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Abstract

In this thesis, I will present how to extract discrete geometries of space-time from

the covariant formulation of loop quantum gravity (LQG), which is called the spin

foam formalism. LQG is a quantum theory of gravity that non-perturbative quantizes

general relativity independent from a fix background. It predicts that the geometry

of space is quantized, in which area and volume can only take discrete value. The

kinematical Hilbert space is spanned by Penrose’s spin network functions. The excita-

tion of geometry can be neatly visualized as fuzzy polyhedra that glued through their

facets. The spin foam defines the dynamics of LQG by a spin foam amplitude on a

cellular complex, bounded by the spin network states. There are three main results in

this thesis. First, the semiclassical limit of the spin foam amplitude on an arbitrary

simplicial cellular complex with boundary is studied completely. The classical discrete

geometry of space-time is reconstructed and classified by the critical configurations of

the spin foam amplitude. Second, the three-point function from LQG is calculated.

It coincides with the results from discrete gravity. Third, the description of discrete

geometries of null hypersurfaces is explored in the context of LQG. In particular, the

null geometry is described by a Euclidean singular structure on the two-dimensional

spacelike surface defined by a foliation of space-time by null hypersurfaces. Its quan-

tization is U(1) spin network states which are embedded nontrivially in the unitary

irreducible representations of the Lorentz group.





Résumé

Dans ce travail de thèse, je présente comment extraire les géométries discrètes de

l’espace-temps de la formulation covariante de la gravitaté quantique à boucles ( LQG,

“loop quantum gravity” en anglais ), qui est appelé le formalisme de la mousse de spin.

LQG est une théorie quantique de la gravité qui non-perturbativement quantifie la rel-

ativité générale indépendante d’un fond fixe. Il prédit que la géométrie de l’espace est

quantifiée, dans lequel l’aire et le volume ne peuvent prendre que la valeur discrète.

L’espace de Hilbert cinématique est engendré par les fonctions du réseau de spin.

L’excitation de la géométrie peut être parfaitement visualisée comme des polyèdres

floue qui collées à travers leurs facettes. La mousse de spin définit la dynamique de

la LQG par une amplitude de la mousse de spin sur un complexe cellulaire avec un

état du réseau de spin comme la frontière. Cette thèse présente trois résultats prin-

cipaux. Premièrement, la limite semi-classique de l’amplitude de la mousse de spin

sur un complexe simplicial arbitraire avec une frontière est complètement étudiée. La

géométrie discrète classique de l’espace-temps est reconstruite et classée par les con-

figurations critiques de l’amplitude de la mousse de spin. Deuxièmement, la fonction

de trois-point de LQG est calculé. Elle coïncide avec le résultat de la gravité discrète.

Troisièmement, la description des géométries discrètes de hypersurfaces nulles est ex-

plorée dans le cadre de la LQG. En particulier, la géométrie nulle est décrit par une

structure singulière euclidienne. Sa quantification est U(1) états du réseau de spin qui

sont intégrés de façon non triviale dans les représentations unitaires irréductibles du

groupe de Lorentz.
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Chapter 1

Introduction

1.1 The fundamental constants

Nature gives us three fundamental constants: G(Newton constant), c(the speed of

light) and ℏ(Planck constant). They provide us a natural system of units. They

control the domains of validity of our physics theories.

Not long ago, we still used some king’s feet to measure lengths; even nowadays

we still use a metal prototype in Paris to measure masses, use a period of a radiation

from an atom to measure time. Einstein first recognised that with the speed of light c,

we no longer need separate units for length and time. Following this idea, physicists

realized that nature has already prepared us for free a universal system of units, which

is called the natural units, given by G, c and ℏ.

To see how it works, we need three great principles: the principle of invariant

light speed, the uncertainty principle and the Newton law of gravity. The uncertainty

principle tells us that ℏ divided by the momentum Mc is a length. Comparing the

energy mc2 of a particle of mass m in a gravitational potential with its potential energy

−GMm/r and cancelling off m, we see that the combination GM/c2 is also a length.

Equating the two lengths ℏ/Mc and GM/c2, we realise that the combination ℏc/G is

a squared mass. It means that with three fundamental constant G, c and ℏ, we can

define a mass, which is known as the Planck mass

Mp =

�
ℏc

G
(1.1)



2 Introduction

By using the uncertainty principle, a Planck length can be defined

lp =
ℏ

Mpc
=

�
ℏG

c3
. (1.2)

By using the principle of invariant light speed, a Planck time can be defined

tp =
lp
c

=

�
ℏG

c5
. (1.3)

With these three natural units we can measure space, time and energy(mass). When

we want to measure the universe or communicate with another civilization in our

universe, we no longer have to invent some units. Nature tells us that we can measure

mass in units of Mp, length in units of lp and time in units of tp. Furthermore, later in

the next section, I will present that these natural units are actually the fundamental

scales of the nature. But before going to this point, I would like to discuss the role of

the fundamental constants in physical theories.

The modern view is that any physical theory should have a domain of validity. The

physics that we ignore beyond it needs some more fundamental theories to describe.

The three fundamental constants G, c−1 and ℏ are the switches turning on the lights

toward new world of physics. Starting from Newtonian mechanics, when G, c−1 or ℏ

is turned on separately, we will get Newtonian gravity, special relativity or quantum

mechanics, respectively. If the first two of them are turned on, physics moves to general

relativity(GR), while if c−1 and ℏ are not zero, quantum field theory is obtained.

When we want to go to the wonderland of quantum theory of gravity, which is the

main context of the thesis, all three fundamental constants have to be turned on. To

explore a proper quantum gravity theory is one of the ultimate dreams of physicists.

But why do we say that quantum gravity(QG) comes into the physics playground

when we turned on all these constants?

1.2 The search of quantum gravity

In the 1930s, after Heisenberg and Pauli quantized the electromagnetic field, most

of the physicist believed that the gravitational field can be quantized as easily as

the quantization of the electromagnetic field. Of course even quantizing the electro-

magnetic field was not that easy. The quantum electrodynamics was suffering with

the infinities and various inconsistencies until 1940s, when Schwinger, Feynman and
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Tomonaga introduced the technologies known as the renormalization[1]. But in 1935,

a brilliant Russian physicist Matvei Bronstein first noticed that the quantization of

gravitational field is intrinsically different from the quantization of the electromag-

netic field. It is because the existence of the gravitational radius of massive objects

(see e.g.[2]).

The quantum mechanics tells us that the quantum radius rQ of a particle with

mass m is of order

rQ ∼ ℏ

mc
(1.4)

which is the typical wave length of the particle. The more mass it contains, the

smaller it is. But the gravitational theory tells us that for a particle of mass m there

is a gravitational radius

rG ∼ Gm

c2
(1.5)

If the mass condensed inside of the region r < rG, the particle forms a black hole. The

more mass it contains, the larger it is, which is exactly an opposite behavior of the

quantum radius. When we eliminate the mass m of the particle, magically we obtain

that

lp ∼ √
rQrG (1.6)

The Planck length is the geometric mean of the quantum radius and the gravitational

radius. The QG must happens at the scale of order the Planck length. When the mass

of a particle becomes bigger and bigger, it condensed in a smaller and smaller region.

At some point, the quantum radius hits the gravitational radius

rQ = rG ∼ lp (1.7)

It cannot go beyond this scale, otherwise we cannot detect the particle any more.

One would say this discussion is too abstract, then could we design a certain

experiment to see that in our world we can only measure the length bigger than lp?

So let us look at the following thought experiment[3]:

Consider a measuring device of size L and mass M . To determine the length of

something, we have to know the positions of the measuring device. One can proceeds

to measure the position of the device at time 0 and at time t, take the difference

s ≡ x(t) − x(0), and see whether it can be made arbitrarily small, as shown in Fig.1.1

For simplicity let us assume that the measuring device is moving in a constant

speed, i.e. a constant momentum p. The relevant Heisenberg operators are related by
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s

L

M

x(0) x(t)

p

Fig. 1.1 The thought experiment of measuring the minimum length

x̂(t) − x̂(0) =
p̂

M
t (1.8)

Commuting it with x̂(0) and using the Robertson uncertainty relation

σAσB ≥ 1

2
|⟨[Â, B̂]⟩|, where σA =

�
⟨Â2⟩ − ⟨Â⟩2 (1.9)

we get

σx(0)σx(t) ≥ ℏt

2M
(1.10)

It means that if one tries to get the uncertainty in the measurement of x(0) down, the

uncertainty in the measurement of x(t) must goes up. The best one can make is to let

σx(0) = σx(t) =
�
ℏt/2M . Then there is a limitation in the measurement of s which is

the uncertainty of s

s ≥ σs ≥
�

ℏt

M
(1.11)

Now if we are in a world without gravity and special relativity, one can make σs as

small as we like. Just to move the device sufficiently fast and make the device massive

enough. In other words, make t as small as possible and M as large as possible.

But as soon as we turn on c−1, since we can not move the device faster than light,

then there is a minimum time t is needed

t >
s

c
≥ L

c
(1.12)

The second ≥ means that the scale of the device should be smaller than the scale that

we want to measure, otherwise the definition of the “position” of the device is invalid.

When we turn on G, general relativity tells us that the device would form a black hole

if it is too “heavy”. If the device is a black hole, we will not receive any measurement.
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So the mass of the device M has an upper bound

M <
c2L

G
(1.13)

We can thus conclude that

s ≥ σs ≥
�

ℏt

M
>

�
ℏL

Mc
>

�
ℏG

c3
= lp (1.14)

The Planck length is indeed the smallest distance one can measure.

The appearance of the smallest distance means that a quantum theory of gravity,

no matter what it is, will definitely not a quantum field theory. It is because that

quantum field theory is defined based on local observables, the fields at each point of

space-time. But at the scale of Planck length because that we cannot go beyond it,

we cannot even tell where particle locates. Just as what Bronstein mentioned in his

1935 paper that “a radical reconstruction of the theory ... perhaps also the rejection

of our ordinary concepts of space and time, replacing them by some much deeper and

nonevident concepts.”

Nowadays in the research of the QG, physicists inherit and carry forward his idea.

Many candidate theories have been developed. String theory from the perturbative

perspective suggests that the elementary building blocks of our world are strings. The

existing particles are the vibrations of the strings in a fixed ten or eleven background.

The renormalization-group equations of the theory imply the Einstein equations of the

background metric coupled to a dilaton and some fermions and bosons. Gravity is not

a fundamental field but only an effective field. On the other hand, the non-perturbative

approach of QG suggests to straightforward quantize general relativity independent

from a fixed background by using the symmetries it already has: the general coordinate

transformation and the local Lorentz transformation. Loop quantum gravity is a

particular theory realizing this idea, and it is the main subject of this thesis.

Then what is loop quantum gravity?

1.3 A glance at loop quantum gravity

Loop quantum gravity(LQG) is a straightforward non-perturbative quantization of

GR independent from a fix background. It predicts that the geometry of space is

quantized, in which area and volume can only take discrete value[4]. When applied to
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cosmology, LQG naturally removes the cosmological singularity for the homogeneous

isotropic cosmology model[5, 6]. When applied to black holes, LQG gives a microscopic

statistical origin of the black hole entropy, which coincides with Bekenstein-Hawking

entropy at the leading order[7, 8].

LQG comes in three versions. The historically first of which provides a canonical

quantisation of general relativity, and seeks to solve the Wheeler-DeWitt equation, a

quantum version of Einstein equation[9]. The rest, we call them spin foam gravity[10]

and Group Field Theory (GFT)[11] respectively, propose the covariant path-integral

formulation. All approaches share the kinematical structure of LQG: the Hilbert space

with observables representing, for example, discrete areas and volumes (because in gen-

eral any geometric quantity is an observable and it is coded in the quantum states).

The kinematical Hilbert space is spanned by Penrose’s spin network functions. The

excitation of geometry can be neatly visualized as fuzzy polyhedra that glued through

their facets[12, 13]. However, the three versions differ concerning their description of

the quantum dynamics of the theory. The canonical LQG follows the Dirac’s quanti-

zation. The Wheeler-DeWitt equation is rigorously defined as the Hamiltonian con-

straint operator on the kinematical Hilbert space[14]. The quantum dynamics of LQG

can be extracted once the Hamiltonian constraint is solved and the physical Hilbert

space is constructed. The spin foam gravity defines the dynamics of LQG by a spin

foam amplitude on a cellular complex, bounded by the spin network states[15]. Using

the technique of quantum group, the amplitude is finite, and its low energy limit gives

the discrete Einstein gravity with a positive cosmological constant[16, 17]. For captur-

ing the infinite number of degrees of freedom in GR, the spin foam gravity should take

a continuum limit. It comes into two strategies: the first strategy rests on a lattice

gauge theory interpretation of spin foam formalism, refining the cellular complex to

estimate the continuum geometry of space-time; while the second one rests on the 2nd

quantization reformulation of LQG by summing over all possible complexes with the

same boundary. The GFT is a quantum field theory (QFT) sitting on a Lie group

manifold, which closely relates to canonical LQG and spin foam formalism. It is a QFT

or 2nd quantization version of the LQG formalism[18]. GFT provides a prescription

for summing over the spin foam complexes, in which the complexes arise as Feynman

diagrams of GFT with the given spin foam amplitude as Feynman amplitude[19]. The

continuum dynamics of quantum gravity is expected to be recovered after summing

over all spin foams and analysing the renormalization of GFT[20].

In this thesis I am focusing on the spin foam formalism of LQG. I will discuss in
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detail how to reconstruct the classical discrete geometry from the spin foam amplitude.





Chapter 2

Spin foam formalism

The spin foam formalism adapts the covariant path integral approach of quantum

gravity into the LQG framework. In the traditional path integral approach of quantum

gravity by Misner, Gibbons, Hawking and Hartle[21–23], the dynamics of quantum

gravity is encoded in a quantum gravity amplitude, which is defined by a formal path

integral

Z[M ; hin, hout] :=
� hout

ab

hin
ab

[Dgµν ] e
i

l2p

�
M

d4x
√−gR+···

(2.1)

where
�

M d4x
√−gR is the Einstein-Hilbert action of gravity on a four-dimensional

smooth manifold M , and · · · includes the boundary terms as well as the high curvature

corrections1. Dgµν is a formal integral measure on the space of four dimensional metric

on M , whose boundary data are fixed by three-dimensional metric hout
ab , hin

ab on ∂M

(the boundary of M).

(M, gµν)

(Σin, hin
ab)

(Σout, hout
ab )

Fig. 2.1 Four-metric as a history of three-metrics

The situation is illustrated in Fig.2.1, where the four-metric gµν on M can be viewed

1The high curvature terms include the terms of o(R2) and higher. The high curvature terms
have to be included in order to make the quantum theory perturbatively renormalizable or finite, as
suggested by perturbative QG [24] and string theory [25].
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as a history of three-metrics evolving from hin
ab on Σin to hout

ab on Σout, ∂M = Σin ∪Σout.

The path integral Eq.(2.1), as a sum over gµν , can be viewed as a sum over the histories

of three geometries with boundary data hin
ab and hout

ab , weighted by e
i

l2p

�
M

d4x
√−gR+···

.

2.1 Quantum three-geometry: spin-networks

When we adapt the above construction to the LQG framework, the classical notion

of three-geometry, the three-metric hab should be properly replaced by the notion

of quantum three-geometry in LQG. LQG has a clean and beautiful description of

quantum three-geometry in the kinematical framework. The description is unique

in terms of the representation theory of holonomy-flux algebra[26, 27]. In the LQG

description of three-geometry, the quantum three-geometry is represented by the spin-

network state S = (Γ, jl, in)(proposed by Rovelli and Smolin[28]) in the kinematical

Hilbert space Hkin, i.e. in LQG

Quantum three-geometry = Spin-network state (2.2)

Let us explain briefly the notion of spin-networks. A spin-network state S = (Γ, jl, in)

is a triple of three types of data: a graph Γ, some spins jl and some intertwiners in

(see Fig.2.2)

�

�

� �

�

�
�

��

�

�

�

�

in

jl

Graph Γ

Fig. 2.2 A spin-network S = (Γ, jl, in)

• A graph Γ consists a number of oriented links l and a number of nodes n. The

links are analytic curvatures if the graph is embedded in a three-manifold Σ.

The uni-valent node is excluded by the gauge invariance.
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• Each link l is colored by a unitary irreducible representation (labelled by a spin)

jl ∈ Irrep[SU(2)] (2.3)

• Each node n is colored by an invariant tensor (an intertwiner)

in ∈ Inv


 �

k(outgoing)∈n

Vjk
⊗

�

k(incoming)∈n

V ∗
jk


 (2.4)

where Vjk
(V ∗

jk
) is the SU(2) irreducible representation space (dual space) asso-

ciated with a link k outgoing (incoming) adjacent to the node n.

Clearly each spin-network S with L links and N nodes associates a function FS(hl)

in L2
�
SU(2)L/SU(2)N

�
≡ HΓ by

FS(hl) := tr

��

n

in

�

l

�
2jl + 1Djl(hl)

�
, hl ∈ SU(2), (2.5)

where Djl(hl) is the SU(2) unitary irreducible representation matrix with spin jl and

tr denotes the contractions of tensor indices according to the graph Γ. The LQG kine-

matical Hilbert space Hkin is a union of HΓ over all graphs modulo some equivalence

relations[10, 29, 30]

Hkin :=
�

Γ

HΓ/ ∼ (2.6)

The geometric interpretation of spin-networks is clarified by the geometrical oper-

ators defined on Hkin, e.g. the area operator and volume operator [31–33]. It turns

out that the spin-network states diagonalize the area and volume operators and give

discrete spectra. Given a spin-network S, each link l carries quantum number jl, which

labels the quanta of area on a two-surface transverse to the link l. The spectrum of

area operator is given by A = 8πγGℏ

�
j(j + 1) in the simplest case (γ is the Barbero-

Immirzi parameter). Each node n carries the quantum number in, which labels the

quanta of spatial volume occupied by the node n. The volume spectrum is more com-

plicated, whose computations and results are proposed in e.g. [34, 35]. Each node

of the spin-network is associated naturally with a chunk of three-space. The chunks

of space may be represented by a three-dimensional polytope, whose face areas and

volumes relate to the quantum numbers jl and in.
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2.2 Quantum four-geometry: Spin foam

Recall Fig.2.1, where the classical four-metric gµν is understood as a history of classical

three-geometry. In the context of LQG, the three-geometry is quantized to be the spin-

network state. Thus the quantum analogy of a four-metric is then a history of quantum

three-geometry, i.e. a hisotry of spin-networks, which we call a spin foam(proposed

by Reisenberger and Rovelli[36–38]):

Quantum four-geometry ≡ History of spin-networks ≡ Spin foam (2.7)

An example of spin foam is illustrated in Fig.2.3, as an evolution history of spin-

networks. A link in the spin-network evolves and creates a surface in the spin foam, and

a node in the spin-network evolves and creates an edge in the spin foam. If we imagine

the spin foam is embedded in a four-manifold, any hypersurface transverse to the spin

foam edges intersects the spin foam and gives a spin-network as the intersection.

�

Sout(Γout, jout, iout)

Sin(Γin, jin, iin)

Fig. 2.3 Spin foam = history of spin-networks

As an analogy of the traditional path integral approach Eq.(2.1), the sum of spin

foams with given boundary data defines a transition amplitude Z(K, SBoundary) (spin

foam amplitude) between quantum three-geometries. Here SBoundary is the boundary

spin-network (boundary quantum three-geometry) which serves as the boundary data

in analogy with hin and hout in Eq.(2.1). K is a 2-complex (definition is given in the

next section) as an analogy of the smooth four-manifold M in Eq.(2.1).
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2.3 Formal definition of spin foam amplitude

In this section I give a formal definition of the spin foam amplitude Z(K, SBoundary).

The definition follows the framework presented in [39].

First of all, a spin foam is a triple of data

(K, jf , ie) (2.8)

where the three types of data are explained in the following:

• K denotes a 2-complex (or cellular complex), or namely a “foam”, which consists

a number of oriented faces f , oriented edges e and vertices v

�

f

e

�
v

Fig. 2.4 A two-complex and orientations

• jf assigns to each oriented face f an SU(2) spin-jf unitary irreducible represen-

tation.

• ie assigns to each oriented edge e an SU(2) intertwiner ie ∈ Inv(Vjf1
⊗ · · ·⊗V ∗

jfk
),

where f1, · · · , fk are the faces sharing the edge e. Taking Vjf
or V ∗

jf
in the

definition of ie depends on whether the orientation of the face f is consistent or

opposite to the orientation of e.

An amplitude can associated with each object of the two-complex: given a vertex v

shared by a number of edges, it associates a vertex amplitude Av(jf , ie) as a complex-

valued function of the intertwiners ie of the adjacent edges and the spins jf of the

adjacent faces. Given an edge e shared by a number of faces, it associates an edge

amplitude Ae(jf , ie) as a complex-valued function of the intertwiner ie of the edge itself
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and the spins jf of the adjacent faces. Given a face f , it associates a face amplitude

Af (jf ) as a complex-valued function of the spin jf of the face itself.

A spin foam amplitude is constructed by a product of all the amplitudes associated

with vertices, edges and faces, followed by a sum over the data jf and ie

Z(K, SBoundary) :=
�

jf ,ie

�

f

Af (jf )
�

e

Ae(jf , ie)
�

v

Av(jf , ie) (2.9)

A concrete construction of spin foam amplitude is present here by following the con-

struction by Engle, Pereira, Rovelli[40] and Livine[41], Freidel and Krasnov[42], Livine

and Speziale[43]: the spin foam vertex amplitude Av is defined by a contraction of the

SL(2,C) intertwiners Ie associated with the oriented edges e joining at the vertex v:

Av(jf , ie) := tr


 �

incoming e

Ie

�

outgoing e

I∗
e


 (2.10)

Here each SL(2,C) intertwiner Ie is “evolved” from the SU(2) intertwiner ie by the

following “propagation”: We define a map Y from SU(2) spin-j unitary irreducible

representations to the SL(2,C) unitary irreducible representation labelled by (ρ, k),

where ρ ∈ R and m ∈ Z/2, requiring ρ = γj and k = j

Y : |j, m⟩ �→ |(γj, j); j, m⟩ (2.11)

where |(γj, j); j, m⟩ is the canonical basis in the of the SL(2,C) unitary irreducible

representation (γj, j), with γ ∈ R being the Barbero-Immirzi parameter. The SL(2,C)

intertwiner Ie is then defined as

Ie(jf , ie) = P inv
SL(2,C) ◦ Y ⊗k(ie) =

�

SL(2,C)
dg

k�

i=1

D
(γji,ji)
jim′

i
,ji,mi

(g) im1···mk
e (2.12)

where k is the valence of the intertwiner ie and P inv
SL(2,C) is a projector into the space

of k-valent SL(2,C) intertwiners.

Inserting the SL(2,C) intertwiner defined by Eq.(2.12) to Eq.(2.10), a spin foam

vertex amplitude Av is obtained concretely, which is often referred as the EPRL/FK

vertex amplitude in the literature.

Moreover we choose the face amplitude Af (jf ) = 2jf + 1 for the reason of consis-

tency that if a two-complex can be decomposed into two, then its spin foam amplitude

should be the multiplication of the amplitudes of the two[44]. The edge amplitude is
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chosen to be Ae = 1 for simplicity. The resulting spin foam amplitude

Z(K, Sboundary) =
�

jf

�

ie

�

f

(2jf + 1)
�

v

tr


 �

incoming e

Ie

�

outgoing e

I∗
e


 (2.13)

is often referred as the EPRL/FK spin foam amplitude.

There are a few important properties of the EPRL/FK spin foam amplitude:

• for a generic two-complex K, the summand of the spin-sum
�

jf
in the EPRL/FK

amplitude Eq.(2.13) is finite after removing an SL(2,C) gauge redundancy for

each vertex[45, 46]. Therefore the only possible divergence in the spin foam

amplitude comes from the summation on the spins
�

jf
. See e.g. [47, 48] for

computation of the degree of divergence on certain two-complex.

• The EPRL/FK spin foam amplitude is Lorentz invariant in the bulk and Lorentz

covariant near the boundary [49]: Although the construction of the EPRL/FK

vertex amplitude depends on specifying an SU(2) subgroup in SL(2,C), or a

“time-gauge” xe (time-like Minkowski four-vector) for each edge e, the amplitude

Z(K, Sboundary) is independent from the choice of xe for an internal edge e, and

transforms covariantly as xe of boundary edges transform under the Lorentz

transformation.

• The above construction of EPRL/FK spin foam amplitude is an analogy of the

Feynman diagram construction of quantum field theory scattering amplitude[19,

50]. The representation in Eq.(2.13) factorized the spin foam amplitude in terms

of vertices in K. Indeed such a representation of spin foam amplitude can be

generated from a quantum field theory on group manifold by the corresponding

Feymann diagrams [48].

2.4 Other representations of spin foam amplitude

The spin foam amplitude, as the central object in the spin foam formulation of LQG,

has several other remarkable representations in addition to the above definition. I

review these representations briefly in the follows. Some of the representations are the

equivalent formulations of the above EPRL/FK amplitude while others admit certain

extensions or completions in some sense.
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Face Amplitude and Charaters: Instead of factorizing the EPRL/FK spin foam

amplitude Z in terms of vertices as Eq.(2.13), Z can be factorized in terms of

faces (see [51] for a set of Feynman rules):

Z =
�

jf

�

SL(2,C)
dgve

�

SU(2)
dhef

�

f

dim(jf )2 χ(γjf ,jf )


�

(e,f)

(ge,s(e)hefg−1
e,t(e))

εef


 �

(e,f)

χjf (hef )

(2.14)

where the factor corresponding to each f is called a face amplitude (which should

not be confused with the face amplitude Af in the previous representation).

χγjf ,jf and χjf are respectively the characters of SL(2,C) and SU(2) unitary

irreducible representations εef = ±1 depends on whether the orientations of e

and f agree or not.

Edge Projector: The spin foam amplitude can also be factorized in terms of edges,

which leads to the following representation [52, 53]:

Z =
�

jf

�

f

dim(jf ) Tr

��

e

P inv
e

�
(2.15)

where P inv
e is a certain projector onto a subspace of SL(2,C) intertwiners. It

is remarkable that, as the factorization in terms of vertex amplitudes, this rep-

resentation is a general structure valid for all spin foam models, including e.g.

the Barrett-Crane model [54, 55], Ponzano-Regge model [56], Ooguri model [57],

etc.

Holonomy Spin foam: The spin foam amplitude (Euclidean EPRL/FK, Barrett-

Crane, Ooguri, etc) can be expressed as an analogy of lattice gauge theory by

performing the spin-sum in the first place [58]:

Z =
�

Spin(4)
dgev

�

Spin(4)
dgef

�

f

ω(gf )
�

e⊂f

E(gef ) (2.16)

where ω and E are certain distributions on the group manifold. Such a repre-

sentation is useful in semiclassical analysis and a coarse graining procedure in

spin foam formulation [59–62].

Group Field Theory (GFT): Each spin foam model can associates a GFT, as a

certain quantum field theory on group manifold. GFT generates the spin foam
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amplitudes via the Feynman perturbative expansion, and in addition, generates

the sum of spin foam amplitudes over a class of two-complexes. I will not go

into details of the GFT formulation but rather refer to the literature e.g. [18].

For the GFT corresponding to the EPRL/FK spin foam model, see [48].

Coherent State Path Integral: By using coherent states on Lie group [63], there

is a useful representation of EPRL/FK spin foam amplitude as a coherent state

path integral [16, 64–68]:

Z =
�

jf

�

f

dim(jf )
�

SL(2,C)
dgve

�

CP 1
dzvf eS[jf ,gve,zvf ] (2.17)

where S[jf , gve, zvf ] is a “spin foam action”. This path integral representation is

in particularly useful in the semiclassical analysis in spin foam formulation and

is one of the main context of the thesis. I will come back to this representation

later in the follows.

Spinor and Twistor: With spinor or twistor, the holonomy-flux phase space of LQG

can be reparametrized and has a very clear geometric interpretation, which is

known as twisted geometry first introduced by Freidel and Speziale[12, 13]. In

this reparametrization, the EPRL transition amplitude can be derived as a path

integral in twistor space, by using the quantized LQG twistorial phase space and

a discretization of the BF action which is bilinear in the spinors[69].

In this thesis, I am mainly focusing on the coherent state path integral formulation

of the spin foam amplitude and the spinor/twistor reparametrization of the LQG. In

the next chapter, I will present the semiclassical analysis of the spin foam amplitude

based on its coherent state path integral formulation, and show how to reconstruct the

classical discrete geometry by using the spin foam critical configurations. In chapter

4, how to describe the geometry of the null hypersurface will be discussed within the

twistorial reparametrization of the LQG phase space.





Chapter 3

Semiclassical behavior of spin foam

amplitude

3.1 Motivations and outlines

Every physical theory has its domain of validity which is controlled by the three fun-

damental constants G, c−1 and ℏ, as mentioned in the chapter of introduction. LQG,

as a quantum theory of gravity, is in the domain where all of the three fundamental

constants are turned on. However since the theory of LQG, especially in the construc-

tion of the spin foam amplitude presented in the previous chapter, seems coming out

from nowhere, people will ask immediately “How can you tell that the spin foam am-

plitude gives a quantum theory of gravity?” or “How this mathematical theory relates

the theory of gravity?” To answer these questions, let me remind the correspondence

principle firstly formulated by Niels Bohr in 1920 [70], which states that the behavior

of systems described by the theory of quantum mechanics reproduces classical physics

in the limit of large quantum number. The conditions under which quantum and

classical physics agree are referred to as the semiclassical limit. So in order to clarify

the relation between spin foam amplitude and the classical gravity, we only need to

perform the semiclassical limit to get the semiclassical behavior of the theory.

The semiclassical behavior of spin foam model is currently understood in terms of

the large-j asymptotics of the spin foam amplitude, i.e. if we consider a spin foam

model as

A(K) =
�

jf

µ(jf )Ajf
(K) (3.1)

where µ(jf ) is a measure, we are investigating the asymptotic behavior of the (partial-
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)amplitude Ajf
as all the spins jf are taken to be large uniformly. The area spectrum

in LQG is given approximately by Af = γjfℓ2
p, so the semiclassical limit of spin

foam models is argued to be achieved by taking ℓ2
p → 0 while keeping the area Af

fixed, which results in jf → ∞ uniformly as γ is a fixed Barbero-Immirzi parameter.

There is another argument relating the large-j asymptotic of the spin foam amplitude

to the semiclassical limit, by imposing the semiclassical boundary state to the vertex

amplitude [71]. Mathematically the asymptotic problem is posed by making a uniform

scaling for the spins jf �→ λjf , and studying the asymptotic behavior of the amplitude

Aλjf
(K) as λ → ∞.

There were various investigations for the large-j asymptotics of the spin foam

models. The asymptotics of the Barrett-Crane vertex amplitude (10j-symbol) was

studied in [72, 73], which showed that the degenerate configurations in Barrett-Crane

model were nonoscillatory, but dominant. The large-j asymptotics of the FK model

was studied in [64], concerning the nondegenerate Riemanian geometry, in the case

of a simplicial manifold without boundary. The large-j asymptotics of the EPRL

model was initially investigated in [66, 74] for both Euclidean and Lorentzian cases,

where the analysis concerned a single 4-simplex amplitude (EPRL vertex amplitude).

It was shown that the asymptotics of the vertex amplitude is mainly a Cosine of the

Regge action in a 4-simplex if the boundary data admits a nondegenerate 4-simplex

geometry, and the asymptotics is non-oscillatory if the boundary data doesn’t admit

a nondegenerate 4-simplex geometry. There were also works found that the Regge

gravity from the Euclidean/Lorentzian spin foam amplitude on a simplicial complex

via a certain “double scaling limit” [68, 75].

In this chapter I present my works with Dr. Muxin Han [16, 67] that analyzes

the large-j asymptotic analysis of the Lorentzian EPRL spin foam amplitude to the

general situation of a 4d simplicial manifold with or without boundary, with an arbi-

trary number of simplices. The asymptotics of the spin foam amplitude is determined

by the critical configurations of the “spin foam action”, and is given by a sum of the

amplitudes evaluated at the critical configurations. Therefore the large-j asymptotics

is clarified once we find all the critical configurations and clarify their geometrical

implications. Here for the Lorentzian EPRL spin foam amplitude, a critical config-

uration in general is given by the data (jf , gve, ξef , zvf ) that solves the critical point

equations, where jf is an SU(2) spin assigned to each triangle, gve is an SL(2,C) group

variable, and ξef , zvf are two types of spinors. Here in this work we show that given a

general critical configuration, there exists a partition of the simplicial complex K into
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three types of regions RNondeg, RDeg-A, RDeg-B, where the three regions are simplicial

sub-complexes with boundaries, and they may be disconnected regions. The critical

configuration implies different types of geometries in different types of regions:

• The critical configuration restricted into RNondeg is nondegenerate in our defini-

tion of degeneracy. It implies a nondegenerate discrete Lorentzian geometry on

the simplicial sub-complex RNondeg.

• The critical configuration restricted into RDeg-A is degenerate of type-A in our

definition of degeneracy. However, it implies a nondegenerate discrete Euclidean

geometry on the simplicial sub-complex RDeg-A

• The critical configuration restricted into RDeg-B is degenerate of type-B in our

definition of degeneracy. It implies a vector geometry on the simplicial sub-

complex RDeg-B

With the critical configuration, we further make a subdivision of the regions RNondeg

and RDeg-A into sub-complexes (with boundary) K1(R∗), · · · , Kn(R∗) (∗=Nondeg,Deg-

A) according to their Lorentzian/Euclidean oriented 4-volume V4(v) of the 4-simplices,

such that sgn(V4(v)) is a constant sign on each Ki(R∗). Then in the each sub-complex

Ki(RNondeg) or Ki(RDeg-A), the spin foam amplitude at the critical configuration gives

an exponential of Regge action in Lorentzian or Euclidean signature respectively.

However we emphasize that the Regge action reproduced here contains a sign fac-

tor sgn(V4(v)) related to the oriented 4-volume of the 4-simplices, i.e.

S = sgn(V4)
�

Internal f

AfΘf + sgn(V4)
�

Boundary f

AfΘ
B
f (3.2)

where Af is the area of the triangle f and Θf , ΘB
f are deficit angle and dihedral

angle respectively. Recall that the Regge action without sgn(V4) is a discretization of

Einstein-Hilbert action of GR. Therefore the Regge action reproduced here is actually

a discretized Palatini action with the on-shell connection (compatible with the tetrad).

The asymptotic formula of the spin foam amplitude is given by a sum of the

amplitudes evaluated at all possible critical configurations, which are the products of

the amplitudes associated to different type of geometries.

Additionally, we also show that given a spin foam amplitude Ajf
(K) with the spin

configuration jf , any pair of the non-degenerate critical configurations associated with

jf are related each other by a local parity transformation. A similar result holds for
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any pair of the degenerate configuration of type-A associated with jf , since it implies

a nondegenerate Euclidean geometry.

3.2 Lorentzian spin foam amplitude

In this section I give a detail definition of the spin foam amplitude in the coherent

states formulation.

Given a simplicial complex K (with or without boundary), the Lorentzian spin

foam amplitude on K can be expressed in the coherent state representation:

A(K) =
�

jf

�

f

µ (jf )
�

(v,e)

�

SL(2,C)
dgve

�

(e,f)

�

S2
dn̂ef

�

v∈f

�
jf , ξef

���Y †gevgve′Y
��� jf , ξe′f

�

(3.3)

Here µ(jf ) is the face amplitude of the spin foam, given by µ(jf ) = (2jf + 1). |jf , ξe′f⟩
is an SU(2) coherent state in the Spin-j representation. The coherent state is labeled

by the spin j and a normalized 2-component spinor |ξef⟩ = g(ξef )|1
2
, 1

2
⟩ (nef ∈ SU(2)),

while n̂ef := g(ξef )▷ ẑ is a unit three-vector. Y is an embedding map from the Spin-j

irreducible representation Hj of SU(2) to the unitary irreducible representation H(j,γj)

of SL(2,C) with (k, ρ) = (j, γj). The embedding Y identify Hj with the lowest level in

the decomposition H(j,γj) = ⊕∞
k=jH

k. Therefore we define an SL(2,C) coherent state

by the embedding

|(jf , γjf ); jf , ξef⟩ := Y |jf , ξe′f⟩ = Π
(jf ,γjf )

�
g(ξef )

�
|(jf , γjf ); jf , jf⟩ . (3.4)

In order to write the H(jf ,γjf ) inner product in Eq.(3.3) explicitly, we express the

SL(2,C) coherent state in terms of the canonical basis [76]. The Hilbert space H(k,ρ)

can be represented as a space of homogeneous functions of two complex variables

(z0, z1) with degree (−1 + ip + k; −1 + ip − k), i.e.

f(λzA) = λ−1+iρ+kλ̄−1+iρ−kf(zA) (3.5)

Given a normalized two-component spinor zA (A = 0, 1) with ⟨z, z⟩ := δAȦz̄ȦzA = 1,

we construct the SU(2) matrix

g(z) =


 z0 −z̄1

z1 z̄0


 ≡ (z, Jz) (3.6)
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where J(z0, z1)t := (−z̄1, z̄0)t. The canonical basis f j
m(z)(k,ρ) = |(k, ρ); j, m⟩ in the

SL(2,C) unitary irreducible representation H(k,ρ) is given by the following when re-

stricted to the normalized spinors

f j
m(z)(k,ρ) =

�
dim(j)

π
Dj

mk

�
g(z)

�
(3.7)

where Dj
mk(g) is the SU(2) representation matrix. The canonical basis f j

m(z)(k,ρ) eval-

uated on the non-normalized spinor zA is then given by the homogeneity

f j
m(z)(k,ρ) =

�
dim(j)

π
⟨z, z⟩iρ−1−j Dj

mk

�
g(z)

�
(3.8)

while here Dj
mk

�
g(z)

�
is a analytic continuation of the SU(2) representation matrix.

Thus we can write down explicitly the highest weight state in the j-representation and

in the case of (k, ρ) = (j, γj)

f j
j (z)(j,γj) =

�
dim(j)

π
⟨z, z⟩iγj−1−j (z0)2j (3.9)

Therefore the coherent state is given explicitly by

|(j, γj); j, ξ⟩ = f j
ξ (z)(j,γj) = f j

j

�
g(ξ)tz

�(j,γj)

=

�
dim(j)

π
⟨z, z⟩iγj−1−j ⟨z̄, ξ⟩2j (3.10)

As a result we can write down explicitly the inner product in Eq.(3.3) in terms of a

L2 inner product on CP
1 between the coherent states f j

ξ (z)(j,γj)

�
jf , ξef

���Y †gevgve′Y
��� jf , ξe′f

�
=

�
(jf , γjf ); jf , ξef

���gevgve′

���(jf , γjf ); jf , ξe′f

�

=
�

CP
1
Ωzvf

f
(jf ,γjf )
ξef

�
gt

vezvf

�
f

(jf ,γjf )
ξe′f

�
gt

ve′zvf

�
(3.11)

where Ωz = i
2

(z0dz1 − z1dz0) ∧ (z̄0dz̄1 − z̄1dz̄0) is a homogeneous measure on C
2.

We insert the result Eq.(3.11) back into Eq.(3.3) and define a new spinor variable

Zvef and a measure on CP
1 (a scaling invariant measure)

Zvef := g†
vezvf

Ωvf :=
Ωzvf

⟨Zvef , Zvef⟩ ⟨Zve′f , Zve′f⟩ (3.12)
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Then the spin foam amplitude A(K) can be written as

A(K) =
�

jf

�

f

µ (jf )
�

(v,e)

�

SL(2,C)
dgve

�

(e,f)

�

S2
dn̂ef

�

v∈∂f

�

CP
1

�
dim(jf )

π
Ωvf

�
eS (3.13)

where we have a “spin foam action” S =
�

f Sf and

Sf =
�

v∈f

Svf =
�

v∈f

�
jf ln

⟨ξef , Zvef⟩2 ⟨Zve′f , ξe′f⟩2

⟨Zvef , Zvef⟩ ⟨Zve′f , Zve′f⟩ + iγjf ln
⟨Zve′f , Zve′f⟩
⟨Zvef , Zvef⟩

�
. (3.14)

In this chapter we consider the large-j regime of the spin foam amplitude A(K).

Concretely, we define the partial-amplitude

Ajf
(K) :=

�

(v,e)

�

SL(2,C)
dgve

�

(e,f)

�

S2
dn̂ef

�

v∈∂f

�

CP
1

�
dim(jf )

π
Ωvf

�
eS (3.15)

A(K) =
�

jf

�

f

µ (jf ) Aj(K)

and consider the regime in the sum
�

jf
where all the spins jf are large. In this

regime, the spin foam amplitude is a sum over the asymptotics of partial amplitude

Aj(K) with large spins jf . In the following, we study the large-j asymptotics of the

partial-amplitudes Ajf
(K) by making the uniform scaling jf �→ λjf and taking the

limit λ → ∞. Each face action Sf �→ λSf scales linearly with λ, so we can use the

generalized stationary phase approximation [77] to study the asymptotical behavior

of Ajf
(K) in large-j regime.

Before coming to the asymptotic analysis, we note that in all the following discus-

sions, we only consider the spin configurations such that
�

f⊂te
ϵfjf ̸= 0 with ϵf = ±1

for all e. Therefore the geometric tetrahedron with the oriented area jf n̂ef , f ⊂ te is

always assumed to be nondegenerate.

3.2.1 Derivation of critical point equations

We use the generalized stationary phase method to study the large-j asymptotics of

the above spin foam amplitude. The spin foam amplitude have been reduced to the

following type of integral:

f(λ) =
�

D
dx a(x) eλS(x) (3.16)
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where D is a closed manifold, S(x) and a(x) are smooth, complex valued functions,

and ReS ≤ 0 (this will be shown in the following for the spin foam amplitude). For

large parameter λ the dominant contributions for the above integral comes from the

critical points xc, which are the stationary point of S(x) and satisfy ReS(xc) = 0. The

asymptotic behavior of the above integral for large λ is given by

f(λ) =
�

xc

a(xc)
�

2π

λ

� r(xc)
2 eiIndH′(xc)

�
| detr H ′(xc)|

eλS(xc)
�
1 + o(

1

λ
)
�

(3.17)

for isolated critical points, where r(xc) is the rank of the Hessian matrix Hij(xc) =

∂i∂jS(xc) at a critical point, and H ′(xc) is the invertible restriction on kerH(xc)
⊥.

When the critical points are not isolated, the above
�

xc
is replaced by a integral

over a submanifold of critical points. If the S(x) doesn’t have any critical point f(λ)

decreases faster than any power of λ−1. From the above asymptotic formula, we see

that the asymptotics of the spin foam amplitude is clarified by finding all the critical

points of the action and evaluating the integrand at each critical point.

In order to find the critical points of the spin foam action, first of all, we show that

the spin foam action S satisfies ReS ≤ 0. For each Svf , by using the Cauchy-Schwarz

inequality

ReSvf = jf ln
|⟨ξef , Zvef⟩|2 |⟨Zve′f , ξe′f⟩|2
⟨Zvef , Zvef⟩ ⟨Zve′f , Zve′f⟩

≤ jf ln
⟨ξef , ξef⟩ ⟨Zvef , Zvef⟩ ⟨ξe′f , ξe′f⟩ ⟨Zve′f , Zve′f⟩

⟨Zvef , Zvef⟩ ⟨Zve′f , Zve′f⟩ ≤ 0 (3.18)

Therefore

ReS =
�

f,v

ReSvf ≤ 0 (3.19)

From ReS = 0, we obtain the following equations

ξef =
eiϕev

∥Zvef∥Zvef , and ξe′f =
eiϕe′v

∥Zve′f∥Zve′f (3.20)

where ∥Zvef∥ ≡ |⟨Zvef , Zvef⟩|1/2. If we define ϕeve′ = ϕev − ϕe′v, the above equation

results in that �
g†

ve

�−1
ξef =

∥Zve′f∥
∥Zvef∥ eiϕeve′

�
g†

ve′

�−1
ξe′f (3.21)



26 Semiclassical behavior of spin foam amplitude

Here we use the property of anti-linear map J

JgJ−1 =
�
g†
�−1

(3.22)

to Eq.(3.21), we find

gve (Jξef ) =
∥Zve′f∥
∥Zvef∥ e−iϕeve′ gve′ (Jξe′f ) (3.23)

Now we compute the derivative of the action S on the variables zvf , ξef , gve to find

the stationary point of S. We first consider the derivative with respect to the CP 1

variable zvf . Given a spinor zA = (z0, z1)
t, zA and (Jz)A = (−z̄1, z̄0) is a basis of the

space C
2 of 2-component spinors. The following variation can be written in general

by

δzA = ε(Jz)A + ωzA (3.24)

where ε, ω are complex number. Since z ∈ CP
1, we can choose a partial gauge fixing

that ⟨z, z⟩ = 1, which gives ⟨δz, z⟩ = − ⟨z, δz⟩. Thus we obtain ω = iη with a real

number η. Moreover if we choose the variation with ε = 0, it leads to δzA = iηzA,

which gives η = 0 for z ∈ CP
1. Using the variation δzA

vf = εvf (Jzvf )A and δz̄A
vf =

ε̄vf (Jz̄vf )A, and combining the equations of motion

δzvf
Svf = 0 (3.25)

with Eq.(3.20), we obtain the following equation

�
Jzvf , gveξef

�
=

∥Zvef∥
∥Zve′f∥eiϕeve′

�
Jzvf , gve′ξe′f

�
(3.26)

Also from Eq.(3.20), because of ⟨ξef , ξef⟩ = ⟨ξe′f , ξe′f⟩ = 1

⟨zvf , gveξef⟩ =
∥Zvef∥
∥Zve′f∥eiϕeve′ ⟨zvf , gve′ξe′f⟩ (3.27)

Therefore since zA and (Jz)A is a basis of the space C
2 of 2-component spinors,

gveξef =
∥Zvef∥
∥Zve′f∥eiϕeve′ gve′ξe′f (3.28)

We consider the variation with respect to ξef . Since the spinor ξef is normalized,
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we should use δξA
ef = ωef (Jξef )A + iηefξA

ef for complex infinitesimal parameter ω ∈ C

and η ∈ R. The variation of the action vanishes automatically

δξef
S = jf

�
2

δξef
⟨ξef , Zvef⟩

⟨ξef , Zvef⟩ + 2
δξef

⟨Zv′ef , ξef⟩
⟨Zv′ef , ξef⟩

�
= 0 (3.29)

by using Eq.(3.20) and the identity ⟨Jξef , ξef⟩ = 0.

Finally we consider the stationary point for the group variables gve. We parameter-

ize the group with the parameter θIJ around a saddle point gve, i.e. g′
ve = gvee

−iθve
IJ

J IJ

,

where J IJ is the generator of the Lie algebra sl2C. Using the equations of motion

∂Svf

∂θve
IJ

����
θve=0

= 0 (3.30)

and applying Eq.(3.20) again, one can find

4�

f∈te

εef (v)jf

��
ξef , iJ IJ†ξef

�
+
�
ξef , iJ IJξef

��
= 0 (3.31)

where εef (v) = ±1 is determined (up to a global sign) by the following relations

εef (v) = −εe′f (v) and εef (v) = −εef (v′) (3.32)

for the triangle f shared by the tetrahedra te and te′ in the 4-simplex σv, and the dual

edge e = (v, v′). As usual we can rewrite Lorentz Lie algebra generator J IJ in terms

of rotation part J⃗ and boost part K⃗ where where Ji = i
2
ϵ0ijkJ jk, Ki = −iJ 0i. In

the Spin-1
2

representation, the rotation generators J⃗ = i
2
σ⃗ and the boost generators

K⃗ = 1
2
σ⃗. Recall that

⟨ξ |σ⃗| ξ⟩ = n̂ξ with n̂ξ = (ξ0ξ̄1 + ξ1ξ̄0)x̂ − i(ξ0ξ̄1 − ξ1ξ̄0)ŷ + (ξ0ξ̄0 − ξ1ξ̄1)ẑ (3.33)

we have �
ξef , J⃗ξef

�
= −

�
ξef , J⃗†ξef

�
=

i

2
n̂ef (3.34)

�
ξef , K⃗ξef

�
=
�
ξef , K⃗†ξef

�
=

1

2
n̂ef (3.35)
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Using the above relations, Eq.(3.2.1) results in the closure condition

4�

f⊂te

εef (v)jf n̂ef = 0. (3.36)

Thus we finish the derivation of all the critical point equations.

3.2.2 Analysis of critical point equations

We summarize the critical point equations for a spin foam configuration (jf , gev, ξef , zvf )

gve (Jξef ) =
∥Zve′f∥
∥Zvef∥ e−iϕeve′ gve′ (Jξe′f ) (3.37)

gveξef =
∥Zvef∥
∥Zve′f∥eiϕeve′ gve′ξe′f (3.38)

0 =
4�

f⊂te

εef (v)jf n̂ef (3.39)

where Eq.(3.39) stands for the closure condition for each tetrahedron. εef (v) is the

sign factor coming from the variation with respect to gev. It is determined (up to a

global sign) by the following relations

εef (v) = −εe′f (v) and εef (v) = −εef (v′) (3.40)

for the triangle f shared by the tetrahedra te and te′ in the 4-simplex σv, and the dual

edge e = (v, v′).

In the following, we show that Eqs.(3.37) and (3.38) give the parallel transportation

condition of the bivectors. Given a spinor ξA, it naturally constructs a null vector

ξAξ̄Ȧ = ι(ξ)IσAȦ
I where σI = (1, σ⃗). It is straight-forward to check that

ξξ̄ =
1

2
(1+σ⃗ ·n̂ξ) with n̂ξ = (ξ0ξ̄1+ξ1ξ̄0)x̂−i(ξ0ξ̄1−ξ1ξ̄0)ŷ+(ξ0ξ̄0−ξ1ξ̄1)ẑ (3.41)

n̂ξ is a unit 3-vector since ξ is a normalized spinor. Thus we obtain that

ι(ξ)I =
1

2
(1, n̂ξ) (3.42)

Similarly for the spinor Jξ, we define the null vector JξAJξȦ = ι(Jξ)IσAȦ
I and obtain
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that

ι(Jξ)I =
1

2
(1, −n̂ξ) (3.43)

We can write Eqs.(3.37) and (3.38) in their Spin-1 representation

ĝve ι(Jξef ) =
∥Zve′f∥2

∥Zvef∥2 ĝve′ ι(Jξe′f ) and ĝve ι(ξef ) =
∥Zvef∥2

∥Zve′f∥2 ĝve′ ι(ξe′f ) (3.44)

It is obvious that if we construct a bivector1

XIJ
ef = −4γjf [ι(ξef ) ∧ ι(Jξef )]IJ (3.45)

Xef satisfies the parallel transportation condition within a 4-simplex

(ĝve)
I
K(ĝve)

J
LXKL

ef = (ĝve′)I
K(ĝve′)J

LXKL
e′f . (3.46)

We define the bivector XIJ
f located at each vertex v of the dual face f by the parallel

transportation

XIJ
f (v) := (ĝve)

I
K(ĝve)

J
LXKL

ef . (3.47)

which is independent of the choice of e by the above parallel transportation condition.

Then we have the parallel transportation relation of X IJ
f (v)

XIJ
f (v) = (ĝvv′)I

K(ĝvv′)J
LXKL

f (v′) (3.48)

because the spinor ξef belonging to the tetrahedron te is shared as the boundary data

by two neighboring 4-simplex.

On the other hand, we can write the bivector XIJ
ef as a matrix:

XIJ
ef = 2γjf




0 n̂1
ef n̂2

ef n̂3
ef

−n̂1
ef 0 0 0

−n̂2
ef 0 0 0

−n̂3
ef 0 0 0




(3.49)

���XIJ
ef

��� =

�����
1

2
XIJ

ef Xef
IJ

���� = 2γjf (3.50)

1the pre-factor is a convention for simplifying the notation in the following discussion.
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However the matrix (Xef )I
J = XIK

ef ηKJ read

Xef ≡ (Xef )I
J = 2γjf




0 n̂1
ef n̂2

ef n̂3
ef

n̂1
ef 0 0 0

n̂2
ef 0 0 0

n̂3
ef 0 0 0




= 2γjf n̂ef · K⃗ (3.51)

where K⃗ denotes the boost generator of Lorentz Lie algebra sl2C in the Spin-1 rep-

resentation. The rotation generator in sl2C is denoted by J⃗ . The generators in sl2C

satisfies the commutation relations [J i, J j] = −ϵijkJk, [J i, Kj] = −ϵijkKk, [K i, Kj] =

ϵijkJk. The relation Xef = 2γjf n̂ef · K⃗ gives a representation of the bivector in terms

of the sl2C lie algebra generators. Moreover it is not difficult to verify that in the

Spin-1
2

representation J⃗ = i
2
σ⃗ and K⃗ = 1

2
σ⃗. Thus in Spin-1

2
representation

Xef = γjf σ⃗ · n̂ef (3.52)

For this sl2C Lie algebra representation of the bivector Xef , the parallel transportation

is represented by the adjoint action of the Lie group on its Lie algebra. Therefore we

have

gveXefgev = gve′Xe′fge′v, Xf (v) := gveXefgev, Xf (v) := gvv′Xf (v′)gv′v (3.53)

where gve = g−1
ev , gv′v = g−1

vv′ . We note that the above equations are valid for all the

representations of SL(2,C).

There is the duality map acting on sl2C by ⋆J⃗ = −K⃗, ⋆K⃗ = J⃗ . For self-dual/anti-

self-dual bivector T⃗± := 1
2
(J⃗ ± iK⃗), One can verify that ⋆T⃗± = ±iT⃗±. In the Spin-1

representation (bivector representation), the duality map is represented by ⋆X IJ =
1
2
ϵIJKLXKL. In the Spin-1

2
representation, the duality map is represented by ⋆X = iX

since J⃗ = i
2
σ⃗ and K⃗ = 1

2
σ⃗ in the Spin-1

2
representation. From Eq.(3.51), we see that

Xef = − ⋆ (2γjf n̂ef · J⃗) (3.54)

From its bivector representation one can see that

ηIJuI ⋆ XJK
ef = 0, uI = (1, 0, 0, 0). (3.55)
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It motivates us to define a unit vector at each vertex v for each tetrahedron te by

N I
e (v) := (ĝve)

I
JuJ (3.56)

Then for all triangles f in the tetrahedron te, N I
e (v) is orthogonal to all the bivectors

⋆Xf (v) with f belonging to te.

ηIJN I
e (v) ⋆ XJK

f (v) = 0. (3.57)

In addition, from the closure constraint Eq.(3.39), we obtain for each tetrahedron

te �

f⊂te

εef (v)Xf (v) = 0. (3.58)

We summarize the above analysis of the critical point equations Eqs.(3.37), (3.38),

and (3.39) into the following proposition:

Proposition 3.2.1. Given the data (jf , gev, ξef , zvf ) be a spin foam configuration that

solves the critical point equations Eqs.(3.37), (3.38), and (3.39), we construct the

bivector variables (in the sl2C Lie algebra representation) for the spin foam amplitude

Xef = −⋆(2γjf n̂ef ·J⃗) and Xef (v) := gveXefgev, where |Xef (v)| =
�

1
2
Tr (Xef (v)Xef (v)) =

2γjf . The critical point equations implies the following equations for the bivector vari-

ables

Xef (v) = Xe′f (v) ≡ Xf (v), Xf (v) := gvv′Xf (v′)gv′v, (3.59)

ηIJN I
e (v) ⋆ XJK

f (v) = 0,
�

f⊂te

εef (v)Xf (v) = 0 (3.60)

where te and te′ are two different tetrahedra of a 4-simplex dual to v, f is a triangle

shared by the two tetrahedra te and te′, and N I
e (v) = (ĝve)

I
JuJ with uJ = (1, 0, 0, 0) is

a unit vector associated with the tetrahedron te. εef (v) is a sign factor determined (up

to a global sign) by the following relations

εef (v) = −εe′f (v) and εef (v) = −εef (v′) (3.61)

for the triangle f shared by the tetrahedra te and te′ in the 4-simplex σv, and the dual

edge e = (v, v′).
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3.3 Nondegenerate geometry on a simplicial com-

plex

3.3.1 Discrete bulk geometry

In order to relate the spin foam configurations solving the critical point equations with

the a discrete Regge geometry, here we introduce the classical geometric variables for

the discrete Lorentzian geometry on a 4-manifold [78–81].

Given a simplicial complex K triangulating the 4-manifold M with Lorentzian

metric gµν , we associate each 4-simplex σv (dual to the vertex v) a reference frame.

In this reference frame the vertices [p1(v), · · · , p5(v)] of the 4-simplex σv have the

coordinates

pi(v) = {xI
i (v)}i=1,·,5 (3.62)

Consider another 4-simplex σv′ neighboring σv, there is an edge e connecting v and

v′, and there is a tetrahedron te shared by σv, σv′ with vertices [p2(v), · · · , p5(v)] =

[p2(v
′), · · · , p5(v

′)]. Then it is possible to associate the edge e = (v, v′) uniquely an

element of Poincaré group
�
(Ωe)

I
J , (Ωe)

I
�
, such that for the vertices p2, · · · , p5 of te

(Ωe)
I
JxJ

i (v′) + (Ωe)
I = xI

i (v) i = 2, · · · , 5 (3.63)

Here the matrix (Ωe)
I
J describes the change of the reference frames in σv and σv′ , while

(Ωe)
I describes the transportation of the frame origins from σv to σv′ . We assume the

triangulation is orientable, and we choose the reference frames in σv, σv′ in such a way

that Ωe ∈ SO(1,3).

We focus on a 4-simplex σv whose center is the vertex v. For each oriented edge

ℓ = [pi(v), pj(v)] in the 4-simplex, we associate an edge vector EI
ℓ (v) = xI

i (v) − xI
j(v).

Thus under the change of reference frame from σv to σv′

(Ωe)
I
JEI

ℓ (v′) = Eℓ(v) ∀ ℓ ⊂ te (3.64)

In this work we assume all the edge vectors EI
ℓ (v) are spatial in the sense of the flat

metric ηIJ = diag(−1, 1, 1, 1). It is straight-forward to check from the definition that

the edge vectors EI
ℓ (v) satisfies:
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• if we reverse the orientation of ℓ, then

EI
−ℓ(v) = −EI

ℓ (v), (3.65)

• for all triangle f in the simplex σv with edge ℓ1, ℓ2, ℓ3, the vectors EI
ℓ (v) close,

i.e.

EI
ℓ1

(v) + EI
ℓ2

(v) + EI
ℓ3

(v) = 0 (3.66)

The set of EI
ℓ (v) at v satisfying Eqs.(3.65) and (3.66) is called a co-frame at the

vertex v.

• Moreover given a tetrahedron t shared by two 4-simplices σv, σv′ , for all pair of

edges ℓ1, ℓ2 of the tetrahedron, we further require that

ηIJEI
ℓ1

(v)EJ
ℓ2

(v) = ηIJEI
ℓ1

(v′)EJ
ℓ2

(v′) (3.67)

Definition 3.3.1. The collection of the vectors Eℓ(v) satisfying Eqs.(3.65), (3.66),

and (3.67) at all the vertices is called a co-frame on the simplicial complex K. The

discrete (spatial) metric on the each tetrahedron t induced from gµν is given by

gℓ1ℓ2(v) = ηIJEI
ℓ1

(v)EJ
ℓ2

(v) (3.68)

which is actually independent of v because of Eq.(3.67).

We assume the co-frame EI
ℓ (v) is nondegenerate, i.e. for each 4-simplex σv, the set

of EI
ℓ (v) with ℓ ⊂ ∂σv spans a 4-dimensional vector space.

An edge ℓ can be denoted by its end-points, say p1, p2, i.e. ℓ = [p1, p2]. There are

5 vertices pi, i = 1, · · · , 5 for a 4-simplex σv. Then each pi is one-to-one corresponding

to a tetrahedron tei
of the 4-simplex σv. Therefore we can denote the edge ℓ = [p1, p2]

also by ℓ = (e1, e2), once a 4-simplex σv is specified. Thus we can also write the

co-frame EI
ℓ (v) at the vertex v by EI

e1e2
(v). In this notation, for example Eqs.(3.65)

and (3.66) become

EI
e1e2

(v) = −EI
e2e1

(v), EI
e1e2

(v) + EI
e2e3

(v) + EI
e3e1

(v) = 0. (3.69)

In the following we use both of the notations, according to the convenience by the

context.
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Lemma 3.3.1. Given a co-frame EI
ℓ (v) on the triangulation, it determines uniquely

an SO(1,3) matrix (Ωe)
I
J associated to each edge e = (v, v′) such that for all the edge

of the tetrahedron te shared by σv and σv′

(Ωe)
I
JEJ

ℓ (v′) = EI
ℓ (v) ∀ ℓ ⊂ te (3.70)

We can associate a reference frame in each 4-simplex such that SO(1,3) matrix (Ωe)
I
J

changing the frame from σv to σv′.

Proof: Given a tetrahedron te shared by two 4-simplices σv, σv′ , we consider the

relation between the co-frame vectors EI
ℓ (v) at the vertex v and EI

ℓ (v′) at v′, for all 6

edges ℓ of the tetrahedron te. The spatial vectors EI
ℓ (v) ℓ ⊂ te spans a 3-dimensional

subspace, and the same holds for EI
ℓ (v′). We choose the time-like unit normal vectors

Û(v) and Û(v′) orthogonal to EI
ℓ (v) and EI

ℓ (v′) respectively, and require that

sgn det
�
Eℓ1(v), Eℓ2(v), Eℓ3(v), Û(v)

�
= sgn det

�
Eℓ1(v′), Eℓ2(v′), Eℓ3(v′), Û(v′)

�

(3.71)

where Eℓ1(v), Eℓ2(v), Eℓ3(v) form a basis in the 3-dimensional subspace spanned by

EI
ℓ (v) ℓ ⊂ te. From Eq.(3.71), Eq.(3.67) and Eℓi

(v) · Û(v) = Eℓi
(v′) · Û(v′) = 0,

i = 1, 2, 3, an SO(1,3) matrix Ωe is determined by

(Ωe)
I
JEJ

ℓi
(v′) = EI

ℓi
(v) (Ωe)

I
J ÛJ(v′) = Û I(v). (3.72)

Suppose there are two SO(1,3) matrices Ωe, Ω′
e satisfying

(Ωe)
I
JEJ

ℓi
(v′) = EI

ℓi
(v) (Ω′

e)
I
JEJ

ℓi
(v′) = EI

ℓi
(v) (3.73)

we then have Ωe = Ω′
e.

We choose a numbering [p1, · · · , p5] of the vertices of σv, σv′ such that [p2(v), · · · , p5(v)] =

[p2(v
′), · · · , p5(v

′)] are the vertices of the tetrahedron te. Two reference frame in the 4-

simplices σv, σv′ are specified by the coordinates
�
EI

e2e1
(v), EI

e3e1
(v), EI

e4e1
(v), EI

e5e1
(v)
�

and
�
EI

e2e1
(v′), EI

e3e1
(v′), EI

e4e1
(v′), EI

e5e1
(v′)
�

by defining xI
j(v) := EI

eje1
(v) and similar

for xI
j(v′). Since

Ee2e1 = Ee2e5 − Ee1e5 , Ee3e1 = Ee3e5 − Ee1e5 , Ee4e1 = Ee4e5 − Ee1e5 (3.74)

and there exists a unique (Ωe)
I
J ∈ SO(1,3) that EI

eiej
(v) = (Ωe)

I
JEI

eiej
(v′), i, j =
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2, · · · , 5, we can relate the coordinates
�
EI

e2e1
(v), EI

e3e1
(v), EI

e4e1
(v), EI

e5e1
(v)
�

and�
EI

e2e1
(v′), EI

e3e1
(v′), EI

e4e1
(v′), EI

e5e1
(v′)
�

in two different 4-simplices by

EI
eie1

(v) = (Ωe)
I
JEI

eie1
(v′) + (Ωe)

I
JEJ

e1e5
(v′) − EI

e1e5
(v), i = 2, 3, 4, 5 (3.75)

The coordinates of p2, · · · , p5 are given by xI
j(v) := EI

eje1
(v) with respective the refer-

ence frame in σv, thus the Poincaré transformation relating two reference frames are

given by an SO(1,3) matrix and a translation
�
(Ωe)

I
J , (Ωe)

I
�
, where the translation

vector (Ωe)
I is given by

(Ωe)
I := (Ωe)

I
JEJ

e1e5
(v′) − EI

e1e5
(v) (3.76)

□

The orientation of a 4-simplex σv is represented by an ordering of its 5 vertices, i.e.

a tuple [p1, · · · , p5]. Two orientations are opposite to each other if the two orderings

are related by an odd permutation, e.g. [p1, p2, · · · , p5] = −[p2, p1 · · · , p5]. We say

that two neighboring 4-simplices σ, σ′ are consistently oriented, if the orientation of

their shared tetrahedron t induced from σ is opposite to the orientation induced from

σ′. For example, σ = [p1, p2, · · · , p5] and σ′ = −[p′
1, p2, · · · , p5] are consistently ori-

ented since the opposite orientations t = ±[p2, · · · , p5] are induced respectively from

σ and σ′. The simplicial complex K is said to be orientable if it is possible to orient

consistently all pair of neighboring 4-simplices. Such a choice of consistent 4-simplex

orientations is called a global orientation. We assume we define a global orientation

of the triangulation K. Then for each 4-simplex σv = [p1, p2, · · · , p5], we define an

oriented volume (assumed to be nonvanishing as the nondegeneracy)

V4(v) := det
�

Ee2e1(v), Ee3e1(v), Ee4e1(v), Ee5e1(v)
�

(3.77)

In general the oriented 4-volume V4(v) can be positive or negative for different 4-

simplices.

Definition 3.3.2. Given two neighboring 4-simplices σv and σv′, if their oriented

volumes are both positive or both negative, i.e. sgn(V4(v)) = sgn(V4(v
′)). The SO(1,3)

matrix (Ωe)
I
J , e = (v, v′) is the discrete spin connection compatible with Eℓ(v)I .

For each vertex v and a dual edge e connecting v, we define a time-like vector Ue(v)
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at the vertex v by (choosing any j ̸= k, the definition is independent of the choice of

j by Eqs.(3.65) and (3.66))

U ek

I (v) :=
1

3!V4(v)

�

l,m,n

ϵjklmnϵIJKLEJ
elej

(v)EK
emej

(v)EL
enej

(v) (3.78)

In total there are 5 vectors Ue(v) at each vertex v. Using Eq.(3.65) and (3.66), one

can show that

U
ej

J (v)EJ
ekel

(v) = δjk − δjl (3.79)

Thus we call the collection of Ue(v) a discrete frame since Ee1e2(v) is called a discrete

co-frame. Moreover from this equation we see that U J
e (v) is a vector at v normal to

the tetrahedron te. If we sum over all 5 frame vectors Ue(v) at v in Eq.(3.79)

5�

j=1

U
ej

J (v)EJ
ekel

(v) =
5�

j=1

δjk −
5�

j=1

δjl = 0 ∀ ek, el (3.80)

which shows the closure of Ue(v) at each vertex v, i.e.

5�

e=1

Ue(v) = 0 (3.81)

by the nondegenercy of Eee′(v). Eq.(3.81) shows that the 5 vectors Ue(v) are all

out-pointing or all in-pointing normal vectors to the tetrahedra. Also following from

Eq.(3.79) (fix l = 1 and let j = 2, 3, 4, 5), we have that the 4×4 matrix (U e2(v), U e3(v), U e4(v), U e5(v))t

is the inverse of the matrix (Ee2e1(v), Ee3e1(v), Ee4e1(v), Ee5e1(v)). Therefore

1

V4(v)
= det

�
U e2(v), U e3(v), U e4(v), U e5(v)

�
. (3.82)

It implies (i, j, k, l = 2, 3, 4, 5)

V4(v)ϵIJKLU ei

I (v)U
ej

J (v)U ek

K (v)U el

L (v) = ϵijkl (3.83)

V4(v)ϵijklU
ei

I (v)U
ej

J (v)U ek

K (v)U el

L (v) = ϵIJKL (3.84)

where the above ϵijkl = ϵijkl, ϵIJKL = ϵIJKL are all Levi-Civita symbols. Then using
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the fact that the matrix U ei

I (v) is the inverse of EI
eie1

(v), we can verify that

EI
ekej

(v) =
V4(v)

3!

�

l,m,n

ϵjklmnϵIJKLU el

J (v)U em

K (v)U en

L (v) (3.85)

V4(v)U ei

[I (v)U
ej

J ] (v) =
1

2

�

m,n

ϵkijmnϵIJKLEK
emek

(v)EL
enek

(v) (3.86)

where the last equation is a relation for the area bivector Eℓ(v)∧Eℓ′(v) of each triangle

f . For example, given a triangle f shared by te4 and te5 in a 4-simplex σv. one has

⋆ [Ee1e2(v) ∧ Ee2e3(v)] = V4(v) [U e4(v) ∧ U e5(v)] (3.87)

where ⋆[E1 ∧ E2] ≡ ϵIJKLEK
1 EL

2 .

3.3.2 Discrete boundary geometry

All the above discussions are considering the discrete geometry in the bulk of the

triangulation, where all the co-frame vectors Eℓ(v) and frame vectors Ue(v) are located

at internal vertices v. Now we consider a triangulation with boundary, where the

boundary is a simplical complex ∂K built by tetrahedra triangulating a boundary 3-

manifold. On the boundary ∂K, each triangle is shared by precisely two boundary

tetrahedra. This triangle is dual to a unique boundary link l, connecting the centers

of the two boundary tetrahedra sharing the triangle. We denote this triangle fl. On

the other hand, from the viewpoint of the whole triangulation K, there is a unique

face dual to the triangle fl, where two edges e0, e1 of this dual face are dual to the

two boundary tetrahedra te0 , te1 sharing fl. This dual face intersects the boundary

uniquely by the link l2. Thus we denote this dual face also by fl because of the one-

to-one correspondence of the duality for K. See FIG.3.1 for an example of a face dual

to a boundary triangle.

The end-points s(l), t(l) of the boundary link l are centers of the tetrahedra te0 , te1

respectively. For each edge ℓ of the tetrahedron tei
(i = 0, 1), we associate a spatial

vector Eℓ(ei) at the center of tei
, satisfying the following requirement:

• Given the time-like unit vector uI = (1, 0, 0, 0), all the vectors Eℓ(ei) (i = 0, 1)

2If the dual face intersects the boundary by more than one link, then it means that the triangle
fl is shared by more than two tetrahedra, which is impossible for a 3-dimensional triangulation.
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fl

e1 e0l

v1
v0

Fig. 3.1 The face dual to a boundary triangle fl shared by two tetrahedra te0 , te1 .

are orthogonal to uI , i.e.

uIEI
ℓ (ei) = 0 ∀ ℓ ∈ tei

. (3.88)

• If we reverse the orientation of ℓ, then

E−ℓ(ei) = −Eℓ(ei) ∀ ℓ ∈ tei
. (3.89)

• For all triangle f of the boundary tetrahedron tei
with edge ℓ1, ℓ2, ℓ3, the vectors

Eℓ(ei) close, i.e.

Eℓ1(ei) + Eℓ2(ei) + Eℓ3(ei) = 0. (3.90)

• There is a internal vertex vi as one of the end-points of the dual edge ei (i = 0, 1),

i.e. the boundary tetrahedron tei
belongs to the boundary of the 4-simplex σvi

.

Then we require that

ηIJEI
ℓ1

(ei)E
J
ℓ2

(ei) = ηIJEI
ℓ1

(vi)E
J
ℓ2

(vi) ∀ ℓ1, ℓ2 ∈ tei
. (3.91)

The set of EI
ℓ (ei) (i = 0, 1) at the center of tei

satisfying the above requirements is

called a boundary (3-dimensional) co-frame at the center of tei
(at the node s(l)). The

discrete metric

gℓ1ℓ2(ei) := ηIJEI
ℓ1

(ei)E
J
ℓ2

(ei) (3.92)

is the induced metric on the boundary ∂K.

Consider a boundary tetrahedron tei
belonging to a 4-simplex σvi

, then the edge

ei dual to tei
connects to a boundary node (the center of tei

). We choose 3 lin-
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early independent co-frame vectors Eℓ1(ei), Eℓ2(ei), Eℓ3(ei) at the center of tei
associ-

ated with 3 edges ℓ1, ℓ2, ℓ3, and also choose 3 linearly independent co-frame vectors

Eℓ1(vi), Eℓ2(vi), Eℓ3(vi) at the vertex vi associated with the same set of edges. Given

a unit vector Û(vi) orthogonal to Eℓ1(vi), Eℓ2(vi), Eℓ3(vi) such that

sgn det
�
Eℓ1(vi), Eℓ2(vi), Eℓ3(vi), Û(vi)

�
= sgn det

�
Eℓ1(ei), Eℓ2(ei), Eℓ3(ei), u

�
(3.93)

by the requirement Eq.(3.91), there exist a unique SO(1,3) matrix Ωei
such that

(Ωei
)I

JEJ
ℓj

(ei) = EI
ℓj

(vi) (Ωei
)I

JuJ = Û I(vi). (3.94)

Thus Ωei
is identify as the spin connection compatible with Eℓ(vi), Eℓ(ei).

Consider a dual face bounded by a boundary link l (see, e.g. FIG.3.1), by using the

defining requirement of the co-frames in the bulk and on the boundary, i.e. Eqs.(3.67)

and (3.91), we have

ηIJEI
ℓj

(e0)E
J
ℓk

(e0) = ηIJEI
ℓj

(e1)E
J
ℓk

(e1) (3.95)

where ℓj, ℓk are two of the three edges of the triangle fl dual to the face. Therefore

we obtain the shape-matching condition between the triangle geometries of fl viewed

in the frame of te0 and te1 . More precisely, there exists an SO(3) matrix ĝl such that

for all the three ℓ’s forming the boundary of the triangle fl

(ĝl)
I
JEJ

ℓ (e0) = EI
ℓ (e1) (3.96)

by the fact that both Eℓ(e0) and Eℓ(e1) are orthogonal to uI = (1, 0, 0, 0).

Now we consider a single boundary tetrahedron te dual to an edge e connecting

to the boundary. Since all the boundary co-frame vectors Eℓ(e) at the center of te

are orthogonal to the time-like unit vector uI = (1, 0, 0, 0), we now only consider the

3-dimensional spatial subspace orthogonal to uI = (1, 0, 0, 0). We further assume the

boundary tetrahedral geometry is nondegenerate, i.e. the (oriented) 3-volume of the

tetrahedron

V3(e) = det
�

Eℓ1(e), Eℓ2(e), Eℓ3(e)
�

(3.97)

is nonvanishing, where ℓ1, ℓ2, ℓ3 are the three edges of te connecting to a vertex p of te.

Since there are 4 vertices of te and an edge ℓ is determined by its end-points pi, pj, we

denote Eℓ(e) by Epipj
(e). Choose a vertex p1 and construct the nondegenerate 3 × 3
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matrix �
Ep2p1(e), Ep3p1(e), Ep4p1(e)

�
(3.98)

we construct is inverse �
np2(e), np3(e), np4(e)

�t

(3.99)

with npi
(e) · Epjp1(e) = δij. Repeat the same construction for all the other 3 vertices

p2, p3, p4, we obtain four 3-vector npi
(e) such that

npi
(e) · Epjpk

(e) = δij − δik. (3.100)

From this relation, one can verify that: (i) The 3-vector npi
(e) is orthogonal to the

triangle (pj, pk, pl) spanned by Epjpk
(e), Epjpl

(e), Eplpk
(e) with i ̸= j, k, l. Therefore we

denote np(e) by nef where f is the triangle determined by the 3 vertices other than p.

(ii) the four nef satisfy the closure condition

4�

f=1

nef = 0. (3.101)

We call the set of nef a 3-dimensional frame at the center of te. Explicitly, the vector

nef is given by

nef = V3(e)−1Eℓ1(e) × Eℓ2(e) or np1(e) = V3(e)−1Ep2p3(e) × Ep3p4(e) (3.102)

The norm |nef | = 2Af/|V3(e)| is proportional to the area of the triangle Af =
1
2

|Eℓ1(e) × Eℓ2(e)|.

3.4 Geometric interpretation of nondegenerate crit-

ical configuration

3.4.1 Classical geometry from spin foam critical configuration

Now we come back to the discussion of the critical point of spin foam amplitude.

The purpose of this section is to make a relation between the solution of the critical

point equations Eqs.(3.37), (3.38), and (3.39) and a (Lorentzian) discrete geometry

described in Section 3.3.

Given a spin foam configuration (jf , gev, ξef , zvf ) that solves the critical point equa-
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tions, let’s recall Proposition 3.2.1 and consider a triangle f shared by two tetrahe-

dra te and te′ of a 4-simplex σv. In Eq.(3.59), there are the simplicity conditions

N e
I (v) ⋆ XIJ

ef (v) = 0 and N e′

I (v) ⋆ XIJ
e′f (v) = 0 from the viewpoint of the two tetrahe-

dra te and te′ . The two simplicity conditions implie that there exists two 4-vectors

M I
ef (v) and M I

ef (v) such that Xef (v) = Ne(v)∧Mef (v) and Xe′f (v) = Ne′(v)∧Me′f (v).

However we have in Eq.(3.59) the gluing condition Xef (v) = Xe′f (v) = Xf (v), which

implies that Ne′(v) belongs to the plane spanned by Ne(v), Mef (v), i.e. Ne′(v) =

aefMef (v) + befNe(v). If we assume the following nondegeneracy condition3:

5�

e1,e2,e3,e4=1

det
�

Ne1(v), Ne2(v), Ne3(v), Ne4(v)
�

̸= 0 (3.103)

then Ne(v), Ne′(v) cannot be parallel with each other, for all pairs of e, e′, which

excludes the case of vanishing aef in the above. Denoting αee′ = a−1
ef , we obtain that

Mef (v) = αee′Ne′(v) − αee′befNe(v). Therefore

Xf (v) = αee′(v) [Ne(v) ∧ Ne′(v)] (3.104)

for all f shared by te and te′ . Note that within a simplex σv there is a one-to-one

correspondence between a pair of tetrahedra te and te′ and a triangle f shared by

them. Thus we can write the bivector Xf (v) ≡ Xee′(v) = αee′(v) [Ne(v) ∧ Ne′(v)].

We label the 5 tetrahedra of σv by tei
, i = 1, · · · , 5. Then Eq.(3.104) reads

Xeiej
(v) = αij(v)

�
Nei

(v) ∧ Nej
(v)
�

(3.105)

Then the closure condition
�4

j=1 εeiej
(v)Xeiej

(v) = 04 gives that ∀ i = 1, · · · , 5

0 =
4�

j=1

εeiej
(v)αij(v)

�
Nei

(v) ∧ Nej
(v)
�

= Nei
(v) ∧

4�

j=1

εeiej
(v)αij(v)Nej

(v) (3.106)

which implies that for a choice of diagonal element βii(v),

5�

j=1

βij(v)Nej
(v) = 0 (3.107)

3Note that the nondegenerate here is purely a condition for the group variables gve since Ne(v) =
gve(1, 0, 0, 0)t.

4Here εeiej
(v) = −εejei

(v) and Xeiej
(v) = Xejei

(v).
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where we denote βij(v) := εeiej
(v)αij(v). Here βii(v) must be chosen as nonzero,

because if βii(v) = 0, Eq.(3.107) would reduce to
�

j ̸=i βij(v)Nej
(v) = 0, which gives

all the coefficients βij(v) = 0 by linearly independence of any four Ne(v) (from the

nondegeneracy Eq.(3.103)).

We consider

0 = βkm(v)
5�

j=1

βlj(v)Nej
(v) − βlm(v)

5�

j=1

βkj(v)Nej
(v)

=
�

j ̸=m

�
βkm(v)βlj(v) − βlm(v)βkj(v)

�
Nej

(v) (3.108)

Since we assume the nondegeneray condition Eq.(3.103), any four of the five Ne(v) are

linearly independent. Thus

βkm(v)βlj(v) = βlm(v)βkj(v) (3.109)

Let us pick one j0 for each 4-simplex, and ask l = j = j0 we obtain

βkm(v) =
βkj0(v)βmj0(v)

βj0j0(v)
. (3.110)

Therefore we have the factorization of βij(v)

βij(v) = sgn(βj0j0(v))βi(v)βj(v) (3.111)

where βj(v) = βjj0(v)
��

|βj0j0(v)|. We denote sgn(βj0j0(v)) = ε̃(v) which is a con-

stant within a 4-simplex σv. Thus we have the following expression of the bivector

εeiej
(v)Xeiej

(v)

εeiej
(v)Xeiej

(v) = ε̃(v)
�

βi(v)Nei
(v)
�

∧
�

βj(v)Nej
(v)
�

(3.112)

The Eq.(3.107) takes the form

5�

j=1

βj(v)Nej
(v) = 0. (3.113)

Now we construct the frame vectors Uei
(v) for a classical discrete geometry at each
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vertex v5:

U ei

I (v) := ±
βi(v)N ei

I (v)�
|V4(v)|

(3.114)

with

V4(v) := det
�

β2(v)N e2(v), β3(v)N e2(v), β4(v)N e2(v), β5(v)N e2(v)
�

(3.115)

where U I
ei

(v) are time-like 4-vectors by Eq.(3.56), and any four of the five frame vec-

tors Uei
(v) span a 4-dimensional vector space by the assumption of nondegeneracy.

Moreover the frame vectors satisfy the closure condition

5�

j=1

Uej
(v) = 0 (3.116)

and
1

V4(v)
= det

�
U e2(v), U e3(v), U e4(v), U e5(v)

�
(3.117)

and

εeiej
(v)X

eiej

IJ (v) = ε̃(v)|V4(v)|
�
Uei

(v) ∧ Uej
(v)
�

IJ
= ε(v)V4(v)

�
Uei

(v) ∧ Uej
(v)
�

IJ
.

(3.118)

where ε(v) = ε̃(v)sgn(V4(v)). We emphasize that these frame vectors Ue(v) are con-

structed from spin foam configuration (jf , gve, ξef , zvf ) that solves the critical point

equations. Note that the oriented 4-volume V4(v) in general can be either positive or

negative for different 4-simplices. However for a nondegenerate critical configuration

(jf , gve, ξef , zvf ), we can always make a subdivision of the triangulation, such that

sgn(V4(v)) is a constant within each sub-triangulation.

Fix an edge e1 at the vertex v, we construct the inverse of the nondegenerate matrix�
U e2(v), U e3(v), U e4(v), U e5(v)

�t

, denoted by EI
eie1

(v) such that

U ei

I (v)EI
eje1

(v) = δi
j i, j = 2, 3, 4, 5 (3.119)

Explicitly, for example

EI
e2e1

(v) = V4(v)ϵIJKLU e3
J (v)U e4

K (v)U e5
L (v) (3.120)

5We denote the dual vector N e
I by Ne and the vector N I

e by Ne, and the same convention holds
for Ue and Ue.
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Note that EI
eie1

(v) is determined only up to a sign from the data Ne(v) since Eq.(3.114).

However if we fix e2 instead of e1, and find the inverse of
�

U e1(v), U e3(v), U e4(v), U e5(v)
�t

,

denoted by EI
eie2

(v), then

U ei

I (v)EI
eje2

(v) = δi
j i, j = 1, 3, 4, 5 (3.121)

and

EI
e1e2

(v) = −V4(v)ϵIJKLU e3
J (v)U e4

K (v)U e5
L (v) (3.122)

where the minus sign comes from V4(v), because from the closure condition
�5

j=1 Uej
(v) =

0

det
�

U e2(v), U e3(v), U e4(v), U e5(v)
�

= − det
�

U e1(v), U e3(v), U e4(v), U e5(v)
�

.

(3.123)

Therefore we find

EI
e1e2

(v) = −EI
e2e1

(v). (3.124)

Then we can fix e3, e4, e5, and do the same manipulation as above, to obtain Eeiej
(v)

i, j = 1, · · · , 5 such that

U ei

I (v)EI
ejek

(v) = δi
j − δi

k and EI
eiej

(v) = −EI
ejei

(v) (3.125)

from which we can see that all EI
ejek

(v) are spatial vectors. One can also verify

immediately that

U ei

I (v)
�

EI
ejek

(v) + EI
ekel

(v) + EI
elej

(v)
�

= 0 ∀i = 1, · · · , 5 (3.126)

By the nondegeneracy of U ei

I (v), one has

EI
ejek

(v) + EI
ekel

(v) + EI
elej

(v) = 0 (3.127)

Comparing Eqs.(3.125) and (3.127) with Eq.(3.69), we see that the collection of Eee′(v)

at v is a co-frame at the vertex v. The bivector Xee′(v) can also be expressed by Eee′(v)

εe4e5(v)XIJ
e4e5

(v) = ε(v) ⋆

�
Ee1e2(v) ∧ Ee2e3(v)

�IJ

(3.128)

which will also be denoted by εef (v)XIJ
f (v) = ε(v) ⋆

�
Eℓ1(v) ∧ Eℓ2(v)

�IJ

.
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The above work are done essentially with in a single 4-simplex σv. Now we consider

two neighboring 4-simplices σv, σv′ while their center v, v′ are connected by the dual

edge e. Since we only consider two simplices, we introduce a short-hand notation:

U0 := Ue(v) U ′
0 := gvv′Ue(v

′) (3.129)

Ui := Uei
(v) U ′

i := gvv′Ue′

i
(v′) (3.130)

Eij := Eeiej
(v) E ′

ij := gvv′Ee′

i
e′

j
(v′) (3.131)

where i, j = 1, · · · , 4 labels the edges connecting to v or v′ other than e, Eij and E ′
ij are

orthogonal to U0 and U ′
0 respectively from Eq.(3.125). Here gvv′ = gvegev′ comes from

the spin foam configuration (jf , gve, ξef , zvf ) that solves the critical point equations.

From the closure condition of Ue(v) we have

U0 = −
�

i

Ui and U ′
0 = −

�

i

U ′
i (3.132)

By definition Ne(v) = gveu and Ne(v
′) = gv′eu where u = (1, 0, 0, 0)t, thus Ne(v) =

gvv′Ne(v
′) with e = (v, v′). Thus from the definition of Ue(v) in Eq.(3.114), we find

U ′
0

|U ′
0|

= ε̃
U0

|U0|
(3.133)

where ε̃ = ±. On the other hand, from the parallel transportation relation Xf (v) =

gvv′Xf (v′)gv′v and εef (v) = −εef (v′) for e = (v, v′), we have

ε0iX
0i
IJ = εV (U 0 ∧ U i)IJ = −ε′V ′(U ′0 ∧ U ′i)IJ (3.134)

where X0i is the bivector corresponds to the dual face f determined by e, ei, e′
i, the

sign factor ε0i = εef (v), the sign factors ε and ε′ are short-hand notations of ε(v) and

ε(v′) respectively, and

1

V
= det

�
U1, U2, U3, U4

�
− 1

V ′ = det
�
U ′1, U ′2, U ′3, U ′4

�
(3.135)

Here the minus sign for 1/V ′ is because the compatible orientations of σv and σv′ are

[p0, p1, p2, p3, p4] and −[p0, p1, p2, p3, p4]. Thus we should set ϵ01234(v) = −ϵ01234(v′) = 1.
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Eqs.(3.133) and (3.134) tell us that U 0
I is proportional to U ′0

I and U ′i
I is a linear

combination of U i
I and U0

I . Explicitly

U ′i
I = −εε′ε̃

|U0|V

|U ′
0|V ′ U

i
I + aiU

0
I (3.136)

where ai are the coefficients such that
�

i U ′
i = −U ′

0. Using this expression of U ′i, we

have

− 1

V ′ = det
�
U ′1, U ′2, U ′3, U ′4

�
= det

�
U ′0, U ′1, U ′2, U ′3

�

= ε̃
|U ′

0|

|U0|

�
−εε′ε̃

|U0|V

|U ′
0|V ′

�3

det
�
U0, U1, U2, U3

�

= −εε′
�

|U0|V

|U ′
0|V ′

�2
1

V ′ (3.137)

which results in ε = ε′. Therefore ε(v) = ε(v′) = ε is a global sign on the entire

triangulation. Now for the bivectors X0i(v) and X0i(v
′) (Xji(v) = X ij(v) and εij(v) =

−εji(v))

ε0i(v)X0i
IJ(v) = ε

1

2

�

m,n

εk0imn(v)ϵIJKLEK
mk(v)EL

nk(v) (3.138)

ε0i(v
′)X0i

IJ(v′) = ε
1

2

�

m,n

εk0imn(v′)ϵIJKLEK
mk(v′)EL

nk(v′) (3.139)

Since ε0i(v) = −ε0i(v
′) and εkijmn(v) = −εkijmn(v′), we can set ε0i(v)εk0imn(v) =

ε0i(v
′)εk0imn(v′) = ε0iε

k0imn. Therefore

ε0iX
0i
IJ(v) = ε

1

2

�

m,n

εk0imnϵIJKLEK
mk(v)EL

nk(v) (3.140)

ε0iX
0i
IJ(v′) = ε

1

2

�

m,n

εk0imnϵIJKLEK
mk(v′)EL

nk(v′) (3.141)

Given a triangle f , we can choose Eℓ1(v), Eℓ2(v) (e.g. ℓ1 = (pm, pk) and ℓ2 = (pn, pk)

with ε0i = 1 and εk0imn = 1) such that

XIJ
f (v) = ε ⋆

�
Eℓ1(v) ∧ Eℓ2(v)

�IJ

and XIJ
f (v′) = ε ⋆

�
Eℓ1(v′) ∧ Eℓ2(v′)

�IJ

(3.142)

On the other hand, Eq.(3.137) also implies that |U0|V = ±|U ′
0|V

′. Thus we define a
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sign factor µ := −ε̃|U0|V
�

|U ′
0|V

′ = ±1 such that from Eq.(3.136)

U ′i
I = µU i

I + aiU
0
I µ = −ε̃ sgn(V V ′) (3.143)

Therefore we obtain the relation between Eij and E ′
ij (using εjklm0(v′) = −εjklm0(v))

E ′I
jk = V ′εjklm(v′)ϵIJKL U ′l

J U ′m
K U ′0

L

= −ε̃
|U ′

0|

|U0|
µ2V ′εjklm(v)ϵIJKL U l

J Um
K U0

L

= µ3V εjklm(v)ϵIJKL U l
J Um

K U0
L

= µEI
jk (3.144)

which means that for all tetrahedron edge ℓ of the tetrahedron te dual to e = (v, v′),

the co-frame vectors Eℓ(v) and Eℓ(v
′) at neighboring vertices v and v′ are related by

parallel transportation up to a sign µe, i.e.

µeEℓ(v) = gvv′Eℓ(v
′) ∀ ℓ ⊂ te (3.145)

This relation shows that the vectors Eℓ(v) (constructed from spin foam critical point

configuration) satisfy the metricity condition Eq.(3.67). Therefore the collection of

co-frame vectors Eℓ(v) at different vertices consistently forms a discrete co-frame of

the whole triangulation. At the critical configuration, we define an SO(1,3) matrix

Ωvv′ relating gvv′ (in the Spin-1 representation) by the sign µe, i.e.

gvv′ = µeΩvv′ (3.146)

By Lemma 3.3.1 and Definition 3.3.2, the SO(1,3) matrix Ωvv′ is a discrete spin con-

nection compatible with the co-frame if sgn(V4(v)) = sgn(V4(v
′)).

If sgn(V4(v)) = sgn(V4(v
′)), µe = −ε̃ sgn(V4(v)V4(v

′)) = −ε̃. Thus from Eq.(3.133),

U ′
0

|U ′
0|

= −µe
U0

|U0|
(3.147)

the tetrahedron normal Ue(v)/|Ue(v)| is always opposite to ΩeUe(v
′)/|Ue(v

′)| when

sgn(V4(v)) = sgn(V4(v
′)).

Since in Spin-1 representation gvv ∈ SO+(1, 3) and Ω ∈ SO(1, 3), µe = −1 corre-

sponds the case that Ωvv′ ∈ SO−(1, 3). It means that in the case of µe = −1 if we
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choose the unit vectors Û(v), Û(v′) orthogonal to Eℓ(v), Eℓ(v) (ℓ ⊂ te) such that

sgn det
�
Eℓ1(v), Eℓ2(v), Eℓ3(v), Û(v)

�
= sgn det

�
Eℓ1(v′), Eℓ2(v′), Eℓ3(v′), Û(v′)

�

(3.148)

then one of Û(v), Û(v′) is future-pointing and the other is past-pointing.

3.4.2 Boundary data for spin foam critical configuration

Given a spin foam configuration (jf , gve, ξef , zvf ) that solves critical point equations.

The boundary data of the spin foam amplitude is given by the boundary spins and

the normalized spinors (jf , ξef ) for the boundary triangles f . Eq.(3.45) naturally

associates a bivector Xef to each pair (jf , ξef ) for each (e, f). From Eq.(3.2.2),

XIJ
ef = 2γjf [n̂ef ∧ u] (3.149)

The spatial 3-vectors jf n̂ef satisfy the critical point equation Eq.(3.39)

�

f

εefjf n̂ef = 0 (3.150)

where v is the vertex connecting to the edge e. We define V3(e) such that

det
�

εef2jf2n̂ef2 , εef3jf3n̂ef3 , εef4jf4n̂ef4

�
= sgn(V3(e)) |V3(e)|2 (3.151)

We rescale each vector εefjf n̂ef by

nef :=
εefγjf n̂ef

|V3(e)|
then

�

f

nef = 0 and det
�

nef2 , nef3 , nef4

�
=

1

V3(e)
. (3.152)

We assume the nondegeneracy of the boundary data, i.e. any three of the four

vectors nef span the 3-dimensional spatial subspace, in another word, the following

product of determinants is nonvanishing

4�

f1,f2,f3=1

det (nef1 , nef2 , nef3) ̸= 0. (3.153)

The nondegeneracy of the tetrahedron Eq.(3.153) is implied by the nondegeneracy

condition in the bulk Eq.(3.103). The reason is the following: By the parallel trans-

portation relation Xf (v) = gveXefgev and Xef = 2γjf n̂ef ∧ u, the bivector Xf (v) is



3.4 Geometric interpretation of nondegenerate critical configuration 49

then given by Xf (v) = Vef (v) ∧ Ne(v), where Ne(v) = gveu and Vef (v) := 2γjfgven̂ef

is orthogonal to Ne(v). For f the triangle shared by te and tei
(i = 1, · · · , 4), we know

that Xf (v) = αeie(v)Nei
(v) ∧ Ne(v). Therefore the vector Vef (v) is a linear combina-

tion of Nei
and Ne. The nondegeneracy condition Eq.(3.103) in 4-dimensions implies

the 4 unit vectors, say Ne and any 3 out of 4 vectors Nei
, are linear independent

and span a 4-dimensional vector space. Thus any 3 out of the 4 vectors Vef (v) must

be linear independent and span a 3-dimensional subspace orthogonal to Ne(v). Then

Eq.(3.153) is a result from parallel transporting Vef (v) back to the center of te.

We now denote nef ≡ np1(e), where the triangle f is determined by (p2, p3, p4). Now

we construct the spatial 3-vectors Ep1p2(e), such that the matrix
�

Ep2p1(e), Ep3p1(e), Ep4p1(e)
�

is the inverse of
�

np2(e), np3(e), np4(e)
�t

. Therefore we have

npi
(e) · Epjpk

(e) = δij − δik (3.154)

The 3-vectors Epipj
(e) are associated to the edges ℓ = (pi, pj) of the tetrahedron te, so

it can be denoted by Eℓ(e). Note that Eℓ(e) is determined up to an overall rescaling,

since the set of nef is defined up to an overall scaling α ∈ R. In the following we are

going to show that the vectors Eℓ(e) are co-frame vectors on the boundary.

First of all, Eqs.(3.88), (3.89) and (3.91) can be verified immediately from Eq.(3.154).

Since
�

Ep2p1(e), Ep3p1(e), Ep4p1(e)
�

is the inverse of
�

np2(e), np3(e), np4(e)
�t

, we have

det
�

Ep2p1(e), Ep3p1(e), Ep4p1(e)
�

= V3(e) (3.155)

we also have

εefγjf n̂pj
(e) = |V3(e)|npj

(e) = ε(e)V3(e)npj
(e) = ε(e)

1

2

�

k,l

εijklEpkpi
(e) × Eplpi

(e)

(3.156)

where we have define a sign factor ε(e) = sgn(V3(e)). Equivalently for the bivector

Xef , there exists Eℓ1(e), Eℓ2(e) such that

XIJ
ef = 2γjf [n̂ef ∧ u]IJ = ε(e) ⋆

�
Eℓ1(e) ∧ Eℓ2(e)

�IJ

. (3.157)

Consider a internal vertex v which connected by the edge e, we introduce the
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short-hand notation:

Eij := Epipj
(e) E ′

ij := gevEpipj
(v) ε(e) := ε′ n̂j := n̂pj

(e) (3.158)

Since Xf (v) = gveXefgev, for each triangle determined by (pi, pj, pk)

ε′ 1

2

�

k,l

εijkl ⋆ Eki ∧ Eli = ε
1

2

�

k,l

εijkl ⋆ E ′
ki ∧ E ′

li = 2εefγjf [n̂j ∧ u] (3.159)

We also have Ne(v) = gveu. So E ′
ij is orthogonal to uI = (1, 0, 0, 0) since Eℓ(v) (ℓ ⊂ te)

orthogonal to Ne(v). Thus

ε′V nj = 2εefγjf n̂j = ε
1

2

�

k,l

εijklE
′
ki × E ′

li (3.160)

which implies that the 3 × 3 matrix given by E ′
ki (with i fixed) is the inverse of the

matrix given by nj, j ̸= i, up to an overall constant, i.e.

ni · E ′
jk = εε′ V

′
3

V3

(δij − δik) (3.161)

we have used the short-hand notation

V3 = V3(e) = det
�

E21(e), E31(e), E41(e)
�

(3.162)

V ′
3 = V ′

3(e) = det
�

E ′
21(e), E ′

31(e), E ′
41(e)

�
(3.163)

Comparing Eq.(3.161) and Eq.(3.154) we determine that Ejk is proportional to E ′
jk:

E ′
jk = εε′ V

′
3

V3

Ejk. (3.164)

since the matrix given by ni has unique inverse. Insert this relation back into Eq.(3.159),

we obtain that

ε

�
V ′

3

V3

�2

= ε′ (3.165)

which tell us that

ε′ = ε and

�����
V ′

3

V3

����� = 1 (3.166)
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As a result we find the relations

XIJ
ef = ε ⋆

�
Eℓ1(e) ∧ Eℓ2(e)

�IJ

and µeEℓ(e) = gevEℓ(v) ∀ ℓ ⊂ te (3.167)

where ε = ±1 is the global sign factor of the whole triangulation, and µe = sgn(V3)sgn(V ′
3) =

±1. From the second relation above, we obtain the metricity condition Eq.(3.91).

Therefore we confirm that Eℓ(e) is a boundary co-frame constructed from spin foam

critical configuration. The group element gev equals to the spin connection Ωev up to

a sign, i.e.

gev = µeΩev. (3.168)

Since ε is a global sign of the entire triangulation and ε = sgn(V3(e)) on the

boundary, then prior to the construction, one has to choose a consistent orientation

of the boundary triangulation such that sgn(V3(e)) = sgn(V3(e
′)) for each pair of

tetrahedra te, te′ .

By the following relations (we choose the orientation of the 4-simplex σv = [p0, p1, p2, p3, p4]):

V3 = ϵIJKEI
21E

J
31E

K
41 V ′

3 = ϵIJKE ′I
21E

′J
31E

′K
41 (gevU0)I =

−1

V4

ϵIJKLE ′I
21E

′J
31E

′K
41

(3.169)

we obtain that

V ′
3 = −V4U

0
I (gveu)I = −V4U

0
I N I

0 , where u = (1, 0, 0, 0)t (3.170)

Then for an edge e connecting to the boundary

µe = −ε sgn(V4(v))sgn(U 0
I (v)N I

0 (v)) (3.171)

which implies that if we choose ε = sgn(V3(e)) = +1 globally on the boundary, and

if V4(v) > 0, µe = +1 when U0(v) is future-pointing and µe = −1 when U0(v) is

past-pointing, while N0(v) = gveu is always future-pointing.

Lemma 3.4.1. Given f either an internal face or a boundary face, the product
�

e⊂∂f µe doesn’t change when Ue(v) flips sign for any 4-simplex σv, recall that the five

normals Ue(v) at σv are defined up to a overall sign. Therefore the product
�

e⊂∂f µe

is determined by the spin foam critical configuration.
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Proof: For a internal edge e = (v, v′), we have

µe = −ε̃esgn
�

V4(v)V4(v
′)
�

= sgn
�

U I
e (v)(gvv′Ue)

I(v′)
�

sgn
�

V4(v)V4(v
′)
�

(3.172)

where we recall that ε̃eUe(v)/|Ue(v)| = gvv′Ue(v
′)/|Ue(v

′)|. Combine with Eq.(3.171),

it is easy to see that if we flip simultaneously the sign of all the five Ue(v) at any

σv (v ∈ ∂f), the product
�

e⊂∂f µe doesn’t change, for f either an internal face or a

boundary face. □

We recall FIG.3.1, where the triangle fl is shared by two boundary tetrahedra

te0 , te1 . Because of Eq.(3.167), we parallel transport three co-frame vectors Eℓ(e0)

corresponding to the three edges of the triangle fl,

(
�

e

µe)Eℓ(e1) = Gfl
(e1, e0)Eℓ(e0) ∀ ℓ ⊂ fl (3.173)

where Gfl
(e1, e0) :=

←−�
ege is a product of the edge holonomy ge over all the internal

edges e of the dual face fl. Therefore the triangle formed by the three Eℓ(e0) (ℓ ⊂ fl)

matches in shape with the triangle formed by Eℓ(e1) (ℓ ⊂ fl). Since both Eℓ(e0) and

Eℓ(e1) are orthogonal to the unit time-like vector u = (1, 0, 0, 0). There exists an O(3)

matrix ĝl such that

ĝlEℓ(e0) = Eℓ(e1) and ĝln̂e0fl
= n̂e1fl

(3.174)

These relations give the restrictions of the boundary data for the spin foam ampli-

tude. We call the boundary condition given by Eq.(3.174) the (nondegenerate) Regge

boundary condition. The above analysis shows that the spin foam boundary data must

satisfy the Regge boundary condition in order to have nondegenerate solutions of the

critical point equations Eqs.(3.37), (3.38), (3.39).

3.4.3 Reconstruction theorem

Now we summarize the reconstruction results in this section as a theorem:

Theorem 3.4.2. (Construction of Classical Geometry from Spin Foam Critical Con-

figuration)

• Given the data (jf , gev, ξef , zvf ) be a nondegenerate spin foam configuration that

solves the critical point equations Eqs.(3.37), (3.38), and (3.39), there exists
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a discrete classical Lorentzian geometry on M, represented by a set of spatial

co-frame vectors Eℓ(v) satisfying Eqs.(3.65), (3.66) and (3.67) in the bulk, and

Eℓ(e) satisfying Eqs.(3.88), (3.89), (3.90) and (3.91) on the boundary, such that

the bivectors Xf (v) and Xef in Proposition 3.2.1 is written by

XIJ
f (v) = ε ⋆

�
Eℓ1(v) ∧ Eℓ2(v)

�IJ

, XIJ
ef = ε ⋆

�
Eℓ1(e) ∧ Eℓ2(e)

�IJ

(3.175)

where ℓ1, ℓ2 are edges of the triangle f . The above equation is a relation between

the spin foam data Xf (v), Xef and a classical geometric data Eℓ(v). Such a

relation is determined up to a global sign ε on the whole triangulation. Moreover

the above co-frame is unique up to inversion Eℓ �→ −Eℓ at each v or te. With the

co-frame vectors Eℓ(v), Eℓ(e), we can construct a discrete metric gℓ1ℓ2(v), gℓ1ℓ2(e)

in the bulk and on the boundary

gℓ1ℓ2(v) = ηIJEI
ℓ1

(v)EJ
ℓ2

(v) gℓ1ℓ2(e) = ηIJEI
ℓ1

(e)EJ
ℓ2

(e). (3.176)

• The norm of the bivector |Xf (v)| = |Eℓ1(v) ∧ Eℓ2(v)| = 2γjf . Thus γjf is un-

derstood as the area of the triangle f 6.

• If the triangulation has boundary, one has to choose a consistent orientation of

the boundary triangulation such that sgn(V3(e)) = sgn(V3(e
′)) for each pair of

tetrahedra te, te′ (recall Eq.(3.151)). Then the global sign ε is specified by the

orientation of the boundary, i.e. ε = sgn(V3(e)).

• Equivalently the bivectors in the bulk can be expressed by the frame Ue(v) asso-

ciated with Eℓ(v)

XIJ
f (v) = ε V4(v)

�
Ue(v) ∧ Ue′(v)

�IJ

(3.177)

where e, e′ are the dual edges of the dual face f , and V4(v)−1 is the determinant

of the matrix defined by the frame co-vectors U ei

I (v), i = 2, 3, 4, 5, i.e.

1

V4(v)
= det

�
U e2(v), U e3(v), U e4(v), U e5(v)

�
. (3.178)

6|E1 ∧ E2|2 = 1
2 (EI

1EJ
2 −EJ

1 EI
2 )(E1

I E2
J −E1

JE2
I ) = |E1|2|E2|2(1−cos2 θ) = (2Af )2 where E1 ·E2 =

|E1||E2| cos θ. |E1 ∧ E2| corresponds to the area of a parallelogram (two times the area of the triangle)
determined by E1 and E2.
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For the bivector on the boundary, from Eq.(3.2.2)

XIJ
ef = 2γj [n̂ef ∧ u]IJ (3.179)

where u = (1, 0, 0, 0) and jn̂ef is the oriented area of the boundary triangle.

• Given a dual edge e, for all tetrahedron edge ℓ of the tetrahedron te dual to e =

(v, v′), the associated co-frame vectors Eℓ(v) and Eℓ(v
′) at neighboring vertices

v and v′ are related by parallel transportation up to a sign µe, i.e.

µeEℓ(v) = gvv′Eℓ(v
′) ∀ ℓ ⊂ te (3.180)

If the dual edge e connects the boundary, we have similarly

µeEℓ(v) = gveEℓ(e) ∀ ℓ ⊂ te. (3.181)

We define the SO(1,3) matrices Ωvv′ , Ωve by

Ωvv′ = µegvv′ Ωve = µegve. (3.182)

The simplicial complex K can be subdivided into sub-complexes K1, · · · , Kn such

that (1) each Ki is a simplicial complex with boundary, (2) within each sub-

complex Ki, sgn(V4(v)) is a constant. Then within each sub-complex Ki, the

SO(1,3) matrices Ωvv′ , Ωve are the discrete spin connection compatible with the

co-frame Eℓ(v) and Eℓ(v
′).

• Given the boundary triangles f and boundary tetrahedra te, in order to have

nondegenerate solutions of the critical point equations Eqs.(3.37), (3.38), (3.39),

the spin foam boundary data (jf , ξef ) must satisfy the (nondegenerate) Regge

boundary condition: (1) For each boundary tetrahedron te and its triangles f ,

(jf , ξef ) determines 4 triangle normals n̂ef that spans a 3-dimensional spatial

subspace. (2) Given the tetrahedra te0 , te1 sharing the triangle f , the triangle

normals n̂e0f and n̂e1f are related by an O(3) matrix gl (l the link dual to f on

the boundary)

ĝln̂e0f = n̂e1f . (3.183)

(3) The boundary triangulation is consistently oriented such that the orientation

sgn(V3(e)) (recall Eq.(3.151)) is a constant on the boundary. If the Regge bound-
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ary condition is satisfied, there are nondegenerate solutions of the critical point

equations, and the solutions implies the shape-matching of the triangle f shared

by the tetrahedra te0 and te1. If the Regge boundary condition is not satisfied,

there is no nondegenerate critical configuration.

3.5 Spin foam amplitude at nondegenerate critical

configuration

Given a nondegenerate critical configuration (jf , gev, ξef , zvf ), the previous discussions

show us that we can construct a discrete classical geometry from the critical configura-

tion. Moreover we can make a subdivision of the triangulation into sub-triangulations

K1, · · · , Kn, such that (1) each Ki is a simplicial complex with boundary, (2) within

each sub-complex Ki, sgn(V4(v)) is a constant. To study the spin foam (partial-

)amplitude Aj(K) at a nondegenerate critical configuration, we only need to study the

amplitude Aj(Ki) on the sub-triangulation Ki where sgn(V4(v)) is a constant. Then

the behavior of Aj(K) can be expressed as a product

Aj(K)
����
critical

=
�

i

Aj(Ki)
����
critical

(3.184)

Therefore in the following analysis of this section we always assume the triangulation

has a boundary and sgn(V4) is a constant on the triangulation.

3.5.1 Internal faces

We have shown previously that the action S of the spin foam amplitude can be written

as a sum S =
�

f Sf . We first consider the internal faces whose edges are not contained

in the boundary of the triangulation. Each internal “face action” Sf evaluated at the

critical point defined by Eqs.(3.37), (3.38), and (3.39) takes the form

Sf = 2iγjf

�

v∈∂f

ln
||Zve′f ||

||Zvef ||
− 2ijf

�

v∈∂f

ϕeve′ = −2ijf


γ

�

v∈∂f

θeve′ +
�

v∈∂f

ϕeve′


 (3.185)

where we have denoted
||Zvef ||

||Zve′f ||
:= eθeve′ (3.186)
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Recall Eqs.(3.37) and (3.38), and consider the following successive actions on ξef of

ge′vgve around the entire boundary of the face f

←−−�
v∈∂f

ge′vgveJξef = e−
�

v
θeve′ −i

�
v

ϕeve′ Jξef (3.187)

←−−�
v∈∂f

ge′vgveξef = e
�

v
θeve′ +i

�
v

ϕeve′ ξef (3.188)

Thus ξef is a eign-vector of the loop holonomy
←−�

v∈∂fge′vgve. Since ξef , Jξef are nor-

malized spinors and ⟨Jξef , ξef⟩ = 0, thus we represent them by

ξef =


 1

0


 and Jξef =


 0

1


 (3.189)

We express this loop holonomy by an arbitrary SL(2,C) matrix

Gf (e) :=
←−−�
v∈∂f

ge′vgve =


 a b

c d


 (3.190)

Thus the eigenvalue equations for arbitrary complex number α


 a b

c d




 1

0


 = eα


 1

0


 and


 a b

c d




 0

1


 = e−α


 0

1


 (3.191)

implies that 
 a b

c d


 =


 eα 0

0 e−α


 = eασ⃗·ẑ (3.192)

By rotating ẑ to the unit 3-vector n̂ef , we obtain a representation-independent expres-

sion of the loop holonomy Gf (e)

Gf (e) = exp


�

v∈∂f

(θeve′ + iϕeve′) σ⃗ · n̂ef


 . (3.193)

which is an exponential map from Lie algebra variable7.

7Note that not all the elements in SL(2,C) can be written in an exponential form, because of the
noncompactness.
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Consider the following identity: for any complex number α and unit vector n̂,

Tr
�
1

2
(1 + σ⃗ · n̂) eασ⃗·n̂

�
= eα (3.194)

which can be proved by the identities of Pauli matrices: (σ⃗·n̂)2k = 12×2 and (σ⃗·n̂)2k+1 =

σ⃗ · n̂. Using this identity, we have

ln Tr
�
1

2
(1 + σ⃗ · n̂ef ) Gf (e)

�
=
�

v∈∂f

θeve′ + i
�

v∈∂f

ϕeve′ (3.195)

ln Tr
�
1

2
(1 + σ⃗ · n̂ef ) G†

f (e)
�

=
�

v∈∂f

θeve′ − i
�

v∈∂f

ϕeve′ (3.196)

where we use the fact that σ⃗ are Hermitian matrices. Insert these into the expression

of the face action Sf

Sf = −(iγ + 1)jf ln Tr
�
1

2
(1 + σ⃗ · n̂ef ) Gf (e)

�

−(iγ − 1)jf ln Tr
�
1

2
(1 + σ⃗ · n̂ef ) G†

f (e)
�

(3.197)

We define the following variables by making a parallel transport to a vertex v

X̂f (v) := gveσ⃗ · n̂efgev, X̂†
f (v) := g†

evσ⃗ · n̂efg†
ve (3.198)

Gf (v) := gveGf (e)gev, G†
f (v) := g†

evGf (e)g†
ve (3.199)

where one can see that X̂f (v) is related to the bivector in Proposition 3.2.1 by X̂f (v) =

Xf (v)/γjf . In terms of these new variables at the vertex v, the face action is written

as

Sf = −(iγ + 1)jf ln Tr
�
1

2

�
1 + X̂f (v)

�
Gf (e)

�

−(iγ − 1)jf ln Tr
�
1

2

�
1 + X̂†

f (v)
�

G†
f (e)

�
(3.200)

According to Theorem 3.4.2, at the critical point, the bivector X̂f (v) is written as

X̂f (v) = 2ε
⋆Eℓ1(v) ∧ Eℓ2(v)

| ⋆ Eℓ1(v) ∧ Eℓ2(v)|
(3.201)
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and the spin foam edge holonomy gvv′ equals to the spin connection Ωvv′ up to a sign

µe = eiπne , i.e.

gvv′ = eiπneΩvv′ . (3.202)

The spin foam loop holonomy (in its Spin-1 representation) at the critical point

satisfies

Gf (v)Eℓ(v) = eiπ
�

e⊂f
neEℓ(v) = cos

�
π
�

e⊂f

ne

�
Eℓ(v) (3.203)

We pick out a Eℓ(v) as one of the edge of the triangle dual to f and construct Eℓ′(v)

as a linear combination of the edge vectors Eℓ1(v), Eℓ2(v) and orthogonal to Eℓ(v). We

normalize Eℓ(v), Eℓ′(v) and represented them by

Êℓ(v) =




0

0

1

0




and Êℓ′(v) =




0

0

0

1




(3.204)

We have shown that the loop holonomy Gf (v) can be written as an exponential form,

i.e. Gf (v) = eYf (v). If we represent Yf (v) by a 4 × 4 matrix, from Eq.(3.203), Yf (v)

must be given by

Yf (v) =




D11 D12 0 0

D21 D22 0 0

0 0 0 −π
�

e ne

0 0 π
�

e ne 0




(3.205)

where Dij is a pure boost leaving the 2-plane spaned by Eℓ(v), Eℓ′(v) invariant. Then

the spin-1 representation of the loop holonomy Gf (v) can be expressed as

Gf (v) = eε 1
2

ϑf X̂f (v)+ 1
2

π
�

e⊂f
ne⋆X̂f (v) (3.206)

where ϑf is an arbitrary number. Since the duality map ⋆ = i in the spin- 1
2

represen-

tation, thus

Gf (v) = eε 1
2

ϑf X̂f (v)+i 1
2

π
�

e⊂f
neX̂f (v) (3.207)

in the spin-1
2

representation, where Gf (v) ∈ SL(2,C).

We now determine the physical meaning of the parameter ϑf . sgn(V4(v)) is a

constant on the triangulation for the oriented 4-volumes of the 4-simplices. By the
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relation between spin foam variable gvv′ and the spin connection: gvv′ = µeΩvv′ , we

have for the spin connection

Ωf (v) = eiπ
�

e
neGf (v)

= eiπ
�

e
nee

⋆Eℓ1
(v)∧Eℓ2

(v)

|⋆Eℓ1
(v)∧Eℓ2

(v)|
ϑf +

Eℓ1
(v)∧Eℓ2

(v)

|Eℓ1
(v)∧Eℓ2

(v)|
π
�

e
ne ∈ SO(1, 3) (3.208)

We consider a discretization of classical Einstein-Hilbert action
�

R
√−gd4x: For each

dual face f

Tr

��

∆f

sgn det(eI
µ) ⋆ [e ∧ e]

�

f
R

�
≃ sgn(V4)

1

2
Tr
�
⋆

�
Eℓ1(v) ∧ Eℓ2(v)

�
ln Ω

boost
f (v)

�

= sgn(V4)Afϑf (3.209)

This formula should be understood by ignoring the higher order correction in the

continuum limit. Here we use ∆f to denote the triangle dual to f . eI
µ is a co-

tetrad in the continuum. R is the local curvature from the sl2C-valued local spin

connection compatible with eI
µ. Only the pure boost part Ωboost

f (v) = e
⋆Eℓ1

(v)∧Eℓ2
(v)

|⋆Eℓ1
(v)∧Eℓ2

(v)|
ϑf

of the spin connection Ωf (v) contributes the curvature R in the discrete context.

When eiπ
�

e
ne = −1, the factor eiπ

�
e

nee
Eℓ1

(v)∧Eℓ2
(v)

|Eℓ1
(v)∧Eℓ2

(v)|
π
�

e
ne

flips the overall sign of the

reference frame at v and rotates π on the 2-plane spanned by Eℓ1(v), Eℓ2(v). It serves

for the case that the time-orientation of the reference frame is flipped by Ωf , while

the triangle spanned by Eℓ1(v), Eℓ2(v) is kept unchange. Such an operation doesn’t

change the quantity8

Tr

��

∆f

sgn det(eI
µ) ⋆ [e ∧ e]

�

f
R

�
(3.210)

Af = 1
2
| ⋆ Eℓ1(v) ∧ Eℓ2(v)| is the area of the triangle dual to f . Compare Eq.(3.209)

with the Regge action of discrete GR, we identify that sgn(V4)ϑf is the deficit angle

Θf of f responsible to the curvature R from the spin connection.

Θf = sgn(V4)ϑf (3.211)

where we keep in mind that sgn(V4) is a constant sign on the (sub-)triangulation.

8
Ωf (v) ∈ SO−(1, 3) comes from an oriented but time-unoriented orthonormal frame boundle,

where the co-tetrad eI
µ can flip sign. However, the local spin connection Γ

IJ
α

= eI
µ∇αeµJ doesn’t

change as eI
µ �→ −eI

µ and coincides with the spin connection on the oriented and time-oriented
orthonormal frame bundle. The same holds also for the curvature R from the spin connection.
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Insert the expression of Gf (v) into Eq.(3.200), we obtain for a internal face f

Sf = −i ε sgn(V4) γjfΘf − iπjf

�

e⊂f

ne (3.212)

where we have used again the relations of Pauli matrices (σ⃗ · n̂)2k = 12×2 and (σ⃗ ·

n̂)2k+1 = σ⃗ · n̂, as well as the following relation

Tr
�
X̂f (v) · · · X̂f (v)

�
= Tr

�
gveσ⃗ · n̂efgev · · · gveσ⃗ · n̂efgev

�
= Tr

�
σ⃗ · n̂ef · · · σ⃗ · n̂ef

�
.

(3.213)

Finally we sum over all the internal faces and construct the total internal action

Sint =
�

f internal Sf

Sinternal = −i ε sgn(V4)
�

f internal

γjfΘf − iπ
�

f internal

jf

�

e∈∂f

ne. (3.214)

where γjf is understood as the area of the triangle f , and
�

f γjfΘf is the Regge

action for discrete GR.

3.5.2 Boundary faces

Let’s consider a face f dual to a boundary triangle (see FIG.3.1). The corresponding

face action Sf reads

Sf = 2iγjf

�

v

ln
||Zve′f ||

||Zvef ||
− 2ijf

�

v

ϕeve′ = −2ijf

�
γ
�

v

θeve′ +
�

v

ϕeve′

�
(3.215)

where the sum is over all the internal verices v around the face f , and we have also

used the notation ||Zvef ||/||Zve′f || := eθeve′ .

On the boundary of the face f , there are at least two edges connecting to the

nodes on the boundary of the triangulation. We suppose there is an edge e0 of the

face f connecting a boundary node, associated with a boundary spinor ξe0f . Recall

Eqs.(3.37) and (3.38), and consider the following successive action on ξe0f of ge′vgve

along the boundary of the face f , until reaching another edge e1 connecting to another

boundary node. We denote by pe1e0 the path from e0 to e1

ge1v′gv′e′ · · · gevgve0Jξe0f = Jξe1f exp


−

�

v∈pe1e0

θeve′ − i
�

v∈pe1e0

ϕeve′






3.5 Spin foam amplitude at nondegenerate critical configuration 61

ge1v′gv′e′ · · · gevgve0ξe0f = ξe1f exp


 �

v∈pe1e0

θeve′ + i
�

v∈pe1e0

ϕeve′


 (3.216)

We denote the holonomy along the path pe1e0 by

Gf (e1, e0) := ge1v′gv′e′ · · · gevgve0 (3.217)

and construct a SU(2) matrix from the normalized spinor ξ by

g(ξ) = (ξ, Jξ) ∈ SU(2) (3.218)

If we denote by

α =
�

v∈pe1e0

θeve′ + i
�

v∈pe1e0

ϕeve′ (3.219)

Eq.(3.216) can be expressed as a matrix equation

Gf (e1, e0) g(ξe0f ) = g(ξe1f )


 eα 0

0 e−α


 (3.220)

Therefore Gf (e1, e0) can be solved immediately

Gf (e1, e0) = g(ξe1f ) e
�

v
(θeve′ +iϕeve′ )σ⃗·ẑ g(ξe0f )−1 (3.221)

We again employ the identity Eq.(3.194) to obtain

ln Tr
�
1

2
(1 + σ⃗ · ẑ) g(ξe1f )−1Gf (e1, e0)g(ξe0f )

�
=
�

v

(θeve′ + iϕeve′)

ln Tr
�
1

2
(1 + σ⃗ · ẑ) g(ξe0f )−1G†

f (e1, e0)g(ξe1f )
�

=
�

v

(θeve′ − iϕeve′) (3.222)

Insert these relations into the face action Sf

Sf = −(iγ + 1)jf ln Tr
�
1

2
(1 + σ⃗ · ẑ) g(ξe1f )−1Gf (e1, e0)g(ξe0f )

�

−(iγ − 1)jf ln Tr
�
1

2
(1 + σ⃗ · ẑ) g(ξe0f )−1G†

f (e1, e0)g(ξe1f )
�

(3.223)

Recall that at the critical configuration Gf (e1, e0) coincides with the spin connection

Ωf (e1, e0) up to a sign. Given the co-frame vectors Eℓ(e0) and Eℓ(e1) with ℓ the edges
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of the triangle f .

(
�

e

µe)Eℓ(e1) = Gf (e1, e0)Eℓ(e0) ∀ ℓ ⊂ f (3.224)

Gf (e1, e0) = (
�

e

µe)Ωf (e1, e0) (3.225)

where the product
�

e is over all the edges along the path pe1e0 .

Here we are going to give an explicit expression for Gf (e1, e0) from Eq.(3.225). We

first define three new vectors Ẽℓ(ei) for the three ℓ’s of the triangle f

Ẽℓ(ei) = ĝ(ξeif )−1Eℓ(ei) i = 0, 1 (3.226)

where ĝ(ξeif ) is the spin-1 representation of g(ξeif ) ∈ SU(2). Thus

ĝ(ξe1f )−1Gf (e1, e0)ĝ(ξe0f )Ẽℓ(e0) = (
�

e

µe)Ẽℓ(e1) (3.227)

The co-frame vectors Eℓ(e) of a triangle f is orthogonal to n̂ef , which is given by

n̂ef = ĝ(ξef )ẑ. Thus the triangles formed by Ẽℓ(ei) (i = 0, 1) are both on the 2-plane

(the xy-plane) orthogonal to u = (1, 0, 0, 0) and ẑ = (0, 0, 0, 1), then they are related

by a rotation eζf J3 on the xy-plane

Ẽℓ(e1) = eζf J3Ẽℓ(e0) ∀ ℓ ⊂ f. (3.228)

Therefore ĝ(ξe1f )−1Gf (e1, e0)ĝ(ξe0f ) is the above rotation plus a pure boost along the

z-direction and a rotation taking care the sign factor
�

e µe, both of which leaves the

vector on xy-plane invariant. Hence

Gf (e1, e0) = ĝ(ξe1f )eϑB
f

K3eπ
�

e
neJ3eζf J3 ĝ(ξe0f )−1 (3.229)

where ϑB
f is an arbitrary number. The rotation eζf J3 corresponds to a gauge transfor-

mation in the context of twisted geometry [12, 13]. Here we can always absorb eζf J3

into one of ĝ(ξeif ), which leads to a redefinition of the boundary data ξeif . Such a

redefinition doesn’t change the triangle normal n̂ef thus doesn’t change the bivector

Xef . Then all the above analysis about constructing discrete geometry is unaffected.

The boundary data after this redefinition is the Regge boundary data employed in
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[66, 74]. With this setting, we obtain

Gf (e1, e0) = ĝ(ξe1f )eϑB
f

K3eπ
�

e
neJ3 ĝ(ξe0f )−1. (3.230)

for an explicit expression of Gf (e1, e0), and

Ẽℓ(e0) = Ẽℓ(e1) = Ẽℓ (3.231)

for the edges of triangle ℓ. The three vectors Ẽℓ determines the triangle geometry of

f in the frame at f . From Eq.(3.225), we obtain the spin connection compatible with

the co-frame

Ωf (e1, e0) = eiπ
�

e
ne ĝ(ξe1f )eϑB

f
K3eπ

�
e

neJ3 ĝ(ξe0f )−1. (3.232)

When eiπ
�

e
ne = 1, the spin connection Ωf (e1, e0) ∈ SO+(1, 3), and when eiπ

�
e

ne =

−1, Ωf (e1, e0) ∈ SO−(1, 3).

We now determine the physical meaning of the parameter ϑB
f in the expression of

Gf (e1, e0). It is related to the dihedral angle ΘB
f of the two boundary tetrahedra te0 , te1

at the triangle f sheared by them. The two tetrahedra te0 , te1 belongs to different 4-

simplicies σv0 , σv1 , while the curvature from spin connection between σv0 , σv1 are given

by the pure boost part of Ωf (v1, v0) along the internal edges of the face f . This

curvature is responsible to the dihedral angle between te0 , te1 . The dihedral boost

between the normals of te0 , te1 at the triangle f is given by the pure boost part of

ĝ(ξe1f )−1
Ωf (e1, e0)ĝ(ξe0f ) = eiπ

�
e

neeϑB
f

K3eπ
�

e
neJ3 (3.233)

The above transformation leaves the triangle geometry Ẽℓ invariant in both case of

eiπ
�

e
ne = ±1. We consider the unit normal of the tetrahedron te0 (viewed in its own

frame) uI = (1, 0, 0, 0)t, parallel transported by Gf (e1, e0) (from the frame of te0 to

the frame of te1)

Gf (e1, e0)
I
JuJ = eϑB

f
K3u = (cosh ϑB

f , 0, 0, sinh ϑB
f )t (3.234)

Contract this equation with the unit normal uI = (1, 0, 0, 0)t viewed in the frame of

te1 , we obtain that for the dihedral angle ΘB
f

cosh Θ
B
f = −uIGf (e1, e0)

I
JuJ = cosh ϑB

f (3.235)
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which implies that ΘB
f = ±ϑB

f . By a generalization of the analysis in [66, 74], we can

conclude that

Lemma 3.5.1. The dihedral angle ΘB
f at the triangle f relates to the parameter ϑB

f

by

Θ
B
f = ε sgn(V4)ϑ

B
f (3.236)

Proof: In the tetrahedra te0 and te1 , both pairs of the vectors Eℓ1(e0), Eℓ2(e0) and

Eℓ1(e1), Eℓ2(e1) are orthogonal to u = (1, 0, 0, 0)t. Thus at the vertex v, both Eℓ1(v)

and Eℓ2(v) are orthogonal to

Fe0(v) = Gf (v, e0) ▷ u Fe1(v) = Gf (v, e1) ▷ u (3.237)

Thus both Fe0(v) and Fe1(v) are future-pointing since Gf (v, e) ∈ SL(2,C). Eq.(3.235)

implies that ���ηIJF I
e0

(v)F J
e1

(v)
��� = cosh Θ

B
f . (3.238)

We define a dihedral boost from the dihedral angle ΘB
f by

D(e1, e0) = exp

�
|ΘB

f |
Fe0(v) ∧ Fe1(v)

|Fe0(v) ∧ Fe1(v)|

�

= exp

�
Θ

B
f

Ue(v) ∧ Ue′(v)

|Ue(v) ∧ Ue′(v)|

�
(3.239)

where we have chosen the sign of the dihedral angle such that

If
Fe1(v) ∧ Fe0(v)

|Fe1(v) ∧ Fe0(v)|
=

Ue(v) ∧ Ue′(v)

|Ue(v) ∧ Ue′(v)|
: |ΘB

f | = −Θ
B
f

If
Fe1(v) ∧ Fe0(v)

|Fe1(v) ∧ Fe0(v)|
= − Ue(v) ∧ Ue′(v)

|Ue(v) ∧ Ue′(v)|
: |ΘB

f | = Θ
B
f (3.240)

with V4(v)Ue(v) ∧ Ue′(v) = Gf (v, e0) ▷ ⋆Eℓ1(e0) ∧ Eℓ2(e0).

On the other hand, the boost generator K3 can be related to the bivector XIJ
ef =

2γjf (n̂ef ∧ u)IJ

K3 = −ẑ ∧u = −g(ξef )−1 ⊗g(ξef )−1(n̂ef ∧u) = −g(ξef )−1 ⊗g(ξef )−1 1

2γj
Xef (3.241)

At the critical configuration the bivector Xef is given by Eq.(3.175), which results in
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that

K3 = −εg(ξef )−1 ⊗ g(ξef )−1 ⋆Eℓ1(e) ∧ Eℓ2(e)

|Eℓ1(e) ∧ Eℓ2(e)|
= −ε

⋆Ẽℓ1 ∧ Ẽℓ2

|Ẽℓ1 ∧ Ẽℓ2|
(3.242)

where
⋆Ẽℓ1

∧Ẽℓ2

|Ẽℓ1
∧Ẽℓ2

|
is the (unit) bivector corresponding to the triangule f . Therefore for

the bivector at the vertex v

Ue(v) ∧ Ue′(v)

|Ue(v) ∧ Ue′(v)|
= sgn(V4)Gf (v, e0) ▷

⋆Eℓ1(e0) ∧ Eℓ2(e0)

|Eℓ1(e0) ∧ Eℓ2(e0)|

= −sgn(V4) ε Gf (v, e0)g(ξe0f )K3g(ξe0f )−1Gf (v, e0)
−1 (3.243)

Then we obtain the following expression of D(e1, e0):

D(e1, e0) = Gf (v, e0)g(ξe0f )e−ε sgn(V4)ΘB
f

K3g(ξe0f )−1Gf (v, e0)
−1. (3.244)

One can check that D(e1, e0) gives a dihedral boost from Fe0(v) to Fe1(v), i.e.

D(e1, e0)Fe0(v) = Fe1(v) (3.245)

If we represent the vector Fe(v) by the 2 × 2 matrix Fe = F I
e σI , we have Fe(v) =

Gf (v, e)Gf (v, e)†, Eq.(3.245) can be expressed as

D(e1, e0)Gf (v, e0)Gf (v, e0)
†D(e1, e0)

† = Gf (v, e1)Gf (v, e1)
† (3.246)

By using Eq.(3.244), we obtain that (J †
3 = −J3)

Gf (v, e0)g(ξe0f )e−2ε sgn(V4)ΘB
f

K3g(ξe0f )†Gf (v, e0)
† = Gf (v, e1)Gf (v, e1)

† (3.247)

From the expression Eq.(3.230) of Gf (e1, e0) = Gf (v, e1)
−1Gf (v, e0) in terms of ϑB

f ,

we obtain

Gf (e0, e1)Gf (e0, e1)
† = ĝ(ξe0f )e−2ϑB

f
K3 ĝ(ξe0f )−1 (3.248)

Combining Eqs.(3.247) and (3.248), we obtain

e−2ε sgn(V4)ΘB
f

K3 = e−2ϑB
f

K3 (3.249)

which results in

ϑB
f = ε sgn(V4)Θ

B
f . (3.250)
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□

The Eq.(3.230) is now related to the dihedral angle ΘB
f

ĝ(ξe1f )−1Gf (e1, e0)ĝ(ξe0f ) = eε sgn(V4)ΘB
f

K3eπ
�

e
neJ3 . (3.251)

Recall that in Spin-1
2

representation J⃗ = i
2
σ⃗ and K⃗ = 1

2
σ⃗, thus in Spin-1

2
representa-

tion:

g(ξe1f )−1Gf (e1, e0)g(ξe0f ) = e
1
2

ε sgn(V4)ΘB
f

σ3e
i
2

π
�

e
neσ3 (3.252)

Insert this relation back into Eq.(3.223),

Sf = −iε sgn(V4)γjfΘ
B
f − ijfπ

�

e⊂pe1e0

ne (3.253)

Then the total boundary action Sboundary =
�

boundary f Sf :

Sboundary = −i ε sgn(V4)
�

boundary f

γjfΘ
B
f − iπ

�

boundary f

jf

�

e⊂pe1e0

ne. (3.254)

3.5.3 Spin foam amplitude at nondegenerate critical configu-

ration

In this subsection we summarize our result and give spin foam amplitude at a general

nondegenerate critical configuration. First of all, we say a spin configuration jf is

Regge-like, if with jf on each face the critical point equations Eqs.(3.37), (3.38),

and (3.39) have nondegenerate solution (jf , gve, ξef , zvf ). For a non-Regge-like spin

configuration jf , the critical point equations have no nondegenerate solutions.

Given a Regge-like spin configuration jf and find a solution (jf , gve, ξef , zvf ) of the

critical point equations, we construct the following variables as in Section 3.4:

• A co-frame Eℓ(v), Eℓ(e) of the triangulation (bulk and boundary) can be con-

structed from the solution (jf , gve, ξef , zvf ), unique up to a simultaneously sign

flipping Eℓ → −Eℓ within a 4-simplex, such that the Regge-like spin configura-

tion jf satisfies

2γjf = |Eℓ1(v) ∧ Eℓ2(v)| . (3.255)

From the co-frame we can construct a unique discrete metric on the whole tri-
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angulation (bulk and boundary)

gℓ1ℓ2(v) = ηIJEI
ℓ1

(v)EJ
ℓ2

(v) gℓ1ℓ2(e) = ηIJEI
ℓ1

(e)EJ
ℓ2

(e). (3.256)

So γjf is the triangle area from the discrete metric gℓ1ℓ2

• For each dual edge e we specify a sign factor µe = eiπne that equals 1 or −1

with ne equals 0 or 1, such that the spin foam group element gvv′ (in the Spin-1

representation) is related to an SO(1,3) matrix Ωvv′ by this sign factor, i.e.

gvv′ = eiπneΩvv′ (3.257)

where Ωvv′ is compatible with the co-frame Eℓ(v), i.e.

(Ωvv′)I
JEJ

ℓ (v′) = EI
ℓ (v) (3.258)

If sgn(V4(v)) = sgn(V4(v
′)), Ωvv′ is the unique discrete spin connection com-

patible with the co-frame. In addition, we note that each µe is not invariant

under the sign flipping Eℓ → −Eℓ, but the product
�

e⊂∂f µe is invariant for any

(internal or boundary) face f (see Lemma.3.4.1).

• There is a global sign factor ε that equals 1 or −1, to relate the bivectors Xf (v)

in the bulk and Xef on the boundary to the co-frame:

XIJ
f (v) = ε ⋆

�
Eℓ1(v) ∧ Eℓ2(v)

�IJ

, XIJ
ef = ε ⋆

�
Eℓ1(e) ∧ Eℓ2(e)

�IJ

. (3.259)

If the triangulation K has boundary, the global sign factor ε = ±1 is specified by

the orientation of the boundary triangulation, i.e. ε = sgn(V3) for the boundary

tetrahedra.

Therefore a nondegenerate solution (jf , gve, ξef , zvf ) of the spin foam critical point

equations specifies uniquely a set of variables (gℓ1ℓ2 , ne, ε), which include a discrete

metric and two types of sign factors.

The previous analysis shows that, given a general critical configuration (jf , gve, ξef , zvf ),

we can divide the triangulation K into sub-triangulations K1, · · · , Kn, where each of the

sub-triangulations is a triangulation with boundary, with a constant sgn(V4(v)). On

each of the sub-triangulation Ki, the spin foam action S evaluated at (jf , gve, ξef , zvf )Ki
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is a function of the variables (gℓ1ℓ2 , ne, ε) and behaves mainly as a Regge action:

S(gℓ1ℓ2 , ne, ε)
���
Ki

= Sinternal(gℓ1ℓ2 , ne, ε) + Sboundary(gℓ1ℓ2 , ne, ε)

= −i ε sgn(V4)
�

internal f

γjfΘf − iπ
�

internal f

jf

�

e⊂∂f

ne

−i ε sgn(V4)
�

boundary f

γjfΘ
B
f − iπ

�

boundary f

jf

�

e⊂∂f

ne

= −i ε sgn(V4)
�

internal f

γjfΘf − i ε sgn(V4)
�

boundary f

γjfΘ
B
f

−iπ
�

e

ne

�

f⊂te

jf (3.260)

where we note that the areas γjf , deficit angles Θf , and dihedral angles ΘB
f are

uniquely determined by the discrete metric gℓ1ℓ2 . Moreover for each tetrahedron t, the

sum of face spins
�

f⊂t jf is an integer. If the spins jf are integers,
�

f⊂t jf then is an

even integer, so e−iπ
�

e
ne

�
f⊂te

jf = 1 so the second term in the above formula doesn’t

contribute the exponential eλSint . For half-integer spins, e−iπ
�

e
ne

�
f⊂te

jf = ±1 gives

an overall sign factor. Therefore in general at a nondegenerate spin foam configuration

(jf , gve, ξef , zvf ) that solves the critical point equations,

eλS
���
Ki

= ± exp λ


−i ε sgn(V4)

�

internal f

γjfΘf − i ε sgn(V4)
�

boundary f

γjfΘ
B
f


 .

(3.261)

There exists two ways to make the overall sign factor disappear: (1) only consider

integer spins jf , or (2) modify the embedding from SU(2) unitary irreducible represen-

tations to SL(2,C) unitary irreducible representations by jf �→ (pf , kf ) := (2γjf , 2jf ),

then the spin foam action S is replaced by 2S. In these two cases the exponential eλS

at the critical configuration is independent of the variable ne.

On the triangulation K = ∪n
i=1Ki, eλS is given by a product over all the sub-

triangulations:

eλS =
n�

i=1

eλS
���
Ki

=
n�

i=1

exp λ
�

− i ε sgn(V4)
�

internal f

γjfΘf − i ε sgn(V4)
�

boundary f

γjfΘ
B
f

−iπ
�

e

ne

�

f⊂te

jf

�
Ki

(3.262)

Suppose the oriented 4-volumes are different between two sub-triangulation Ki and Kj
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sharing a boundary, the spin foam amplitude at this critical configuration exhibits a

transition between two different spacetime regions with different spacetime orientation.

The spacetime orientation is not continuous on the boundary between Ki and Kj.

We recall the difference between Einstein-Hilbert action and Palatini action

LEH = R ε = sgn det(eI
µ) ⋆ [e ∧ e]IJ ∧ RIJ = sgn det(eI

µ)LP l (3.263)

where LEH and LP l denote the Lagrangian densities of Einstein-Hilbert action and

Palatini action respectively, and ε is a chosen volume form compatible with the metric

gµν = ηIJeI
µeJ

ν . Since the Regge action is a discretization of the Einstein-Hilbert action,

we may consider the resulting action

−i ε
n�

i=1


sgn(V4)

�

internal f

γjfΘf + sgn(V4)
�

boundary f

γjfΘ
B
f




Ki

(3.264)

as a discretized Palatini action with on-shell connection, where the on-shell connection

means that the discrete connection is the spin connection compatible with the co-

frame.

According to the properties of Regge geometry, given a collection of Regge-like

areas γjf , the discrete metric gℓ1ℓ2(v) is uniquely determined at each vertex v. Fur-

thermore since the areas γjf are Regge-like, There exists a discrete metric gℓ1ℓ2 in

the entire bulk of the triangulation, such that the neighboring 4-simplicies are con-

sistently glued together, as we constructed previously. This discrete metric gℓ1ℓ2 is

obviously unique by the uniqueness of gℓ1ℓ2(v) at each vertex. Therefore given the

partial-amplitude Ajf
(K) in Eq.(3.15) with a specified Regge-like jf , all the critical

configurations (jf , gve, ξef , zvf ) of Ajf
(K) corresponds to the same discrete metric gℓ1ℓ2 ,

provided a Regge boundary data. The critical configurations from the same Regge-like

jf is classified in the next section.

As a result, given a Regge-like spin configurations jf and a Regge boundary data,



70 Semiclassical behavior of spin foam amplitude

the partial amplitude Ajf
(K) has the following asymptotics

Ajf
(K)
���
Nondeg

∼
�

xc

a(xc)
�

2π

λ

� r(xc)
2

−N(v,f) eiIndH′(xc)

�
| detr H ′(xc)|

�
1 + o

�
1

λ

��
×

× exp −iλ
n(xc)�

i=1

�
ε sgn(V4)

�

internal f

γjfΘf +

+ε sgn(V4)
�

boundary f

γjfΘ
B
f + π

�

e

ne

�

f⊂te

jf

�
Ki(xc)

(3.265)

where xc ≡ (jf , gve, ξef , zvf ) labels the nondegenerate critical configurations, r(xc) is

the rank of the Hessian matrix at xc, and N(v, f) is the number of the pair (v, f)

with v ∈ ∂f (recall Eq.(3.15), there is a factor of dim(jf ) for each pair of (v, f)).

a(xc) is the evaluation of the integration measures at xc, which doesn’t scale with

λ. Here Θf and ΘB
f only depend on the metric gℓ1ℓ2 , which is uniquely determined

by the Regge-like spin configuration jf and the Regge boundary data. Note that

different critical configurations xc may have different subdivisions of the triangulation

into sub-triangulations K1(xc), · · · , Kn(xc)(xc).

3.6 Parity inversion

We consider a tetrahedron te associated with spins jf1 , · · · , jf4 , we know that the set of

four spinors ξef1 , · · · , ξef4 , modulo diagonal SU(2) gauge transformation, is equivalent

to the shape of the tetrahedron, if the closure condition is satisfied [34, 82]. Given a

nondegenerate critical configuration (jf , gve, ξef , zvf ), as we discussed previously, the

Regge-like spin configuration jf determines a discrete metric gℓ1ℓ2 , which determines

the shape of all the tetrahedra in the triangulation. At the critical configuration the

closure condition of tetrahedron is always satisfied, so the spinors ξef1 , · · · , ξef4 for each

tetrahedron are determined by the Regge-like spins jf , up to a diagonal SU(2) action

on the spinors ξef1 , · · · , ξef4 , which is a gauge transformation of the spin foam action9.

Therefore the gauge equivalence class of the critical configurations (jf , gve, ξef , zvf )

with the same Regge-like spins jf must have the same set of spinors ξef . Thus with

a given Regge-like spin configuration jf , the degrees of freedom of the nondegenerate

critical configurations are the variables gve and zvf . The degrees of freedom of gve

and zvf are factorized into the 4-simplices. Given the Regge-like spins jf and spinors

9The SU(2) transformation ξef �→ heξef and gve �→ gveh−1
e (he ∈ SU(2)) is a gauge transformation

of the spin foam action S.
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ξef , within each 4-simplex, the solutions of gve and zvf from critical point equations

are completely classified in [66, 74], which are the two solutions related by a parity

transformation.

Given a nondegenerate critical configuration (jf , gve, ξef , zvf ), it generates many

other critical configurations (jf , g̃ve, ξef , z̃vf ) which are the solutions of the critical

point equations Eqs.(3.37), (3.38), and (3.39). In at least one simplex or some 4-

simplices σ̃v

g̃ve = JgveJ
−1 = (g†

ve)
−1 and

||Z̃ve′f ||

||Z̃vef ||
=

||Zvef ||

||Zve′f ||
(3.266)

while in the other 4-simplices g̃ve = gve and z̃vf = zvf . In [66, 74], such a solution-

generating map gve �→ g̃ve and zvf �→ z̃vf is called a parity, because Ne(v) = gve ▷

(1, 0, 0, 0)t and Ñe(v) = g̃ve ▷ (1, 0, 0, 0)t are different by a parity inversion. The parity

inversion between Ne(v) and Ñe(v) can be shown by using the Hermitian matrix

representation of the vectors V = V 01 + V jσj, thus

Ñe(v) = g̃veg̃
†
ve = Jgvfg†

vfJ−1 = JNe(v)J−1 = N0
e (v)1 − N j

e (v)σj (3.267)

since J σ⃗J−1 = −σ⃗. We denote the parity inversion in (R4, ηIJ) by P = diag(1, −1, −1, −1)

then we have Ñe(v) = PNe(v) in the simplices σ̃v where g̃ve ̸= gve.

Within a single 4-simplex there are in total 2 parity-related solutions of (gve, zvf )

in the nondegenereate case [66, 74]. Therefore in a general simplicial complex with N

simplices, given a Regge-like spin configuration jf , there are in total 2N nondegenerate

critical configurations (jf , gve, ξef , zvf ) that solve the critical point equations. Any two

critical configurations are related by the parity transformation in one 4-simplex or

many 4-simplices.

We define the bivectors X̃f (v) = g̃ve ⊗ g̃ve ▷ Xef within the 4-simplices σ̃v, where

XIJ
ef = 2γjf [n̂ef ∧ u] u = (1, 0, 0, 0)t (3.268)

Consider the Hermitian matrix representation of n̂ef , the action g̃ve ▷ n̂ef is given by

(note that J2 = −1)

g̃ve(n̂ef · σ⃗)g̃†
ve = JgveJ

−1(n̂ef · σ⃗)Jg†
veJ

−1 = −Jgve(n̂ef · σ⃗)g†
veJ

−1 = −Pgve(n̂ef · σ⃗)g†
ve

(3.269)
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while we have shown g̃ve ▷ u = P (gve ▷ u), thus we obtain that

X̃f (v) = −(P ⊗ P)Xf (v) (3.270)

Recall the construction in Section 3.4 and Eq.(3.104)

Xf (v) = αee′(v)Ne(v) ∧ Ne′(v) (3.271)

Following the same argument towards Eq.(3.104), we obtain that for the bivectors and

normals constructed from g̃ve

X̃f (v) = α̃ee′(v)Ñe(v) ∧ Ñe′(v) ⇒ −(P ⊗ P)Xf (v) = α̃ee′(v)PNe(v) ∧ PNe′(v)

(3.272)

Then we have the relation

α̃ee′(v) = −αee′(v) and β̃ee′(v) = −βee′(v) (3.273)

where βee′(v) = αee′(v)εee′(v). Following the same procedure as in Section 3.4, we

denote β̃eiej
by β̃ij and construct the closure condition for the 4-simplex σ̃v

5�

j=1

β̃ij(v)Ñej
(v) = 0 (3.274)

by choosing the nonvanishing diagonal elements β̃ii. Since we have the closure condi-

tion
�5

j=1 βijNej
(v) = 0, the parity inversion Ñe(v) = PNe(v), and β̃ij(v) = −βij(v)

for i ̸= j, we obtain that the diagonal elements β̃ii(v) = −βii(v). Furthermore we can

show that β̃ij can be factorized in the same way as in Section 3.4

β̃ij(v) = sgn(β̃j0j0(v))β̃i(v)β̃j(v) β̃j(v) = β̃jj0(v)
��

|β̃j0j0(v)| (3.275)

which results in that

sgn(β̃j0j0(v)) = −sgn(βj0j0(v)) and β̃j(v) = −βj(v) (3.276)
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We construct the 4-volume for β̃j(v)Ñej
(v)

Ṽ4(v) := det
�

β̃2(v)Ñ e2(v), β̃3(v)Ñ e3(v), β̃4(v)Ñ e4(v), β̃5(v)Ñ e5(v)
�

= −V4(v)

(3.277)

by the parity inversion. Since in Section.3.4 we define the sign factor ε(v) = sgn(βj0j0(v))sgn(V4(v)),

then we have for the parity inversion

ε̃(v) = sgn(β̃j0j0(v))sgn(Ṽ4(v)) = ε(v) (3.278)

Note that one should not confuse the ε̃ here with the ε̃ appeared in section 3.4. This

result shows that the parity configuration (jf , g̃ve, ξef , z̃vf ) results in an identical global

sign factor ε for the bivector (recall the proof of Theorem 3.4.2).

The fact that the parity flips the sign of the oriented 4-volume, Ṽ4(v) = −V4(v), has

some interesting consequences: First of all, we mentioned that given a set of Regge-like

spins, different nondegenerate critical configurations xc = (jf , gve, ξef , zvf ) may lead to

different subdivisions of the triangulation K into sub-triangulation K1(xc), · · · , Kn(xc)(xc),

where on each sub-triangulation sgn(V4(v)) is a constant. Now we understand that

the difference of the subdivisions comes from a local parity transformation, which flips

the sign of the oriented 4-volume. On the other hand, given a nondegenerate critical

configuration xc = (jf , gve, ξef , zvf ), there exists another nondegenerate critical config-

uration x̃c = (jf , g̃ve, ξef , z̃vf ), naturally associated with xc, obtained by a global parity

(parity transformation in all simplices) on the triangulation. The global parity flips

the sign of the oriented volume V4(v) everywhere, thus flip the sign of the spin foam

action at the nondegenerate critical configuration (the deficit angle, dihedral angle,

and
�

e⊂∂f ne are unchanged under the global parity, which is shown in the following),

i.e.10

S(x̃c) = −S(xc) (3.279)

if x̃c and xc are related by a global parity transformation.

Since the frame vectors Ue(v) = ±βe(v)Ne(v)√
|V4(v)|

are defined up to a sign, the frame

Ũe(v) constructed from parity configuration relates Ue(v) only by a parity inversion

Ũe(v) = PUe(v) (3.280)

10The sign in front of the term iπ
�

e ne

�
f⊂te

jf is unimportant.
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The same relation holds for the co-frame Ẽℓ(v)

Ẽℓ(v) = PEℓ(v) (3.281)

from the relation

Ũ
ej

I (v)ẼI
ekel

(v) = δ
j
k − δ

j
l (3.282)

We then obtain the same relation relating the bivector and co-frame/frame as in

Theorem 3.4.2

X̃f (v) = ε Ṽ4

�
Ũe(v) ∧ Ũe′(v)

�
and X̃f (v) = ε ⋆

�
Ẽℓ1(v) ∧ Ẽℓ2(v)

�
(3.283)

which is consistent because of the relations X̃f (v) = −(P⊗P)Xf (v), Ũe(v) = PUe(v),

Ẽℓ(v) = PEℓ(v), Ṽ4(v) = −V4(v), and ϵIJKLPI
MPJ

NPK
P PL

Q = −ϵMNP Q. Here we

emphasize that the sign factor ε for the parity configuration (jf , g̃ve, ξef , z̃vf ) is the

same as the original configuration (jf , gve, ξef , zvf ), thus is consistent with the fact

that ε is a global sign factor on the entire triangulation, i.e. the local/global parity

inversion of the critical configuration doesn’t change the global sign ε.

The local/global parity inversion Ẽℓ(v) = PEℓ(v) doesn’t change the discrete met-

ric gℓ1ℓ2(v) = ηIJEI
ℓ1

(v)EJ
ℓ2

(v), so the parity configuration (jf , g̃ve, ξef , z̃vf ) leads to

the same discrete metric as (jf , gve, ξef , zvf ), but gives an O(1,3) gauge transforma-

tion (parity inversion) for the co-frame Eℓ(v). The SO(1,3) matrix Ωvv′ ∈ SO(1,3) is

uniquely compatible with the co-frame Eℓ(v) and is a discrete spin connection when

sgn(V4(v)) = sgn(V4(v
′)), as it was shown in Section 3.3. Given a nondegenerate

critical configuration with a subdivision of the triangulation into sub-triangulations,

in each of which sgn(V4(v)) is a constant, we consider a global parity transforma-

tion which doesn’t change the subdivision but flip the signs of sgn(V4(v)) in all sub-

triangulations. Given a spin connection Ωvv′ with σv, σv′ are both in the same sub-

triangulation, i.e. sgn(V4(v)) = sgn(V4(v
′)), the spin connection Ω̃vv′ ∈ SO(1,3) after

a parity transformation in both σv, σv′ is given by

Ω̃vv′ = PΩvv′P (3.284)

since Ω̃vv′ is uniquely determined by

Ω̃vv′Ẽℓ(v
′) = Ẽℓ(v) ℓ ⊂ te, e = (v, v′) (3.285)
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On the other hand we can check from

g̃ = JgJ−1 g̃(−σ⃗)g̃† = P ▷ gσ⃗g† (3.286)

that given a 4-vector V I

g̃P(V IσI)g̃† = P(gV IσIg†) i.e. g̃PV = PgV in Spin-1 representation (3.287)

Let V = Eℓ(v
′), using gvv′ = µeΩvv′ ,

g̃vv′Ẽℓ(v
′) = g̃vv′PEℓ(v

′) = Pgvv′Eℓ(v
′) = µePEℓ(v) = µeẼℓ(v) (3.288)

Therefore we obtain from g̃vv′ = µ̃eΩ̃vv′ that the sign µe is invariant under the parity

transformation:

µe = µ̃e (3.289)

when e is a internal edge. In case te is a boundary tetrahedron, the parity transfor-

mation changes the co-frame Eℓ(v) �→ Ẽℓ(v) = PEℓ(v) at the vertex v, while leaves

the boundary co-frame Eℓ(e) invariant. Therefore the spin connection Ω̃ve ∈ SO(1,3)

is uniquely determined by

Ω̃veEℓ(e) = Ẽℓ(v) ℓ ⊂ te, (3.290)

Before the parity transformation, ΩveEℓ(e) = Eℓ(v) determines uniquely the spin

connection Ωve. Then the relation between Ω̃ve and Ωve is given by

Ω̃ve = PΩeT where T = diag(−1, 1, 1, 1) (3.291)

by the fact that the co-frame vectors Eℓ(e) are orthogonal to (1, 0, 0, 0)t and both

Ω̃e and Ωe belong to SO(1,3). Here the matrix T is a time-reversal in the Minkowski

space, which leaves Eℓ(e) invariant. Given a spatial vector V I orthogonal to (1, 0, 0, 0)t

g̃(V iσi)g̃
† = −Pg(V iσi)g

† i.e. g̃V = −PgV in Spin-1 representation (3.292)

Let V = Eℓ(e), using gve = µeΩve in Spin-1 representation

g̃veEℓ(e) = −PgveEℓ(e) = −µePEℓ(v) = −µeẼℓ(v) (3.293)
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Therefore we obtain from g̃veEℓ(e) = µ̃eẼℓ(v) that

µe = −µ̃e (3.294)

for an edge connecting to the boundary. A boundary triangle is shared by exactly two

boundary tetrahedra, in the dual language, a boundary face has exactly two edges

connecting to the boundary. Thus the product
�

e⊂∂f µe is invariant under the parity

transformaiton, i.e.
�

e⊂∂f

µe =
�

e⊂∂f

µ̃e (3.295)

for either a boundary face or an internal face. If we write µe = eiπne and µ̃e = eiπñe ,

then we have
�

e⊂∂f

ne =
�

e⊂∂f

ñe (3.296)

We consider Ω̃f (v) a loop holonomy of the spin connection along the boundary of

an internal face f , based at the vertex v, which is constructed from a global parity

configuration (jf , g̃ve, ξef , z̃vf ) with g̃ve ̸= gve at all the vertices. It is different from the

original Ωf (v) by

Ω̃f (v) = PΩf (v)P (3.297)

From Eq.(3.208), Ωf (v) can be expressed in terms of the co-frame vectors Eℓ1(v), Eℓ2(v)

for the edges ℓ1, ℓ2 of the triangle f

Ωf (v) = eiπ
�

e
nee

⋆Eℓ1
(v)∧Eℓ2

(v)

|⋆Eℓ1
(v)∧Eℓ2

(v)|
sgn(V4)Θf +

Eℓ1
(v)∧Eℓ2

(v)

|Eℓ1
(v)∧Eℓ2

(v)|
π
�

e
ne

Ω̃f (v) = eiπ
�

e
ñee

⋆Ẽℓ1
(v)∧Ẽℓ2

(v)

|⋆Ẽℓ1
(v)∧Ẽℓ2

(v)|
sgn(Ṽ4)Θ̃f +

Ẽℓ1
(v)∧Ẽℓ2

(v)

|Ẽℓ1
(v)∧Ẽℓ2

(v)|
π
�

e
ñe

(3.298)

From the previous results sgn(Ṽ4) = −sgn(V4),
�

e ne =
�

e ñe and the relation P ⊗
P(⋆E1 ∧ E2) = − ⋆ PE1 ∧ PE2, we obtain that

Θf = Θ̃f (3.299)

which is consistent with the fact that the deficit angle Θf is determined by the metric

gℓ1ℓ2 which is invariant under the parity transformation.
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For the holonomy Ωf (e1, e0) for a boundary face f , under a global parity

Ω̃f (e1, e0) = TΩf (e1, e0)T (3.300)

Recall Eq.(3.232), we have for both Ω̃f (e1, e0) and Ωf (e1, e0)

ĝ(ξe1f )−1
Ωf (e1, e0)ĝ(ξe0f ) = eiπ

�
e

neeε sgn(V4)ΘB
f

K3eπ
�

e
neJ3

ĝ(ξe1f )−1
Ω̃f (e1, e0)ĝ(ξe0f ) = eiπ

�
e

ñeeε sgn(Ṽ4)Θ̃B
f

K3eπ
�

e
ñeJ3 (3.301)

Since T commutes with ĝ(ξef ) ∈ SU(2) and TK3T = −K3, TJ3T = J3, we obtain

that

Θ
B
f = Θ̃

B
f (3.302)

and consistent with the fact that the dihedral angle ΘB
f is determined by the metric

gℓ1ℓ2 which is invariant under the parity transformation.

Before we come to the next section, we emphasize that given a Regge-like spin con-

figuration jf , there exists only two nondegenerate critical configurations (jf , gc
ve, ξef , zc

vf )

such that the oriented 4-volume has a constant sign on the triangulation, i.e. sgn(V4(v))

is a constant for all σv. The existence can be shown in the following way: given a

nondegenerate critical configuration (jf , gve, ξef , zvf ), it determines a subdivision of

the triangulation into sub-triangulations K1, · · · , Kn, where on each Ki, sgn(V4(v))

is a constant, but sgn(V4(v)) is not a constant for neighboring Ki and Kj. How-

ever we can always make a parity transformation for all the simplices within some

sub-triangulations, to flip the sign of the oriented 4-volume, such that sgn(V4(v)) is a

constant on the entire triangulation. Any two nondegenerate solutions (jf , gve, ξef , zvf )

are related by a (local) parity transformation, which flips the sign of V4(v) at least

locally. There exists two nondegenerate critical configurations (jf , gc
ve, ξef , zc

vf ) such

that the oriented 4-volume has a constant sign on the entire triangulation, while the

two configurations are related by a global parity transformation. If there was another

nondegenerate critical configurations such that the oriented 4-volume has a constant

sign on the entire triangulation, it must relate the existed two configurations by a local

parity transformation, which flips sgn(V4(v)) only locally thus breaks the constancy

of sgn(V4(v)).
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3.7 Asymptotics of degenerate amplitudes

3.7.1 Degenerate critical configurations

The previous discussions of the critical configuration and asymptotic formula are under

the nondegenerate assumption:

5�

e1,e2,e3,e4=1

det
�

Ne1(v), Ne2(v), Ne3(v), Ne4(v)
�

̸= 0 (3.303)

where Ne(v) = gve(1, 0, 0, 0)t, i.e. any four of the five normal vectors Ne(v) form a

linearly independent set and span the 4-dimensional Minkowski space.

Now we consider a degenerate critical configuration (jf , gve, ξef , zvf ) that solves the

critical equations Eqs.(3.37), (3.38), and (3.39), but violates the above nondegenerate

assumption at all vertices on a triangulation (with boundary). if we assume the

nondegeneracy of the tetrahedra, i.e. given a tetrahedron te, the 4 vectors n̂ef obtained

from the spinors ξef span a 3-dimensional subspace, then the Lemma 3 in the first

reference of [66, 74] shows that within each 4-simplex, all five normals Ne(v) from

the degenerate critical configuration (jf , gve, ξef , zvf ) are parallel and more precisely

Ne(v) = u = (1, 0, 0, 0)11. By definition Ne(v) = gve(1, 0, 0, 0)t, we find that all the

group variables gve ∈ SU(2) for a degenerate critical configuration (jf , gve, ξef , zvf ). For

the bivectors ⋆Xf (v), they are all orthogonal to the same unit vector u = (1, 0, 0, 0).

From ⋆Xf (v) ·u = 0, we can write the bivector Xf (v) = Vf (v)∧u for a vector Vf (v)

orthogonal to u. The vector Vf (v) can be determined by the parallel transportation

Xf (v) = gveXefgev and Xef = 2γjf n̂ef ∧ u, thus

Vf (e) = 2γjf n̂ef Vf (v) = 2γjf gven̂ef (3.304)

The above relation doesn’t depend on the choice of e (recall Proposition 3.2.1). From

the closure condition Eq.(3.39), we have

�

f⊂te

εef (v)Vf (v) = 0 (3.305)

Therefore a degenerate critical configuration (jf , gve, ξef ) assign uniquely a spatial

vector Vf (v)⊥u at the vertex v for each triangle f , satisfying the closure condition

Eq.(3.305). The collection of the vectors Vf (v) is referred as a vector geometry in

11Recall that we have fixed gve5
= 1 to make the vertex amplitude finite.
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[66, 74].

Since gev ∈ SU(2) in the degenerate critical configuration (jf , gve, ξef ), we have

immediately
||Zve′f ||

||Zvef ||
= 1. Then for each face action Sf (internal face or boundary face)

Sf = 2iγjf

�

v

ln
||Zve′f ||

||Zvef ||
− 2ijf

�

v

ϕeve′ = −2i jf

�

v

ϕeve′ (3.306)

In the same way as we did for the nondegenerate amplitude, we make use of Eqs.(3.37)

and (3.38), which now take the following forms

gve (Jξef ) = e−iϕeve′ gve′ (Jξe′f )

gveξef = eiϕeve′ gve′ξe′f (3.307)

First of all, for a internal face f , we again consider the successive actions on ξef of

ge′vgve around the entire boundary of the face f ,

←−−�
v∈∂f

ge′vgveJξef = e−i
�

v
ϕeve′ Jξef

←−−�
v∈∂f

ge′vgveξef = e+i
�

v
ϕeve′ ξef (3.308)

where gve ∈ SU(2). In the same way as we did for the nondegenerate case, the above

equations imply that for the loop holonomy Gf (e) =
←−�

v∈∂fge′vgve,

Gf (e) = exp


i
�

v∈∂f

ϕeve′σ⃗ · n̂ef


 . (3.309)

For a boundary face f , again in the same way as we did for the nondegenerate case,

we obtain

Gf (e1, e0) = g(ξe1f ) ei
�

v
ϕeve′ σ⃗·ẑ g(ξe0f )−1. (3.310)

We then need to determine the physical interpretation of the angle
�

v∈∂f ϕeve′ in

different cases.

Recall the degenerate critical equations Eq.(3.307) together with the closure cond-

tion Eq.(3.39), we find they are essentially the same as the critical equations in [67]
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for a Euclidean spin foam amplitude:

g±
ve (Jξef ) = e−iϕ±

eve′ g±
ve′ (Jξe′f )

g±
veξef = eiϕ±

eve′ g±
ve′ξe′f

0 =
4�

f⊂te

εef (v)jf n̂ef (3.311)

where the equations for self-dual or anti-self-dual sector are essentially the same, and

both of them are the same as the above degenerate critical equation for Lorentzian

amplitude. Therefore given a degenerate critical configuration (jf , gve, ξef , zvf ) for

the Lorentzian amplitude, there exists a critical configuration (jf , g±
ve, ξef ) for the

Euclidean amplitude in [67], such that gve = g+
ve. In the following, we classify the

degenerate Lorentzian critical configurations into two type (type A and type B) and

discuss the uniqueness of the corresponding Euclidean critical configurations:

Type-A configuration: A degenerate Lorentzian critical configuration (jf , gve, ξef , zvf )

corresponds to an Euclidean critical configuration (jf , g±
ve, ξef ), which is nonde-

generate at each 4-simplex σv of the triangulation, i.e. any four of the five nor-

mals Ne(v) = (g+
ve, g−

ve) ▷ (1, 0, 0, 0)t span a 4-dimensional vector space. Since

the Euclidean spins jf and spinors ξef are uniquely specified by the Lorentzian

configuration (jf , gve, ξef , zvf ), we only need to consider how many solutions

(g+
ve, g−

ve) in Eq.(3.311) if the variables jf and ξef are fixed. It is shown in [66, 74]

that for a 4-simplex σv, there are only two solutions in the nondegenerate case12

(g+
ve, g−

ve) = (g1
ve, g2

ve) and (g+
ve, g−

ve) = (g2
ve, g1

ve) (3.312)

Then the correspondence gve = g+
ve fix uniquely a solution (g+

ve, g−
ve) for the Eu-

clidean critical configuration (jf , g±
ve, ξef ).

Type-A configuration: The degenerate Lorentzian critical configuration (jf , gve, ξef , zvf )

could always correspond to a degenerate Euclidean critical configuration (jf , g±
ve, ξef )

12The notion of nondegenercy here is different from the notion in [66, 74]. In the Lemma 4 of the
first reference of [66, 74], there are 4 solutions in a 4-simplex (g1

ve, g2
ve), (g2

ve, g1
ve), (g1

ve, g1
ve), (g2

ve, g2
ve)

for the nondegenerate case (in the sense of [66, 74]). However the two solutions (g1
ve, g1

ve), (g2
ve, g2

ve)
are degenerate in our notion of degeneracy.
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with g+
ve = g−

ve by (g+
ve, g−

ve) = (gve, gve), even the data jf and ξef can have two

nondegenerate solutions as above. Then in this case, we alway make the above

nondegenerate choice as the canonical choice.

Type-B configuration: The data jf and ξef in a degenerate Lorentzian critical

configuration (jf , gve, ξef , zvf ) lead to only one Euclidean solutions (gve, gve) ∈
SO(4) for Eq.(3.311) in each 4-simplex σv. Then the Euclidean configuration

(jf , g±
ve, ξef ) is degenerate in σv in the sense of [66, 74]. Then obviously the

correspondence is unique by gve �→ (gve, gve).

3.7.2 Type-A degenerate critical configuration: Euclidean ge-

ometry

First of all, we consider a type A degenerate Lorentzian critical configuration (jf , gve, ξef , zvf )

on the triangulation (with boundary). The corresponding Euclidean critical configu-

ration (jf , g±
ve, ξef ) is nondegenerate everywhere. We can construct a nondegenerate

discrete Euclidean geometry on the triangulation such that (see [67], see also [64])

• An Euclidean co-tetrad Eℓ(v), Eℓ(e) of the triangulation (bulk and boundary)

can be constructed from (jf , g±
ve, ξef ), unique up to a sign fliping Eℓ → −Eℓ,

such that the spins jf satisfies

2γjf = |Eℓ1(v) ∧ Eℓ2(v)| . (3.313)

From the co-tetrad we can construct a unique discrete metric with Euclidean

signature on the whole triangulation (bulk and boundary)

Egℓ1ℓ2(v) = δIJEI
ℓ1

(v)EJ
ℓ2

(v) Egℓ1ℓ2(e) = δIJEI
ℓ1

(e)EJ
ℓ2

(e). (3.314)

So γjf is the triangle area from the discrete metric Egℓ1ℓ2 .

• For the bivectors in the bulk,

jf (g+
ve, g−

ve)(n̂ef , n̂ef ) = ε ⋆ Eℓ1(v) ∧ Eℓ2(v) (3.315)

For the bivector on the boundary

jf (n̂ef , n̂ef ) = ε ⋆ Eℓ1(e) ∧ Eℓ2(e) (3.316)
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where ε is a global sign on the entire triangulation. If the triangulation has

boundary, the sign factor ε is specified by the orientation of the boundary tri-

angulation, i.e. ε = sgn(V3) for the boundary tetrahedra.

• The SO(4) group variable (g+
e , g−

e ) equals to the Euclidean spin connection EΩe

compatible with Eℓ(v), up to a sign µe = eiπne (ne = 0, 1), i.e.

(g+
e , g−

e ) = µe
E

Ωe (3.317)

in the Spin-1 representation. Here EΩe ∈ SO(4) is compatible with the co-frame

Eℓ(v), Eℓ(e)

(E
Ωvv′)I

JEJ
ℓ (v′) = EI

ℓ (v) and (E
Ωve)

I
JEJ

ℓ (e) = EI
ℓ (v) (3.318)

If sgn(V4(v)) = sgn(V4(v
′)), Ωvv′ is the unique discrete spin connection com-

patible with the co-frame. In addition, we note that each µe is not invariant

under the sign flipping Eℓ → −Eℓ, but the product
�

e⊂∂f µe is invariant for any

(internal or boundary) face f (see Lemma.3.4.1).

Therefore in this way, a type-A degnerate Lorentzian critical configuration determines

uniquely a triple of (Euclidean) variables (Egℓ1ℓ2 , ne, ε) corresponding to a Euclidean

Geometry and two types of sign factors.

Given a nondegenerate Euclidean critical configuration (jf , g±
ve, ξef ), in the same

way as the nondegenerate Lorentzian critical configuration, it determines a subdivision

of the triangulation into sub-triangulations (with boundaries) K1, · · · , Kn, on each of

the sub-triangulation, the sign of the oriented 4-volume sgn(V4(v)) is a constant.

Now we discuss the spin foam amplitude at a Type-A degenerate configuration,

while we restrict our attention into a sub-triangulation Ki where sgn(V4(v)) is a con-

stant. For a internal face f , it is shown in [67] that the loop holonomy along the

boundary of f is given by

�
G+

f (e), G−
f (e)

�
=
�

e
i
2 [ε sgn(V4)EΘf +π

�
e

ne]σ⃗·n̂ef , e− i
2 [ε sgn(V4)EΘf −π

�
e

ne]σ⃗·n̂ef

�
(3.319)

where EΘf is the deficit angle from the Euclidean spin connection compatible with the

metric Egℓ1ℓ2 . By the above identification gve = g+
ve between the degenerate Lorentzian

critical configuration (jf , gve, ξef , zvf ) and a nondegenerate Euclidean critical configu-

ration (jf , g±
ve, ξef ). We obtain that for the degenerate Lorentzian critical configuration,
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the loop holonomy Gf (e) = G+
f (e). Comparing with Eq.(3.309),

�

v∈∂f

ϕeve′ =
1

2

�
ε sgn(V4)

E
Θf + π

�

e

ne

�
(3.320)

Therefore the angle
�

v∈∂f ϕeve′ has the physical meaning as a deficit angle in a cor-

responding Euclidean geometry. Then the face action (as a function of (Egℓ1ℓ2 , ne, ε))

reads

Sf (Egℓ1ℓ2 , ne, ε) = −iε sgn(V4) jf
E

Θf − iπ
�

e

nejf (3.321)

for a internal face f .

For a boundary face f , we have the path holonomy along its internal boundary

pe1e0 is given by

�
G+

f (e1, e0), G−
f (e1, e0)

�

= g(ξe1f )
�

e
i
2 [ε sgn(V4)EΘB

f
+π
�

e
ne]σ3 , e− i

2 [ε sgn(V4)EΘB
f

−π
�

e
ne]σ3

�
g(ξe0f )−1(3.322)

where EΘB
f is the dihedral angle (determined by the metric Egℓ1ℓ2) between two bound-

ary tetrahedra te0 , te1 at the triangle f shared by them. The degenerate Lorentzian crit-

ical configuration Gf (e1, e0) is identify with G+
f (e1, e0) here. Comparing to Eq.(3.310)

we obtain that
�

v∈pe1e0

ϕeve′ =
1

2

�
ε sgn(V4)

E
Θ

B
f + π

�

e

ne

�
(3.323)

Therefore the face action Sf for a boundary face f is given by

Sf (Egℓ1ℓ2 , ne, ε) = −iε sgn(V4) jf
E

Θ
B
f − iπ

�

e

nejf . (3.324)

As a result, at a type-A degenerate critical configuration (restricted to a sub-

triangulation Ki), the Lorentzian spin foam action S is a function of the variables

(Egℓ1ℓ2 , ne, ε) and behaves mainly as an Euclidean Regge action:

S(Egℓ1ℓ2 , ne, ε)
����
Ki

=
�

− i ε sgn(V4)
�

internal f

jf
E

Θf − i ε sgn(V4)
�

boundary f

jf
E

Θ
B
f

−iπ
�

e

ne

�

f⊂te

jf

�
Ki

(3.325)

where we note that the areas γjf , deficit angles EΘf , and dihedral angles EΘB
f are

uniquely determined by the discrete metric gℓ1ℓ2 . Moreover for each tetrahedron t,
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the sum of face spins
�

f⊂t jf is an integer. For half-integer spins, e−iπ
�

e
ne

�
f⊂te

jf =

±1 gives an overall sign factor. Therefore in general at a type-A degenerate critical

configuration (jf , gve, ξef , zvf ) for Lorentzian amplitude,

eλS

����
Ki

= ± exp λ


−i ε sgn(V4)

�

internal f

jf
E

Θf − i ε sgn(V4)
�

boundary f

jf
E

Θ
B
f




Ki

.

(3.326)

Again there exists two ways to make the overall sign factor disappear: (1) only consider

integer spins jf , or (2) modify the embedding from SU(2) unitary irreducible represen-

tations to SL(2,C) unitary irreducible representations by jf �→ (pf , kf ) := (2γjf , 2jf ),

then the spin foam action S is replaced by 2S. In these two cases the exponential eλS

at the critical configuration is independent of the variable ne.

According to the properties of Euclidean Regge geometry, given a collection of

(Euclidean) Regge-like areas γjf , the discrete Euclidean metric Egℓ1ℓ2(v) is uniquely

determined at each vertex v. Furthermore since the areas γjf are Regge-like, There

exists a discrete Euclidean metric Egℓ1ℓ2 in the entire bulk of the triangulation, such

that the neighboring 4-simplicies are consistently glued together, as we constructed

in [67]. This discrete metric Egℓ1ℓ2 is obviously unique by the uniqueness of gℓ1ℓ2(v).

Therefore given the partial-amplitude Ajf
(K) in Eq.(3.15) with a specified Euclidean

Regge-like jf , all the degenerate critical configurations (jf , gve, ξef , zvf ) of type-A cor-

responds to the same discrete Euclidean metric Egℓ1ℓ2 , provided a Regge boundary

data. Any two type-A critical configurations (jf , gve, ξef , zvf ) = (jf , g±
ve, ξef ) with the

same jf are related by local or global parity transformation in the Euclidean theory,

see [67], similar to the Lorentzian nondegenerate case.

As a result, given an Euclidean Regge-like spin configurations jf and a Regge

boundary data, the degenerate critical configurations of type-A give the following

asymptotics

Ajf
(K)
���
Deg-A

∼
�

xc

a(xc)
�

2π

λ

� r(xc)
2

−N(v,f) eiIndH′(xc)

�
| detr H ′(xc)|

�
1 + o

�
1

λ

��
×

×
n(xc)�

i=1

exp −iλ
�
ε sgn(V4)

�

internal f

jf
E

Θf + ε sgn(V4)
�

boundary f

jf
E

Θ
B
f

+π
�

e

ne

�

f⊂te

jf

�
Ki(xc)

(3.327)
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where xc = (jf , gve, ξef , zvf ) = (jf , g±
ve, ξef ) labels the degenerate critical configurations

of type-A, r(xc) is the rank of the Hessian matrix at xc, and N(v, f) is the number

of the pair (v, f) with v ∈ ∂f (recall Eq.(3.15), there is a factor of dim(jf ) for each

pair of (v, f)). a(xc) is the evaluation of the integration measures at xc, which doesn’t

scale with λ. Here EΘf and EΘB
f only depend on the Euclidean metric Egℓ1ℓ2 , which is

uniquely determined by the Euclidean Regge-like spin configuration jf and the Regge

boundary data.

3.7.3 Type-B degenerate critical configuration: vector geom-

etry

Given a type-B degenerate Lorentzian critical configuration (jf , gve, ξef , zvf ), the data

ξef lead to only one Euclidean solution (gve, gve) ∈ SU(2) × SU(2) for Eq.(3.311) in

each 4-simplex σv. Then the Euclidean configuration (jf , g±
ve, ξef ) is degenerate in σv

in the sense of [66, 74]. Therefore there is no nondegenerate geometric interpretation

of a type-B degenerate Lorentzian critical configuration (jf , gve, ξef , zvf ). It can only

be interpreted as a vector geometry in terms of Vf (v), Vf (e) on the triangulation (bulk

and boundary), where all the vectors Vf (v), Vf (e) are orthogonal to the unit time-

like vector u = (1, 0, 0, 0)t, and |Vf (v)| = |Vf (e)| = 2γjf . The vectors Vf (v), Vf (e)

are uniquely determined by jf and ξef by Vf (e) = 2γjf n̂ef and Vf (v) = 2γjf gven̂ef ,

since the group variable gve is uniquely determined by ξef . We have the parallel

transportation using the Spin-1 representation of gve

gvv′ ▷ Vf (v′) = Vf (v) and gve ▷ Vf (e) = Vf (v) (3.328)

for all triangles f in the tetrahedron te (shared by v, v′ if not a boundary tetrahedron).

Then the unique group variables gvv′ , gve ∈ SU(2) are said to be compatible with the

vector geometry Vf (v), Vf (e). Therefore a type-B degenerate Lorentzian critical con-

figuration (jf , gve, ξef ) determine uniquely a vector geometry Vf (v), Vf (e). Conversely,

given a vector geometry Vf (v), Vf (e), it uniquely determine the SU(2) group variables

gve up to a sign eiπne , due to the 2-to-1 correspondence between SU(2) and SO(3).

Since we have shown from the critical point equations that

Gf (e) = ei
�

v
ϕeve′ σ⃗·n̂ef Gf (e1, e0) = g(ξe1f ) ei

�
v

ϕeve′ σ⃗·ẑ g(ξe0f )−1, (3.329)

the above SU(2) angle
�

v ϕeve′ is determined uniquely by the group variables gve (which
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is uniquely compatible with the vector geometry Vf (v), Vf (e) up to a sign eiπne)

�

v∈∂f

ϕeve′ =
1

2
Φf + π

�

e⊂∂f

ne and
�

v∈pe1e0

ϕeve′ =
1

2
Φ

B
f + π

�

e⊂pe1e0

ne (3.330)

respectively for a internal face and a boundary face, where the SO(3) angle Φf is

uniquely determined by the vector geometry Vf only (the factor 1
2

shows the relation

between an SU(2) angle and SO(3) angle). Therefore for the face action (internal face

and boundary face)

Sf (Vf , ne) = i jfΦf −2iπ
�

e⊂∂f

nejf and Sf (Vf , ne) = i jfΦ
B
f −2iπ

�

e⊂∂f

nejf (3.331)

As a result, at a type-B degenerate critical configuration, the Lorentzian spin foam

action S is a function of the variables (Vf , ne):

S(Vf , ne) = −i
�

internal f

jfΦf − i
�

boundary f

jfΦ
B
f − 2πi

�

e⊂∂f

ne

�

f⊂te

jf (3.332)

Moreover for each tetrahedron t, the sum of face spins
�

f⊂t jf is an integer. Therefore

in general at a type-B degenerate critical configuration (jf , gve, ξef , zvf ) for Lorentzian

amplitude, eλS is a function of vector geometry Vf only:

eλS = exp λ


−i

�

internal f

jfΦf − i
�

boundary f

jfΦ
B
f


 . (3.333)

where the area γjf = 1
2
|Vf | and the angle Φf is uniquely determined by the vector

geometry Vf .

As a result, given an spin configurations jf and a boundary data that admit a

vector geometry on the triangulation, the degenerate critical configurations of type-B

give the following asymptotics

Ajf
(K)
���
Deg-B

∼
�

xc

a(xc)
�

2π

λ

� r(xc)
2

−N(v,f) eiIndH′(xc)

�
| detr H ′(xc)|

�
1 + o

�
1

λ

��
×

× exp λ


−i

�

internal f

jfΦf − i
�

boundary f

jfΦ
B
f


 (3.334)

where xc ≡ (jf , gve, ξef , zvf ) labels the degenerate critical configurations of type-B.

Note that if we make a suitable gauge fixing for the boundary data, we can always set
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ΦB
f = 0 [66, 74].

3.8 Transition between Lorentzian, Euclidean and

vector geometry

All the previous analysis assume that on the entire triangulation, the critical configu-

ration (jf , gve, ξef , zvf ) is one of the three types: nondegenerate, degenerate of type-A

or degenerate of type-B. However they are not the most general case. In principle

one should admit the critical configuration that mixes the three types on the trian-

gulation: Given a most general critical configuration (jf , gve, ξef , zvf ) that mixes the

three types, one can always make a partition of the triangulation into three regions

(maybe disconnected regions) RNondeg, RDeg-A, RDeg-B. Each of the three regions R∗,

∗ = Nondeg, Deg-A, Deg-B is a triangulation with boundary, on which the critical

configuration (jf , gve, ξef , zvf )R∗
is of single type ∗ = Nondeg, Deg-A, Deg-B.

Therefore for a generic spin configuration jf , the asymptotics of the partial ampli-

tude Ajf
(K) is given by

Ajf
(K) ∼

�

xc

a(xc)
�

2π

λ

� r(xc)
2

−N(v,f) eiIndH′(xc)

�
| detr H ′(xc)|

�
1 + o

�
1

λ

��
×

×Ajf
(RNondeg)Ajf

(RDeg-A)Ajf
(RDeg-B) (3.335)

where xc labels the general critical configuration (jf , gve, ξef , zvf ) admitted by the

spin configuration jf and boundary data, and (jf , gve, ξef , zvf ) determines the regions

R∗, ∗ = Nondeg, Deg-A, Deg-B such that (jf , gve, ξef , zvf )R∗
is of single type. The

amplitudes Ajf
(RNondeg), Ajf

(RDeg-A), Ajf
(RDeg-B) are given respectively by

Ajf
(RNondeg) =

n(xc)�

i=1

e
−iλ

�
ε sgn(V4)

�
internal f

γjf Θf +ε sgn(V4)
�

boundary f
γjf ΘB

f
+π
�

e
ne

�
f⊂te

jf

�
RNondeg,Ki(xc)

Ajf
(RDeg-A) =

n′(xc)�

j=1

e
−iλ

�
ε sgn(V4)

�
internal f

jf
EΘf +ε sgn(V4)

�
boundary f

jf
EΘB

f
+π
�

e
ne

�
f⊂te

jf

�
RDeg-A,K′

j
(xc)

Ajf
(RDeg-B) = exp −iλ


 �

internal f

jfΦf +
�

boundary f

jfΦ
B
f




RDeg-B

(3.336)
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As we discussed previously, given a general critical configuration (jf , gve, ξef , zvf ), the

regions RNondeg and RDeg-A should be respectively divided into sub-triangulations

K1, · · · , Kn(xc) and K′
1, · · · , K′

n(xc), such that in each Ki or K′
i, sgn(V4) is a constant.

Interestingly, from Eq.(3.335) we find an transition between a nondegenerate Lorentzian

geometry and a nondegenerate Euclidean geometry through the boundary shared by

RNondeg and RDeg-A. In RNondeg the asymptotics gives a Regge action in Lorentzian

signature (plus an additional term):

SNondeg = −i ε sgn(V4)
�

internal f

AfΘf − i ε sgn(V4)
�

boundary f

AfΘ
B
f − iπ

γ

�

e

ne

�

f⊂te

Af

(3.337)

where we set the physical area Af = γjf (in Planck unit). In RDeg-A the asymptotics

gives a Euclidean Regge action divided by the Barbero-Immirzi parameter (plus an

additional term)

SDeg-A = − i

γ
ε sgn(V4)

�

internal f

Af
E

Θf − i

γ
ε sgn(V4)

�

boundary f

Af
E

Θ
B
f − iπ

γ

�

e

ne

�

f⊂te

Af

(3.338)

In the case of a single simplex, this asymptotics has been presented in [66, 74]. One

might expect the transition between Lorentzian and Euclidean geometry is a quan-

tum tunneling effect. But surprisingly in the large-j regime eSDeg-A is not damping

exponentially but oscillatory. Similarly there is also a transition between a nondegen-

erate Lorentzian/Euclidean geometry and a vector geometry through the boundary of

RDeg-B, and in the region RDeg-B, the asymptotics give

SDeg-B = − i

γ

�

internal f

AfΦf − i

γ

�

boundary f

AfΦ
B
f (3.339)

Thus eSDeg-B is also oscillatory and gives nontrivial transition in the large-j regime.

However there are some specialities for the phases eSDeg-A , eSDeg-B . These phases oscil-

lates much more violently than the Regge action part in eSNondeg when the Barbero-

Immirzi parameter γ is small, unless EΘf , EΘB
f , Φf , ΦB

f are all vanishing13. We expect

that when we take into account the sum over spins jf , the violently oscillating phases

eSDeg-A and eSDeg-B may only have relatively small contribution to the total amplitude

13The term iπ
γ

�
e ne

�
f⊂te

Af in both SNondeg and SDeg-A may need special treatment by imposing
the boundary semiclassical state carefully.
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A(K) =
�

j Aj(K), as is suggested by the the Riemann-Lebesgue lemma14. But surely

the nontrivial transition between different types of geometries is a interesting phenom-

ena exhibiting in the semiclassical analysis of Lorentzian spin foam amplitude, thus

requires further investigation and clarification.

3.9 Summary

The present work studies the large-j asymptotics of the Lorentzian EPRL spin foam

amplitude on a 4d simplicial complex with an arbitrary number of simplices. The

asymptotics of the spin foam amplitude is determined by the critical configurations of

the spin foam action. Here we show that, given a critical configuration (jf , gve, ξef , zvf )

in general, there exists a partition of the simplicial complex K into three types of

regions RNondeg, RDeg-A, RDeg-B, where the three regions are simplicial sub-complexes

with boundaries. The critical configuration implies different types of geometries in dif-

ferent types of regions, i.e. (1) the critical configuration restricted into RNondeg implies

a nondegenerate discrete Lorentzian geometry in RNondeg. (2) the critical configura-

tion restricted into RDeg-A is degenerate of type-A in our definition of degeneracy, but

implies a nondegenerate discrete Euclidean geometry in RDeg-A, (3) the critical config-

uration restricted into RDeg-B is degenerate of type-B, and implies a vector geometry

in RDeg-B.

With the critical configuration (jf , gve, ξef , zvf ), we further make a subdivision of

the regions RNondeg and RDeg-A into sub-complexes (with boundary) K1(R∗), · · · , Kn(R∗)

(∗=Nondeg,Deg-A) according to their Lorentzian/Euclidean oriented 4-volume V4(v)

of the 4-simplices, such that sgn(V4(v)) is a constant sign on each Ki(R∗). Then

in the each sub-complex Ki(RNondeg) or Ki(RDeg-A), the spin foam amplitude at the

critical configuration gives an exponential of Regge action in Lorentzian or Euclidean

signature respectively. However we should note that the Regge action reproduced here

contains a sign prefactor sgn(V4(v)) related to the oriented 4-volume of the 4-simplices.

Therefore the Regge action reproduced here is actually a discretized Palatini action

with on-shell connection.

Finally the asymptotic formula of the spin foam amplitude is given by a sum of

14The Riemann-Lebesgue lemma states that for all complex L1-function f(x) on R,

�
∞

−∞

f(x)eiαxdx = 0 as α → ±∞. (3.340)
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the amplitudes evaluated at all possible critical configurations, which are the products

of the amplitudes associated to different type of geometries.



Chapter 4

Three-point function from LQG

4.1 Motivations and outlines

In the previous chapter, we have shown that the spin foam gravity goes back to the

Palatini Regge gravity at the large-j semiclassical limit. It implies that in this limit,

we could recover the physics in Regge gravity, or even in some physics in perturbative

gravity. In this chapter I am going to present the work done with my supervisor Carlo

Rovelli, in which we calculated the three-point function from the spin foam gravity.

The difficulty of extracting physical predictions from a background-independent

theory is a well-known difficulty of quantum gravity. A strategy to address the problem

has been developing in recent years, based on two ideas. The first is to define n-point

functions over a background by storing the information about the background in the

boundary state [83]. In covariant loop gravity [30, 84], this technique yields a definite

expression for the theory’s n-point functions. The second is to explore the expansion

of this expression order by order in the number of interaction vertices [85]. Although

perhaps counter-intuitive, this expansion has proven effective in certain regimes; for

details see [86, 87]. In particular, the low-energy limit of the two-point function (the

“graviton propagator") obtained in this way from the improved-Barrett-Crane spin

foam dynamics [43, 88–92] (sometime denoted the EPRL/FK model) correctly matches

the graviton propagator of pure gravity in a transverse radial gauge (harmonic gauge)

[93, 94]. This result has been possible thanks to the introduction of the coherent

intertwiner basis [95] and the asymptotic analysis of vertex amplitude [66, 74].

In this chapter we present the computation of the three-point function from the

spin foam gravity. As in [94], we work in the Euclidean regime and with the Barbero-

Immirzi parameter 0 < γ < 1 where the amplitude defined in [91] and that defined in
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[92] coincide.

Our main result is the following. We consider the limit, introduced in [75, 94],

where the Barbero-Immirzi parameter is taken to zero γ → 0, and the spin of the

boundary state is taken to infinity j → ∞, keeping the size of the quantum geometry

A ∼ γj finite and fixed. This limit corresponds to neglecting Planck scale discreteness

effects, at large finite distances. In this limit, the three-point function we obtain

exactly matches the one obtained from Regge calculus [96].

This implies that the spin foam dynamics is consistent with a discretization of

general relativity, not just in the quadratic approximation, but also to the first order

in the interaction terms. The same semiclassical limit is considered in detail recently

[75] where they showed that in this regime the partition function for a 2-complex takes

the form of a path integral over continuous Regge metrics.

The relation between the Regge and Loop three-point function and the three-point

function of the weak field perturbation expansion of general relativity around flat

space, on the other hand, remains elusive. We compute explicitly the perturbative

three-point function in position space in the transverse gauge (harmonic gauge), and

we discuss the technical difficulty of comparing this with the Regge/Loop one.

4.2 Three-point function in loop gravity

In this section we compute the three-point function of the spin foam amplitude in

loop quantum gravity at first order in the vertex expansion. We follow closely the

techniques developed for the two-point function in [86, 94] and the calculation of the

three-point function for the old Barrett-Crane model in [97]. For previous work in this

direction, see also [93, 98, 99].

4.2.1 Boundary formalism

The well known difficulty of defining n-point functions in a general covariant quantum

field theory can be illustrated by the following (naive) argument. If the action S[g]

and the measure are invariant under coordinate transformations, then

W (x1, · · · , xN) ∼
�

Dg g(x1) · · · g(xN) eiS[g] (4.1)

is formally independent from xn (as long as the xn are distinct), because a change

in xn can be absorbed into a change of coordinates that leaves the integral invariant.
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This difficulty is circumvented in the weak field approximation as follows. If we want

to study the theory around flat space, we have to impose boundary conditions on

Eq.(4.1) demanding that g goes to flat space at infinity. With this choice, the classical

solution that dominates the path integral in the weak field limit is flat spacetime. In

flat spacetime, we can choose preferred Cartesian coordinates x, and write the field

insertions in terms of these preferred coordinates. Then Eq.(4.1) is well defined: the

coordinates xn are not generally covariant coordinates, but rather Minkowski coordi-

nates giving physical distances and physical time intervals in the background metric

picked out by the boundary conditions of the field at infinity. This is the way n-point

functions are defined for perturbative general relativity. In the full non-perturbative

theory, on the other hand, this strategy is not viable, because the integral Eq.(4.1) has

formally to be taken over arbitrary geometries, where the notion of preferred Cartesian

coordinate loses meaning.

The idea for solving this difficulty was introduced in [83] and is explained in detail

in [86]. We give here a short account of this formalism, but we urge the reader to look

at the original references for a detailed explanation of the approach. Let us begin by

picking a surface Σ in flat spacetime, bounding a compact region R, and approximate

Eq.(4.1) by replacing S[g] outside R with the linearized action. Then split Eq.(4.1)

into three integrals: the integral on the field variables in R, outside R, and on Σ. Let

γ be the value of the field on Σ. Let WΣ[γ] be the result of the internal integration,

at fixed value γ of the field on Σ

WΣ[γ] =
�

g|Σ=γ
Dg eiS[g] . (4.2)

Let ΨΣ[γ] be the result of the outside integral. Then we can write

W (x1, ...xN) ∼
�

Dγ WΣ[γ] γ(x1)...γ(xN)ΨΣ[γ]

≡ ⟨WΣ|γ(x1)...γ(xN)|ΨΣ⟩ (4.3)

Now observe first that because of the (assumed) diff-invariance of measure and action,

WΣ[γ] is in fact independent from Σ. That is WΣ = W . Second, since the external

integral is that of a free theory, ΨΣ[γ], will be the vacuum state of the free theory on

the surface Σ. This can be shown to be a Gaussian semiclassical state peaked on the
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intrinsic and extrinsic geometry of Σ. Inserting the proper normalization we write

W (x1, ...xN) = ⟨γ(x1)...γ(xN)⟩ =
⟨W |γ(x1)...γ(xN)|ΨΣ⟩

⟨W |ΨΣ⟩ (4.4)

where W is the formal functional integral on a compact region, and ΨΣ is a semiclas-

sical state peaked on a certain intrinsic and extrinsic geometry. This is the “boundary

formalism". For a strictly related approach, see also [100, 101]. The quantities appear-

ing in the formal expression Eq.(4.4) are well defined in loop quantum gravity and this

expression can be taken as the starting point for computing n-point functions from

the background independent theory.

4.2.2 The theory

The definition of the non perturbative quantum gravity theory we use is given for in-

stance in [30]. The Hilbert space of the theory is spanned by spin network states |Γ, ψ⟩,
where Γ is a graph with L links l and N nodes n and ψ is in HΓ = L2[SU(2)L/SU(2)N ].

A convenient basis in HΓ is given by the coherent states |j, n⃗⟩ which are the gauge

invariant projections of SU(2) Bloch coherent states [43]. These are labeled by a spin

jl per each link of the graph, and a unit-norm 3-vector n⃗nl for each couple node-link of

the graph. The dynamics of the theory is determined by the amplitude W defined as

a sum over two-complexes, or, equivalently [102], as the limit for σ �ω∞ over the two-

complexes σ bounded by Γ, of the amplitude (we follow here [103] for the notation)

⟨Wσ|Γ, j, n⟩ =
�

jf

�
dgve

�
dn⃗ef

�

f

djf Tr
� �

e∈∂f

Pef

�
(4.5)

where e ∈ ∂f is the ordered sequence of the oriented edges around the face f and

Pef = gseeY |jf , n⃗ef⟩⟨jf , n⃗ef |Y †g−1
tee. (4.6)

for an internal edge e. For an external edge e, namely an edge hitting the boundary

Γ of σ,

Pef = ⟨jl, n⃗nl|Y
†g−1

tee, or Pef = gseeY |jl, n⃗nl⟩ (4.7)

according to whether the orientation of the edge is incoming or outgoing. Here l is

the link bounding the face f and n is the node bounding the edge e. In all these

formulas, the notation g stands for the matrix elements of the group element g in the

appropriate representation.



4.2 Three-point function in loop gravity 95

Here we deal with the Euclidean theory. Then gev = (g+
ev, g−

ev) ∈ Spin(4) ∼ SU(2)×

SU(2) and Y maps the SU(2) representations j of into the highest weight SU(2)

irreducible of the SO(4) representation (j+, j−), where j± = 1
2
(1 ± γ)j. The matrix

elements of Y are the standard Clebsch-Gordan coefficients.

The amplitude can be written in the form of a path integral by defining the action

S =
�

f

Sf =
�

f

ln Tr
� �

e∈f

Pef

�
. (4.8)

Then

⟨Wσ|Γ, j, n⟩ =
�

jf

µ
�

dgve

�
dn⃗ef eS, (4.9)

where µ =
�

f dj. This is the form which is suitable for the asymptotic expansion that

we use below.

Since the coherent states factorize under the Clebsch-Gordan decomposition, and

since the scalar product of coherent states in the representation j is the j’s power of

that in the fundamental representation, we obtain S = S+ + S− with

S± =
�

vf

2j±
f ln⟨n⃗ef |(g±

ve)
−1g±

ve′|n⃗e′f⟩ (4.10)

where e and e′ are the two edges bounding f and v.

The last ingredient we need are the gravitational field operators γ(x) that enter in

Eq.(4.4). The gravitational field operator that corresponds to the metric is expressed

in loop quantum gravity by the Penrose operator [30]

Gab
l = Ea

l · Eb
l , (4.11)

where Ea
l is the left invariant vector field acting on the hla variable of the state vector,

namely the SU(2) group element associated to the link a bounded by the node l. The

key technical observation of [94] is that

�
W
���Gab

l

���Γ, j, n
�

=
�

jf

µ
�

dgve

�
dnef qab

l eS (4.12)

where qab
l = Ala · Alb, and Ala

i = Ala+
i + Ala−

i ,

Ala±
i = γj±

la

⟨−n⃗al|(g
±
a )−1g±

l σi|n⃗la⟩
⟨−n⃗al|(g±

a )−1g±
l |n⃗la⟩ . (4.13)
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This is the insertion that we consider below.

4.2.3 Vertex expansion

The second idea for computing n-point functions is the vertex expansion [85]. This is

the idea of studying the approximation to Eq.(4.4) given by the lowest order in the

σ�ω∞ limit, namely using small graphs and small two-complexes. Here we only look

at the first nontrivial term. That is, we take a minimal two-complex, formed by a

single vertex. We consider for simplicity the theory restricted to five-valent vertices

and four-valent edges. Then the lowest order is given by a two-complex formed by a

single five-valent vertex bounded by the complete graph with 5 nodes Γ5. Labeling

the nodes with indices a, b, ... = 1, ..., 5 the amplitude of this two-complex for the

boundary state |Γ5, jab, n⃗ab⟩ (here jab = jba, but n⃗ab ̸= n⃗ba) reads simply

⟨W |Γ5, jab, n⃗ab⟩ = µ(j)
�

SU(2)10
dg±

a e
�

ab
Sab (4.14)

with

Sab =
�

±

2j±
ab ln⟨−n⃗ab|(g

±
a )−1g±

b |n⃗ba⟩ (4.15)

The µ(j) term comes from the face amplitude and the measure (and cancels at the

tree-level [97]).

The vertex expansion has appeared counterintuitive to some, on the base of the

intuition that the large distance limit of quantum gravity could be reached only by

states defined on very fine graphs, and with very fine two-complexes. We are not

persuaded by this intuition (in spite of the fact that one of the authors is quite re-

sponsible for propagandizing it [104–106]) for a number of reasons. The main one is

the following. It has been shown that under appropriate conditions Eq.(4.9) can ap-

proximates a Regge path integral for large spins [103, 107, 108]. Regge calculus is an

approximation to general relativity that is good up to order O(l2/ρ2), where l is the

typical Regge discretization length and ρ is the typical curvature radius. This implies

that Regge theory on a coarse lattice is good as long as we look at small curvatures

scale. In particular, it is obviously perfectly good on flat space, where in fact it is

exact, because the Regge simplices are themselves flat, and is good as long as we look

at weak field perturbations of long wavelength. This is precisely the limit in which

we want to study the theory here. In this limit, it is therefore reasonable to explore

whether the vertex expansion give any sensible result.
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Reducing the theory to a single vertex is a drastic simplification of the field theory,

which reduce the calculation to one for a system with a finite number of degrees

of freedom. Is this reasonable? The answer is in noticing that the same drastic

simplification occurs in the analog calculation in QED: at the lowest order, an n-point

function involves only the Hilbert space of a finite number of particles, which are

described by a finite number of degrees of freedom in the classical theory. The genuine

field theoretical aspects of the problem, such as renormalization, do not show up at

the lowest order, of course.

If we regard the calculation from the perspective of the triangulation dual to the

two-complex, what is being considered is a region of spacetime with the geometry of

a 4-simplex. In the approximation considered the region is flat, but this does not

mean that there are no degrees of freedom. In fact, the Hamilton function of general

relativity is a nontrivial function of the intrinsic geometry of the boundary, whose

variation gives equations that determine the extrinsic geometry as a function of the

intrinsic geometry. This relation captures a small finite-dimensional sector of the

Einstein-equations dynamics (for a simple example of this, see [109]). This is precisely

the component of the dynamics of general relativity captured in this limit. The three-

point function in this large wavelength limit describes the correlations between the

fluctuations of the boundary geometry of the 4-simplex, governed by the quantum

version of this restricted Einstein dynamics.

Let us illustrate this dynamics a bit more in detail, both in second order (metric)

and first order (tetrad/connection) variables. In metric variables, the intrinsic geom-

etry of a boundary of a four-simplex (formed by glued flat tetrahedra) is uniquely

determined by the 10 areas Aab of their faces. The extrinsic geometry of the boundary

four-simplex is determined by the 10 angles Φab between the 4d normals to the tetrahe-

dra. The Einstein equations reduce in the case of a single simplex to the requirement

that this is flat. If the four simplex is flat, then the 10 angles Φab are well-defined

functions

Φab = Φab(Aab) (4.16)

of the 10 areas Aab (for comparison, if the four-simplex has constant curvature be-

cause of a cosmological constant, then the same Aab’s determine different Φab’s). This

dependence captures the restriction of the Einstein equations to a single simplex. In

first order variables, the situation is more complicated. The variables g, j and n⃗ in

Eq.(4.8) can be viewed as the discretized version of the connection and the tetrad. The

vanishing-torsion equation of the first order formalism, which relates the connection
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to the tetrad, becomes in the discrete formalism a gluing condition between normals

to the faces parallel transported by the group elements.

4.2.4 Boundary vacuum state

Following the general strategy described above, we need a boundary state peaked on

the intrinsic as well as on the extrinsic geometry. This state cannot be the state

|Γ5, jab, n⃗ab⟩ which is an eigenvalue of boundary areas, and therefore is maximally

spread in the extrinsic curvature, namely in the 4d dihedral angle between two bound-

ary tetrahedra Φab [110]. Rather, we need a state which is also smeared over spins

[111–113].

Following [113], we choose here a boundary state peaked on the intrinsic and

extrinsic geometry of a regular 4-simplex, and defined as follow. The geometry of

a flat 4-simplex is uniquely determined by the 10 areas Aab of its 10 faces. Let

then n⃗ab(Aab) be the 20 normals determined up to arbitrary SO(3) rotations of each

quadruplet n⃗ab1 , ..., n⃗ab4 by these areas. By this we mean the following. The flat

4-simplex determined by the given areas is bounded by five tetrahedra. For each

such tetrahedron, the four normals to its four faces in the 3-space determined by the

tetrahedron determine, up to rotations) the four unit vectors n⃗ab1 , ..., n⃗ab4 . Using this,

we define the boundary state as

|ΨΣ⟩ = |Ψj0⟩ =
�

jab

cj0(jab)|Γ, jab, nab(jab)⟩ (4.17)

where the coefficients cj0(j) in the large j limit are given by [113]

cj0(jab) =
1

N
e

−
�

(ab),(cd)
γα(ab)(cd) jab−j0√

j0

jcd−j0√
j0

−i
�

(ab)
Φ0γjab

(4.18)

The coefficients are also given in [85, 86]. α(ab)(cd) is a 10×10 matrix that has the sym-

metries of the 4-simplex, that is, it can be written in the form α(ab)(cd) =
�

k αkP
(ab)(cd)
k

where

P
(ab)(cd)
0 = 1 if (ab) = (cd) and 0 otherwise,

P
(ab)(cd)
1 = 1 if {a = c, b ̸= d} or a permutation,

and 0 otherwise,

P
(ab)(cd)
2 = 1 if (ab) ̸= (cd) and 0 otherwise.



4.2 Three-point function in loop gravity 99

Φ0 is the background value of the 4d dihedral angles which give the extrinsic curvature

of the boundary. j0 is the background value of all the areas. The state is peaked on

the areas jab = j0, which determine a regular 4-simplex. The dihedral angles of a flat

tetrahedron is Φ0 = arccos(−1
4
), and we fix Φ0 to this value. As a consequence |Ψj0⟩ is

a semiclassical physical state, namely it is peaked on values of intrinsic and extrinsic

geometry that satisfy the (Hamilton) equations of motion (4.16) of the theory. See

[85, 86, 94, 109] for more details.

4.2.5 Three-point function

Let us now choose the operator insertion. We are interested in the connected compo-

nent of the quantity

G̃abcdef
lmn = ⟨Gab

l Gcd
m Gef

n ⟩, (4.19)

where Gab
l is the Penrose operator associated to the node l of Γ5 and the two links of

this node going from l to a and from l to b respectively. The connected component is

Gabcdef
lmn = ⟨Gab

l Gcd
m Gef

n ⟩ + 2⟨Gab
l ⟩⟨Gcd

m⟩⟨Gef
n ⟩

− ⟨Gab
l ⟩⟨Gcd

m Gef
n ⟩ − ⟨Gef

n ⟩⟨Gab
l Gcd

m⟩
− ⟨Gcd

m⟩⟨Gab
l Gef

n ⟩
(4.20)

We begin by studying the full three-point function Eq.(4.19), before subtracting the

disconnected components. From Eq.(4.4) and Eq.(4.18), and simplifying a bit the

notation in a self explicatory way, this is

G̃abcdef
lmn =

�
j c (j)

�
W
���Gab

l Gcd
m Gef

n

���Γ5, j, n
�

�
j c (j) ⟨W |Γ, j, n⟩

(4.21)

Using Eq.(4.12), this gives

G̃abcdef
lmn =

�
j c (j)

�
dg±

a qab
l qcd

m qef
n eS

�
j c (j)

�
dg±

a eS
(4.22)

where the sum over spins is only given by the boundary state, since there are no

internal faces.

Define the total action as Stot = ln c(j) + S. Because we want to get the large

j limit of the spin foam model, we rescale the spins jab and j0. Then the action

goes to Stot → λStot and also qab
l → λ2qab

n . In large λ limit, the sum over j can be
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approximated to the integrals over j

�

j

µ
�

dg±
a qab

l eλStot ≈
�

djdg±
a µ qab

l eλStot (4.23)

where µ is the product of the face amplitudes. Thus (dropping the suffix tot from now

on)

G̃abcdef
lmn = λ6

�
djdg±

a µqab
l qcd

m qef
n eλS

�
djdg±

a µeλS
(4.24)

Action, measure and insertions are invariant under a SO(4) symmetry, therefore only

four of the five dg±
a integrals are independent. We can fix the gauge that one of the

group element g± = 1, and the integral reduced to dg =
�4

a=1 dg+
a dg−

a . This gives the

expression

G̃abcdef
lmn = λ6

�
djdg µqab

l qcd
m qef

n eλS

�
djdg µeλS

(4.25)

We simplify the notation by writing this in the simple form

G̃ = λ6

�
djdg µ l m n eλS

�
djdg µeλS

≡ ⟨lmn⟩ (4.26)

where l = qab
l , m = qcd

m , n = qef
n are functions of j and g. The connected component

reads then

G = ⟨lmn⟩ + 2⟨l⟩⟨m⟩⟨n⟩ − ⟨lm⟩⟨n⟩ − ⟨nl⟩⟨m⟩ − ⟨mn⟩⟨l⟩ (4.27)

which is the point of departure for the saddle point expansion.

4.2.6 Saddle point expansion

To study the asymptotic behavior of Eq.(4.26), we use the saddle point expansion[97,

114, 115]. For this, we need the stationary point of the total action Stot = ln c(j) + S.

Here we briefly review the works in [66] and [94]. They discuss the behavior of the

critical point and stationary point of S = S+ + S− and Stot. We invite readers to read

their articles for full detail discussion.

The critical point and stationary point of Re(S) coincide with each other when

γ < 1. For the real part of the action S, the critical points are the group element ḡ±
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satisfy the gluing condition

R±
a nab = −R±

b nba (4.28)

where R±
a = R(ḡ±

a ) is the spin-1 irrep. of SU(2). This means that at the critical point

the geometry of spacetime goes to a classical one in which all tetrahedra glue perfectly.

There are 4 classes of critical points satisfy the condition (4.28). At the critical points

of Re(S), the action S can be written as S = iA, where A is a real function and

reduces to Regge like actions. See [66] and [94]. A unique class of critical points is

then selected by the stationary point behavior of Stot.

The stationary points of Re(S) are the critical points of Re(S), because of the clo-

sure constraint, which is satisfied by the boundary state for large j0. We are interested

in the stationary points of Stot are not just with respect to the group variables, but

also with respect to the spin j variables. The stationary point jab = j0 also selects

the class of group stationary point. This is because at the stationary point, S must

satisfy

−iγΦab +
∂S(g0)

∂jab

= 0 (4.29)

Therefore it means that only when S(g0) = iSRegge (with a definite sign) this condition

can be satisfied. This condition picks the unique class of critical points g±
0 of Re(S),

which makes S(g0) = iSRegge.

We are thus interested in the saddle point expansion of the integrals in Eq.(4.26)

around the stationary points (j0, g±
0 ) described above. According to the general theory,

the integral

F (λ) =
�

dxf(x)eλS(x) (4.30)

can be expand for large λ around the stationary points as follows

F (λ) = C(x0)
�

f(x0) +
1

λ

�
1

2
fij(x0)J

ij + D
��

+ O
�

1

λ2

�
(4.31)

where x0 is the stationary point, fij is the Jacobian matrix of f , and J = H−1 =

(S ′′(x0))
−1 is the inverse of the Jacobian matrix of the action S. A straightforward

application of this formula to Eq.(4.27) shows that

G = 0 + O
�

1

λ2

�
(4.32)

This in fact is not surprising, because we are computing a three point function, and

this cannot be captured only by the second order of the saddle point expansion. The
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second order of the saddle point expansion sees only the second derivatives of the

action, while the connected component of the three point function depends on the

third derivatives of the action. In fact, the 3rd derivative of the action term can be

identified with a Feynman vertex, the inverse of the second derivative as the propagator

and the insertions as the external legs of a Feynman diagram. Then It is clear that to

second order there is no connected component.

Therefore we need the next order of the saddle point expansion. From Eq.(4.30),

this is given by

F (λ) = C(x0)
�

f(x0) +
F1

λ
+

F2

λ2

�
+ O

�
1

λ3

�
(4.33)

where

F1 = −1

2
fijJ

ij +
1

2
fiJ

ijJklRjkl − 5

24
fJ ilJ jmJknRijkRlmn +

1

8
fJ ikJ jlRijkl (4.34)

and

F2 =
1

8
fijklJ

ijJkl − 5

12
fijkJ ilJ jmJknRlmn

− 5

16
fijJ

ikJ jlJmnRklmn

+
35

48
fijJ

imJ jnJkoJ lpRmkoRnlp + · · ·

(4.35)

Here R(x) = S(x) − S − 1

2
Hij(x − x0)

i(x − x̄)j, all functions are computed in x0, the

stationary point of S(x) and the indices indicate derivatives. In the last two equations

we have left understood some symmetrization. For instance the third term of the right

hand side of Eq.(4.34) should read .

5

48
f
�
J ilJ jmJkn + J ilJ jmJkn

�
RijkRlmn (4.36)

and so on.

Using this, and recalling that here f(x) = µ(x)l(x)m(x)n(x), we obtain, up to

order O( 1
λ2 ),

Gabcdef
lmn = λ4

�
− RijkllmmnnJ ilJ jmJkn + (lijmknl + lkmijnl + lkmlnij)J

ikJ jl
�

(4.37)

The first term on the right hand side resembles the one vertex diagram with three
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legs. The second term resembles a 4-point function in which 2 points are identified.

4.2.7 Analytical expression

Eq.(4.37) indicates that we need to get the second and third derivatives of the total

action, and the first and second derivative of the insertions. Here we compute these

terms.

We use Euler angles to parameterize the SU(2) group elements g±
0 around the

stationary point

R±
a = eiθ±

i
JiR±

0a (4.38)

where i = 1, 2, 3, θi are Euler angles, Ji are the generators of SU(2), Ra stands for

arbitrary irrep. of SU(2). There are 34 independent variables, 10 areas jab of triangles

in the 4 simplex, 24 group element parameters in which 12 for g+ and 12 for g−. Here

we give only some steps to get to the result. The whole results can be found in the

Appendix. The second order derivative of the total action gives

∂2Stot

∂jab∂jcd

�����
θ=0

= − γα(ab)(cd)

√
j0ab

√
j0cd

+ i
∂2SRegge

∂jab∂jcd

(4.39)

∂2S

∂θa±
j ∂θa±

i

�����
θ=0

= −γ±

2

�

(b̸=a)

jab

�
δij −

�
n±

ab

�
i

�
n±

ab

�
j

�
(4.40)

∂2S

∂θb±
j ∂θa±

i

�����
θ=0

=
γ±jab

2
(δij −

�
n±

ab

�
i

�
n±

ab

�
j
−iεijk

�
n±

ab

�
k
) (4.41)

The third order derivative of the total action gives

∂3Stot

∂jab∂jcd∂jef

�����
θ=0

= i
∂3SRegge

∂jab∂jcd∂jef

(4.42)

∂3S

∂θa±
k ∂θa±

j ∂θa±
i

�����
θ=0

=
�

b̸=a

1

6
iγ±jab(δjk

�
n±

ab

�
i
+ δki

�
n±

ab

�
j

+ δij

�
n±

ab

�
k

−3
�
n±

ab

�
i

�
n±

ab

�
j

�
n±

ab

�
k
) (4.43)

∂3S

∂θb±
k ∂θa±

j ∂θa±
i

|θ=0 = −1

4
iγ±jab(δjk

�
n±

ab

�
i
+ δki

�
n±

ab

�
j

− 2
�
n±

ab

�
i

�
n±

ab

�
j

�
n±

ab

�
k

+i
�

εkil

�
n±

ab

�
j

+ εkjl

�
n±

ab

�
i

� �
n±

ab

�
l
) (4.44)

· · ·
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The first derivatives of the insertions

∂qab
c

∂jef

= γ2 ∂(jcajcbnca · ncb)

∂jef

= γ2 ∂(jcajcb cos Θcab)

∂jef

(4.45)

∂qab
n

∂θa±
i

|θa±
i

=0 = −1

2
iγ2γ±jnajnb(

�
n±

nb

�
i
−
�
n±

na

�
i
(nnb)j (nna)j

+iεijk

�
n±

nb

�
j

�
n±

na

�
k
) (4.46)

∂qab
n

∂θn±
i

|θn±
i

=0 =
1

2
iγ2γ±jnajnb

��
n±

na

�
i
+
�
n±

nb

�
i

�
(1 − (nna)j (nnb)j) (4.47)

The second derivatives of the insertions

∂2qab
n

∂θa±
j ∂θa±

i

|θ=0 =
1

4
γ2γ±jnajnb(

�
n±

nb

�
j

�
n±

na

�
i
+
�
n±

nb

�
i

�
n±

na

�
j

−2 (nnb)r (nna)r

�
n±

na

�
i

�
n±

na

�
j

(4.48)

−i
�
n±

nb

�
k

�
n±

na

�
m

�
εkmj

�
n±

na

�
i
+ εkmi

�
n±

na

�
j

�
)

· · ·

4.2.8 Numerical results

The derivatives over the spin js can be obtained numerically. For simplicity, we only

consider the situation where the boundary is a regular 4-simplex. For the total action

S, the second derivatives

∂2S

∂jab∂jab

= −γα0

j0

− i
γ

j0

9

4

�
3

5

∂2S

∂jac∂jab

= −γα1

j0

+ i
γ

j0

8

7

�
3

5

∂2S

∂jcd∂jab

= −γα2

j0

− i
γ

j0

�
3

5
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For the third derivatives, only seven of them are independent. They are

∂3S

∂jab∂jab∂jab

= −i
γ

j2
0

189

80

�
3

5
,

∂3S

∂jac∂jab∂jab

= i
γ

j2
0

347

160

�
3

5

∂3S

∂jcd∂jab∂jab

= −i
γ

j2
0

14

5

�
3

5
,

∂3S

∂jad∂jac∂jab

= −i
γ

j2
0

453

160

�
3

5

∂3S

∂jbc∂jac∂jab

= −i
γ

j2
0

141

20

�
3

5
,

∂3S

∂jbd∂jac∂jab

= i
γ

j2
0

39

20

�
3

5

∂3S

∂jed∂jac∂jab

= −i
γ

j2
0

3

10

�
3

5

For the metric quantities qab
n , when a ̸= b, we can find there are only five of them

are independent. They are

∂qab
c

∂jab

=
4

3
γ2j0,

∂qab
c

∂jac

= −2

3
γ2j0

∂qab
c

∂jad

= −2

3
γ2j0,

∂qab
c

∂jcd

=
1

3
γ2j0

∂qab
c

∂jde

=
4

3
γ2j0

The second derivatives

∂2qab
c

∂jgh∂jef

= γ2 ∂2(jcajcbnca · ncb)

∂jgh∂jef

= γ2




4
3

1 −2 −2 1 −2 −2 1 1 4

1 −2
3

−1
2

−1
2

1 −1
2

−1
2

−1
2

−1
2

1

−2 −1
2

−2
3

4 −1
2

4 −2 −1
2

−1
2

−2

−2 −1
2

4 −2
3

−1
2

−2 4 −1
2

−1
2

−2

1 1 −1
2

−1
2

−2
3

−1
2

−1
2

−1
2

−1
2

1

−2 −1
2

4 −2 −1
2

−2
3

4 −1
2

−1
2

−2

−2 −1
2

−2 4 −1
2

4 −2
3

−1
2

−1
2

−2

1 −1
2

−1
2

−1
2

−1
2

−1
2

−1
2

1
3

−1 1

1 −1
2

−1
2

−1
2

−1
2

−1
2

−1
2

1 1
3

1

4 1 −2 −2 1 −2 −2 1 1 4
3




Rows and columns are labeled by jgh and jef , respectively. The order is

{jab, jac, jad, jae, jbc, jbd, jbe, jcd, jce, jde}.
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When a = b, there is only one non-zero first and second derivatives. They are

∂qaa
c

∂jca

= 2γ2j0,
∂2qaa

c

∂jca∂jca

= 2γ2

Now, let us look at the dependence of these quantities from γ and j = j0. We

obtain

∂3S

∂j∂j∂j
∼ γ

j2
,

∂2S

∂j∂j
∼ γ

j
,

∂3S

∂θ∂θ∂θ
∼ γ±j,

∂2S

∂θ∂θ
∼ γ±j,

∂3S

∂j∂θ∂θ
∼ γ±,

∂2q

∂j∂j
∼ γ2,

∂q

∂j
∼ γ2j,

∂2q

∂θ∂θ
∼ γ2γ±j2,

∂q

∂θ
∼ γ2γ±j2,

∂2q

∂j∂θ
∼ γ2γ±j.

For the 3-valent term, the scaling is

∂3S

∂j∂j∂j

�
∂2S

∂j∂j

�−1�
∂2S

∂j∂j

�−1�
∂2S

∂j∂j

�−1
∂q

∂j

∂q

∂j

∂q

∂j
∼ γ4j4 (4.49)

and

∂3S

∂θ∂θ∂θ

�
∂2S

∂θ∂θ

�−1�
∂2S

∂θ∂θ

�−1�
∂2S

∂θ∂θ

�−1
∂q

∂θ

∂q

∂θ

∂q

∂θ
∼ γ±γ6j4 → γ6j4|γ→0

∂3S

∂j∂θ∂θ

�
∂2S

∂θ∂θ

�−1�
∂2S

∂θ∂θ

�−1�
∂2S

∂j∂j

�−1
∂q

∂θ

∂q

∂θ

∂q

∂j
∼ γ±γ5j4 → γ5j4|γ→0

And for the “4”-point function terms,

∂2q

∂j∂j

�
∂2S

∂j∂j

�−1�
∂2S

∂j∂j

�−1
∂q

∂j

∂q

∂j
∼ γ4j4 (4.50)

and

∂2q

∂θ∂θ

�
∂2S

∂θ∂θ

�−1�
∂2S

∂θ∂θ

�−1
∂q

∂θ

∂q

∂θ
∼γ±γ6j4 → γ6j4|γ→0

∂2q

∂j∂θ

�
∂2S

∂θ∂θ

�−1�
∂2S

∂j∂j

�−1
∂q

∂θ

∂q

∂j
∼γ±γ5j4 → γ5j4|γ→0

Consider now the limit which introduced by Bianchi, Magliaro and Perini [94], i.e.
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γ → 0, j → ∞, with fixed physical area γj = A. Then the only term that survives

are Eq.(4.49) and Eq.(4.50). These terms are precisely those appearing in the Regge

calculus three-point function, given in [97].

Therefore, we can conclude that in the Bianchi-Magliaro-Perini limit the 3 point

function of loop quantum gravity matches the Regge calculus one.

With an analogous “dimensional” analysis, we can check that for 4-point function

and 5-point function the spin foam model give perturbative Regge calculus result in

the same limit. For 4-point function, the Regge part has the scale of O(γ5j5), others

have the scale of O(γkj5), k > 5. For 4-point function, it is the same. The scale of

Regge part is O(γ6j6).

It appears therefore that γ scales the amplitude of the “un-gluing" fluctuation. It

also measures the difference between area bivectors AIJ and group generators J IJ .

The γ → 0 limit corresponds to J IJ = AIJ [91][116].

4.3 Three-point function in perturbative quantum

gravity

In this section we give for completeness the analytic expression of the three-point

function in position space, at tree level, in the harmonic gauge. We will briefly review

the main definitions and notations on perturbative quantum general relativity, based

on [114][117][118]. We only show the result in this note. More details are in the

Appendix.

4.3.1 Definitions

perturbative quantum gravity describes the quantum gravitational field as a tensor

field in a flat background spacetime. This is a weak field expansion that does not

address the problem of the full consistency of the theory, but it gives nevertheless

a credible approximation in the very low energy regime. Therefore a consistent full

theory of quantum gravity should match the perturbative results in the low energy

limit.

Here we focus on the Euclidean spacetime and we take background spacetime to

be flat; i.e. the metric of the background is δµν . The definition of gravitation field

hµν(x) is

hµν(x) = gµν(x) − δµν (4.51)
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where gµν(x) is the total metric, x is a cartesian coordinate which covers the back-

ground spacetime manifold.

Since we use a path integral formalism to write the quantum theory of perturbative

gravitation field, we need rewrite Einstein-Hilbert (EH) action (without cosmological

constant)

S =
1

16πG

�
dx

√
gR (4.52)

in terms of the field hµν(x). Under general coordinate transform the gravitation field

hµν has a gauge freedom, with a structure similar to the electromagnetic field case.

To compute the symmetric three-point function, we choose the harmonic gauge

∂µhµν =
1

2
∂νh (4.53)

where h ≡ hµ
µ. We only consider the pure gravity situation, without matter. In this

case, the linearization of the Einstein equations reads

∂ρ∂ρhµν =
1

2
δµν∂ρ∂ρh. (4.54)

Taking the trace for both side, we have

∂ρ∂ρh = 0, and ∂ρ∂ρhµν = 0 (4.55)

Using this and the gauge fixing, the EH action becomes (only keeping the 3-valent

terms)

S3 =
1

64πG

�
dx(hσρ∂σhµν∂ρhµν − 2hµβ∂σhµν∂βhνσ) (4.56)

4.3.2 Three-point function

The three-point function at the tree level leading order is defined as follow

Gµ1µ2ν1ν2σ1σ2(x1, x2, x3) =
1

Z

�
Dh eiS2 iS3 hµ1µ2 (x1) hν1ν2 (x2) hσ1σ2 (x3) (4.57)

where Z =
�

Dh exp (iS2) and

S2 =
1

64πG

�
d4z(∂σhµβ∂σhβµ − 1

2
∂ρh∂ρh). (4.58)
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The terms in S3 are quite analogous; let’s focus on the first, namely hσρ∂σhµν∂ρhµν .

Using the Wick contraction method, we obtain

Gµ1µ2ν1ν2σ1σ2(x1, x2, x3) =
i

64πG

1

Z

�
Dh exp(iS2)

�
d4z hσρ(z)∂σhµν(z)∂ρhµν(z)hµ1µ2(x1)hν1ν2(x2)hσ1σ2(x3)

=
κ

2

�
d4z (4.59)

(Dσρ
,µ1µ2

(z−x1)∂σDµν
,ν1ν2

(z−x2)∂ρDµν,σ1σ2(z − x3)

+Dσρ
,µ1µ2

(z−x1)∂σDµν
,σ1σ2

(z−x3)∂ρDµν,ν1ν2(z−x2)

+Dσρ
,ν1ν2

(z−x2)∂σDµν
,σ1σ2

(z−x3)∂ρDµν,µ1µ2(z−x1)

+Dσρ
,ν1ν2

(z−x2)∂σDµν
,µ1µ2

(z−x1)∂ρDµν,σ1σ2(z−x3)

+Dσρ
,σ1σ2

(z−x3)∂σDµν
,µ1µ2

(z−x1)∂ρDµν,ν1ν2(z−x2)

+Dσρ
,σ1σ2

(z−x3)∂σDµν
,ν1ν2

(z−x2)∂ρDµν,µ1µ2(z−x1))

where κ =
√

32πG and Dµν,ρσ(x − y) is graviton propagator in position space, which

is

Dµν,ρσ (x − y) =
1

8π2

1

|x − y|2
(δµρδνσ + δµσδνρ − δµνδρσ)

≡ 1

8π2

1

|x − y|2
∆µν,ρσ (4.60)

We do not write the non-connected terms because they equal to zero by gauge sym-

metry.

Since all the terms in Eq.(4.59) have a similar form, we focus on the first one. This

reads

�
d4z Dσρ

,µ1µ2
(z − x1) ∂σDµν

,ν1ν2
(z − x2) ∂ρDµν,σ1σ2(z − x3)

=
1

2 (2π)6

�
d4z

1

|z − x1|
2

zσ − (x2)σ

|z − x2|
4

zρ − (x3)ρ

|z − x3|
4 ∆

σρ
,µ1µ2

∆
µν

,ν1ν2
∆µν,σ1σ2

The difficulty is to solve the integral in Eq.(4.61). The asymmetric form of the integral

comes from the derivatives in the perturbative EH action (4.56). Fortunately we can

change the derivative variables and take the derivatives out of the integral, turning it

into a three-point function in λϕ3 theory. For Eq.(4.61), it turns into

∆σρ
,µ1µ2

∆µν
,ν1ν2

∆µν,σ1σ2

2 (2π)6

∂

∂xσ
2

∂

∂xρ
3

Gλϕ3 (x1, x2, x3) (4.61)
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where

Gλϕ3 (x1, x2, x3) =
� d4z

|z − x1|
2 |z − x2|

2 |z − x3|
2 (4.62)

According to a theorem in [119], for a scalar three-point function, which is rotation,

translation and dilation covariant, must have the form G (x1, x2, x3) = Cxα
12x

β
23x

γ
31 in

general, where xij = |xi − xj|, C is a constant. Then

Gλϕ3 (x1, x2, x3) =
C

|x1 − x2|
2
3 |x2 − x3|

2
3 |x3 − x1|

2
3

(4.63)

Then the derivatives outside of the integral give the final results. Let us introduce some

notations. Focus on an equilateral 4-simplex. |x1 − x2| = |x2 − x3| = |x3 − x1| = L,

x2
1 = x2

2 = x2
3 = 2

5
L2 and xi · xj|i̸=j = − 1

10
L2. Writing

Iµν
ij =

∂

∂µxi

∂

∂νxj

Gλϕ3 (x1, x2, x3) , (4.64)

we have, for instance

Iµν
12 = C

4

9L6
(xµ

3xν
3 + xµ

3xν
1 − 2xµ

3xν
2 − 2xµ

1xν
3 − 5xµ

1xν
1 + 7xµ

1xν
2 + xµ

2xν
3 + 4xµ

2xν
1 − 5xµ

2xν
2)

(4.65)

and similarly for the other components. This allows us to write the three-point function

explicitly:

Gµ1µ2ν1ν2σ1σ2(x1, x2, x3) =
κ

2

1

2 (2π)6

�



Iσρ
23 ∆σρ,µ1µ2∆µν,ν1ν2∆µν,σ1σ2 + Iσρ

32 ∆σρ,µ1µ2∆µν,σ1σ2∆µν,ν1ν2

+Iσρ
31 ∆σρ,ν1ν2∆µν,σ1σ2∆µν,µ1µ2 + Iσρ

13 ∆σρ,ν1ν2∆µν,µ1µ2∆µν,σ1σ2

+Iσρ
12 ∆σρ,σ1σ2∆µν,µ1µ2∆µν,ν1ν2 + Iσρ

21 ∆σρ,σ1σ2∆µν,ν1ν2∆µν,µ1µ2




− 2




Iσβ
23 ∆µβ,µ1µ2∆µν,ν1ν2∆νσ,σ1σ2 + Iσβ

32 ∆µβ,µ1µ2∆µν,σ1σ2∆νσ,ν1ν2

+Iσβ
31 ∆µβ,ν1ν2∆µν,σ1σ2∆νσ,µ1µ2 + Iσβ

13 ∆µβ,ν1ν2∆µν,µ1µ2∆νσ,σ1σ2

+Iσβ
12 ∆µβ,σ1σ2∆µν,µ1µ2∆νσ,ν1ν2 + Iσβ

21 ∆µβ,σ1σ2∆µν,ν1ν2∆νσ,µ1µ2




�

(4.66)

4.3.3 Comparison between the perturbative and loop three-

point functions

The comparison of the three-point function computed here with the one computed in

the previous section is not easy. In order to compare the expectation values, we need
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to identify the Penrose operators Gab
l with the metric field. The Penrose operator has

a clear geometrical interpretation [110]: it is the scalar product of the flux operator

across the boundary triangles a and b of the boundary tetrahedron l of a 4-simplex-like

spacetime region. It can therefore immediately compared with quantities well defined

in Regge geometry: areas of triangles and angles between triangles.

The direct comparison with the metric operator, on the other hand, is tricky,

since areas and angles of simplices are nonlocal functions of the metric. In addition,

the n-point functions are computed in the linearized theory in a certain gauge. The

loop theory defines implicitly a gauge in two steps. First, the boundary operators

are naturally defined in a “time" gauge, with respect to the foliation defined by the

boundary. Second, the remaining gauge freedom is fixed by the boundary state [87,

120].

Tentatively, we may write

Gab
n = Ea

n · Eb
n = det(q)qij(x)Nna

i (x)Nnb
j (x) (4.67)

where Nna
i is the normal one form to the triangle (n, a) in the plane of the tetrahedron

a, normalized to the coordinate area of the triangle, in the background geometry, and

qij is the three metric induced on the boundary. More precisely, we can use the two-

form Bla
µν associated to the (n, a) triangle and write

Gab
n = 2gρσgµνBla

ρµBlb
σν . (4.68)

This is the way the loop operator was identified with the perturbative gravitational

field in [94]. The same simple minded identification does not appear to work for the

three-point function, if we use the numerical values for the boundary state found in

[94]. Since the loop calculation matches the Regge one, the inconsistency is not related

to the specific of the loop formalism, and is therefore of secondary interest here.

The problem of the consistency between Regge calculus [96] and continuum per-

turbative quantum gravity field theory has been discussed in [78, 121, 122]. The

consistency between Regge calculus and continuum theory is based on the relation

between the Regge action SRegge and EH action SEH. SRegge can be derived from SEH

[121], and SRegge yields back SEH with a correction in the order O(l2/ρ2) [122], where

l is the typical length of a four simplex and ρ is Gauss radius which stands for the

intrinsic curvature. In the limit l → 0 or ρ → ∞, SRegge → SEH. In our calculation,

we use the limit ρ → ∞, as we have mentioned in Section 4.2.3. Then we can use the



112 Three-point function from LQG

regular way to calculate the graviton n-point function, i.e. adding n hµνs into the path

integral as insertions and change the action SEH → SEH + O(l2/ρ2)[122]. Perturbative

Regge calculus is given by the strong coupling expansion [78]. The expansion around

the saddle point in loop gravity corresponds to the strong coupling expansion in Regge

calculus.

We also point out here that in [85][86], the traceless gauge hµ
µ = 0 was assumed,

but this may not be consistent with the gauge choice implicit in the use of the Penrose

field operator. If we take this into account in the definition of two-point function given

in [94]

Gabcd
mn = ⟨Ea

m · Eb
m Ec

n · Ed
n⟩ − ⟨Ea

m · Eb
m⟩⟨Ec

n · Ed
n⟩ (4.69)

since Ea
n is a densitized operator, we obtain

Gabcd
mn = ⟨det(g(xm))gµν(xm) det(g(xn))gρσ(xn)⟩ (Na

m)µ(N b
m)ν(N c

n)ρ(Nd
n)σ

−⟨det(g(xm))gµν(xm)⟩⟨det(g(xn))gρσ(xn)⟩(Na
m)µ(N b

m)ν(N c
n)ρ(Nd

n)σ

Then we find at the order O(h2)

Gabcd
mn = ⟨hhρσδαβ + h2δρσδαβ + hhαβδρσ + hρσhαβ⟩(Na

m)µ(N b
m)ν(N c

n)ρ(Nd
n)σ + O(h3)

which is certainly not the standard two-point function. For the three-point function

case, the relation is even more complicated.

An additional source of uncertainty in the relation between the flux variables Ea
n

and gµν is given by the correct identification of the normals. Above we have assumed

Ea
nEb

n = det(g)gµν(x)Na
n(x)N b

n(x) (4.70)

where the normals Na
n are those of the background geometry. But in the boundary

state used Na
n = jnana

n(j(h)), where the normals are determined by the areas of the en-

tire 4-simplex. This gives an extra dependence on the metric: det(g)gµν(x)Na
n(j(h(x)))N b

n(j(h(x))).

Because of these various technical complications a direct comparison with the weak

field expansion in gµν requires more work. On the other hand, it is not clear that this

work is of real interest, since the key result of the consistency of the loop dynamics

with the Regge one is already established.
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4.4 Summary

We have computed the three-point function of loop quantum gravity, starting from

the background independent spinfoam dynamics, at the lowest order in the vertex

expansion. We have shown that this is equivalent to the one of perturbative Regge

calculus in the limit γ → 0, j → ∞ and γj = A.

Given the good indications on the large distance limit of the n-point functions

for Euclidean quantum gravity, we think the most urgent open problem is to extend

these results to the Lorentzian case, and to the theory with matter [123, 124] and

cosmological constant [125–127].





Chapter 5

Null geometry from LQG

5.1 Motivations and outlines

Null hypersurfaces play a pivotal role in the physical understanding of general rela-

tivity. We are interested in understanding how null hypersurfaces can be described

within LQG, and their dynamical properties. Research in the dynamics of loop quan-

tum gravity is mostly concerned with the evolution of spacelike hypersurfaces, in the

spirit of the ADM (Arnowitt-Deser-Misner) canonical approach it is rooted on. It is

commonly described by the spin foam formalism, or its embedding in group field the-

ory. One considers transition amplitudes between fixed graphs, then refines or sums

over the graphs. The boundary data assigned on the graphs are typically taken to be

spacelike, however, the spin foam formalism is completely covariant, and in principle

one can consider arbitrary configurations. Some results on timelike boundaries have

appeared in [128, 129], but null configurations have received little attention so far.1

To extend the description to null boundary data, the first step is to understand what

null data mean from the viewpoint of LQG variables on a fixed graph. In this chapter,

we point out a natural answer suggested by the recent description of LQG in terms of

twistors and twisted geometries [12, 13, 34, 131–136].

Twistors describing LQG in real Ashtekar-Barbero variables satisfy a certain inci-

dence relation [135], determined by the timelike vector used in the 3 + 1 splitting of

the gravitational action. Such constrained incidence relation is the twistor’s version of

the discretized (primary) simplicity constraints presenting in the Plebanski action for

general relativity. The idea of this work is to describe discrete null hypersurfaces by

1For instance, a discussion of admissible null boundaries for spin foams has appeared in [130].
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taking the vector appearing in the incidence relation to be null. The first consequence

of this choice is that the usual group SU(2) is replaced by ISO(2), the little group of a

null vector. Furthermore, the primary simplicity constraints are all first class, and only

the SO(2) helicity subgroup survives the symplectic reduction: the translations are

pure gauge. This fact has an appealing counterpart in particle theory: as well-known,

the representations of massless particles only depend on the spin quantum number,

the translations being redundant gauges. In our setting, the gauge orbits have the

geometric interpretation of shifts along the null direction of the hypersurface.

In the next section, we briefly review polyhedra with spacelike faces in null hyper-

surfaces, and how they can be described in terms of bivectors satisfying the closure

and simplicity constraints. In particular, we provide a gauge-invariant set of vari-

ables allowing us to reconstruct a unique null polyhedron starting from its bivectors.

Because of the special isometries present due to the existence of null directions, such

gauge-invariant variables are a little more subtle than the scalar products that one may

immediately think of by analogy with the Euclidean case. In Sec. 3, we describe the

phase space of Lorentzian spin foam models with the null simplicity constraints and its

description in terms of twistors, and show how the null polyhedra are endowed in this

way with a symplectic structure. We then proceed to study the symplectic reduction,

interpret geometrically the orbits of the simplicity constraints and identify the global

isometries as well as the transformations changing the shapes of the polyhedra. The

latter are also first class; thus the reduced phase describes only an equivalence class

of null polyhedra, determined only by the areas and their time orientation.

The geometry of the two-dimensional spacelike surface can be parametrized in

purely gauge-invariant terms, and describes a Euclidean singular structure (see e.g.

[137]) with scale factors associated with the faces of the graph, instead of the nodes.

These data are less than those characterizing a two-dimensional Regge geometry, again

a peculiarity of the large amount of symmetry in the system. For planar graphs,

the reduced Poisson brackets evaluate to the Laplacian matrix of the dual graph.

Therefore proper gauge-invariant action-angle variables can be identified in terms of

its eigenvectors. For nonplanar graphs the situation is slightly more complicated, as

the matrix of Poisson brackets has off-diagonal elements of both signs. Finally, we

comment on the possible role played by secondary constraints that future studies of

the dynamics may unveil, in particular, we identify the kinematical degrees of freedom

amenable to describing the extrinsic geometry of the foliation.

In Sec. 5, we quantize the system and find an orthonormal basis for the reduced



5.2 Simple bivectors and null polyhedra 117

Hilbert space. Such null spin networks are labeled by SO(2) quantum numbers, and

are naturally embedded in the lightlike basis of homogeneous functions used for the

unitary, infinite-dimensional representations of the Lorentz group. The basis diago-

nalizes the oriented areas, and the (complex exponentials of the) deficit angles act as

spin-creation operators. This work is only a first, preliminary step toward understand-

ing the dynamics of null surfaces in loop quantum gravity, and in the conclusions we

comment on some next steps in the program, as well as desired applications. Finally,

the Appendix contains details and conventions on the Lorentz algebra and its ISO(2)

subgroup.

5.2 Simple bivectors and null polyhedra

In this section, we describe how null polyhedra can be described in terms of bivectors.

By null polyhedra, we will mean polyhedra with spacelike faces living in a three-

dimensional null hypersurface of Minkowski spacetime. Consider a bivector BIJ in

Minkowski spacetime, orthogonal to a given direction N I ,

NIBIJ = 0. (5.1)

The condition implies that the bivector is simple; namely it can be written in the

form BIJ = 2u[IvJ ]. The proof is straightforward, and valid for any signature of N I .2

Provided u and v are linearly independent, the simple bivector identifies a plane, as

well as a scale B2 := BIJBIJ/2. When N I is null, the two vectors u and v can then

be either null or spacelike. If they are both null, they both must be proportional to

N I , and thus the bivector is “degenerate” and does not span a plane. In this work we

focus our attention on the case of spacelike bivectors.

Such simple bivectors can always be parametrized as

BIJ =
1

2
ϵIJ

KLNKbL, b2 = 0, B2 = (b · N)2. (5.2)

We further denote A := |B|, and b · N = −εA, with ε = ±.

Next, take a collection of bivectors Bl, all lying in the same hypersurface deter-

2An arbitrary bivector BIJ can be written as BIJ = a[IbJ] − c[IdJ]. If (5.1) holds, then
(a · N) b − (b · N) a − (c · N) d + (d · N) c = 0, which implies that the four vectors are linearly depen-
dent. Simplicity immediately follows, independent of the signature of N I .
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mined by N I , and further constrained by the closure condition

�

l

Bl = 0. (5.3)

In the case of a timelike N I , a theorem by Minkowski proves that the set defines a

unique, convex and bounded polyhedron, with areas Al and dihedral angles deter-

mined by the scalar products among the bivectors. This fact plays a key role in the

interpretation of loop quantum gravity in terms of twisted geometries. See [34] for

details and the explicit reconstruction procedure. An application of the same theorem

to the case of null N I implies that the polyhedron now lies in the null hypersurface

orthogonal to N I , which includes N I itself. A null hypersurface has a degenerate

induced metric, with signature (0, +, +), and therefore the metric properties of the

polyhedron are entirely determined by its projection on the spacelike 2d surface.3 In

fact, one can arbitrarily translate the vertices of the polyhedron along the null direc-

tion without changing its intrinsic geometry. Using this symmetry, the polyhedron

can always be “squashed” on the two-dimensional spacelike surface, where it will look

like a degenerate case of a Euclidean polyhedron. It is indeed often helpful to visual-

ize a null polyhedron as an ordinary polyhedron in coordinate space, endowed with a

degenerate metric.

Using the parametrization (5.2) of simple bivectors, the closure condition can be

equivalently rewritten as

V I :=
�

l

bI
l = αN I , α ∈ R. (5.4)

These are three independent equations, since α is arbitrary, and therefore the space

of F simple, closed bivectors has 3F − 3 dimensions. In particular, contracting both

sides with NI we obtain the “area closure”,

−N · V =
�

l

εlAl = 0. (5.5)

This condition is also satisfied by a degenerate Euclidean polyhedron squashed on a

2d plane, and it allows us to identify Al with the areas of the null polyhedron’s faces.

Furthermore, assuming once and for all N I to be future pointing, and the normals

3This does not mean that the null direction never plays a geometric role: it will acquire a geomet-
rical meaning, if ones embeds the three-dimensional null hypersurface in a nondegenerate ambient
space-time.
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outgoing to the faces, the sign εl measures whether the face l is future or past pointing.

While (5.5) plays a predominant role, one should not forget that the complete closure

condition satisfied by the bivectors has two extra equations, contained in (5.3) or (5.4).

It is also interesting to note that (5.4) allows us to map the space of null polyhedra

with F faces to the space of null polygons with F + 1 sides, with one direction held

fixed, but we will not further pursue this interpretation here.

Another peculiarity of null polyhedra is to have a larger isometry group than their

Euclidean brothers. Clearly, global (i.e. acting on all bivectors) Lorentz transforma-

tions belonging to the little group of N I , which is the Lie group ISO(2), do not affect

the intrinsic geometry. But there is an additional isometry due to the degeneracy of

the induced metric: boosts along the N I direction do not change the intrinsic geome-

try of the polyhedron, because the induced metric is degenerate along that direction.

Therefore, the isometry group has four dimensions, and the space of shapes of null

polyhedra has 3F − 7 dimensions.

An interesting question is how to parametrize the intrinsic shapes of null polyhedra.

In the Euclidean case, we are used to do so using the scalar products between the

normals within the hypersurface, which fully respect the isometries. However, this

is not the case for null polyhedra, where it is the common normal N I to lie in the

hypersurface, while the null normals bI
l characterizing the individual faces do not lie

in the hypersurface, and need not respect the isometries. For instance, translating a

vertex of the polyhedron along the null direction is an isometry, but this transformation

does not preserve the scalar product between the null normals bI
l . Conversely, while

individual simple bivectors define planes, the intersection of planes cannot be defined

in a degenerate metric. Therefore, the characterization of the intrinsic shapes cannot

be done solely in terms of the bl; one must resort to the full Minkowski spacetime and

its nondegenerate metric. To fix ideas, consider the foliation of Minkowski spacetime

generated by N and �N , the null hypersurfaces defined , respectively by N I and its

parity transformed �N I = PN I , satisfying �N · N = −1. See Fig. 5.1.

NR
NL

S0

NR

NL

Fig. 5.1 A foliation of spacetime by null hypersurfaces.
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Using both normals, one can make sense of the intersection of two faces, say l and

l′, within N , and characterize it by the (pseudo)vector

�EI
ll′ = ϵIJKLNJ(ϵKMP Q

�NMBP Q
l )(ϵLRST

�NRBST
l′ ). (5.6)

With this formula, one can explicitly reconstruct the intrinsic shape of the null poly-

hedron starting from the bivectors. To show this, let us first consider the case of a

tetrahedron, and then a general polyhedron.

The simplicity of the tetrahedral case lies in its trivial adjacency matrix: any two

faces identify an edge of the tetrahedron, and the intrinsic shapes can be described

by any three edge vectors meeting at one vertex, by providing the lengths and the

angles among them. The existence of a null direction will show up explicitly in the

fact that only two of the angles are linearly independent, thus the intrinsic shape is

characterized by only five quantities. Consider then three faces, say l = 1, 2, 3, and the

three edges determined by their intersections. Let us first assume that the three edge

vectors are not coplanar in N (the degenerate case will be dealt with later). Then, we

define

Vc(B)4 := − 1

64
ϵIJKL

�N I �EJ
13(B) �EK

21(B) �EL
32(B). (5.7)

The right-hand side is always positive, and defines a coordinate volume of the tetra-

hedron, analogous to the definition of the Euclidean volume in terms of the triple

product. We can then normalize (5.6) and obtain the proper edge vectors of the

tetrahedron as

EI
ll′ :=

1

6Vc

�EI
ll′ = − 1

6Vc

ϵI
JKLNJbK

l bL
l′ , (5.8)

where we used (5.2). Finally, the edge lengths and angles of the triple evaluate to

E2
ll′ = − 2

(6Vc)2
(bl · N) (bl′ · N) (bl · bl′), (5.9a)

Ell′ · El′l′′ =
1

(6Vc)2

�
(bl · N) (bl′ · N) (bl′ · bl′′) + (bl′ · N) (bl′′ · N) (bl · bl′) + (bl′ · N)2 (bl · bl′′)

�
.

(5.9b)

It is easy to check that we can always consistently pick BIJ
l = 2E

[I
ll′E

J ]
l′′l, and that the

triangles’ areas computed from the edge vectors coincide with Al. Furthermore, the

oriented sum of the angles defined by (5.9b) vanishes, so that only five quantities out

of the six defined in (5.9) are independent.

The formulas (5.9) provide the intrinsic shape of the null tetrahedron in terms of
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simple bivectors. They are valid for any time orientation of the faces and, as promised,

are left invariant when any of the vectors is translated along the null direction N I . In

particular, this makes the expressions for edges and angles valid also in the special case

when the isometry is used to “squash” the tetrahedron down to the spacelike surface

S0. When this happens, the bI
l are all parallel, so their scalar products vanish, but also

Vc vanishes, and the ratio (bl · bl′)/V 2
c remains finite. Hence (5.9) are well defined also

in the limit case when the edge vectors are coplanar. We conclude that the intrinsic

geometry can be characterized in terms of the null vectors bI
l , using the scalar products

bl · N as well as the ratios (bl · bl′)/V 2
c , of which only two out of three are independent.

On the other hand, notice that the scalar products bl · bm are not good variables: they

are not preserved by the isometries, and different values can correspond to the same

intrinsic geometry.

The main difficulty to extend this construction to higher polyhedra comes from

the fact that the adjacency matrix is not trivial anymore: the explicit values of the

bivectors themselves will determine whether two faces are adjacent or not. A strategy

to deal with this case is to use the reconstruction algorithm already developed for the

Euclidean signature. To that end, we work in light-cone coordinates defined by N I and
�N I . In these coordinates, the closure constraint (5.13) identifies a closure condition for

3d vectors in a space with a degenerate metric of signature (0, +, +). If we replace this

metric by an auxiliary Euclidean metric, we can apply the reconstruction procedure

of [34] to the resulting Euclidean polyhedron. In particular, compute its adjacency

matrix, and once this is known, apply (5.9) to the existing edges to determine the null

geometry of the polyhedron. It would be interesting to know whether the adjacency

matrix of a null polyhedron can be reconstructed directly from the bI
l , without passing

through the auxiliary Euclidean reconstruction, but this is not needed for the rest of

the work, and we leave it as an open question.

Finally, recall that the space of shapes of 3d Euclidean polyhedra has dimensions

3F − 6, and the 2F − 6 space of shapes at fixed areas is a phase space [138], a result

used in the twisted geometry parametrization [34]. This turns out not to be the case

for null polyhedra, because as we show below, the closure condition does not generate

all the isometries. While it is an interesting open question to construct a phase space

of shapes for null polyhedra, we will see below that the phase space of loop gravity on

a null hypersurface does include a description of polyhedra, but rather as equivalence

classes, defined by their areas only.
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5.3 Null simplicity constraints in LQG

Spin foams are based on the nonchiral Plebanski action for general relativity,

S(ωIJ , B, ψ) =
�

Tr
�

⋆ +
�

γ

�
B ∧ F (ωIJ) + ψIJKLBIJ ∧ BKL, (5.10)

where the fundamental variables are a Lorentz connection ωIJ
µ , and a 2-form valued

in the Lorentz algebra BIJ , constrained by ψIJKL to be simple, that is BIJ = eI ∧ eJ .

Here γ is the Immirzi parameter, and we assumed a vanishing cosmological constant.

The canonical analysis of this action has been studied in a number of papers (e.g.

[139]), and we refer the reader to the living review [10] for details and an introduction

to the spin foam formalism. The phase space is described by the pullback of the

Lorentz connection and its conjugate momentum, that is the pullback of the 2-form

M IJ =
�

⋆ +
�

γ

�
BIJ , BIJ =

γ

γ2 + 1

�
� − γ ⋆

�
M IJ . (5.11)

In the following, we are interested in a discretized version of this canonical struc-

ture, which is commonly used in the construction of spin foam models [10]. The

discrete variables are distributional smearings along an oriented graph Γ, say with L

links and N nodes, where the gravitational connection is replaced by holonomies hl

along the links, and the conjugate momentum by algebra elements Ml, referred to as

fluxes. The phase space associated with a graph is

PΓ = T ∗SL(2,C)L, (Ml, hl) ∈ T ∗SL(2,C), (5.12)

which notably comes with a noncommutativity of the fluxes. This kinematical phase

space appears in Lorentzian spin foam models [140], as well as in covariant loop quan-

tum gravity [141]. We then consider two sets of constraints on the B variables. The

first is a discrete Gauss law, or closure condition,

GIJ
n =

�

l∈n

BIJ
l = 0. (5.13)

It is local on the nodes of the graph, and it imposes gauge invariance. The second is

a discrete version of the simplicity constraints,

SJ
nl = NnIBIJ

l = 0, ∀l ∈ n, (5.14)
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where N I
n is a unit vector assigned independently to each node n. This linear version of

the discrete simplicity constraints was introduced in [40], with N I timelike and related

to the hypersurface normal used in the 3 + 1 decomposition of the action. We denote

SΓ the reduced phase space obtained imposing the constraints (5.13) and (5.14),

SΓ = T ∗SL(2,C)L//Fnl//Gn. (5.15)

When N I is timelike, it was shown in [135] that SΓ ≡ T ∗SU(2)L//SU(2)N , where

for any finite γ ̸= 0, the relevant SU(2) subgroup is not the canonical subgroup of the

Lorentz group, but a group manifold nontrivially embedded in T ∗SL(2,C), capable in

particular of probing boosts degree of freedom. The interpretation of SΓ is that of a

truncation of general relativity to a finite number of degrees of freedom [142], whose

geometry can be described by twisted geometries [12].

In this work we investigate the consequences of taking vector N I in (5.14) to be

null, and derive a geometric description for the reduced space (5.15), in the spirit of

twisted geometries. Ideally, this should be related to a formulation of the Plebanski

action in which we perform a standard 3 + 1 splitting, and use the internal Minkowski

space to induce a noninvertible 3d metric with signature (0 + +). The continuum

canonical analysis of (5.10) in this null setup, as well as studying the resulting dynam-

ical structure, will be investigated elsewhere.4 Our goal here is simply to study (5.15)

when N2 = 0, its geometrical interpretation, and its quantization.

We will proceed in two steps, motivated by the structure of (5.15). First, we

focus on a single link, studying the phase space T ∗SL(2,C) and the pair of simplicity

constraints (5.14), which are local on the links. At a second stage, we consider the full

graph structure and the closure condition (5.13).

5.3.1 Phase space structure

We saw in Sec. 1 that a set of bivectors satisfying closure and simplicity defines

polyhedra. The polyhedra can be endowed with the symplectic structure of T ∗SL(2,C)

via (5.11) and (5.12), as follows. Picking a specific time direction tI = (1, 0, 0, 0), we

identify boosts, rotations and chiral left-handed generators, respectively, as

Ki := M0i, Li = −1

2
ϵi

jkM jk, Π
i =

1

2
(Li + iK i) = iσiA

BΠ
B

A.

4In particular, the analysis is expected to reveal the presence of secondary constraints, which
should play an important role in the identification of the extrinsic geometry, as we will discuss below.
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Here A, B = 0, 1 are spinorial indices, raised and lowered with the antisymmetric

symbol ϵAB, and σA
B the Pauli matrices. See Appendix for a complete list of conven-

tions, notations and background material. We parametrize T ∗SL(2,C) via the pair

(ΠA
B, hA

B), with h a group element in the fundamental (1/2, 0) representation, and

symplectic potential Θ = Tr(Πhdh) + cc. The Π are left-invariant vector fields, and
�Π = −hΠh−1 right-invariant ones. We can equivalently use the parametrization (Π, �Π)

and the complex angle Tr(h). In this way, we can associate a generator, and thus a

bivector B through (5.11), with both source and target nodes of a link. Hence, we

can consider the topological polyhedra defined by a cellular decomposition dual to the

graph, and associate a bivector B with each face within each frame. By construction,

a face inherits two bivectors, and unique norm, B2 = �B2, and we notice that the

closure condition (5.13) is equivalent to closure for the generators.

The simplicity conditions (5.1) introduce a preferred direction via N I , thus reduc-

ing the initial Lorentz symmetry to its little group. For a null vector, the Lie group

ISO(2). To fix ideas, we take from now on the specific null vector N I = (1, 0, 0, 1)/
√

2,

with the normalization chosen for later convenience. Its little group ISO(2) is gener-

ated by

L3, P 1 := L1 − K2, P 2 := L2 + K1,

and the simplicity constraints (5.14) read

γL3 + K3 = 0, P a = 0, a = 1, 2. (5.16)

There are two important differences with respect to the timelike case. First of all,

the constraints impose the vanishing of part of the little group itself, thus effectively

selecting its helicity SO(2) subgroup. Second, by themselves they form a completely

first class system, unlike in the timelike case, as can be verified trivially. These facts

have important consequences for the geometric interpretation of the reduced phase

space. To study the symplectic reduction and its geometric interpretation, we use the

twistorial parametrization introduced and studied in [13, 133–135, 143].

5.3.2 Twistorial description

A twistor can be described as a pair of spinors,5 Zα = (ωA, iπ̄Ȧ) ∈ C
2 ⊕ C̄

2∗ =: T.

The space then carries a representation of the Lorentz algebra, which preserves the

5The presence of an i differs from the standard Penrose notation, and it is just a matter of
convenience to bridge with the conventions used in loop quantum gravity.
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complex bilinear πAωA ≡ πω. To describe the symplectic manifold T ∗SL(2,C) on an

oriented link, we consider a pair (Z, �Z) associated , respectively, with the source and

target nodes of the link, and equip each twistor with canonical Poisson brackets,

{πA, ωB} = δB
A = {�πA, �ωB}. (5.17)

We then impose the following area-matching condition,

C = πω − �ω�π = 0. (5.18)

This is a first class complex constraint generating the scale transformations (ω, π, �ω, �π) �→
(ezω, e−zπ, ez �ω, e−z�π). The 12d manifold obtained by symplectic reduction by (5.18)

coincides with T ∗SL(2,C), with holonomies and fluxes that can be parametrized as

Π
AB =

1

2
ω(AπB), hA

B =
�ωAπB + �πAωB√

πω
√
�ω�π

, (5.19)

and
�ΠA

B =
1

2
�ω(A�πB) ≡ −hA

CΠ
C

Dh−1D
B. (5.20)

As it is apparent from (5.19), the parametrization is valid provided πω and �π�ω do not

vanish. The submanifold where this occurs can be safely excluded: it would correspond

to null bivectors, whereas we are restricting attention to spacelike bivectors. Notice

also that the parametrization is 2-to-1, as it is invariant under the exchange of spinors,

(ω, π, �ω, �π) �→ (π, ω, �π, �ω). (5.21)

See [135] for further details. To write the simplicity constraints, we introduce a canon-

ical basis in C
2, (oA = δA

0 , ιA = δA
1 ). The chosen null vector reads NAȦ = ioAōȦ, and

(5.1) becomes

NAȦΠ
ABϵȦḂ = eiθNAȦϵAB

Π̄
ȦḂ, eiθ ≡ (γ + i)/(γ − i). (5.22)

Notice that the matrix δoAȦ := oAōȦ defines an Hermitian scalar product, ||ω||2 =

|ω1|2, preserved by the little group ISO(2). The above conditions can be conveniently

separated as

F1 = Re(πω) − γ Im(πω) = 0, F2 = oAōȦωAπ̄Ȧ = ω1π̄1 = 0, (5.23)
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where F1 is real and Lorentz invariant, whereas F2 is complex and only ISO(2) invari-

ant. In particular, F2 imposes P a = 0, and on-shell of this condition F1 reduces to the

first condition in (5.16). The structure is very similar to the timelike case of [135]: in

particular, the Lorentz-invariant part F1 is the same, and can be solved posing

πω = (γ + i)εj, ε = ±, j ∈ R
+. (5.24)

With this parametrization, ε determines the sign of the twistor’s helicity: ε = + for

positive helicity. Notice that the Z2 symmetry (5.21) of the twistorial parametriza-

tion flips this sign, therefore it is possible to fix ε = 1 without loss of generality in

parametrizing T ∗SL(2,C). F2 = 0 has two solutions, ω1 = 0 and π1 = 0. Both

branches are needed to describe the reduced phase space, introducing a slightly awk-

ward notation, where the reduced phase space is parametrized partly by ωA and partly

by πA. It is convenient to avoid this by exploiting the Z2 symmetry, since (5.21)

switches between the two branches. It then turns out to be convenient to keep the ε

sign in (5.24) free, and pick a single branch of F2 = 0. Let us assume ω1 ̸= 0, and pick

the solution π1 = 0.

The five-dimensional surface of simple twistor solutions of (5.23) can be parametrized

by (ωA, j), and

πA = −rei θ
2 δoAȦω̄Ȧ, r =

εj
√

1 + γ2

||ω||2
. (5.25)

On this surface, the simplicity constraints generate the following gauge transforma-

tions,

{F1, ωA} =
1 + iγ

2
ωA, {F2, ωA} = 0, {F̄2, ωA} = −δA

0 ω̄1, {F1, j} = {F2, j} = 0.

(5.26)

For the nontivial ones, the finite action is

e{αF1,·}ωA = e
1+iγ

2
αωA, e{αF̄2,·}ωA = ωA − αδA

0 ω̄1. (5.27)

We see that ω0 is pure gauge and that ω1 contains a dependence on the gauge generated

by F1. The gauge invariant reduced space has two dimensions, and can be parametrized

by the following complex variable,

z =

√
2j

||ω||iγ+1
ω1, |z|2 = 2j, (5.28)
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plus the sign ε. Notice that shifting the phase of z by π has the same effect as

switching the sign of ε. Hence, with our choice of parametrization arg(z) ∈ [0, π),

to avoid covering twice the same space. In this way we identify the positive complex

half-plane with positive helicities, and the negative half-plane with negative helicities.

The reduced symplectic potential evaluates to

Θred = − i

2
εzdz̄ + cc, {z, z̄} = iε, (5.29)

so the sign of the helicity determines the sign of the Poisson brackets. In conclusion,

the symplectic reduction gives �//F = T ∗S1, with the circle parametrized by two

half-circles via arg(z) ∈ [o, π), ε = ±.

To better understand the geometric meaning of the orbits of the simplicity con-

straints, it is useful to look at the bivectors BIJ . These are given by (5.11) in

terms of the algebra generators M IJ , whose spinorial form reads, from (5.19), M IJ =

−ω(AπB)ϵȦḂ + cc. Introducing the following doubly null reference frame,

ℓI = iωAω̄Ȧ, kI = iπAπ̄Ȧ, mI = iωAπ̄Ȧ, m̄I = iπAω̄Ȧ, ℓ ·k = −|πω|2 = −m ·m̄,

(5.30)

we can rewrite the bivectors as

BIJ =
γ

1 + γ2

2

|πω|2

�
(γI − R)ℓ[IkJ ] + i(γR + I)m[Im̄J ]

�
≈ 2iεγ

j(1 + γ2)
m[Im̄J ], (5.31)

where ≈ means that the equality holds on the constraint surface. The last equation

defines a spacelike plane, and a scale B2 = γ2j2, which represent the spacelike projec-

tion of the polyhedron’s face. Comparing (5.31) and (5.2), we derive a parametrization

of the normal null vector bI in terms of spinors,

bI =
εγj

∥ω∥2
ℓI , b · N = −ϵγj. (5.32)

Hence, we can also identify the helicity sign in (5.24) with the sign of the time com-

ponent of the face normal in (5.5), and since we are doing this identification for the

“untilded” variables, it means that it holds provided the link is oriented outgoing from

the node.

It is straightforward to see that the orbits of F1 leave the bivector BIJ as well as

bI invariant. On the other hand, F2 changes bI , and its action can be used to always

align this null vector with �N I = 1/
√

2(1, 0, 0, −1). Hence, the orbits of F2 allow us
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to project the face on the spacelike surface S0 orthogonal to both N I and �N I . This

action becomes even clearer if we look at the spacelike vectors spanning the triangle,

e{−αF̄2−ᾱF2,·}Re(m)I ≈ Re(m)I + εj[γRe(α) + Im(α)]N I , (5.33a)

e{−αF̄2−ᾱF2,·}Im(m)I ≈ Im(m)I + εj[Re(α) − γIm(α)]N I . (5.33b)

If we do this globally on all links around a node, that is we take αl ≡ α, ∀l, we

obtain the isometry corresponding to shifting the vectors along the null direction, and

this action can be used to project all the faces to S0. On the other hand, acting

independently on each link will genuinely deform the polyhedron, and can in principle

break it open. We will come back to this important point below in Sec. 4. The

geometric meaning of the action of F1 will become clear next, when we discuss the

reduction on the holonomy.

Let us conclude this section with a side comment, on the exact relation between the

null simplicity constraints, and the usual twistor incidence relation. To that end, it is

more convenient to look at the other solution of F2 = 0, that is ω1 = 0. This solution

is equivalent to the one π1 = 0 in the sense that this solution can be obtained from

the Z2 symmetry 5.21. In this case, the simplicity conditions can then be packaged as

the following constrained incidence relation,

ωA = iXAȦπ̄
γ

Ȧ
, XAȦ = −εj

√
1 + γ2

||π||2
nAȦ, π̄

γ

Ȧ
= ei θ

2 π̄Ȧ. (5.34)

From the point of view of twistor theory, (5.34) implies that (i) the twistor is γ-null,

namely that it is isomorphic to a null twistor, the γ-dependent isomorphism being

(ω, π) �→ (ω, πγ := e−iθ/2π); and that (ii) the null ray XAȦ described by the associated

null twistor is aligned with nI and “truncated”: a simple twistor describes a specific

null vector, and not anymore a null ray.

5.3.3 Symplectic reduction, T ∗ISO(2) and T ∗SO(2)

To study the symplectic reduction on the link phase space, we consider two twistors Z

and �Z, and impose the simplicity constraints (5.23) on both, in agreement with (5.14),

as well as the area-matching condition (5.18). The complete system is first class, and

partially redundant: C = 0 = F1 implies �F1 = 0. The simplicity constraints in the
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“tilded” sector can be solved in the same way,

�πA = −�rei θ
2 δoAȦ �̄ωȦ, �r =

�ε�ȷ
√

1 + γ2

||�ω||2
. (5.35)

The area matching (5.18) then imposes �ε�ȷ = −εj, which we solve fixing �ȷ = j and

�ε = −ε. The opposite sign between ε and �ε keeps track of the sign difference between

Π and �Π in (5.20). As a consequence, a face which is future pointing in the frame of

the source node is past pointing in the frame of the target node: following the same

steps leading to (5.32), we find �b · �N = −�εγj = εγj. In other words, ε coincides with

the time orientation in the frame of the source node, and with its opposite in the frame

of the target node.

On the seven-dimensional surface C ⊂ T ∗SL(2,C), where the simplicity constraints

hold, fluxes and holonomies are

Π
A

B ≈ (γ + i)εj

4


 −1 2ω0/ω1

0 1


 , �ΠA

B ≈ −(γ + i)εj

4


 −1 2�ω0/�ω1

0 1


 ,

(5.36a)

hA
B ≈


 ω1/�ω1 �ω0/ω1 − ω0/�ω1

0 �ω1/ω1


 . (5.36b)

As expected, the generators are restricted to those of the little group (up to the phase

introduced by the Immirzi angle). The group element is also restricted, to a form

which includes the little group ISO(2) as well as the extra isometry generated by a

boost along the null direction (K3 with our gauge choice for N I). We can conveniently

parametrize it as

h ≈ e
1
2

Ξσ3 u, u = e
1
2

Ξσ3 e−i 1
2

(ξ−γΞ)σ3 T (ω0, �ω0) ∈ ISO(2), (5.37)

where the boost rapidity is

Ξ := ln
||ω||2

||�ω||2
, (5.38)

and we also defined

ξ := −2 arg(z) − 2 arg(�z) ∈ [0, 4π). (5.39)
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Finally, the translational part

T (ω0, �ω0) =


 1 �ω0/ω1 − ω0/�ω1

0 1


 (5.40)

vanishes when ω0 and �ω0 do, a fact that plays an important role below.

A key aspect of this result is that the boost rapidity Ξ enters also the rotational part

of h. This is a consequence of the mixing between rotations and boosts introduced by

the Immirzi parameter [see (5.11)], and it is presented also in the timelike case [135]: it

is the discrete equivalent of the mixing in the real Ashtekar-Barbero connection defined

by Ai
a = ωi

a + (γ − i)K i
a, where ωi

a is the anti-self-dual part of the Lorentz connection

and K i
a the (triad projection of the) extrinsic curvature. Loosely speaking, the mixing

allows us to probe the Lorentzian phase space through a smaller subgroup, SU(2) in

the timelike case and ISO(2) here. But while in the timelike case the holonomy on the

constraint surface is still a generic SL(2,C) element [135], in the present null case it is

a restricted group element, missing the algebra directions �P a capable of changing the

direction of the vector N I , a fact whose consequences will show up below. Concerning

the Poissonian structure of C, the symplectic potential of T ∗SL(2,C) restricted by

the simplicity constraints contains a piece generating the canonical Poisson brackets

of T ∗ISO(2) between Π and u, and a degenerate direction. Therefore, C contains a

proper symplectic submanifold, and can be identified at least locally with the Cartesian

product T ∗ISO(2) × R, where the additional dimension corresponds to boosts along

N I . The cotangent bundle of the little group thus appears at the level of the constraint

surface. However, a good part of it is just gauge, as we now show.

The next stage of the symplectic reduction is to divide by the gauge orbits. The

gauge orbits of F1 and F2 have been studied in the previous sections: they amount

to linear shifts of ∥ω∥ and ω0 , respectively. The latter are thus good coordinates

along the orbits, and the gauge invariant part is the complex variable z introduced

in (5.28). The situation is analogous for the tilded variables, corresponding to the

twistor associated with the second half of the link. In this case, we parametrize the

reduced variable as

�̄z =

√
2j

||�ω||iγ+1
�ω1, |�z|2 = 2j, {�z, �̄z} = iε. (5.41)

Notice the extra complex conjugation appearing here, a convention taken to preserve

the same sign of the brackets of �z as for z. Proceeding in this way we have reduced
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by both F1 and �F1, and thus by part of the area-matching constraint (5.18). The

remaining part is Cred := |z|2 − |�z|2 = 0, which is already satisfied by the fact that we

took in (5.41) the same j as in (5.28). Its gauge transformations generate opposite

phase shifts,

{Cred, arg(z)} = −ε = −{Cred, arg(�z)}. (5.42)

Hence, arg(z) − arg(�z) is a good coordinate along the orbits, and ξ = −2 arg(z) −
2 arg(�z) previously defined is gauge invariant. The two-dimensional reduced phase

space on a link is thus spanned by the pair (εj, ξ), which turns out to be canonical,

{εj, ξ} = 1. (5.43)

Eliminating the gauges from (5.36), we see that the reduced link phase space

coincides with T ∗SO(2),

XA
B =

(γ + i)εj

4


 −1 0

0 1


 , gA

B =


 e−iξ/2 0

0 eiξ/2


 , �XA

B = −(γ + i)εj

4


 −1 0

0 1


 .

(5.44)

We notice that the translations are removed dividing by the F2 orbits. The same

happens in the representation of massless particles, and here it has the nice geometric

interpretation of being shifts along a null direction. The remaining algebra consists of

the helicity generator L3, which coincides with the oriented area of the bivector,

L3 = εj = −�L3, {L3, ξ} = 1 = −{�L3, ξ}. (5.45)

We conclude that �2//C//F = T ∗SO(2), parametrized by its holonomies and fluxes,

or directly by (εj, ξ). After symplectic reduction, the initial Lorentz algebra has

collapsed to the helicity subgroup SO(2) of N I . In particular, ε is the sign of the

helicity, consistent with its initial twistorial definition, (5.24).

Let us also discuss the covariance of our construction. Above we have fixed the

same null vector for both source and target nodes, N I = �N I = (1, 0, 0, 1)/
√

2, and

the reduction has led to the canonical little group. Any different choice, say for the

source, can be written as V N , where V is a group element in the complement of the

little group, and similarly �V �N for the target normal. In this general case, the resulting

reduced phase space would be of the form (V XV −1, V g �V −1), that is the canonical little

group embedded by the conjugate action. In this sense, our construction is completely

covariant.
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5.4 Null twisted geometries

We have so far described the constraint structure and the symplectic reduction on

a given link. We now move on to consider the full graph, and include the closure

condition (5.13) in the analysis. For simplicity, we take the same canonical null vector

N I on each node. The case of arbitrary N I can be dealt with via the adjoint action as

explained above, and does not change the geometric interpretation which is covariant

by construction. The results of the previous section show that the twistor phase space

on the graph, reduced by the null simplicity conditions (5.14) and the area matching

(5.18), is �2L//Cl//Fnl = T ∗SO(2)L, a phase space of dimensions 2L, parametrized

by (εljl, ξl). This result used the fact that the simplicity constraints are all first class

by themselves. The situation slightly changes when the closure condition(5.13) is

included. On shell of the simplicity and area-matching constraints, (5.13) reduces to

Gn =
�

l∈n

L3 = 0, �Ia
n =

�

l∈n

�P a = 0, a = 1, 2. (5.46)

Here �P a are the translation generators of the little group of �N I = PN I , the only

generators changing N I .

These three conditions are equivalent to (5.4), in particular the first is the area

closure (5.5), as follows immediately from (5.32) and (5.45). Taking into account the

link orientations, we have

Gn =
�

l+∈n

L3 +
�

l−∈n

�L3 =
�

l+∈n

εljl −
�

l−∈n

εljl = 0, (5.47)

where l+ are the links outgoing from the node, and l− the incoming ones. This expres-

sion coincides with the area closure (5.5), once we take into account that εl coincides

with the time orientation for an outgoing link, and its opposite for an incoming link,

as discussed below (5.35). Therefore, we can interpret the reduced phase space as a

collection of null polyhedra, dual to the nodes of the graph. The polyhedra are glued

along faces, sharing the same area Al ∝ jl, and with opposite time orientation.

Notice that out of the closure conditions (5.46), only Gn generates an isometry of

the null plane. The other isometries of the null hypersurface are not generated by the

closure condition, but by combinations of the simplicity constraints, as can be deduced

from their action investigated in the previous section, and to which we will come back

below. As it turns out, �Ia do not generate symmetries at all, as they form a second
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class system with part of the F2 simplicity constraints.6 To study the structure of the

constraints and bring this fact to the surface, we compute the Dirac matrix associated

with the graph. As variables on different links commute, the matrix has a block

structure, in which each block is associated with a node. Since the Lorentz-invariant

constraints F1 commute with everything, we leave them out of the analysis. Then

for a node of valence m, the F2 and closure constraints form a (2m + 3)-dimensional

system. On shell of the F1 constraints, it is possible and convenient to replace for each

link the complex F2 constraints by the two real P a. We then take the basis of node

constraints

ϕµ = {P 1
1 , P 2

2 , . . . , P 1
m, P 2

m, �I1, �I2, G}. (5.48)

On the constraint surface, the node’s block of the Dirac matrix evaluates to

Dµν ≡ {ϕµ, ϕν} ≈




0 0 · · · 0 0 −2γL3
1 2L3

1 0

0 0 · · · 0 0 −2L3
1 −2γL3

1 0
...

...
. . .

...
...

...
...

...

0 0 · · · 0 0 −2γL3
m 2L3

m 0

0 0 · · · 0 0 −2L3
m −2γL3

m 0

2γL3
1 2L3

1 · · · 2γL3
m 2L3

m 0 0 0

−2L3
1 2γL3

1 · · · −2L3
m 2γL3

m 0 0 0

0 0 · · · 0 0 0 0 0




(5.49)

The rank of this matrix is always 4, independent of the valence of the node. Hence,

the node algebra contains 2m − 1 first class constraints and two pairs of second class

constraints. Using this result, and reintroducing the F1’s (one independent first class

constraint per link), the counting of dimensions of the reduced phase space SΓ defined

in (5.15) gives

12L − 2L − 4N − 2
�

n

(2 valencen − 1) = 2L − 2N. (5.50)

It is much smaller than in the timelike case, where one obtains 6L − 6N , which we

recall to the reader that it represents a collection of Euclidean polyhedra plus an

angle (ξ in the literature) associated with each shared face. In the null case, the

6Notice that in the timelike case, the covariant closure condition is a first class constraint in
the discrete theory, whereas the continuous Gauss law in the time gauge has a second class part
corresponding to the complement to the little group. In this sense, the null case considered here
bears some interesting similarities with the continuum theory.
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reduced space is much smaller. Since we proved at the beginning of the chapter

that a geometric interpretation in terms of null polyhedra is still possible, we must

conclude that information on the intrinsic shapes of the polyhedra is being lost in the

reduction. In fact, recall from (5.33) that on each face the orbit of F2 changes the

value of bI . These transformations can be distinguished in three types. First, those

corresponding to translations of the vertices in the null direction, which correspond

to isometries. Second, those corresponding to translations of the vertices changing

the reconstructed angles (5.9b), and thus the intrinsic geometry of the polyhedron.

Third, those incompatible with the closure condition (5.46) and thus breaking the

polyhedron apart. The first two types turn out to be first class, while the third type is

second class. Therefore, while the interpretation in terms of closed polyhedra is valid,

because of the closure condition, the intrinsic shapes at fixed areas are pure gauge,

the variables ω0
l drop out, and the reduced phase space contains only the conjugated

variables (ϵljl, ξl), constrained by the first class constraint Gn. Hence,

SΓ = T ∗SO(2)L//Gn. (5.51)

We now prove these statements.

To diagonalize the Dirac matrix on each node, we first observe that the combina-

tions

Ca
ij := L3

i P
a
j − L3

jP
a
i = 0, (5.52)

Ia :=
�

l∈n

P a = 0 (5.53)

are first class. Second, the set

Ca
1i, i = 2, 3, · · · , m − 1, P a

m, Ia (5.54)

is equivalent to all of the F2’s. Therefore, we can take out of (5.48) the two pairs

(P a
m, �Ia) as the four second class constraints, and the rest are first class, with P a

1 , . . . , P a
m−1

replaced by (5.52) and (5.53). In particular, the first class constraints contain the

global isometry ISO(2) generated by Ia and Gn,7 as well as 2m − 4 additional first

class constraints. Their orbits can be used, together with the four second class con-

straints, to eliminate all of the ω0
l from the reduced phase space.

7The remaining isometry of the null hypersurface, the boosts
�

l K3
l , is generated by the F1’s.
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To see this explicitly, we compute the action of the first class generators on the

spinors, obtaining

e{−αj(iC1
1j

−C2
1j

),•}ω0
i = ω0

i +δijλjω
1
i , λi := αi(γ+i)εiji, i = 2, · · · , m−1, (5.55)

and

e{−β(iI1−I2),•}ω0
i = ω0

i + βω1
i . (5.56)

Therefore, we can always set to zero all ω0
l , except when l = m. The remaining

variable is, however, constrained by the second class closure constraint in (5.46),

ω0
m = −zm|ω1

m|iγ+1

εmj
3/2
m

m−1�

i=1

εij
3/2
i

ω0
i

zi|ω1
i |iγ+1

, (5.57)

and it is thus automatically vanishing with the previous gauge choice.

Going back to the picture of the null tetrahedron, we see that there are some

constraints which generate the global isometries, and others which can arbitrarily

move around the vertices of the polyhedron, while preserving the closure and the

individual areas. In doing so, we can squash the polyhedron on the spacelike surface

and wash away as gauge all information on the intrinsic shapes. This becomes manifest

if we rewrite the null polyhedra in terms of the reduced variables. To see this, we fix

the F1 gauge |ω1| = 1 and write the spinors in terms of zl and the orbits of Ca
1i and

Ia,

ωA
i =

�
(λi + β)ei arg(zi), ei arg(zi)

�
, i ̸= 1, m, (5.58)

and the πA
i are given by (5.25), assuming all the links are outgoing. Let us consider the

case of a 4-valent node, so we do not have to deal with the reconstruction procedure,

and we can immediately apply the formulas (5.9). A straightforward calculation then

gives

E2
12 = γ

j1j2

3j3

|2λ2 + λ3|
2

Im(λ2λ̄3)
, E12 · E23 = −2γε1ε3j2

|λ2|
2 + |λ3|

2 + Reλ2λ̄3

Im(λ2λ̄3)
. (5.59)

The intrinsic shape of the null tetrahedron is determined by the independent areas

and also the gauge orbits of C1i, while being invariant under action of the isometries,

in particular β drops out.
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5.4.1 Intrinsic geometry: Euclidean singular structures

We have seen above that the first-class constraints eliminate the intrinsic shapes at

fixed areas and we are left with an Abelian reduced phase space T ∗SO(2). The re-

maining closure condition (5.47) can be solved explicitly, and we are able to provide

a complete set of gauge-invariant observables, unlike in the non-Abelian case. This

leads to a very simple geometric picture, where the polyhedra give way to a continuous,

albeit singular, metric structure.

Consider a closed graph, the extension to an open graph being straightforward.

The dimension of the reduced phase space is 2(L−N +1), where we took into account

the fact that on a closed graph one of the closure conditions is redundant. The gauge

invariant information can be associated with the faces of the graph, up to moduli

taking into account the possible nonplanarity of the graph. Consider first a planar

graph. Its genus being zero, 2(L − N + 1) = 2(F − 1), so it is enough to remove the

pair of variables associated with a specified face, say for instance the external one in

the Schlegel representation of the graph. Denoting f = 1, . . . F − 1, we trade the ξl

for the gauge-invariant traces of the holonomies,

Φf := 2 arccos

�
1

2
Tr

� �

l∈∂f

hl

��
≈
�

l∈∂f

ηlξl, {Gn, Φf} = 0, (5.60a)

where ηl = ± depending on the consistency of the orientation between the face and

the link. The same faces can be used to define an independent set of spins,

Jf :=
�

l∈∂f

ηljl. (5.60b)

The reason to weigh the sum with the same signs is to have a nice Poisson struc-

ture. In fact, for a planar graph the faces can be consistently oriented so that each

link is traversed in opposite directions by the sharing faces. A moment of reflection

then reveals that the coordinates (5.60) of the gauge-invariant phase space satisfy the

brackets

{Jf , Φf ′} = Lff ′ , (5.61)

where Lff ′ is the Laplacian of the dual graph.8 Proper action-angle variables can then

be readily found diagonalizing the Laplacian.

8Notice that this graph is open, because of the redundancy of a global closure condition and
associated gauge.
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Fig. 5.2 From half links (z, �z) to links (j, ξ) and to loops (J, Φ)

Since the intrinsic shapes of the polyhedra have been gauged away, the reduced

variables describe equivalence classes characterized uniquely by the areas. However,

the same variables can be given a simpler and more direct geometric interpretation.

Recall that the intrinsic geometry is fully determined by the projection on S0. One

can then describe a spacelike 2d geometry using the reduced variables. First of all, we

observe that the reduced gauge-invariant holonomies describe an SO(2) transformation

on each face. For simplicity, consider first the case of a trivalent graph dual to a

triangulation. This structure alone defines the conformal structure of a 2d Regge

geometry, that is a collection of deficit angles 2π − Φf associated with the vertices

dual to the faces. Then, the positive real number Jf associates a scale with each

face, thus picking a representative of the conformal class. If we pick a local complex

Φ

E

hE

2π − Φ
E

j1 j2

j3

j4j5

⇒

J

�J

⇒

Φ

Fig. 5.3 The deficit angle (2π − Φ) and the scale J of the cone

coordinate on each face, say ζf , chosen so that the origin is the location of the vertex,

we can write the face metric as

ds2 = Jf |ζf |−Φf /π dζ ⊗ dζ̄. (5.62)

The resulting geometry is a singular Euclidean structure (e.g. [137]) on S0.

Notice that by assigning these variables we are specifying fewer data than those
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required by a 2d Regge triangulation, which would be L = 3(F −2). A Regge geometry

would be specified uniquely if instead of assigning a scale factor to each dual face, we

would do so to each triangle. Since a triangulation has more triangles than vertices,

our data are fewer and do not specify a unique 2d Regge geometry. On the other hand,

it is more general than a Regge geometry in the sense that it can be extended to any

graph and not just a dual to a triangulation, and furthermore because the special

case Φf = 2π, which in Regge would be a pathological infinite spike, is a perfectly

regular configuration, which can be interpreted as hyperbolic triangles [137]. Finally,

the description has the pleasant features of a natural split into a conformal metric plus

scale factors, locally conjugated.

For non-planar graphs, the situation is slightly different, because more than the

faces, one should look at the independent cycles, and these cannot be oriented in such

a way that each link is traversed at most twice, in opposite directions. Therefore

evaluation of Poisson brackets gives a matrix whose off-diagonal entries can have both

signs. This can a priori still be interpreted as a weighted Laplacian of some dual

graph, but one in which the weights have indefinite signature. For instance, in the

case of the 4-simplex, the six independent cycles can be chosen so that there is a single

−1 entry in the adjacency matrix.9

5.4.2 Extrinsic geometry: Ξ and the role of the embedding

The above description concerns the intrinsic geometry of the hypersurface, which being

null is equivalent to a 2d one. However the 3d nature should show up in the study

of the extrinsic geometry. As the reader familiar with loop quantum gravity knows,

information on the extrinsic geometries is also contained in the reduced phase space,

but it is mixed with the intrinsic one. This is the trade-off for the use of real Ashtekar-

Barbero variables. It can be extracted once the solution to the secondary simplicity

constraint is known, for this provides a specific (in general, nontivial) embedding of

9The cycles are e.g. 012, 103, 132, 402, 430, 413, and the Poisson brackets evaluate to the following
matrix, 



3 −1 −1 −1 0 0
−1 3 −1 0 −1 −1
−1 −1 3 0 0 1
−1 0 0 3 −1 0
0 −1 0 −1 3 −1
0 −1 1 0 −1 3




. (5.63)

It can still be casted in the form D − A of a certain dual graph, where D and A are respectively the
degree and weighted adjacency matrix, with the latter having also negative entries.
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the reduced phase space into the Lorentzian one. The same has been argued to happen

in the discrete theory in [135], and indeed shown at least for flat dynamics. A similar

situation should happen in the present null case, and in order to talk about extrinsic

geometry, we need to first understand the dynamics of our null twisted geometries,

which we plan to do in future work.

Here we limit ourselves to characterizing the kinematical degrees of freedom suit-

able to describing the extrinsic geometry. In the timelike case, this was identified on

the constraint surface as the (boost) dihedral angle between the normals N I in adja-

cent nodes. However, as we stressed above in (5.36b), in the null case the holonomy

is a restricted group element already at the level of the constraints surface, and as a

consequence, the angle between the normals N I and �N I on adjacent nodes vanishes,

�N · Λ(h)N = 0. (5.64)

The vanishing of this scalar product is consistent with the fact that we are dealing

with a null hypersurface, and in order to specify a notion of extrinsic geometry, we

need an embedding in some nondegenerate four-dimensional spacetime. Indeed, con-

sidering also the null hypersurface spanned by the parity transformed vector �N I , we

can evaluate a nonzero scalar product, given by

P�N · Λ(h)N = −eΞ, (5.65)

where Ξ is the boost rapidity previously defined, and Λ(h)N = eΞN . The equation

above suggests that Ξ should be related to a discretization of a certain free coordinate

(denoted λ in [144]) used in the null formulation of general relativity [144–146]. We

postpone the comparison of our discrete data to a discretization thereof to future work.

We expect that Ξ plays an important role in characterizing the extrinsic geometry,

as well as possibly the intrinsic shapes of the null polyhedra. The fact that these quan-

tities have disappeared from the reduced phase space has do to with the fact that in

the constrained system considered so far, the simplicity constraints were all first class.

Future studies of the dynamics may reveal the presence of secondary constraints, that

could turn some or all of the simplicity constraints into second class, e.g. [147]. If that

happens, the solutions to the secondary constraints can be interpreted as providing

specific, nontivial gauge fixing for the orbits, thus restoring a geometric interpretation

for Ξ and the intrinsic shapes through the dynamical embedding.



140 Null geometry from LQG

5.5 Quantization and null spin networks

Quantizing the above phase space and its Poisson algebra introduces a notion of spin

networks for null hypersurfaces. The reduced phase space T ∗SO(2) with its canonical

algebra {m, ξ} = 1, m = εj, can immediately be quantized on the Hilbert space

L2[SO(2)], the space of SO(2) unitary irreducible representations with eigenvalues

m ∈ Z/2, and operator algebra

ψ[ξ], [m̂, eiξ̂/2] =
1

2
eiξ̂/2. (5.66)

Since ξ ∈ [0, 4π), the eigenvalues of m̂ are half-integers, and eiξ̂ acts as a raising

operator,

m̂|m⟩ = m|m⟩, eiξ̂/2|m⟩ = |m + 1/2⟩, (5.67)

the Abelian version of the holonomy-flux algebra. Finally, a basis is given by Fourier

modes on the (double cover of the) circle,

ψm[ξ] = ⟨ξ|m⟩ = eimξ. (5.68)

This Hilbert space bears similarities with the more familiar one of the harmonic oscil-

lator in action-angle variables, the main difference being that the “Hamiltonian" m̂ is

not bounded from below, and m ∈ Z/2.

The gauge-invariant Hilbert space HΓ, corresponding to SΓ, is obtained by taking

the tensor product of the states on the links and imposing the closure condition (5.47)

on the nodes. The results are Abelian SO(2) spin networks, with trivial intertwiners

and flux conservation on the nodes,

ΨΓ,ml
[ξl] = ⊗lψml

[ξl]
�

n

δ

� �

l+∈n

ml −
�

l−∈n

ml

�
. (5.69)

To appreciate how these simple states can represent quantized null hypersurfaces, it

is instructive to derive HΓ following Dirac’s procedure, starting from a Hilbert space for

the twistor phase space and its algebra, and then implement the quantized constraints.

This procedure will show how such Abelian spin networks are to be embedded in the

Lorentz group, and identify m as the helicity quantum number. While being necessary

for future studies of dynamics, it will also expose some of the covariance properties of

the states, as well as their integrability properties with respect to the SL(2,C) Haar
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measure. As in the classical reduction, we proceed in two steps: we first consider the

quantization of a single twistor phase space, and the simplicity constraints it satisfies;

then, we look at the link phase space and impose the area-matching condition.

For the twistorial Hilbert space we take wave functions f(ω) ∈ L2[C2, d4ω], where

d4ω =
1

16
dωA ∧ dωA ∧ cc, (5.70)

and a Schrödinger representation of the canonical Poisson algebra (5.17),

[π̂A, ω̂B] = −iℏδB
A , (ω̂Af)(ωA) = ωAf(ωA), (π̂Af)(ωA) = −iℏ

∂

∂ωA
f(ωA).

(5.71)

A convenient basis for these is provided by homogeneous functions, since they diago-

nalize the dilatation operator appearing in F1, and carry a unitary, infinite-dimensional

representation of the Lorentz group. In particular, since the simplicity constraints are

the vanishing of the ISO(2) translation generators P a, it is convenient to take a basis

diagonalizing the latter, called the null basis, instead of the canonical basis labeled by

the rotational subgroup SU(2). Denoting pa the eigenvalues, and p := −p2 + ip1, the

null basis element are the wave functions

f (ρ,k)
p (ωA) =

1

2π
(ω1)−k−1+iρ(ω̄1̇)k−1+iρ exp

�
i

2

�
ω̄0̇

ω̄1̇
p +

ω0

ω1
p̄

��
(5.72)

where (ρ ∈ R, k ∈ Z/2). Details about the SL(2,C) and ISO(2) representations can

be found in the Appendix.

To represent quadratic operators, we introduce the normal ordering

: �πω :=
1

2
(π̂Aω̂A + ω̂Aπ̂A) = −iℏ

�
ωA ∂

∂ωA
+ 1

�
. (5.73)

With this ordering, the spinorial simplicity constraints (5.23) read

F̂1 =
ℏ

2

�
(γ − i)ωA ∂

∂ωA
− (γ + i)ω̄Ȧ ∂

∂ω̄Ȧ
− 2i

�
, F̂2 = iℏω̄1 ∂

∂ω0
, ˆ̄F2 = F̂ †

2 = iℏω1 ∂

∂ω̄0
.

(5.74)

Since on each link these constraints are first class, they can be imposed as operator
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equations on states. An immediate calculation then gives

F̂1f
(ρ,k)
p (ωA) = 0 ⇒ ρ = γk, (5.75)

F̂2f
(ρ,k)
p (ωA) = ˆ̄F2f

(ρ,k)
p (ωA) = 0 ⇒ p = 0, (5.76)

so the solutions are the functions

fk(ωA) ≡ f
(γk,k)
0 (ωA) =

1

2π
(ω1)(iγ−1)k−1(ω̄1)(iγ+1)k−1. (5.77)

The formula (5.77) defines a state also for k = 0, but this case corresponds classically

to πω = 0, for which the twistorial description of T ∗SL(2,C) breaks down. To complete

the quantization, we need to provide independently the missing state. If we extrapolate

(5.77) to k = 0 we get a nontivial state, |ω1|−2, which could pose problems with

cylindrical consistency. Hence, we fix instead

f0(ω
A) = 1. (5.78)

The first thing to notice is that in the p = 0 sector P a and L3 commute, thus these

functions are also eigenfunctions of L3, with

L̂3fk(ωA) = ℏkfk(ωA), (5.79)

and thus k is the helicity eigenvalue. Next, the solutions can be expressed in terms of

the reduced phase space variable z using (5.28), obtaining

fk(ωA) =
1

2π|ω1|2

�
z̄

z

�k

. (5.80)

Notice the leftover dependence on the non-F1-invariant term |ω1|. As the action gen-

erated by F1 is noncompact, Dirac’s quantization does not lead to a proper subspace

of functions on the reduced phase space, but rather distributions. Proper function can

be defined taking into account the reduced measure.

The reduced measure can be obtained starting from (5.70), imposing the con-

straints and dividing by the gauge orbits generated by their Hamiltonian vector fields

hFi
,

dµ(z) := 4πi ιhFi
(d4ω)

���
Fi=0

, (5.81)

where ι denotes the interior product and 4πi is a normalization motivated a posteriori.
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The Hamiltonian vector fields are

hF1 := {F1, •} ≈ 1

2
(1 + iγ)ω0 ∂

∂ω0
+ iγω1 ∂

∂ω1
+ cc. hF2 := {F2, •} ≈ −2ω1 ∂

∂ω0
.

(5.82)

Evaluating the interior products gives

ιhF2
ιhF̄2

[(dωA ∧ dωA) ∧ cc.] ≈ −4|ω1|2 dω1 ∧ dω̄1, (5.83)

and

ιhF1
(dω1 ∧ dω̄1) ≈ iγ(ω1dω̄1 − ω̄1dω1). (5.84)

Putting these results together, and reintroducing z, we get

dµ(z) = −πi|ω1|4
�

dz̄

z̄
− dz

z

�
. (5.85)

Notice that the dependence on γ has disappeared, and the measure factor |ω1|4 per-

fectly compensates the one in the reduced functions (5.80).

Denoting arg(z) = −2ϕ, we have dµ(z) = 4π|ω1|4dϕ, and the proper reduced

Hilbert space is given by

fk(ϕ) = ⟨ϕ|k⟩ =
1

2π
e2ikϕ, ⟨k′|k⟩ =

1

π

� π

0
dϕ e2i(k−k′)ϕ = δkk′ , (5.86)

with k ∈ Z/2. This half-link Hilbert space already coincides with L2[SO(2)], with

operator algebra

m̂|k⟩ = k|k⟩, exp


i

ϕ̂

2


 |k⟩ = |k +

1

2
⟩. (5.87)

The next step is to consider the two copies of this Hilbert space associated with

a link, and impose the area-matching condition, but this procedure will lead trivially

to an equivalent Hilbert space.10 In fact, the quantum version of the area-matching

condition on one link corresponding to (5.18) is

Ĉ ≡: �πω : + : ��π�ω : (5.88)

10This should not come as a surprise: the whole point of the twistorial parametrization is to encode
a nonlinear space (the group manifold) into the solution to a quadratic equation of a linear space
(twistor space). But if the starting point is already linear, as in this Abelian case, the procedure is
clearly trivial.
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and imposing it strongly on a tensor product state fk(ωA) ⊗ f�k(�ωA) gives immediately

k = −�k. The state simplifies to

Fk(ξ) =
1

(2π)2
eikξ, ξ ∈ [0, 4π). (5.89)

The appropriate link measure is also obtained trivially. We have thus recovered the

initial L2[SO(2)], with holonomy-flux algebra (5.66), and further we can identify the

oriented area operator m̂ with the helicity and its eigenvalues with the label k of the

Lorentz irreps.

Finally, gauge invariance can easily be implemented, and the results are the Abelian

spin networks (5.69). Just as ordinary SU(2) spin networks can be interpreted as

quantized twisted geometries, the null spin networks represent quantized null twisted

geometries.11

The embedding allows us to define and evaluate generic Lorentz operators on the

reduced Hilbert space. For instance, the first Casimir, classically the oriented area

A2 =
1

2
BIJBIJ =

γ2

2(γ2 + 1)2

�
(γ − i)2(πω)2 + (γ + i)2(π̄ω)2

�
≈ γ2j2, (5.90)

is the last equality holding onto the constraint surface. The corresponding operator is

Â2 ≡ −γ2
ℏ

2

2(γ2 + 1)2


(γ − i)2

�
ωA ∂

∂ωA
+ 1

�2

+ (γ + i)2

�
ω̄Ȧ ∂

∂ω̄Ȧ
+ 1

�2

 , (5.91)

and on the solution space spanned by (5.89) gives

Â2Fk = ℏ
2γ2k2Fk. (5.92)

5.6 Summary

In this chapter, we have exploited the parametrization of LQG on a fixed graph in

terms of twistors to describe null hypersurfaces and their quantization in terms of

spin networks. Our construction is based on the fact that the twistors appearing in

LQG satisfy a restricted incidence relation, in turn determined by the timelike vector

appearing in the 3 + 1 decomposition of the Plebanski action. Taking this vector to

be null forces the geometric interpretation of the theory to lie on a null hypersurface,

11In other words, coherent states of (5.69) are peaked on a null twisted geometry.
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and the result is a collection of null polyhedra with spacelike faces.

The first result concerns properties of the geometry of null polyhedra. We provided

a characterization of the intrinsic shapes in terms of simple bivectors, and showed that

the space of shapes at fixed external areas is not a phase space obtained from bivectors

and the action generated by the closure constraint, as it is the case for spacelike and

timelike polyhedra, because in the null case the reduced closure condition does not

generate all of the isometries, but only the helicity part of it. The rest of the closure

is second class. The remaining isometries are in turn generated by the (global) action

of the simplicity constraints around a node. However, all the simplicity constraints

(compatible with the closure condition) are first class, not just their total sum on a

node, and their action changes the intrinsic shapes of the null polyhedron. Therefore,

the phase space obtained by symplectic reduction is much smaller, algebraically de-

scribed just by the helicity subgroup, and geometrically an equivalence class of null

polyhedra determined only by the areas and their time orientation.

The second result concerns the description of the gauge-invariant phase space.

As the helicity subgroup is Abelian, the remaining closure condition can be solved

explicitly, and proper action-angle variables given. For planar graphs, these are given

by the eigenvectors of the Laplacian of the dual graph. The action-angle variables

have a compelling geometric interpretation, as a Euclidean singular structure on the

two-dimensional spacelike surface determined by a null foliation of spacetime. In

particular, it is naturally decomposed into deficit angles and scale factors, locally

conjugated. We are not in a condition to discuss the extrinsic geometry and thus

the three-dimensional picture of the null twisted geometries, because this requires the

discrete analogue of the secondary simplicity constraints, and it is thus referred to

future work on the dynamics. However, we identified the variables in the phase space

susceptible of carrying such information.

Finally, we quantized the phase space and its algebra, introducing a notion of null

spin networks. They are Abelian spin networks, whose embedding the Lorentz group

permits one to identify the Abelian quantum number with the helicity along the null

direction of the hypersurface. We derived the spin networks by directly quantizing the

reduced phase space, and also by following Dirac’s procedure starting from a Hilbert

space for twistors. Notice that a loop-inspired quantization of null hypersurfaces has

appeared some time ago in [148]. The main difference is that the approach of [148] is

based on asymptotic quantities defined at null infinity, whereas here we look at local

quantities associated with a fixed graph. Notwithstanding this important difference,



146 Null geometry from LQG

a comparison of the two approaches would be valuable.



Chapter 6

Conclusion

The first key result is that we studied the large-j asymptotics of the Lorentzian EPRL

spin foam amplitude on a 4d simplicial complex with an arbitrary number of simplices.

The asymptotics of the spin foam amplitude is determined by the critical configura-

tions. Here we have shown that, given a critical configuration in general, there exists a

partition of the simplicial complex into three type of regions RNondeg, RDeg-A, RDeg-B,

where the three regions are simplicial sub-complexes with boundaries. The critical

configuration implies different types of geometries in different types of regions, i.e.

(1) the critical configuration restricted into RNondeg implies a nondegenerate discrete

Lorentzian geometry, (2) the critical configuration restricted into RDeg-A is degener-

ate of type-A in our definition of degeneracy, but implies a nondegenerate discrete

Euclidean geometry in RDeg-A, (3) the critical configuration restricted into RDeg-B is

degenerate of type-B, and implies a vector geometry in RDeg-B.

With the critical configuration, we subdivided the regions RNondeg and RDeg-A

into sub-complexes (with boundary) according to their Lorentzian/Euclidean oriented

four-volume V4(v) of the 4-simplices, such that sgn(V4(v)) is a constant sign on each

sub-complex. Then in the each sub-complex, the spin foam amplitude at the critical

configuration gives the Regge action in Lorentzian or Euclidean signature respectively

in RNondeg or RDeg-A. The Regge action reproduced here contains a sign prefactor

sgn(V4(v)) related to the oriented 4-volume of the 4-simplices. Therefore the Regge

action reproduced here can be viewed a discretized Palatini action with on-shell con-

nection. The asymptotic formula of the spin foam amplitude is given by a sum of the

amplitudes evaluated at all possible critical configurations, which are the products of

the amplitudes associated to different type of geometries.

The second key result is the calculation of the three-point function from LQG.
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We compute the leading order of the three-point function in loop quantum gravity,

using the vertex expansion of the Euclidean version of the new spin foam dynamics,

in the region of γ < 1. We find results consistent with Regge calculus in the limit

γ → 0, j → ∞. I also present the computation of the tree-level three-point function of

perturbative quantum general relativity in position space, and discuss the possibility

of directly comparing the two results.

Among the problem that we leave open, are the following. (i) We have computed

the three-point function in position space from perturbative quantum gravity, treated

as a flat-space quantum field theory. We have found that we cannot use here the tech-

niques of [85, 86, 94, 98] to compare this with the loop calculation, because of technical

complications in comparing the expansion. These can be traced to the different gauges

in which the calculations are performed, to the traceless condition hµ
µ = 0 which in

general is not satisfied and to the fact that the normals have a non-trivial relation with

the field Na
n = Na

n(h). (ii) The boundary vacuum state and the parameters α(ab)(cd)

introduced in Eq.(4.18) should be better understood and checked. A possibility is to

compute them from the first principle, using the unitary condition ⟨W |Ψγ⟩ = 1.1. (iii)

The gauge implicit in the use of the loop formalism is not completely clear. In weak

field expansion, the De Donder-like (harmonic) gauge, turns out to be consistent for

the lattice graviton propagator [78, 149], and with the radial structure of the loop

calculation [150]. But the extension of this to higher n-point functions in not clear.

The third key result presented in this thesis is a definition and investigation of a

quantization of null hypersurfaces in the context of loop quantum gravity on a fixed

graph. The main tool we use is the parametrization of the theory in terms of twistors,

which has already proved useful in discussing the interpretation of spin networks as

the quantization of twisted geometries. The classical formalism can be extended in

a natural way to null hypersurfaces, with the Euclidean polyhedra replaced by null

polyhedra with spacelike faces, and SU(2) by the little group ISO(2). The main

difference is that the simplicity constraints present in the formalism are all first class,

and the symplectic reduction selects only the helicity subgroup of the little group. As

a consequence, information on the shapes of the polyhedra is lost, and the result is a

much simpler, Abelian geometric picture. It can be described by a Euclidean singular

structure on the two-dimensional spacelike surface defined by a foliation of space-

time by null hypersurfaces. This geometric structure is naturally decomposed into a

conformal metric and scale factors, forming locally conjugate pairs. Proper action-

1private communication with Simone Speziale
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angle variables on the gauge-invariant phase space are described by the eigenvectors

of the Laplacian of the dual graph. We also identify the variables of the phase space

amenable to characterize the extrinsic geometry of the foliation. Finally, we quantize

the phase space and its algebra using Dirac’s algorithm, obtaining a notion of spin

networks for null hypersurfaces. Such spin networks are labeled by SO(2) quantum

numbers, and are embedded nontrivially in the unitary, infinite-dimensional irreducible

representations of the Lorentz group.

As such, our result are only a first, kinematical step toward our goal of under-

standing the dynamics of null surfaces in LQG. The applications are many and fur-

nish important motivations to our research program, from the possibility of including

dynamical effects in black hole physics and isolated horizons [151], describing the near

horizon quantum geometry, to the use in the constraint-free formulation of general rel-

ativity on null hypersurfaces. To that end, many nontivial steps are needed. First of

all, our analysis needs to be complemented with a continuum canonical analysis of the

Plebanski action on a null hypersurface. Second, our geometric description should be

compared with the null formulations of general relativity [144–146, 148], and suitable

discretizations thereof, in particular, identifying the shear degrees of freedom, and

completing the geometric picture developed here with its extrinsic geometry. On a

complementary level, one should also investigate what type of spin foams can support

the boundary data here studied (see e.g. [130]). We expect this line of research to

bring new tools and results to LQG, and to show us how deep the connection with

twistors goes.





References

[1] S. Weinberg, The Quantum Theory of Fields, Volume 1: Foundations.
Cambridge University Press, 2005.

[2] G. E. Gorelik, Matvei bronstein and quantum gravity: 70th anniversary of the
unsolved problem, Physics-Uspekhi 48 (2005), no. 10 1039–1053.

[3] A. Zee, Einstein Gravity in a Nutshell. Princeton University Press, 2013.

[4] C. Rovelli and L. Smolin, Discreteness of area and volume in quantum gravity,
Nuclear Physics B 442 (1995), no. 3 593 – 619.

[5] M. Bojowald, Absence of a singularity in loop quantum cosmology, Phys. Rev.
Lett. 86 (Jun, 2001) 5227–5230.

[6] A. Ashtekar, T. Pawlowski, and P. Singh, Quantum nature of the big bang,
Phys. Rev. Lett. 96 (Apr, 2006) 141301.

[7] J. Engle, K. Noui, and A. Perez, Black hole entropy and su(2) chern-simons
theory, Phys. Rev. Lett. 105 (Jul, 2010) 031302.

[8] E. Bianchi, Entropy of Non-Extremal Black Holes from Loop Gravity,
arXiv:1204.5122.

[9] A. Ashtekar, Lectures on Non-Perturbative Canonical Gravity, vol. 6 of
Advanced Series in Astrophysics and Cosmology. World Scientific, Singapore,
1991.

[10] A. Perez, The Spin Foam Approach to Quantum Gravity, Living Rev.Rel. 16
(2013) 3, [arXiv:1205.2019].

[11] D. Oriti, The group field theory approach to quantum gravity, in Approaches to
Quantum Gravity: Toward a New Understanding of Space, Time and Matter
(D. Oriti, ed.). Cambridge University Press, Cambridge, U.K., 2007. To
appear.

[12] L. Freidel and S. Speziale, Twisted geometries: A geometric parametrisation of
SU(2) phase space, Phys.Rev. D82 (2010) 084040, [arXiv:1001.2748].

[13] L. Freidel and S. Speziale, From twistors to twisted geometries, Phys.Rev. D82
(2010) 084041, [arXiv:1006.0199].



152 References

[14] T. Thiemann, Quantum spin dynamics (qsd), Class. Quantum Grav. 15 (1998)
839–873.

[15] M. Reisenberger and C. Rovelli, Spin foams as Feynman diagrams,
gr-qc/0002083.

[16] M. Han and M. Zhang, Asymptotics of Spinfoam Amplitude on Simplicial
Manifold: Lorentzian Theory, Class.Quant.Grav. 30 (2013) 165012,
[arXiv:1109.0499].

[17] M. Han, Cosmological Constant in LQG Vertex Amplitude, arXiv:1105.2212.
* Temporary entry *.

[18] D. Oriti, Group field theory as the 2nd quantization of loop quantum gravity,
arXiv preprint arXiv:1310.7786 (2013).

[19] M. P. Reisenberger and C. Rovelli, Spacetime as a Feynman diagram: The
connection formulation, Class. Quant. Grav. 18 (2001) 121–140,
[gr-qc/0002095].

[20] S. Carrozza, Tensorial methods and renormalization in group field theories,
arXiv preprint arXiv:1310.3736 (2013).

[21] C. W. Misner, Feynman quantization of general relativity, Rev Mod Phys 29
(1957) 497.

[22] G. W. Gibbons and S. W. Hawking, Action integrals and partition functions in
quantum gravity, Physical Review D 15 (1977), no. 10 2752.

[23] J. Hartle and S. Hawking, Wave function of the universe, Phys. Rev. D 28
(1983) 2960–2975.

[24] E. Fradkin and A. A. Tseytlin, Renormalizable asymptotically free quantum
theory of gravity, Nuclear Physics B 201 (1982), no. 3 469–491.

[25] J. J. Atick, G. Moore, and A. Sen, Catoptric tadpoles, Nuclear Physics B 307
(1988), no. 2 221–273.

[26] C. Fleischhack, Representations of the Weyl algebra in quantum geometry,
Commun.Math.Phys. 285 (2009) 67–140, [math-ph/0407006].

[27] J. Lewandowski, A. Okolów, H. Sahlmann, and T. Thiemann, Uniqueness of
diffeomorphism invariant states on holonomy-flux algebras, Commun. Math.
Phys. 267 (2005) 703–733.

[28] C. Rovelli and L. Smolin, Spin networks and quantum gravity, Phys. Rev. D52
(1995) 5743–5759, [gr-qc/9505006].

[29] A. Ashtekar and J. Lewandowski, Background independent quantum gravity: A
Status report, Class.Quant.Grav. 21 (2004) R53, [gr-qc/0404018].

[30] C. Rovelli, Zakopane lectures on loop gravity, arXiv:1102.3660.



References 153

[31] C. Rovelli and L. Smolin, Discreteness of area and volume in quantum gravity,
Nucl. Phys. B442 (1995) 593–622, [gr-qc/9411005].

[32] A. Ashtekar and J. Lewandowski, Quantum theory of geometry. I: Area
operators, Class. Quant. Grav. 14 (1997) A55–A82, [gr-qc/9602046].

[33] A. Ashtekar and J. Lewandowski, Quantum theory of geometry. II: Volume
operators, Adv. Theor. Math. Phys. 1 (1998) 388–429, [gr-qc/9711031].

[34] E. Bianchi, P. Dona, and S. Speziale, Polyhedra in loop quantum gravity,
Phys.Rev. D83 (2011) 044035, [arXiv:1009.3402].

[35] E. Bianchi and H. M. Haggard, Discreteness of the volume of space from
bohr-sommerfeld quantization, Phys. Rev. Lett. 107 (Jul, 2011) 011301.

[36] M. P. Reisenberger, World sheet formulations of gauge theories and gravity,
gr-qc/9412035.

[37] M. P. Reisenberger and C. Rovelli, ’Sum over surfaces’ form of loop quantum
gravity, Phys.Rev. D56 (1997) 3490–3508, [gr-qc/9612035].

[38] C. Rovelli, The projector on physical states in loop quantum gravity, Phys. Rev.
D59 (1999) 104015, [gr-qc/9806121].

[39] W. Kaminski, M. Kisielowski, and J. Lewandowski, Spin-Foams for All Loop
Quantum Gravity, Class.Quant.Grav. 27 (2010) 095006, [arXiv:0909.0939].

[40] J. Engle, R. Pereira, and C. Rovelli, The Loop-quantum-gravity
vertex-amplitude, Phys.Rev.Lett. 99 (2007) 161301, [arXiv:0705.2388].

[41] J. Engle, E. Livine, R. Pereira, and C. Rovelli, Lqg vertex with finite immirzi
parameter, Nuclear Physics B 799 (2008), no. 1-2 136 – 149,
[arXiv:0711.0146].

[42] L. Freidel and K. Krasnov, A new spin foam model for 4d gravity, Classical and
Quantum Gravity 25 (2008), no. 12 125018, [arXiv:0708.1595].

[43] E. R. Livine and S. Speziale, A new spinfoam vertex for quantum gravity, Phys.
Rev. D76 (2007) 084028, [arXiv:0705.0674].

[44] E. Bianchi, D. Regoli, and C. Rovelli, Face amplitude of spinfoam quantum
gravity, Class. Quant. Grav. 27 (2010) 185009, [arXiv:1005.0764].

[45] J. Engle and R. Pereira, Regularization and finiteness of the Lorentzian LQG
vertices, Phys. Rev. D79 (2009) 084034, [arXiv:0805.4696].

[46] W. Kaminski, All 3-edge-connected relativistic BC and EPRL spin- networks
are integrable, arXiv:1010.5384.

[47] A. Riello, Self-Energy of the Lorentzian EPRL-FK Spin Foam Model of
Quantum Gravity, Phys.Rev. D88 (2013) 024011, [arXiv:1302.1781].



154 References

[48] J. B. Geloun, R. Gurau, and V. Rivasseau, EPRL/FK Group Field Theory,
arXiv:1008.0354.

[49] C. Rovelli and S. Speziale, Lorentz covariance of loop quantum gravity,
Phys.Rev. D83 (2011) 104029, [arXiv:1012.1739].

[50] M. Kisielowski, J. Lewandowski, and J. Puchta, Feynman diagrammatic
approach to spinfoams, Classical and Quantum Gravity 29 (2012), no. 1 015009.

[51] C. Rovelli, Simple model for quantum general relativity from loop quantum
gravity, arXiv:1010.1939.

[52] W. Kaminski, M. Kisielowski, and J. Lewandowski, The EPRL intertwiners
and corrected partition function, Class. Quant. Grav. 27 (2010) 165020,
[arXiv:0912.0540].

[53] B. Bahr, F. Hellmann, W. Kaminski, M. Kisielowski, and J. Lewandowski,
Operator Spin Foam Models, Class.Quant.Grav. 28 (2011) 105003,
[arXiv:1010.4787].

[54] J. W. Barrett and L. Crane, Relativistic spin networks and quantum gravity, J.
Math. Phys. 39 (1998) 3296–3302, [gr-qc/9709028].

[55] J. W. Barrett and L. Crane, A Lorentzian signature model for quantum general
relativity, Class.Quant.Grav. 17 (2000) 3101–3118, [gr-qc/9904025].

[56] J. W. Barrett and I. Naish-Guzman, The Ponzano-Regge model,
Class.Quant.Grav. 26 (2009) 155014, [arXiv:0803.3319].

[57] H. Ooguri, Topological lattice models in four-dimensions, Mod. Phys. Lett. A7
(1992) 2799–2810, [hep-th/9205090].

[58] B. Bahr, B. Dittrich, F. Hellmann, and W. Kaminski, Holonomy spin foam
models: definition and coarse graining, Physical Review D 87 (2013), no. 4
044048.

[59] F. Hellmann and W. Kaminski, Geometric asymptotics for spin foam lattice
gauge gravity on arbitrary triangulations, arXiv preprint arXiv:1210.5276
(2012).

[60] B. Dittrich, F. Hellmann, and W. Kamiński, Holonomy spin foam models:
boundary hilbert spaces and time evolution operators, Classical and Quantum
Gravity 30 (2013), no. 8 085005.

[61] B. Dittrich, F. C. Eckert, and M. Martin-Benito, Coarse graining methods for
spin net and spin foam models, New Journal of Physics 14 (2012), no. 3
035008.

[62] B. Dittrich, M. Martín-Benito, and E. Schnetter, Coarse graining of spin net
models: dynamics of intertwiners, New Journal of Physics 15 (2013), no. 10
103004.



References 155

[63] A. Perelomov, Coherent states for arbitrary lie group, Communications in
Mathematical Physics 26 (1972), no. 3 222–236.

[64] F. Conrady and L. Freidel, Semiclassical limit of 4-dimensional spin foam
models, Phys. Rev. D 78 (Nov, 2008) 104023.

[65] J. W. Barrett, R. J. Dowdall, W. J. Fairbairn, H. Gomes, and F. Hellmann,
Asymptotic analysis of the eprl four-simplex amplitude, .

[66] J. W. Barrett, R. J. Dowdall, W. J. Fairbairn, H. Gomes, and F. Hellmann,
Asymptotic analysis of the EPRL four-simplex amplitude, J. Math. Phys. 50
(2009) 112504, [arXiv:0902.1170].

[67] M.-X. Han and M. Zhang, Asymptotics of Spinfoam Amplitude on Simplicial
Manifold: Euclidean Theory, Class.Quant.Grav. 29 (2012) 165004,
[arXiv:1109.0500].

[68] M. Han and T. Krajewski, Path integral representation of lorentzian spinfoam
model, asymptotics and simplicial geometries, Classical and Quantum Gravity
31 (2014), no. 1 015009.

[69] S. Speziale and W. M. Wieland, The twistorial structure of loop-gravity
transition amplitudes, Phys.Rev. D86 (2012) 124023, [arXiv:1207.6348].

[70] N. Bohr, Über die serienspektra der elemente, Zeitschrift für Physik A Hadrons
and Nuclei 2 (1920), no. 5 423–469.

[71] E. Bianchi, E. Magliaro, and C. Perini, Spinfoams in the holomorphic
representation, arXiv:1004.4550.

[72] L. Freidel and D. Louapre, Asymptotics of 6j and 10j symbols,
Class.Quant.Grav. 20 (2003) 1267–1294, [hep-th/0209134].

[73] J. W. Barrett and C. M. Steele, Asymptotics of relativistic spin networks,
Class.Quant.Grav. 20 (2003) 1341–1362, [gr-qc/0209023].

[74] J. W. Barrett, R. J. Dowdall, W. J. Fairbairn, F. Hellmann, and R. Pereira,
Lorentzian spin foam amplitudes: graphical calculus and asymptotics, Classical
and Quantum Gravity 27 (2010), no. 16 165009.

[75] E. Magliaro and C. Perini, “Regge gravity from spinfoams.” 2011.

[76] W. Ruhl, The Lorentz group and harmonic analysis. W.A. Benjamin, Inc, New
York, 1970.

[77] L. Hörmander and L. Hhormander, The analysis of linear partial differential
operators III, vol. 1990. Springer, 1985.

[78] H. W. Hamber, Quantum Gravitation: The Feynman Path Integral Approach.
Springer Press, Berlin, 2009.

[79] M. Caselle, A. D’Adda, and L. Magnea, REGGE CALCULUS AS A LOCAL
THEORY OF THE POINCARE GROUP, Phys.Lett. B232 (1989) 457.



156 References

[80] S. J. Gionti, Gabriele, Discrete approaches towards the definition of a quantum
theory of gravity, gr-qc/9812080.

[81] J. Frohlich, Regge calculus and discretized gravitational functional integrals, .

[82] F. Conrady and L. Freidel, Quantum geometry from phase space reduction, J.
Math. Phys. 50 (2009) 123510, [arXiv:0902.0351].

[83] L. Modesto and C. Rovelli, Particle scattering in loop quantum gravity, Phys.
Rev. Lett. 95 (2005) 191301, [gr-qc/0502036].

[84] C. Rovelli, Quantum Gravity. Cambridge University Press, London, 2004.

[85] C. Rovelli, Graviton propagator from background-independent quantum gravity,
Phys. Rev. Lett. 97 (2006) 151301, [gr-qc/0508124].

[86] E. Bianchi, L. Modesto, C. Rovelli, and S. Speziale, Graviton propagator in loop
quantum gravity, Class. Quant. Grav. 23 (2006) 6989–7028, [gr-qc/0604044].

[87] S. Speziale, Background-free propagation in loop quantum gravity, Adv. Sci.
Lett. 2 (2009) 280–290, [arXiv:0810.1978].

[88] J. Engle, R. Pereira, and C. Rovelli, The loop-quantum-gravity
vertex-amplitude, Phys. Rev. Lett. 99 (2007) 161301, [arXiv:0705.2388].

[89] J. Engle, R. Pereira, and C. Rovelli, Flipped spinfoam vertex and loop gravity,
Nucl. Phys. B798 (2008) 251–290, [arXiv:0708.1236].

[90] R. Pereira, Lorentzian LQG vertex amplitude, Class. Quant. Grav. 25 (2008)
085013, [arXiv:0710.5043].

[91] L. Freidel and K. Krasnov, A New Spin Foam Model for 4d Gravity, Class.
Quant. Grav. 25 (2008) 125018, [arXiv:0708.1595].

[92] J. Engle, E. Livine, R. Pereira, and C. Rovelli, LQG vertex with finite Immirzi
parameter, Nucl. Phys. B799 (2008) 136–149, [arXiv:0711.0146].

[93] E. Alesci, E. Bianchi, and C. Rovelli, LQG propagator: III. The new vertex,
Class. Quant. Grav. 26 (2009) 215001, [arXiv:0812.5018].

[94] E. Bianchi, E. Magliaro, and C. Perini, LQG propagator from the new spin
foams, Nucl. Phys. B822 (2009) 245–269, [arXiv:0905.4082].

[95] E. R. Livine and S. Speziale, Group integral techniques for the spinfoam
graviton propagator, JHEP 11 (2006) 092, [gr-qc/0608131].

[96] T. Regge, General relativity without coordinates, Nuovo Cim. 19 (1961)
558–571.

[97] E. Bianchi and L. Modesto, The perturbative regge-calculus regime of loop
quantum gravity, Nuclear Physics B 796 (2008), no. 3 581 – 621,
[arXiv:0709.2051].



References 157

[98] E. Alesci and C. Rovelli, The complete LQG propagator: I. Difficulties with the
Barrett-Crane vertex, Phys. Rev. D76 (2007) 104012, [arXiv:0708.0883].

[99] E. Alesci and C. Rovelli, The complete LQG propagator: II. Asymptotic
behavior of the vertex, Phys. Rev. D77 (2008) 044024, [arXiv:0711.1284].

[100] R. Oeckl, General boundary quantum field theory: Foundations and probability
interpretation, Adv. Theor. Math. Phys. 12 (2008) 319–352, [hep-th/0509122].

[101] R. Oeckl, A ’general boundary’ formulation for quantum mechanics and
quantum gravity, Phys. Lett. B575 (2003) 318–324, [hep-th/0306025].

[102] C. Rovelli and M. Smerlak, Spinfoams: summing = refining, arXiv:1010.5437.

[103] E. Magliaro and C. Perini, Curvature in spinfoams, arXiv:1103.4602.

[104] A. Ashtekar, C. Rovelli, and L. Smolin, Weaving a classical geometry with
quantum threads, Phys. Rev. Lett. 69 (1992) 237–240, [hep-th/9203079].

[105] J. Iwasaki and C. Rovelli, Gravitons as embroidery on the weave, Int. J. Mod.
Phys. D1 (1993) 533–557.

[106] J. Iwasaki and C. Rovelli, Gravitons from loops: Nonperturbative loop space
quantum gravity contains the graviton physics approximation, Class. Quant.
Grav. 11 (1994) 1653–1676.

[107] F. Conrady and L. Freidel, Path integral representation of spin foam models of
4d gravity, Class. Quant. Grav. 25 (2008) 245010, [arXiv:0806.4640].

[108] J. W. Barrett, R. J. Dowdall, W. J. Fairbairn, H. Gomes, and F. Hellmann, A
Summary of the asymptotic analysis for the EPRL amplitude,
arXiv:0909.1882.

[109] D. Colosi et al., Background independence in a nutshell: The dynamics of a
tetrahedron, Class. Quant. Grav. 22 (2005) 2971–2990, [gr-qc/0408079].

[110] C. Rovelli and S. Speziale, On the geometry of loop quantum gravity on a
graph, Phys. Rev. D82 (2010) 044018, [arXiv:1005.2927].

[111] H. Sahlmann, T. Thiemann, and O. Winkler, Coherent states for canonical
quantum general relativity and the infinite tensor product extension, Nucl.
Phys. B606 (2001) 401–440, [gr-qc/0102038].

[112] T. Thiemann, Complexifier coherent states for quantum general relativity,
Class. Quant. Grav. 23 (2006) 2063–2118, [gr-qc/0206037].

[113] E. Bianchi, E. Magliaro, and C. Perini, Coherent spin-networks, Phys. Rev.
D82 (2010) 024012, [arXiv:0912.4054].

[114] A. Zee, Quantum Field Theory in a Nutshell. Princeton University Press, New
Jersy, 2010.

[115] “Saddle Point Method of Asymptotic Expansion.”



158 References

[116] F. Conrady and L. Freidel, Path integral representation of spin foam models of
4d gravity, Classical and Quantum Gravity 25 (2008), no. 24 245010,
[arXiv:0806.4640].

[117] J. F. Donoghue, General relativity as an effective field theory: The leading
quantum corrections, Phys. Rev. D 50 (Sep, 1994) 3874–3888.

[118] L. Modesto, Perturbative quantum gravity in analogy with fermi theory of weak
interactions using bosonic tensor fields, General Relativity and Gravitation 37
(Jan, 2005) [hep-th/0312318].

[119] P. Francesco, P. Mathieu, and D. Senechal, Conformal Field Theory. Springer
Press, 1996.

[120] B. Dittrich, L. Freidel, and S. Speziale, Linearized dynamics from the 4-simplex
Regge action, Phys. Rev. D76 (2007) 104020, [arXiv:0707.4513].

[121] R. Friedberg and T. Lee, Derivation of Regge’s action from Einstein’s theory of
general relativity, Nucl.Phys. B242 (1984) 145.

[122] G. Feinberg, R. Friedberg, T. Lee, and H. Ren, Lattice gravity near the
continuum limit, Nucl.Phys. B245 (1984) 343.

[123] E. Bianchi, M. Han, E. Magliaro, C. Perini, C. Rovelli, and W. Wieland,
Spinfoam fermions, arXiv:1012.4719. * Temporary entry *.

[124] M. Han and C. Rovelli, Spinfoam Fermions: PCT Symmetry, Dirac
Determinant, and Correlation Functions, arXiv:1101.3264.

[125] W. J. Fairbairn and C. Meusburger, Quantum deformation of two
four-dimensional spin foam models, arXiv:1012.4784.

[126] M. Han, 4-dimensional Spin-foam Model with Quantum Lorentz Group,
arXiv:1012.4216.

[127] E. Bianchi, T. Krajewski, C. Rovelli, and F. Vidotto, Cosmological constant in
spinfoam cosmology, arXiv:1101.4049.

[128] S. Alexandrov and Z. Kádár, Timelike surfaces in lorentz covariant loop gravity
and spin foam models, Classical and Quantum Gravity 22 (2005), no. 17 3491.

[129] F. Conrady and J. Hnybida, A spin foam model for general Lorentzian
4-geometries, Class.Quant.Grav. 27 (2010) 185011, [arXiv:1002.1959].

[130] Y. Neiman, Causal cells: spacetime polytopes with null hyperfaces,
arXiv:1212.2916.

[131] L. Freidel, K. Krasnov, and E. R. Livine, Holomorphic factorization for a
quantum tetrahedron, Communications in Mathematical Physics 297 (2010),
no. 1 45–93.

[132] W. M. Wieland, Twistorial phase space for complex Ashtekar variables,
Class.Quant.Grav. 29 (2012) 045007, [arXiv:1107.5002].



References 159

[133] M. Dupuis, L. Freidel, E. R. Livine, and S. Speziale, Holomorphic Lorentzian
Simplicity Constraints, arXiv:1107.5274.

[134] E. R. Livine, S. Speziale, and J. Tambornino, Twistor Networks and Covariant
Twisted Geometries, arXiv:1108.0369.

[135] S. Speziale and W. M. Wieland, The twistorial structure of loop-gravity
transition amplitudes, arXiv:1207.6348.

[136] L. Freidel and J. Hnybida, A discrete and coherent basis of intertwiners,
Classical and Quantum Gravity 31 (2014), no. 1 015019.

[137] M. Carfora, C. Dappiaggi, and A. Marzuoli, The Modular geometry of random
Regge triangulations, Class.Quant.Grav. 19 (2002) 5195–5220,
[gr-qc/0206077].

[138] M. Kapovich, J. J. Millson, and T. Treloar, The symplectic geometry of
polygons in hyperbolic 3-space, math/9907143.

[139] S. Alexandrov, E. Buffenoir, and P. Roche, Plebanski theory and covariant
canonical formulation, Class.Quant.Grav. 24 (2007) 2809–2824,
[gr-qc/0612071].

[140] J. Engle, E. Livine, R. Pereira, and C. Rovelli, LQG vertex with finite Immirzi
parameter, Nucl.Phys. B799 (2008) 136–149, [arXiv:0711.0146].

[141] S. Alexandrov and E. R. Livine, SU(2) loop quantum gravity seen from
covariant theory, Phys.Rev. D67 (2003) 044009, [gr-qc/0209105].

[142] C. Rovelli and S. Speziale, On the geometry of loop quantum gravity on a
graph, Phys.Rev. D82 (2010) 044018, [arXiv:1005.2927].

[143] W. M. Wieland, Twistorial phase space for complex Ashtekar variables,
Class.Quant.Grav. 29 (2012) 045007, [arXiv:1107.5002].

[144] M. P. Reisenberger, The symplectic 2-form and poisson bracket of null
canonical gravity, arXiv preprint gr-qc/0703134 (2007).

[145] R. Sachs, On the characteristic initial value problem in gravitational theory,
J.Math.Phys. 3 (1962) 908–914.

[146] M. P. Reisenberger, The Poisson bracket on free null initial data for gravity,
Phys.Rev.Lett. 101 (2008) 211101, [arXiv:0712.2541].

[147] S. Alexandrov, Simplicity and closure constraints in spin foam models of
gravity, Phys.Rev. D78 (2008) 044033, [arXiv:0802.3389].

[148] S. Frittelli, C. N. Kozameh, E. T. Newman, C. Rovelli, and R. S. Tate, On the
quantization of the null-surface formulation of GR, Phys. Rev. D56 (1997)
889–907, [gr-qc/9612010].

[149] M. Rocek and R. M. Williams, Quantum Regge calculus, Phys.Lett. B104
(1981) 31.



160 References

[150] E. Magliaro, C. Perini, and C. Rovelli, Compatibility of radial, Lorenz and
harmonic gauges, Phys. Rev. D76 (2007) 084013, [arXiv:0704.0992].

[151] A. Ashtekar, J. C. Baez, and K. Krasnov, Quantum geometry of isolated
horizons and black hole entropy, Adv. Theor. Math. Phys. 4 (2000) 1–94,
[gr-qc/0005126].



Appendix A

Conventions

I use A, B, C, . . . for spinor indices in the left-handed representation; Ȧ, Ḃ, Ċ, . . . in

the right-handed representation; I, J, K, . . . the Minkowski indices; and i, j, k, . . . space

indices running from 1 to 3. A bijection between Minkowski space and spinors is given

by

MAȦ =
i√
2

M IσAȦ
I , (A.1)

where σAȦ
I = (1, σ⃗) and σA

jB = σAȦ
j δBȦ are Pauli matrices. Notice that we are map-

ping vectors to anti-Hermitian matrices consistently with Minkowski metric signature

(−, +, +, +). The normalization of the Levi-Civita tensor is ϵ0123 = 1. We raise and

lower spinor indices with

ϵAB =


 0 1

−1 0


 = ϵAB, ϵABϵAC = δB

C , ωA = ϵABωB, ωA = ϵBAωB. (A.2)

For the Lorentz algebra, we define

[Li, Lj] = −iϵijkLk, [Li, Kj] = −iϵijkKk, [K i, Kj] = iϵijkLk (A.3)

in terms of rotations Li ≡ −1
2
ϵ0i

jkM jk and boosts K i ≡ M0i. We also introduce

left-handed (−, anti-self-dual) and right-handed (+, self-dual) projectors P(±), as

P IJ
(±)KL =

1

2

�
δ

[I
Kδ

J ]
L ∓ i

2
ϵIJ

KL

�
, (A.4)
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and the left-handed generators are defined as

Π
i := iP 0i

(−)IJM IJ =
1

2
(Li + iK i). (A.5)

In general the spinorial form of a bivector is

BIJ = BABϵȦḂ + cc, (A.6)

where the left-handed and right-handed parts are

Bi = P 0i
(−)IJBIJ =

1

2
BABσi

AB, B̄i = P 0i
(+)IJBIJ =

1

2
B̄ȦḂσ̄i

ȦḂ. (A.7)

In terms of the self-dual quantities, the Immirzi shift (5.11) reads

Π
i =

γ + i

γ
Bi, Π

AB = −1

2

γ + i

iγ
BAB. (A.8)



Appendix B

Null little group and its

representation

B.1 Null little group

The group ISO(2), sometimes denoted as E(2), is the symmetry group of two-dimensional

Euclidean space R
2. It is not compact, nor semisimple. Its Lie algebra iso(2) has three

generators, J , P 1 and P 2, satisfying

[J, P a] = iϵabP b, [P a, P b] = 0, (a, b = 1, 2). (B.1)

J is the generator of rotations in R
2, and P a generate the translations.

This Lie group appears as the little group of a null direction N I in Minkowski

space, with generators related to the Lorentz generators M IJ by

XI =
1√
2

ϵI
JKLNJMKL (B.2)

Two canonical choices are N I
± = (1, 0, 0, ±1)/

√
2. In this two cases, the generators

are,

L3, P 1
+ ≡ P 1 = L1 − K2, P 2

+ ≡ P 2 = L2 + K1, (B.3)

L3, P 1
− ≡ �P 1 = L1 + K2, P 2

− ≡ �P 2 = L2 − K1, (B.4)
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and satisfy

[L3, P a
±] = iϵabP b

±, [P a
±, P b

±] = 0, [P a
±, P b

∓] = 2i(ϵabL3 ± δabK3). (B.5)

On the fundamental representation (1/2, 0) of sl(2,C), the generators are

L3 =
1

2


1 0

0 −1


 , P 1 =


0 −1

0 0


 , P 2 =


0 i

0 0


 , �P 1 =


 0 0

−1 0


 , �P 2 =


 0 0

−i 0




(B.6)

Exponentiating the generators we get the respective group elements,

gA
B =


e

i
2

θ −p

0 e− i
2

θ


 , �gA

B =


e

i
2

θ 0

p̄ e− i
2

θ


 , p := −p2 + ip1. (B.7)

B.2 Unitary irreducible representation of ISO(2) and

SL(2,C)

Unitary irreducible representations (irreps) of ISO(2) are complex function f on C,

with basis labeled by the eigenvalues pa ∈ R of P a,

fp(z) =
1

2π
e

i
2

(z̄p+zp̄), z = −z2 + iz1, p ≡ −p2 + ip1 (B.8)

[P a ◦ fp](z) = pafp(z), [L3 ◦ fp](z) = (z∂z − z̄∂z̄)fp(z) (B.9)

The basis is orthogonal,

⟨fp, fp′⟩ =
i

2

�

C

dz ∧ dz̄ fp(z)fp′(z) =
i

8π2

�

C

dz ∧ dz̄ e
i
2

z̄(p′−p)−cc. = δC(p′ − p), (B.10)

and complete,

i

2

�

C

dp ∧ dp̄ fp(z)fp(z′) =
i

8π2

�

C

dp ∧ dp̄ e
i
2

p̄(z′−z)−cc. = δC(z′ − z). (B.11)

Thanks to these properties, and the induced representations theorem, irreps of SL(2,C)

can be spanned by irreps of ISO(2), with a faithful one-to-one map.

To make the map explicit, recall that irreps of SL(2,C) are built from homogeneous

functions on C
2, f : C2 → C. For the principal series, the homogeneity weights can
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be conveniently parametrized by the pair (ρ, k) ∈ (R,Z/2) as follows:

∀λ ∈ C/{0}, f(λωA) = λ−k−1+iρλ̄k−1+iρf(ωA), (B.12)

and the unitary irrep D(g) of gA
B = ( a b

c d ) ∈ SL(2,C) is given by

[D(g) ◦ f (ρ,k)](ωA) = f (ρ,k)(gA
BωB). (B.13)

Then, we define ω = ω0/ω1, and

f (ρ,k)(ω) := f (ρ,k)

�
ω0

ω1
, 1

�
= (ω1)k+1−iρ(ω̄1̄)−k+1−iρf (ρ,k)(ωA). (B.14)

By inverting this relation, each homogeneous function f (ρ,k)(ωA) ∈ H(ρ,k)(ωA) is

uniquely determined by a f (ρ,k)(ω), and picking in particular the basis (B.8) for the

latter, we find

f (ρ,k)
p (ωA) = (ω1)−k−1+iρ(ω̄1̄)k−1+iρf (ρ,k)

p (ω) =
1

2π
(ω1)−k−1+iρ(ω̄1̄)k−1+iρe

i
2

�
ω̄0̄

ω̄1̄
p+ ω0

ω1 p̄

�
.

(B.15)

This defines the null basis for the principal series of SL(2,C) irreps.

The SL(2,C) action is

[D(g) ◦ f (ρ,k)](ω) = (cω + d)−k−1+iρ(cω + d)
k−1+iρ

f (ρ,k)

�
aω + b

cω + d

�
, (B.16)

and the inner product

⟨f, h⟩(ρ,k) =
i

2

�

C

f (ρ,k)(ω)h(ρ,k)(ω)dω∧dω̄ =
i

2

�

PC2
f (ρ,k)(ωA)h(ρ,k)(ωA)ωAdωA∧ω̄Ādω̄Ā.

(B.17)

In particular,

⟨f (ρ,k)
p , f

(ρ,k)
p′ ⟩ = δC(p′ − p). (B.18)




