Random fields and associated statistical inverse problems for uncertainty quantification : application to railway track geometries for high-speed trains dynamical responses and risk assessment
Auteur / Autrice : | Guillaume Perrin |
Direction : | Denis Duhamel |
Type : | Thèse de doctorat |
Discipline(s) : | Mécanique |
Date : | Soutenance le 24/09/2013 |
Etablissement(s) : | Paris Est |
Ecole(s) doctorale(s) : | École doctorale Sciences, Ingénierie et Environnement (Champs-sur-Marne, Seine-et-Marne ; 2010-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Navier (Paris-Est) |
Jury : | Président / Présidente : Didier Clouteau |
Examinateurs / Examinatrices : Didier Clouteau, Christian Soize, Christine Funfschilling, Jean Giorla | |
Rapporteur / Rapporteuse : Anthony Nouy, Olivier Le Maitre |
Mots clés
Résumé
Les nouvelles attentes vis-à-vis des nouveaux trains à grande vitesse sont nombreuses: on les voudrait plus rapides, plus confortables, plus stables, tout en étant moins consommateur d'énergie, moins agressif vis-à-vis des voies, moins bruyants… Afin d'optimiser la conception de ces trains du futur, il est alors nécessaire de pouvoir se baser sur une connaissance précise de l'ensemble des conditions de circulations qu'ils sont susceptibles de rencontrer au cours de leur cycle de vie. Afin de relever ces défis, la simulation a un très grand rôle à jouer. Pour que la simulation puisse être utilisée dans des perspectives de conception, de certification et d'optimisation de la maintenance, elle doit alors être tout à fait représentative de l'ensemble des comportements physiques mis en jeu. Le modèle du train, du contact entre les roues et le rail, doivent ainsi être validés avec attention, et les simulations doivent être lancées sur des ensembles d'excitations qui sont réalistes et représentatifs de ces défauts de géométrie. En ce qui concerne la dynamique, la géométrie de la voie, et plus particulièrement les défauts de géométrie, représentent une des principales sources d'excitation du train, qui est un système mécanique fortement non linéaire. A partir de mesures de la géométrie d'un réseau ferroviaire, un paramétrage complet de la géométrie de la voie et de sa variabilité semblent alors nécessaires, afin d'analyser au mieux le lien entre la réponse dynamique du train et les propriétés physiques et statistiques de la géométrie de la voie. Dans ce contexte, une approche pertinente pour modéliser cette géométrie de la voie, est de la considérer comme un champ aléatoire multivarié, dont les propriétés sont a priori inconnues. En raison des interactions spécifiques entre le train et la voie, il s'avère que ce champ aléatoire n'est ni Gaussien ni stationnaire. Ce travail de thèse s'est alors particulièrement concentré sur le développement de méthodes numériques permettant l'identification en inverse, à partir de mesures expérimentales, de champs aléatoires non Gaussiens et non stationnaires. Le comportement du train étant très non linéaire, ainsi que très sensible vis-à-vis de la géométrie de la voie, la caractérisation du champ aléatoire correspondant aux défauts de géométrie doit être extrêmement fine, tant du point de vue fréquentiel que statistique. La dimension des espaces statistiques considérés est alors très importante. De ce fait, une attention toute particulière a été portée dans ces travaux aux méthodes de réduction statistique, ainsi qu'aux méthodes pouvant être généralisées à la très grande dimension. Une fois la variabilité de la géométrie de la voie caractérisée à partir de données expérimentales, elle doit ensuite être propagée au sein du modèle numérique ferroviaire. A cette fin, les propriétés mécaniques d'un modèle numérique de train à grande vitesse ont été identifiées à partir de mesures expérimentales. La réponse dynamique stochastique de ce train, soumis à un très grand nombre de conditions de circulation réalistes et représentatives générées à partir du modèle stochastique de la voie ferrée, a été ainsi évaluée. Enfin, afin d'illustrer les possibilités apportées par un tel couplage entre la variabilité de la géométrie de la voie et la réponse dynamique du train, ce travail de thèse aborde trois applications