroretinogram

(ERG) of human cone system (McAnany and Alexander, 2009).

Some other experimental findings in different visual areas report that neural activities

associated with tracking of occluded stimuli are very similar to tracking of visible stimuli. Makin,

Poliakoff, and El-Deredy (2009) have analyzed event related potentials (ERP) of human subjects,

for two experiments including tracking of visible and occluded stimuli. They report a high

overlap between results of two experiments and suggest that stored velocity information may

be responsible for the coherency of the recorded response during occlusion. Their findings

is consistent with some earlier fMRI studies of visual areas during occluded motion. Olson

et al. (2004) have investigated the neuronal representation of occluded objects in the human

brain and have suggested that occluded motion is treated similarly to the real motion and is

processed by similar cortical areas. More precisely, their fMRI recordings show strong activation

of IPS (Interparietal Sulcus) during motion occlusion and less significant activity in human

homologous of areas MT/MST. These findings highlight the particular role of IPS in keeping

neural representation of inferred or expected (not seen) motion, which is potentially part of a

cortical circuit for planning of future actions.

It also has been shown by fMRI studies that MT/MST areas are responsive to static images

of objects with implied motion, and this recorded activity is significantly less for images without
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motion implications (Kourtzi and Kanwisher, 2000; Senior et al., 2000). Neural activity recorded

from area FEF (Frontal Eye Field) also implies a speed-dependent update in the internal

representation of a trajectory (Barborica and Ferrera, 2003). In this study, monkeys were trained

to make saccades to the estimated positions of invisible stimuli and recorded activity from FEF

seemed to be modulated by the speed of target (before disappearance).

Our modeling results in MBP configuration provides a generic account for representation

of invisible motion, independent from anatomical and neural specifications of each area and

only by taking advantage of velocity-related information. The knowledge of velocity and the

way that it contributes in keeping internal representation of trajectory can be widely varied

in different stages of the motion processing stream. For example, in lower level areas like V1

velocity information may be fed back from higher areas like MT, to stabilize the internal model

of motion.

7.1.3 Tracking of invisible motion

To simulate eye velocities and to be able to compare our results with behavioral data, we have

used velocity readouts from a simple oculomotor plant. Regarding behavioral studies on tracking

of an interrupted trajectory by human and monkey subjects (Becker and Fuchs, 1985; Bennett

and Barnes, 2003; Bogadhi et al., 2011; Eckmiller and Mackeben, 1978), smooth pursuit is

maintained during a blanking period, though eye velocities have been reported to be decreased

in first 200 ms after disappearance of the stimulus and stabilized in a level around 40%− 60%

of target velocity.

Our modeling results are not directly comparable with these data. According to our results,

estimated velocity during blank either can remain at the same level as it was before blank, or it

can drop with a slope. The slope of velocity decrease will be determined by the strength of prior

information on slowness of motion. Weak prior information (a Gaussian in velocity domain,

centered by zero and with high variance) leads to a plateau in velocity during blank, while a

strong prior (a Gaussian in velocity domain, centered by zero and with low variance) results in a

decreasing estimated velocity in the absence of stimulus.

A rather strong prior may explain a reasonable drop of estimated velocity consistent with

experimental evidence, but that will also affect the catch-up of velocity right after appearance of

the stimulus. In general, imposing a very strong prior on slowness of motion will push estimated

velocities toward zero, in a way that, despite strong sensory measurements, the model will fail

to track the stimulus.

Our theoretical investigations suggest that, in the absence of stimulus and sensory evidence,

prior assumption on the slowness of motion may come into play and cause a gradual drop in

the estimated velocity for invisible stimulus. Where by reappearance of the stimulus sensory

information plays the main role and determines the estimated speed. This interpretation is

compatible with the approach of Montagnini et al. (2007), where they have proposed a recurrent

Bayesian framework with updating priors.
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7.1.4 Complementary role of position information in robust tracking at low

contrasts

We have studied dependence of estimated velocity with respect to the contrast in PV and MBP

models. At very high contrasts both models provide an accurate estimation of velocity but

their behavior differs as soon as background noise increases. The MBP model shows a more

robust response with respect to the noise: increasing noise up to a rather high threshold only

delays emergence of tracking and crossing that level will cause no-tracking state. This binary

response in velocity estimation is not observed in the PV model. It seems that excluding position

information from internal model of motion and relying only on velocity deteriorates the estimated

velocity proportional to the noise level.

To combine two sources of uncertainty, we have simulated interrupted trajectories in a range

of contrasts. Our results in this part follows a binary pattern similar to contrast-tracking figures.

Results of MBP model suggests a robust and quick catch-up of stimulus after reappearance for a

wide range of contrasts. While estimated velocity by PV model at corresponding contrast levels

is deteriorated with a slower catch-up dynamics.

To assess the role of the slowness prior on the quality and robustness of motion tracking

in low contrast conditions, we have used different internal models of trajectory (PX, PV and

MBP). In these cases, histograms of estimated position for stimulus are better criteria than

averaged velocity estimations. In summary, according to our results, a strong prior on slowness

of motion (σp = 10) will render a poor tracking even in high contrast conditions in the PV model.

Estimated positions by PX model in high contrast starts to develop, but gradually lags behind

the target positions and ultimately stops. In lower contrast the stopped position happens earlier

in the trajectory. The MBP model provides with a more accurate estimation, in the sense that

estimated position stops very late in the trajectory, and only at very low contrast levels.

These findings altogether complement the whole implication of our hypothesis: a motion-

based predictive coding with strong prior on slowness of motions accounts for efficient and robust

tracking of moving targets, even during their temporal absence.

7.2 A theoretical framework to investigate the effect of neural

delays on position coding

In chapter 5, we have simulated neural transfer delays of motion information. In a modified

Markov chain for state space of motion (so called diagonal model), we have investigated

motion estimations based on motion measurements at time steps behind the current time, and

with an internal model on smoothness of motion and delayed arrival of sensory information.

Inspired by a diagonal motion extrapolation mechanism in ganglion cells of retina, proposed

by Nijhawan (Nijhawan and Wu, 2009), we have implemented diagonal delay compensation

as an abstract rule in motion estimation. The advantage of our model is that it provides

a generic account for partial correction of errors in position coding, at any stage of motion
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processing. Being independent from neural specifications of a particular visual area, our large

scale motion estimation model emphasizes a strong influence of the velocity signal in modulation

and correction of position coding, as it has been experimentally reported in various stages of

motion processing machinery of visual system (Berry et al., 1999; Jancke et al., 2004; Maus,

Fischer, and Whitney, 2013; Maus et al., 2010; Maus et al., 2013; Whitney et al., 2003).

As our simulations suggest, in diagonal MBP model, the positional error starts to decrease as

velocity estimation gets more precise. Theoretically, in a steady state tracking with an accurate

velocity estimation the positional error is zero. The Fröhlich effect (Fröhlich, 1923) refers to

misperception of the earliest part of motion trajectory and it is believed to be linked with the

problem of neural delays. In the diagonal MBP model a similar misestimation of position in

the early trajectory is observed. For example, by imposing a delay as τ = 100 ms, the first

estimation of position will start at time = 100 ms and will correspond to the position of stimulus

at time = 0. However, after a few estimation steps and by having a more accurate estimation of

velocity, extrapolation of trajectory during the delay period will catch up with the actual position

of stimulus. We suggest that the Fröhlich effect is likely to be caused by the misestimation

of velocity at the beginning of the trajectory. At one level this can be tested by behavioral

experiments, for example by measuring the velocity of eyes and the value of positional error. In

electrophysiological studies, this may be translated to an experiment to careful investigation of

dynamics between development of positional code and velocity response.

In addition, the transfer delay of sensory information is a shared issue among all modalities

and it is likely that the brain recruits predictive mechanisms to ease and accelerate perception

and decision making. According to our investigations, motion-based predictive coding can be a

way to compensate neural delays.

7.2.1 Anticipation of approaching stimulus

The diagonal MBP model, unlike PX configuration, is able to reproduce the experimental data

on dependence of positional code with respect to the length of the trajectory. According to

relevant experimental evidences (Benvenuti et al., 2011; Guo et al., 2007) response of neural

populations in the early visual cortex is more distributed in time, for the stimulus that arrives

to their receptive fields with a longer trajectory behind. Lateral connections in V1 are generally

believed to contribute in propagation of sensory belief among neighbor and co-functional neural

populations.

In simulations of the model, we have investigated an equivalent question: does the temporal

distribution of estimated position depend on its distance from the starting point of the motion?

In the other words, we have replicated this neural signature by considering neural delays and

probabilistic accumulation of evidence about appearance of stimulus in a certain position in the

trajectory. However, this signature is visible in our simulations only in the early part of the

trajectory. Meaning that, in early points of the trajectory the internal model of motion is not

fully stabilized and after some point (as soon as having correct velocity estimation) the temporal
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distribution of estimated position keeps the same profile. This may be explained by the limited

range of lateral connections: for trajectories longer than a threshold length, no sensitivity with

respect to the length is expected.

As a main highlight, only the MBP model reproduced the trajectory dependent signature

of position coding. Excluding velocity information (as our results in the PX model) leads to

the same temporal shape for position code in all points of the trajectory. Also, the position

estimated by PX model remains delayed, matching to delayed motion measurements. Difference

between these two models stresses the potential interference of velocity code on development

of the anticipatory position coding, as well as compensation for delays. One possible neural

implementation of this theoretical insight can be modulatory effect of feedback from MT to V1.

This can correct the positional error caused by delays and to further anticipate activation of

populations whose receptive field are about to be stimulate, by a complementary knowledge on

the coded velocity.

7.2.2 Flash lag effect as a basic visual signature

In chapter 5 we have proposed a model for flash lag effect based on the motion extrapolation

account of Nijhawan (Nijhawan, 1994). Our approach stresses a facilitated processing of trajectory

motion and highlights the difference between estimated position for an stationary, flashed and a

smoothly moving stimulus.

In one set of simulations we have investigated the response of the diagonal MBP and PX

models to standard FLE by imposing τ = 0. First, we determined the shortest duration for

flash which creates a significant probabilistic confidence for estimated position (about 4% of

trajectory duration). Then we showed that for the MBP model, this duration is enough to shift

the response of moving stimulus to a more forward position in the trajectory, matching to the

instantaneous position of the moving stimulus. There is no such lead in estimated position of

moving stimulus by PX model, implying that this model deals trajectory motion as a packed set

of stationary flashes, without velocity and trajectory.

These results suggest that, without considering neural transfer delays, and having the same

position for two stimuli at the same time, estimation of trajectory motion in the middle of its

trajectory is facilitated by velocity information. Temporal dynamics of estimated position for

moving stimulus illustrates that, in the MBP model the peak of the response matches the start

time of the flash, when the flash response starts to develop. Just after the start of the flash,

the response to the moving stimulus falls off, as estimation belief is shifted to more forward

positions.

Imposing a nonzero delay to the diagonal model results in a bigger shift in the positional

code of moving object (more delayed response for the flash). As we discussed earlier, the

diagonal MBP model of moving stimulus corrects the positional error in the beginning of

the trajectory and later on provides an accurate estimation of actual position of stimulus.

Simulating FLE with a nonzero delay (τ) highlights that total latency of flash is composed



Chapter 7: Conclusion and discussion 144

of τ plus the time needed for accumulation of belief about occurrence of flash in a certain position.

Inertia of flash response: As we mentioned earlier, taking advantage of velocity informa-

tion, estimated position of moving stimulus is smoothly shifted in the direction of motion. This

causes a quick displacement of probabilistic belief from the position co-aligned with the flash.

Unlike the facilitated estimation of motion, the positional response of the model to a stationary

flash is developed and vanished in a more sluggish manner. This main difference in the positional

code of moving and flashing stimulus can potentially be a cause for the lagged perception of

flash. Our results suggests that, after disappearance of the flash, the belief on occurrence of flash

in a specific position starts to drop with a rather slow dynamics. Considering this effect, along

with a rapid and smooth shift in the estimated position of moving stimulus, puts forward inertia

of flash response as a potential cause of FLE: flash is perceived later than moving stimulus and

the perception stays for a longer duration. The inertia of estimated position for flash may be

interpreted as positional persistence (Krekelberg, 2001; Krekelberg and Lappe, 2000).

Our model explains this effect with a rather unrealistically slow dynamics. Indeed, in the

absence of motion, as it is the case for the stationary flash, estimated position is highly shaped

by prior information on slowness of motion. After disappearance of the flash, as there is no

sensory evidence, the MBP model keeps predicting about having a slow motion (or no motion as

a flash) and this prediction stays longer for a stronger prior on slow motions (lower variance

around velocity = 0)

Dependence of FLE on velocity and contrast : According to various experiments, the

value of positional lead of moving stimulus in FLE is linearly increased with velocity (Krekelberg

and Lappe, 1999; Krekelberg and Lappe, 2000; Nijhawan, 1994). This dependence has been

reproduced by the MBP model.

Our results on dependence of FLE to the contrast of flashing stimulus is consistent with

experimental results of Kanai, Sheth, and Shimojo (2004). Indeed, as the MBP model works

based on the accumulation of evidences about existence of an stimulus at a specific position,

in low contrast conditions of moving stimulus only the earliest positions of the trajectory are

misestimated. Thus, in the MBP model and for the case of standard FLE, the position code of

a moving stimulus will be almost independent from the contrast. In this context, the positional

lead of a moving object will only depend on the detection time of the flash. A flash with lower

contrast will need longer duration to be detected and during this time the moving stimulus will

advance more in the trajectory. This suggests that processing of an unpredictable stimulus is

more affected by contextual effects like contrast.

7.2.3 Comparison with other models for FLE

Neural field model of Erlhagen: As we discussed earlier, the notion of internal representation

of moving objects provides an explanation for the coherency of perceived motion despite random
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interruption in the visual stream, and also for extrapolative and anticipatory aspects of motion

processing. According to this theory, ultimate neural response is shaped by a combination of

top-down feedback signal and bottom-up sensory information and the internal model of stimulus

stored in higher visual areas supports a more reliable interpretation of visual input.

Our modeling study explores the functional consequences of having such an internal model,

using position information, velocity information or both. As we reviewed in chapter 2, the

neural field model of Erlhagen (2003) is the most relevant study on the emergence of FLE from

interplay of internal model and stimulus stream. In this setup, composed of excitatory and

inhibitory populations of position coding cells, extrapolation of the trajectory emerges from

lateral interactions and network dynamics, in an appropriate parameter regime. Also, this model

shows that priming of the position field is caused by accumulation of sub-threshold activities of

excitatory populations.

Our model also highlights the role of the internal model of the trajectory, built from motion

information. The main difference between our model and the model of Erlhagen, apart from

having different structures, is that we have investigated the consequences of velocity information

on shaping of position coding, where that model includes only position-tuned cells. On the

other hand, results from both models stress the critical role of sub-threshold neural activities on

creation of anticipatory or extrapolative signatures: in Erlhagen’s model that is achieved in a

certain parameter settings of neural field model and in our model it is raised by probabilistic

accumulation of motion-based position estimation, in the predicted positions of the moving

stimulus.

Neural network models of FLE: Few neural network models have addressed questions

on delay compensation, motion extrapolation and FLE. For example the model of Baldo and

Caticha (2005) demonstrates motion extrapolation and FLE, arising from a simple feedforward

network of leaky integrate and fire neurons. Other studies (Lim and Choe, 2006; Lim and Choe,

2008) have discussed motion extrapolation at single neuron level and have explained FLE and

delay compensation in a network with facilitating synapses, with sensitivity to the rate of change

in various aspects of stimulus (for instance: direction, orientation, luminance).

All these works have investigated spatial priming of neurons via lateral and facilitatory

connections, ignoring the facilitatory effect that may arise from velocity coding.

Postdiction model and motion extrapolation: Our approach is partially consistent

with the theory behind postdiction model of FLE (Eagleman and Sejnowski, 2000). Though,

taking a flash stimulus as a reset in motion integration process (as they proposed) is against our

hypothesis based on probabilistic accumulation of trajectory information. The diagonal MBP

model builds motion estimations at time t based on sensory informations corresponding to the

past (time t− τ) and proposes how neural delays may be compensated in visual processing. We

emphasize the complementary role of velocity information in this compensation while postdiction

theory proposes that coded position of stimulus is always pushed forward based on trajectory
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information received in a short time interval after time t.

As we discussed in chapter 1, postdiction hypothesis accounts for experimental data in the

flash terminated cycle, as well as cases in which there is an abrupt reversal in the trajectory.

Nevertheless, postdiction theory in standard FLE predicts a velocity increment for moving

stimulus which has not been experimentally observed by careful investigations (Nijhawan, 2002).

In addition, according to postdiction, the Fröhlich effect is a consequence of a latency in position

interpretation, as the earliest part of trajectory is missed because postdictive system needs

information from the future.

Our approach and motion estimation theory is based on the motion extrapolation account

proposed by Nijhawan (1994), even though both hypotheses do not oppose in the final outcome:

motion extrapolation pushes the estimated position forward using trajectory information, and

postdiction associates a position to the moving object which is influenced by future positions of

it. As we reviewed (See sections 1.4 and 6.2), both accounts can be considered as a corrective

mechanism against delays.

Our approach is in agreement with the theory of Krekelberg et al. (2000) on temporal

integration. They have suggested that FLE is caused by motion of the moving stimulus after

the flash, as different trajectories of two stimuli (trajectory versus no trajectory in the case of

flash) leads in different temporal integration.

7.3 Perspectives and future work

Relational biology is a research field founded by Rosen (2012) to bridge between physical rules in

the world and succession of neural activities in the neural system. Clear cause-effect relationships

in the environment, known by causality, physics and other scientific rules, dramatically narrows

down our expectations from future states of the world. Rational biology investigates that

how evolutionary environment and causality in the physical world may be encoded into the

organization of all living systems, or even impose a parallel causal entailment in neural responses.

Our study shares this point of view and fits into the same field of research: we have studied

trajectory motion as a sequence of events in space and time and have challenged estimations of it

with a knowledge of restrictions of the estimator system. Our study, by surveying motion-based

prediction in the visual system, emphasizes that regularity and predictability of the sensory

world may impose a large scale constraint of neural processing paradigms to obtain a more stable

and reliable neural encoding, despite intrinsic restrictions and delays.

7.3.1 Predicting the present not predicting the future

Theoretical and experimental studies of neural delays are somewhat linked with hypotheses on

the anticipatory nature of sensory encoding. According to the anticipation theory of Rosen

(2012):

‘An anticipatory system is a natural system that contains an internal predictive
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model of itself and of its environment, which allows it to change state at an instant

in accord with the models predictions pertaining to a later instant”

Application of this definition to biology and neuroscience implies that, the brain may permanently

rely on its expectations from real time sensory input, to generate the instantaneous neural

responses. To this aim a knowledge of itself is required, which is the outdated arrival of the

sensory stream. Hence, if we take the time in the physical world as a reference, the internal

representation of the external world is lagged behind it, although the response to the sensory

input at time t may be created by probabilistic belief about future states of the stimulus.

The internal predictive model can provide the most expected states of the external world

and based on this theory, it is likely that the brain keeps instantaneous encoding of the sensory

world by a continuous update of probabilistic sensory representations. Our approach in diagonal

model of motion-based prediction is consistent with the theory of Rosen. Instantaneous motion

is estimated based on delayed arrival of sensory input and an internal model composed of

knowledge on restrictions of the system (imposing a delay on sensory input) and knowledge on

the regularities of the world (temporal coherency of motion). To obtain an instantaneous motion

estimation the response to delayed sensory information is extrapolated during a virtual blank

period (obviously without sensory measurements). Thus, the estimated motion is a response to

expected state of the stimulus at the current time.

The theory of Rosen (2012) addresses a subtle point in the nature of biologic anticipation,

and our study is also in accordance with that: the internal predictive model may have knowledge

of its delayed access to the sensory world. By this knowledge, it pulls the expectations from

future states of the input stream, to estimate the present state. Thus, the internal predictive

model only catches up the present state of the external world and does not anticipate the future.

7.3.2 How might motion-based prediction be implemented?

Our study provides theoretical insights on the critical role of motion signal and velocity based

sensory information in position coding of moving objects. We have investigated the complemen-

tary role of velocity information on correct position coding particularly by considering neural

delays. According to various experimental findings (Berry et al., 1999; Jancke et al., 2004; Maus,

Fischer, and Whitney, 2013; Maus et al., 2010; Maus et al., 2013; Nijhawan, 1994), the visual

system distinguishes between moving and stationary stimuli which happen to be at the exact

same location at the same time. This is reflected in displacement of position code for the moving

target in direction of motion, so called motion extrapolation. Evidences of motion extrapolation

suggest that neural populations engaged in position coding are likely to be modulated by velocity

processing machinery, as it is observed by shifted neural activity in the corresponding direction

or by dependence of positional lead in FLE to the speed.

Different modeling studies have reproduced motion induced position shifts mainly in neural

networks composed of position tuned cells and via dynamical effect of lateral connectivities (Baldo

and Caticha, 2005; Erlhagen, 2003; Lim and Choe, 2006; Lim and Choe, 2008) and provided
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promising experimental predictions. Nevertheless, little research effort have been dedicated to

the interaction of position coding and velocity coding cells. Our study, without being restricted

to neural specifications of a particular area in the visual system, explores the consequences of

including velocity information in position coding.

So far, motion extrapolation has been assumed to be caused by asymmetric structure of cells

in retina (Nijhawan and Wu, 2009) or well known lateral connections in the early visual cortex.

Our results highlights that, for instance, interaction between direction selective and position

selective populations in retina or feedback from MT area to V1 can also play a critical role in

distinguishing stationary and moving objects and generating motion induced position shifts.

7.3.3 Future work: neuro-mimetic motion computations

The current computational framework, implemented with particle filtering, has great capabilities

in highlighting various aspects of motion processing in the visual system. Particle filtering and

the CONDENSATION algorithm (Isard and Blake, 1998) are generalization of Kalman filter to

deal with non-Gaussian perturbations in process and measurement models, such as multimodal

probability distributions. Furthermore, a particle filter includes the most important samples of

probabilistic distributions as an effective approximation method.

Samples of estimated motion by particle filter represent local motion detectors concentrated

on the instantaneous position of moving stimulus, as an abstract indication of the stimulated

receptive fields. These detectors move by motion of stimulus and have their own estimated

velocity attached to them, with a certain relative weight. This way of representing local motion

estimators allows careful investigations on emergence of a global motion in space and time,

from a pool of local estimations. Also the resultant fine grained spatiotemporal map makes it

straight forward to study the link between precision of position code and precision of estimated

velocity (Khoei, Masson, and Perrinet, 2013).

Coherence constraint on estimated motion results in anticipatory responses in the next

positions of the stimulus, as it might be diffused by anisotropic lateral connections in early visual

areas. Also, continuos update in weight of local motion estimators based on sensory likelihoods

may simulate the role of feedback from higher areas like MT, to stabilize the sensory processing

in early areas.

Current implementation is also particularly advantageous to study dynamics of motion

integration for stimuli with non asymmetric shape or multiple stimuli in the same scene. As

investigated in an earlier work (Perrinet and Masson, 2012), the aperture problem as a classical

question in motion integration is studied in the similar motion estimation framework, with an

emergent solution arising from spatiotemporal dynamic of local motion estimators. This example

highlights the capacities of the current computational framework to investigate the emergent

neural signatures from local to global integration process, for instance different tracking of edges

and surfaces of a bar stimulus.
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7.3.4 Future work: motion-based prediction

This study is centered on the main theory of motion-based prediction. The theory suggests that,

physical rules governing the world, might cause a parallel cause-effect entailment in the neural

world.

A vast body of literature exists with focus on the structural organization of the visual system

in terms of development, neural connections and learning toward optimal processing of the visual

world. Our study highlights that, along with a well organized machinery, the visual system

may benefit from an internal model for motion, composed of position and velocity informations,

pooled from neural activities distributed over multiple areas.

We have elaborated this hypothesis in an abstract framework and also on a spiking neural

network with anisotropic connectivities (Kaplan et al., 2014). Implementation of MBP and

PX models in a spiking neural network and via different neural connectivity patterns also

confirms the crucial role of velocity-based information in delay compensation and development

of anticipatory responses. Further work in this direction is in progress to study the Fröhlich

effect and FLE in spiking neural network.

Our study puts forward new experimental ideas to be conducted by different methods and in

different visual areas. A recent study according to our hypothesis reports a significant reduction

in FLE by TMS disruption of area MT+, where the same disruption on V1/V2 does not influence

the perceived position (Maus et al., 2013). This study provides the first direct evidence for the

involvement of MT+ in perceived position and leaves some other research questions to be further

investigated. For instance, along with our theoretical predictions on the influence of velocity

coding on position code, it would be promising to block the feedback connections from higher

areas to MT (by lesion, pharmacological methods etc..) and to study the consequences on the

flow of activity in the early visual cortex. Equivalently, the contribution of velocity information

in motion anticipation in retina (Berry et al., 1999) can be investigated by deactivating the

direction selective ganglion cells.
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