Contribution à la modélisation champs de phase des dislocations

par Pierre-Antoine Geslin

Thèse de doctorat en Physique et Chimie des Matériaux

Sous la direction de Alphonse Finel.

Soutenue en 2013

à Paris 6 .


  • Résumé

    Le comportement plastique des alliages métalliques est très souvent influencé par les interactions entre les précipités d'une seconde phase et les dislocations, dont la dynamique peut être étudiée par des méthodes de type champ de phase. En effet, ces méthodes présentent comme principal avantage leur caractère variationnel qui rend naturel le couplage avec la dynamique d'autres défauts (solutés, lacunes, précipités de seconde phase. . . ). Ces travaux de thèse s'inscrivent dans ce contexte en proposant de nouveaux modèles champ de phase permettant d'étudier le comportement des dislocations, leurs interactions avec des précipités de seconde phase ainsi que les mécanismes de montée par absorption/émission de lacunes. Nous proposons tout d'abord un modèle d'élasticité non-linéaire, tenant compte du glissement des dislocations ainsi que de leur nucléation et du glissement dévié. L'utilisation de ce modèle permet de confirmer les mécanismes de perte de cohérence des précipités par la nucléation de boucles prismatiques envisagés dans des études antérieures. Nous proposons ensuite un couplage de cette approche avec un modèle tenant compte de l'évolution microstructurale de précipités AlS_3SSc dans une matrice d'aluminium. Nous montrons notamment que les dislocations peuvent modifier significativement la morphologie de l'interface des précipités, ce qui peut affecter la réponse mécanique du matériau. Enfin, nous développons un modèle champ de phase pour la montée des dislocations tenant compte de la diffusion des lacunes. Nous nous attachons en particulier à étudier le caractère limitant du mécanisme d'absorption/émission de lacunes au niveau du cœur des dislocations.

  • Titre traduit

    Contribution to the fields of modeling phase dislocations


  • Résumé

    The plastic behavior of metallic alloys is often influenced by the interactions between second phase precipitates and dislocations. The dynamics of these linear defects can be investigated by phase-field methods whose main advantage is their variational nature, which enables a natural coupling with the dynamics of other defects (solute atoms, vacancies, second phase precipitates. . . ). The purpose of this thesis is to develop phase field models able to study dislocations behavior, their interactions with second phase precipitates and climb mechanisms by vacancy absorption/emission. We first propose an elastically non-linear phase-field model that naturally accounts for dislocations glide, nucleation and cross-slip. Using this model, we confirm that coherency loss of precipitates can occur by prismatic punching mechanisms, as proposed in previous studies. Then, we propose a coupling between this approach and a phase field model for microstructural evolutions and apply it to the analysis of AlS_3SSc precipitates in an aluminum matrix. We show that dislocations can modify significantly the precipitate interface morphology, which in turn can influence the mechanical response of the alloy. Finally, we propose a phase-field model for dislocation climb by vacancy diffusion and absorption/emission. We specially investigate the limiting character of the absorption/emission mechanisms at the dislocation core.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (VI-139 p.)
  • Annexes : Bibliogr. p.127-139

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Sorbonne Université. Bibliothèque de Sorbonne Université. Bibliothèque Biologie-Chimie-Physique Recherche.
  • Accessible pour le PEB
  • Cote : T PARIS 6 2013 608
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.