Empirical processes of multiple mixing data

par Marco Tusche

Thèse de doctorat en Mathématiques, spécialité Probabilités

Sous la direction de Emmanuel Lesigne, Herold Dehling et de Olivier Durieu.

Le président du jury était Gerhard Knieper.

Le jury était composé de Manfred Denker.

Les rapporteurs étaient Jérôme Dedecker, Manfred Denker.

  • Titre traduit

    Processus empiriques de données à mélange multiple


  • Résumé

    Cette thèse étudie la convergence en loi des processus empiriques de données à mélange multiple. Son contenu correspond aux articles : Durieu et Tusche (2012), Dehling, Durieu, et Tusche (2012), et Dehiing, Durieu et Tusche (2013). Nous suivons l’approche par approximation introduite dans Dehling, Durieu, et Vo1n (2009) et Dehling and Durieu (2011), qui ont établi des théorèmes limite centraux empiriques pour des variables aléatoires dépendants à valeurs dans R ou RAd, respectivement. En développant leurs techniques, nous généralisons leurs résultats à des espaces arbitraires et à des processus empiriques indexés par des classes de fonctions. De plus, nous étudions des processus empiriques séquentiels. Nos résultats s’appliquent aux chaînes de Markov B-géométriquement ergodiques, aux modèles itératifs lipschitziens, aux systèmes dynamiques présentant un trou spectral pour l’opérateur de Perron-Frobenius associé, ou encore, aux automorphismes du tore. Nous établissons des conditions garantissant la convergence du processus empirique de tels modèles vers un processus gaussien.


  • Résumé

    The present thesis studies weak convergence of empirical processes of multiple mixing data. It is based on the articles Durieu and Tusche (2012), Dehling, Durieu, and Tusche (2012), and Dehling, Durieu, and Tusche (2013). We follow the approximating class approach introduced by Dehling, Durieu, and Voln (2009)and Dehling and Durieu (2011), who established empirical central limit theorems for dependent R- and R”d-valued random variables, respectively. Extending their technique, we generalize their results to arbitrary state spaces and to empirical processes indexed by classes of functions. Moreover we study sequential empirical processes. Our results apply to B-geometrically ergodic Markov chains, iterative Lipschitz models, dynamical systems with a spectral gap on the Perron—Frobenius operator, and ergodic toms automorphisms. We establish conditions under which the empirical process of such processes converges weakly to a Gaussian process.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Tours. Service commun de la documentation. Bibliothèque de ressources en ligne.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.