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Soutenue le 12 Décembre 2013 devant le jury composé de :
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Abstract:

The contribution of this Ph.D consists in a formalism and a methodology to perform

linear stability analysis of turbulent flows. The flow dynamics is modelled using the

RANS equations closed with a turbulence model, and we focus on the instabilities as-

sociated with the large scale structures of turbulence. A global formulation is adopted

so as to allow complex geometries analysis. A discrete framework is considered, where

the equations are first discretized and then linearized. In particular, the linearization is

performed using finite differences. This procedure ensures the generic character of the

method regarding the system of equations such as the turbulence model for example, and

avoids tedious analytical linearization. Furthermore, it allows to use a numerical code

in a black-box manner in order to perform linear stability analysis. Finally, we demon-

strate that the sensitivity gradients can be computed within this framework for both

laminar and turbulent flows. Sensitivity analysis carries valuable information regarding

the location where steady control means can affect the flow unsteadiness, enabling the

design of robust strategies for open loop control.

The method is first tested on two laminar cases, reproducing former studies concerned

with the oscillators dynamics of the wake behind a two dimensional cylinder, and the

characterization of a laminar boundary layer as a noise amplifier. The robustness and

validity of our procedure is then extensively studied on a compressible turbulent flow

over a deep cavity. Numerical validations are performed, ensuring the correctness of

our sensitivity gradients up to 3%, and the flow physics, including unstable mode anal-

ysis, acoustics, impact of turbulence modeling, is analysed. In order to enhance the

portability and the valuable information carried out by our method, we present several

preliminary studies that were performed using our formalism. First, we revisit the tran-

sonic buffet over an airfoil, the noise amplifier dynamics of a turbulent shock-boundary

layer interaction is then characterized and we conclude with an analysis of the screech

phenomenon in under-expanded jets. Finally, we conclude this work by studying the

turbulent wake behind a D-shaped cylinder, and show the potential of our method for

industrial applications.

Keywords: Global Stability, Sensitivity Analysis, Turbulence, RANS and URANS Dy-

namics, Passive Control, Jacobian matrix, Hessian, Finite Differences, Discrete Methods.



Résumé:

La contribution majeure de cette thèse consiste en un formalisme et une méthodologie

permettant de réaliser une analyse de stabilité globale des écoulements turbulents. La

dynamique de ces écoulements est modélisée à l’aide des équations moyennées RANS,

on s’intéresse ainsi à l’évolution des grandes échelles turbulentes. Un formalisme global

est adopté permettant d’analyser des écoulements complexes. Une approche de type

discrète est proposée, où les équations sont d’abord discrétisées puis linéarisées par

différences finies. Cette approche permet d’adopter une stratégie générique vis à vis

du système d’équations utilisées, comme le choix d’un modèle turbulent, et évite une

linéarisation analytique fastidieuse des équations. Par ailleurs, cette méthode permet

également l’utilisation systématique d’un code de simulation numérique afin de réaliser

une étude de stabilité linéaire. Enfin, on démontre que l’analyse de la sensibilité à

des perturbations stationnaires peut être réalisée grâce à ce formalisme et ce pour des

écoulements laminaires et turbulents. Cette analyse détermine les zones où un contrôle

stationnaire permettrait de réduire les instationnarités observées, facilitant la conception

de stratégies efficaces de contrôle en boucle ouverte.

La méthode est testée en premier lieu sur deux écoulements laminaires, où l’on re-

produit les résultats obtenus par de précédentes études sur la dynamique d’oscillateur

du sillage d’un cylindre bidimensionnel ainsi que sur la dynamique d’amplificateur de

bruit d’une couche limite. La robustesse et la validité de notre méthode sont ensuite

analysées sur un cas d’écoulement compressible et turbulent dans une cavité profonde.

La précision des gradients de sensibilité est vérifiée, et la physique de l’écoulement,

modes instables, propriétés acoustiques, impact de la modélisation de la turbulence, est

détaillée. Afin de mieux appréhender la portabilité ainsi que la valeur ajoutée de notre

méthode, on présentera ensuite trois cas d’études réalisées à l’aide de nos outils. On

s’intéressera en premier lieu au phénomène de buffet sur un profil bidimensionnel, puis

on présentera des résultats obtenus sur la caractérisation comme amplificateur de bruit

d’un cas d’interaction de choc-couche limite, enfin une analyse du screech dans les jets

sous détendus sera proposée. Enfin, on présente en dernier lieu la dynamique turbulente

du sillage derrière un cylindre en forme de D, où le potentiel industriel de notre approche

est mis en vidence.

Mots clés: Stabilité Globale, Analyse de Sensibilié, Turbulence, Dynamiques RANS et

URANS, Contrôle passif, Matrice Jacobienne, Hessienne, Differences Finies, Méthodes

Discrètes.



Contents

1 Introduction 1

1.1 Flow dynamics characterization . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Unsteady flows in fluid dynamics . . . . . . . . . . . . . . . . . . . 1

1.1.2 Local and global stability . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Non-normality of the Jacobian . . . . . . . . . . . . . . . . . . . . 3

1.2 Passive control of laminar flows . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Sensitivity of oscillators . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Sensitivity of noise amplifiers . . . . . . . . . . . . . . . . . . . . . 5

1.3 Extension to turbulent flows . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 RANS equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Frozen eddy viscosity . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Eddy viscosity fluctuations and sensitivity analysis . . . . . . . . . 8

1.4 Linearization strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Continuous framework . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.2 Discrete framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Scope of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.1 Generic method using finite differences . . . . . . . . . . . . . . . . 11

1.5.2 Linear dynamics and passive control of turbulent flows . . . . . . . 11

1.6 Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Global stability analysis in a discrete framework 13

2.1 Jacobian matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Unstable modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Sensitivity gradients of the unstable eigenvalue . . . . . . . . . . . 15

2.2.3 Comparison with a continuous approach . . . . . . . . . . . . . . . 17

2.3 Noise amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Optimal forcing and response . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Sensitivity gradients of the singular eigenvalue . . . . . . . . . . . 20

2.3.3 Kinetic energy maximization . . . . . . . . . . . . . . . . . . . . . 22

2.3.4 Forcing restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.5 Method summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Numerical aspects 27

3.1 Numerical strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Explicit storage of matrices with direct inversions . . . . . . . . . . 27

v



Contents vi

3.1.2 On-the-fly computation . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Efficient evaluation of matrices with explicit storage . . . . . . . . . . . . 29

3.2.1 Example case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Jacobian computation . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Hessian computation . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.4 Adequate choice of linearization parameters . . . . . . . . . . . . . 34

3.2.5 Adaptation of optimization codes . . . . . . . . . . . . . . . . . . . 34

3.3 RANS equations and turbulence models . . . . . . . . . . . . . . . . . . . 35

3.3.1 Mean field variables . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 k − ω model of Wilcox . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Spalart-Allmaras model . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.4 Numerical schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.5 Treatment of boundary conditions . . . . . . . . . . . . . . . . . . 40

3.3.6 Shape optimization code adaptation . . . . . . . . . . . . . . . . . 40

3.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Validation on laminar flows 43

4.1 Wake behind a two dimensional cylinder . . . . . . . . . . . . . . . . . . . 43

4.1.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.2 Critical Reynolds number . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.3 Direct and adjoint unstable mode . . . . . . . . . . . . . . . . . . . 46

4.1.4 Sensitivity gradient to baseflow perturbations . . . . . . . . . . . . 47

4.2 Evolving boundary layer over a flate plate . . . . . . . . . . . . . . . . . . 50

4.2.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 Optimal gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.3 Mesh convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.4 Optimal forcing and response . . . . . . . . . . . . . . . . . . . . . 55

4.2.5 Gain sensitivity to baseflow perturbation . . . . . . . . . . . . . . 56

4.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Sensitivity analysis of a turbulent compressible flow over a deep cavity 59

5.1 Characterization of the cavity . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.2 Baseflow computation . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.3 Unsteady dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.4 Memory cost of Jacobian computation, storage and inversion . . . 63

5.2 Flow dynamics analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Linear stability versus unsteady simulations . . . . . . . . . . . . . 64

5.2.2 Mesh discretization impact on the spectrum . . . . . . . . . . . . . 65

5.2.3 Unstable modes analysis . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.4 Influence of the system of equations . . . . . . . . . . . . . . . . . 68

5.2.5 Spectrum convergence with the linearization parameter . . . . . . 72

5.2.6 Adjoint modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Sensitivity gradient to baseflow perturbations ∇wb
λ . . . . . . . . 74

5.3.2 Validation of the gradient ∇wb
λ . . . . . . . . . . . . . . . . . . . 76

5.3.3 Steady control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



Contents vii

5.4 Detailed analysis of the Spalart-Allmaras model . . . . . . . . . . . . . . . 80

5.4.0.1 Discontinuities in the gradient . . . . . . . . . . . . . . . 80

5.4.0.2 Numerical origin . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.0.3 Corrected gradient . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Application cases 87

6.1 Shock wave/boundary layer interactions . . . . . . . . . . . . . . . . . . . 87

6.1.1 Transonic buffet over an airfoil . . . . . . . . . . . . . . . . . . . . 88

6.1.2 Strong shock over a curved profile . . . . . . . . . . . . . . . . . . 93

6.2 Screech in jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Towards turbulence model free sensitivity analysis 101

7.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2 Flow dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2.1 Unsteady simulations . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2.2 Meanflow computation . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.3 Discussion on the choice of a relevant eddy viscosity . . . . . . . . 105

7.3 Direct and adjoint unstable modes . . . . . . . . . . . . . . . . . . . . . . 106

7.4 Sensitivity gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.5 Steady control of the flow frequency . . . . . . . . . . . . . . . . . . . . . 109

7.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Conclusion and perspectives 113

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A Appendix A 119

A.1 Scalar products definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.1.1 Matrix Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.1.2 Matrix Qe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Bibliography 121





❘❡♠❡r❝✐❡♠❡♥ts

❯♥❡ ♣❛❣❡ s❡ t♦✉r♥❡✱ ✸ ❛♥s ❝✬❡st ❧♦♥❣✱ ❡t ❥✬❛✐ ❜❡❛✉❝♦✉♣ ❞❡ ♣❡rs♦♥♥❡s à r❡✲
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Chapter 1

Introduction

1.1 Flow dynamics characterization

1.1.1 Unsteady flows in fluid dynamics

A wide variety of unsteady flows are encountered in practical engineering applications

which may lead to undesirable features. The wake behind a cylinder, a simple model

for flows around bridge pillars or tall buildings, starts to oscillate for critical Reynolds

number. Counter rotating vortices are emitted which propagate downstream forming a

Von-Kármán alley as observed in Fig. 1.1(a). Such oscillations induce load vibrations

which may weaken the considered structure or lead it to resonance. The flight envelope

of a transport airplane is currently limited in the Mach-angle of attack (AoA) plane by

the shock-induced buffeting phenomenon on the airfoil. For Mach numbers of the order

of 0.8 and high AoAs, the shock located on the suction side of the wing suddenly starts

to oscillate (Jacquin et al. [1]), which produces vibrations that are detrimental to the

airplane. Similarly, cavity flows which can be encountered in military applications (bomb

bays [2]) as well as in transport aircrafts (slat on a multi-element wing configuration [3])

are the site of strong unsteadiness. Sound waves are emitted which are the source of

intense noise and structural vibrations, leading to fatigue problems and extensive noise

pollution. Under certain conditions, imperfectly expanded jets produce a discrete tone

referred to as screech. An example of under expanded jet is depicted in Fig.1.1(b) at

the exit of a F − 16 engine. Screech plays a critical role in the design of advanced

aircraft because it can cause sonic fatigue failure (Raman [4]). Elongated structures in

the streamwise direction called streaks naturally develop in boundary layers (Cossu et al.

[5]). These structures play an important role in the transition scenario to turbulence

in boundary layer which results in strong increase of the drag. Linear stability analysis

was introduced to analyse this large variety of unsteady flows, and appeared in the last

1
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(a) (b)

Figure 1.1: (a): Von-Kármán vortex street behind a cylinder. (b): Under expanded
structures with apparent Mach disks in the jet engine exhaust of an F − 16 Fighting
Falcon during takeoff, from Tech. Sgt. Caycee Cook, South Carolina National Guard.

decades as an efficient means to characterize the occurrence of flow unsteadiness, as well

as a robust tool to understand the physical mechanisms at stake.

1.1.2 Local and global stability

Linear stability analysis assumes the existence of a stationary solution wb of the Navier-

Stokes equations upon which a small amplitude unsteady perturbation is added under the

form of a normal mode w = ŵeλt of spatial structure ŵ and eigenvalue λ. The evolution

equations of the perturbation are given by the linearized Navier-Stokes operator J, the so

called Jacobian, and the flow is globally unstable if there exists an exponentially growing

mode. The local stability analysis was first introduced for parallel flows whose properties

only depend on the cross-stream direction. The analysis is said local as a given crosswise

profile of the baseflow is considered to model the whole flow configuration. In this

context, Huerre and Monkewitz [6] distinguished two types of instabilities: absolute and

convective. Absolutely unstable flows correspond to flows for which initial perturbations

will grow and perturb the whole configuration at large time scales, while in convectively

unstable flows the perturbations are increased but convected downstream. More recently,

the increase in computational capabilities enabled the performance of global stability

analysis for which no particular assumption are made for the baseflow wb. In particular,

this allowed the exploration of much more complex and realistic geometries. From

a global point of view, Huerre and Rossi [7] distinguished 2 particular types of flow

dynamics. Oscillators correspond to unstable flows for which there exist at least an

unstable eigenvalue λ. The unstable mode will naturally grow imposing its dynamics

to the flow, the dynamics is thus intrinsic. Noise amplifiers correspond to stable flows

which may strongly amplify initial external perturbations, but the perturbations vanish

for large time scales as the flow is stable, their dynamics is extrinsic. This increase of

energy in the flow is generally designated as transient growth. An illustration of these

two dynamics is depicted Fig.1.2, where we plotted typical evolutions of the flow energy
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(a) (b)

Figure 1.2: Illustration of the total energy evolution in time for (a) an oscillator and
(b) a noise-amplifier.

with time. Note that for both types of dynamics, the increase of the flow energy can

trigger non-linear effects leading to saturation in the case of oscillators or different type

of dynamics for noise-amplifiers (transition to turbulence for example) as emphasized in

Fig.1.2. Wakes [8], cavity flows [9], mixing layers [10] are prototypes of oscillators while

boundary layers [11], free stream jets [12], two-dimensional backward steps [13, 14] are

examples of noise amplifiers. The link between global and local analysis can be stated as

follow: oscillators correspond to absolutely unstable flows while noise amplifiers relate to

convectively unstable flows. Detailed reviews on the characterization of flow dynamics

as oscillators or noise amplifiers can be found in the studies by Godrèche and Manneville

[15], Theofilis [16], Sipp et al. [17].

1.1.3 Non-normality of the Jacobian

The non-normality of the Jacobian J comes from the advection terms in the Navier-

Stokes equations and complexifies the study of unsteady flow dynamics. In the case of

oscillators, the non-normality induces that the spatial distribution of direct modes and

adjoint modes solutions of the adjoint problem are not identical. In particular, as the

region of the flow where the spectrum is mostly sensitive to external perturbations corre-

sponds to the recovering region between the direct and adjoint mode, the determination

of this area designated as the wave-maker region requires the resolution of the adjoint

problem thus the knowledge of the adjoint Jacobian J† (Chomaz [18]). In the case of

noise amplifiers, the transient energy growth is intrinsically linked to the non-normality

of the Jacobian (see studies by Trefethen et al. [19], Farrell and Ioannou [20], Schmid

and Henningson [21]). Noise amplifiers are stable flows so that the flow should tend to
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the baseflow for large time scales. However, the energy growth may significantly affect

the flow dynamics by triggering non linear behavior or transition to turbulence for ex-

ample. Therefore, the computation and prediction of this quantity is of interest when

analysing noise amplifiers unsteadiness. Transient growth assessment requires a non-

modal or input/output approach (Schmid and Henningson [21]). This type of analysis

can be carried out in the time or frequency domain. In the time domain, the aim is to

determine the initial conditions yielding the largest possible energy growth over a finite

time horizon (see Blackburn et al. [13], Marquet et al. [22], Cossu et al. [23]), while in the

frequency domain the aim is to find the largest possible response x̂eωt to time-periodic

external forcing f̂eωt (see Alizard and Robinet [11], Ehrenstein and Gallaire [24]). Both

approaches reflect the non-normality of the Jacobian J and yield a measure quantifying

the energy amplifications µ2 in the flow, which corresponds to the singular values of the

resolvent operator Rω = (iωI− J)−1.

1.2 Passive control of laminar flows

The underlying mechanisms responsible for flow unsteadiness being more clearly under-

stood, a wide variety of control methods were developed to suppress flow unsteadiness

(see reviews by Sipp et al. [17], Gad-el Hak et al. [25], Collis et al. [26]). We will consider

here passive control methods in which steady control means are used, such as vortex

generators, control cylinders, spoilers, surface roughness.

1.2.1 Sensitivity of oscillators

As the dynamics of oscillators is intrinsically linked to the existence of a unstable modes,

flow control methods targeting the unstable modes were developed in order to manip-

ulate these flows [18, 27–29]. In particular, prediction of sensitive regions for passive

control is of interest as wind tunnel tests and numerical simulations remain expensive.

In his review, Chomaz [18] details how small perturbations of non-normal operators

may displace the eigenvalues in a significant manner. In this spirit, Hill [30] computed

the impact of a baseflow perturbations onto the flow spectrum in a global framework.

Giannetti and Luchini [31] and Giannetti and Luchini [27] further developed this con-

cept introducing the wave-maker region which corresponds to the area responsible for

the birth of instabilities. More recently, Marquet et al. [32] extended their results to a

global framework. They studied the laminar wake behind a two dimensional cylinder

for flow parameters above but near the instability threshold (Re = 30 − 100). They

proposed to evaluate the impact on the unstable eigenvalue λ of a modification of the

baseflow wb due to the presence of a stationary force f . To this end, they considered the
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gradient of the unstable eigenvalue with respect to baseflow modifications ∇wb
λ, also

called the sensitivity gradient to baseflow perturbation, as well as the gradient of the

unstable eigenvalue with respect to the introduction of a steady force ∇fλ. Modelling

a small cylinder as a steady force, they predicted the most sensitive regions of the flow

to stabilize the unstable global mode and compared their results with the experimen-

tal study of Strykowski & Sreenivasan [33]. Control maps of both studies overlapped

well as can be observed in Fig. 1.3, suggesting that this numerical approach could be a

valuable tool in predicting stabilization regions of unsteady flows. These results further

encouraged the use of sensitivity analysis to characterise flow dynamics (see for example

studies by Pralits et al. [34], Alizard et al. [35], Fani et al. [36], Tammisola [37]).

(a) (b)

Figure 1.3: Locations where a steady small control cylinder suppresses the unsteadi-
ness of the wake behind a cylinder for several Reynolds numbers. (a): Experimental
study of Strykowski and Sreenivasan [33]. (b): Control map of the unstable mode using

the sensitivity gradient to a steady force from Marquet et al. [32].

1.2.2 Sensitivity of noise amplifiers

In the case of noise amplifiers, as any real application is subject to external noise, an

interesting way to control the flow is to damp the singular eigenvalue µ2 corresponding

to the energy growth. The idea of linking flow spectrum variation to baseflow pertur-

bations for oscillators was extended to noise amplifiers by Sipp et al. [17] and Brandt

et al. [38] in a global framework with frequency domain analysis. They defined the

sensitivity gradient of the singular eigenvalue to a baseflow perturbation ∇wb
µ2. This

gradient gives access to the variation of the amplification gain induced by steady base-

flow perturbations. In particular, Brandt et al. [38] studied the Blasius boundary layer

at Re = 600000 as a noise amplifier prototype. Two sets of optimal response exist for

this configuration: two dimensional Tollmien-Schlichting waves (TS) linked to the Orr

mechanism [39] , and three dimensional waves due to the lift-up mechanism (LU) [40].

An example of TS waves developing in a boundary layer can be observed in Fig. 1.4(a).

They showed that the TS perturbations were more sensitive to baseflow variations than

the LU perturbations, suggesting that the LU perturbations are more robust to flow
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configurations. Furthermore, computing the sensitivity gradient of the singular eigen-

value to a steady force ∇fµ
2, they showed that the TS perturbations could be damped

more easily with a steady force than the LU perturbations.

The gradients ∇wb
µ2 and ∇fµ

2 thus carry several valuable information. As any exper-

imental study is subject to noise, they first indicate which regions of the flow should

not be subjected to steady perturbations in order to study the natural amplification

dynamics of the flow. Second, they depict interesting areas to place control devices,

either to damp the amplifier dynamics or to enhance it so as to enforce transition to

turbulence for example.

1.3 Extension to turbulent flows

1.3.1 RANS equations

These encouraging results obtained for laminar flow dynamics raised the question of the

applicability of such methods for turbulent flows, which are more likely to be encountered

in aeronautical applications. Turbulence models remain widely used in this area as the

computational cost to solve the Navier-Stokes equations using Direct Numerical Simu-

lation (DNS) drastically increases with the Reynolds number. The Reynolds-Averaged

Navier-Stokes equations (RANS) are obtained considering turbulent flows for which scale

decoupling assumption holds [9, 41–43]. The dynamics of the large scale structures of the

flow may be captured solving the unsteady Reynolds-Averaged Navier Stokes (RANS)

equations. The impact of the small scales dynamics onto the large ones is accounted for

with an additional viscosity or eddy viscosity µt.

The eddy viscosity is generally defined using the Boussinesq hypothesis which in partic-

ular links the Reynolds stress tensor to the deformation rate tensor of the flow. As a first

modeling (see Townsend [44], Lighthill [45], Lumley [46]), the eddy viscosity was defined

as a spatial field that only depends on the coordinate system µt (x, y, z), in such case the

eddy viscosity is said to be frozen [47, 48]. More recently, more subtle methods were de-

veloped to define the eddy viscosity using a turbulence model, which in turn introduces

one or several turbulent variables along with their corresponding transport equations

(see models by Jones and Launder [49], Chien [50], Wilcox [51], Smith [52], Spalart and

Allmaras [53]). For example, the classical k − ǫ turbulence model introduces the tur-

bulent kinetic energy k and energy dissipation ǫ, which allow the definition of the eddy

viscosity as a function of the flow variables µt (ρ, k, ǫ) (with ρ the density).
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(a)

(b)

Figure 1.4: (a): Tollmien-Schlichting waves in a developing boundary layer from
Babenko et al. [54]. The flow goes from left to right and is viewed from atop. The
arrow indicates the zone of deformation of the TS waves. (b): Visualization in a plane
parallel to the wall of streamwise streaks in a channel flow from Buffat et al. [55].
The flow goes from left to right, the streaks become unstable inducing transition to

turbulence after a while.

1.3.2 Frozen eddy viscosity

In channel flows, downstream elongated vortices or streaks develop and break down

which lead the flow to transition to turbulence, a phenomenon illustrated in Fig. 1.4(b).

In their seminal work, Reynolds and Hussain [48] considered the linear stability of the

meanflow profile in a turbulent channel flow. They analysed the stability of artificially

induced waves and demonstrated the need of an eddy viscosity model µt to take into

account the impact of the small turbulent scales onto the perturbations dynamics. In

particular, Reynolds and Hussain [48] gave a physical meaning to the use of a frozen

eddy viscosity model in the linearization process. Indeed, they showed that this choice

is justified if the perturbation waves do not impact the characteristic time of turbulent

fluctuations. Nevertheless, they observed the flow to be stable which discouraged further

research on the subject.

As the role of transient growth was more clearly understood for laminar flows, Butler

and Farrell [56] renewed this approach considering optimally amplified perturbations

in the time domain. They used the turbulent profile of Reynolds and Tiederman [57]

(derived using Cess [47] viscosity model) but performed a laminar analysis of the opti-

mal amplifications. This neglecting of the impact of fine-scale turbulence on large-scale

coherent structures in the transient growth process limited their results to final optimiza-

tion times equal to one eddy turnover timescale. More recently, Cossu et al. [23], Juan
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and Jiménez [58], Pujals et al. [59] used the same profile but included the eddy viscosity

model in the linearized equations, suggesting that small turbulent scales intervene in the

amplification process of external noise into large scale coherent structures. They showed

that the optimal energy growth exhibits two peaks corresponding with the development

of streaks in the flow. The first peak corresponds to very large structures that scale

with the bulk units while the secondary peaks scales in wall unit with streaks located

close to the wall. Both scaling overlapped well with experimental results suggesting the

relevancy of such an approach to the study of turbulent flows, and lead to further studies

using frozen eddy viscosity models (see for example Hwang and Cossu [60, 61], Kitsios

et al. [62]).

These studies suggest that turbulence effects, modelled through the use of an eddy

viscosity, have to be accounted for when considering linear stability analysis of turbulent

flows. Note that in the previous studies, the eddy viscosity does not depend on the flow

variable but is a spatial field that only depends on the spatial coordinates. In particular,

the eddy viscosity remains constant when linearizing the equations. Such a modeling is

thus generally referred to as a frozen eddy viscosity model.

1.3.3 Eddy viscosity fluctuations and sensitivity analysis

Using a turbulence model, the eddy viscosity is coupled to the mean field variables.

Hence, the imposed perturbations may include fluctuations of the turbulent variables

as well as eddy viscosity fluctuation µ′
t. Such an analysis can be performed using a

turbulence model whose equations are also linearized in the stability study. This implies

that the impact of the turbulent quantities is taken into account in the perturbations

dynamics.

Crouch et al. [63, 64] analysed the buffeting phenomenon on a two dimensional aerofoil.

The shock wave starts to oscillate when the angle of attack of the wing and the Mach

number reach critical values. They used the one equation turbulence model of Spalart-

Allmaras [65] and showed that the time integration of the RANS equations reasonably

reproduced the Buffet-onset as well as the frequency of the observed phenomenon. They

linearized the RANS equations and showed that the Buffet onset was linked to the

occurrence of an unstable global mode whose frequency matched the expected one. In

particular, they observed that when using frozen viscosity linearization, they did not

find any unstable modes. This suggests that in this case, the propagating wave does

have an impact on the turbulent fluctuations time scale (Reynolds and Hussain [48]).

Their stability results matched well with numerical simulations and experimental studies

regarding the onset of flow unsteadiness as can be observed in Fig. 1.5(a).
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(a) (b)

Figure 1.5: (a): Stability diagram of the transonic buffet over an aerofoil computed
by Crouch et al. [64], wing incidence α versus Mach number M . (b): Comparison
between the linear stability control map of the flow frequency from Meliga et al. [66]
(upper part) and the experimental control map of Parezanović and Cadot [67] (lower

part), from [66].

More recently, Meliga et al. [66] linearized the incompressible RANS equations using the

Spalart-Allmaras model to study the dynamics of the wake behind a D-shaped cylinder

at Re = 13000. They found that the meanflow (time average of the unsteady flow) was

slightly unstable and that the associated global mode was characterized by a frequency

corresponding approximately to the one observed experimentally (Sipp and Lebedev

[68]). In the spirit of the work of Marquet et al. [32], they analytically derived the

sensitivity gradients of the full system of equations. Using a steady force (modeling

the presence of a small cylinder) as a means to modify the meanflow, they computed

sensitivity maps indicating where the cylinder would efficiently change the frequency

of the unstable mode. They compared their results with the experimental study of

Parezanović & Cadot [67] who controlled the same configuration using a small cylinder.

Both experimental and numerical control maps of the frequency showed good agreement

as can be observed in Fig. 1.5(b).

1.4 Linearization strategies

1.4.1 Continuous framework

These previous results suggest that sensitivity gradients constitute a valuable tool for

designing open-loop control strategies for both laminar and turbulent flows. The com-

putation of the sensitivity gradients requires the linearization of the RANS equations,

which is generally performed in a continuous framework: the equations are first lin-

earized and the eigenvalue problem is then discretized. Several methods can be used

for the discretization of the eigenvalue problem (finite elements, spectral methods ...), a
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review of which can be found in Theofilis [16]. As the adjoint quantities are required for

the computation of the sensitivity gradients, both direct and adjoint problems have to

be derived, and then discretized with potentially a different discretization scheme. This

yields some error between direct and adjoint quantities which are thus obtained up to

discretization error [69] and some matching has to be performed. Furthermore, when

discontinuities such as shock waves are present in the flow, a continuous framework does

not automatically yield valid direct and adjoint matrices. Indeed, Giles and Pierce [70]

showed that special care must be taken for the linearized and adjoint equations. If not,

Crouch et al. [63] showed that the shock discontinuities in the baseflow need first to be

smoothed for the linear analysis to be valid. Finally, the sensitivity gradients equations

have also to be derived through a second linearization step which may become complex

when dealing with compressible flows (Robinet [71]) or RANS equations closed with a

turbulence model (Crouch et al. [63], Meliga et al. [66]).

1.4.2 Discrete framework

The linearization can also be performed in a discrete framework: the equations are first

discretized and then linearized. Advantages and drawbacks of both frameworks were

early studied in the field of optimal shape design methods (Peter and Dwight [72]) and

lead to similar results (Giles and Pierce [73], Nadarajah and Jameson [74]). A major

advantage of the discrete approach is that the adjoint quantities, which are required

to compute the sensitivity gradients, are obtained up to machine precision (De Pando

et al. [69]). Furthermore, a discrete approach based on a shock-capturing method and

a conservative scheme automatically yields valid direct and adjoint matrices in the case

of shocks. The discrete framework is also conceptually simpler, since the Jacobian and

adjoint matrices are directly defined from the discretized residual R.

However, in both the continuous and discrete approaches, analytical derivation of the lin-

earized equations remains a difficult task. Indeed, as noted by Peter and Drullion [75],

the governing equations may involve complex equations with turbulence models and

complex boundary conditions (characteristic boundary conditions [76]). In a discrete

framework, the discretization scheme may also include complex spatial discretization

techniques (centered schemes with artificial viscosity [77, 78], upwind schemes [79, 80]

with limiters [81]). The compressibility of the equations further complexifies the lin-

earization as can be observed in Robinet [71], Theofilis and Colonius [82]. As an ex-

ample, the analytical derivation of the sensitivity gradients in the case of compressible

turbulent RANS equations has not yet been achieved although this system of equations

is more likely to represent practical aeronautical cases.
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1.5 Scope of the study

1.5.1 Generic method using finite differences

We propose in this study a fully discrete framework where the linearized equations

are obtained from a finite difference method rather than analytical derivation. To this

end, we define the direct and adjoint problem as well as the sensitivity gradients in

a discrete framework. As the sensitivity gradients have only been defined up to now

in a continuous framework, their discrete derivation is one of the contribution of this

study. Furthermore, we show how the direct and adjoint global modes as well as the

sensitivity gradients can be obtained solely from residual evaluations. In particular, we

demonstrate that the sensitivity gradients are linked to the Hessian of the governing

equations. The finite difference method used to linearize the equations avoids complex

analytical treatments and can easily handle different system of equations and different

spatial discretization schemes. All the complexity (equations, boundary conditions, spa-

tial discretization scheme) is actually accounted for in the evaluation of the residual

equation R, which is available in all numerical codes. Hence, we show how a numerical

code can be used in a black box manner to compute global modes, adjoint global modes

and sensitivity gradients. The discrete framework based on finite difference evaluations

therefore yields a highly flexible strategy which is important since several turbulence

models and discretization schemes are generally required to cover a variety of configura-

tions (separation, mixing layers, boundary layers, ...) and regimes (subsonic, transonic,

supersonic). Of course, the price to pay is that the various quantities involved in the

analysis (Jacobian, adjoint matrix, global modes, adjoint global modes, sensitivity gra-

dients) are computed with some error due to the inherent approximations involved in a

finite difference method [69].

1.5.2 Linear dynamics and passive control of turbulent flows

In most turbulent flows, low frequency unsteadiness are generally responsible for unde-

sirable features such as load fluctuations, vibrations. The unsteady RANS equations

and the turbulence models used to close the system are designed to reproduce these

large scale fluctuations, these models relying on the definition of an eddy viscosity µt.

We propose in this study to perform a linear stability analysis of the RANS equations.

From a physical standpoint, a first goal of this work is to analyse the stability of the

low frequency structures of turbulent flows. In particular, the link between the flow

unsteadiness observed while solving the unsteady RANS equations and the oscillator
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(existence of unstable mode) or noise amplifier (transient growth) dynamics of the tur-

bulent flow might be assessed. Furthermore, the genericity of the method which allows

the use of several turbulence models may also be useful to analyse the impact of these

models and their relevancy to reproduce the flow physics. For example, the impact of a

frozen or fluctuating eddy viscosity in the linearization process may be analysed, as this

choice may significantly affects the flow dynamics (Crouch et al. [63] found no buffeting

mode using frozen eddy viscosity). Finally, the computation of turbulent compressible

sensitivity gradients corresponds to the main contribution of this study. It enables the

a priori determination of interesting areas where steady control means may significantly

affect the flow unsteadiness, and constitutes a first step in view of designing open loop

control strategies for compressible turbulent flows.

1.6 Plan

We first introduce in Chapter 2 the stability theory background in a discrete frame-

work. The Jacobian matrix J is defined, as well as the sensitivity gradients ∇wb
λ and

∇fλ,∇wb
µ2. The explicit formulation of the gradients are then derived for both oscilla-

tors and noise amplifiers. In Chapter 3, we present several strategies that can be used

to compute the gradients and detail the one used throughout this study. In particular,

we explain how the current method can be adapted to matrix free methods. The com-

putational technique using efficient residual evaluations to obtain the Jacobian matrix

and the gradients is then described. An adaptation of shape optimization codes to com-

pute the sensitivity gradients will also be proposed. At last, the governing equations

as well as the numerical schemes are detailed. As first validation step, we consider two

laminar flows in Chapter 4, an oscillator and a noise amplifier, and reproduce results

previously obtained by Marquet et al. [32], Brandt et al. [38]. Chapter 5 is devoted to

the computation and validation of the sensitivity gradients for a compressible turbulent

flow. Numerical validation, convergence tests, genericity of the methods are tested on

a deep cavity configuration at Mach number 0.80 and Reynolds number 860000, which

was experimentally studied by Forestier et al. [83] and numerically by Larchevêque et al.

[84]. Eexamples of other laminar and turbulent applications such as transonic buffet,

shock-boundary layers interactions, and jets are introduced in Chapter 6. Finally, pre-

liminary results computed for a turbulent flow over a D-shaped cylinder are presented

in Chapter 7, enhancing perspectives for the future.



Chapter 2

Global stability analysis in a

discrete framework

This Chapter is devoted to the definition of the theoretical background required to

perform a stability analysis in a discrete framework. The Jacobian J is first introduced

in Section 2.1 and the distinction between oscillator and noise amplifier dynamics is

detailed. In Section 2.2, the sensitivity gradients are defined in the case of oscillators.

The stability and sensitivity analyses of noise amplifiers are finally discussed in Section

2.3.

2.1 Jacobian matrix

After spatial discretization, the governing equations can be recast in the general following

conservative form:

dw

dt
= R (w) , (2.1)

where w ∈ R
N represents the set of conservative variables describing the flow at each

spatial location of the mesh and R : Ω∈ R
N → R

N is C2 over Ω and represents the

discrete residuals. Using finite volume or finite difference methods, the dimension of w

corresponds to the number of cells or nodes in the mesh times the number of variables.

Note that all boundary conditions are included in the discrete operator R.

We assume the existence of a steady solution wb ∈ R
N to this system referred to as the

baseflow and defined by the discrete equation:

R (wb) = 0. (2.2)

13
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In the case of governing equations involving a turbulence model, it is worth mentioning

that such a baseflow takes into account the Reynolds stresses involved in the turbulence

model, but not those related to possible low-frequency (and large-scale) perturbations,

which are accounted for by the time-integration in Eq. (2.1). In so far, the above

defined baseflow is not strictly speaking a mean-flow (even though it incorporates some

mean-flow effects due to high-frequency turbulence) and may therefore be considered as

a valid candidate for a stability analysis.

The stability of the baseflow is probed by analysing the evolution of a small amplitude

perturbation ǫw′ superimposed on the baseflow: w = wb + ǫw′, with ǫ ≪ 1. Note that

in the case of governing equations involving a turbulence model, the perturbation also

involves variations of the turbulent quantities. The equation governing the perturbation

is given by the linearization to the first order of the discretized equations in (2.1):

dw′

dt
= Jw′. (2.3)

The Jacobian operator J ∈ R
N×N corresponds to the linearization of the discrete Navier-

Stokes operator R around the baseflow wb:

Jij =
∂Ri

∂wj

∣
∣
∣
∣
w=wb

, (2.4)

where Ri designates the ith component of the residual, which is a priori a function of

all unknowns wj in the mesh. If we use finite volume or finite difference methods, then

the spatial discretization stencil is compact and the ith component of the residual only

depends on few neighbouring unknowns. Hence, J is a sparse matrix in such cases.

Note that the proposed formalism does not assume homogeneity of the fluctuations in a

given direction. For three dimensional configuration, this formalism corresponds to the

TriGlobal linear stability analysis as introduced by Theofilis [85].

Remark: We assumed the residual operator R to be C2(Ω) for the sensitivity gradients

to be defined. Strictly speaking, the stability analysis only requires the considered

system of equations to be differentiable, that is R ∈ C1(Ω).

2.2 Oscillators

2.2.1 Unstable modes

We consider perturbations under the form of normal modes w′ = ŵeλt, where λ = σ+iω

describes its temporal behaviour — σ is the amplification rate and ω the frequency —
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and ŵ ∈ C
N its spatial structure. Then Eq. (2.3) may be recast into the following

eigenvalue problem:

Jŵ = λŵ. (2.5)

If at least one of the eigenvalues λ exhibits a positive growth rate σ, then the baseflow

wb is unstable. We refer to unstable flows as oscillators since the unstable mode will

naturally grow and impose its dynamics to the flow regardless of any external perturba-

tions.

As the natural flow unsteadiness may be linked to the existence of one or several unstable

modes, the stabilization of the unstable modes is expected to lead to the suppression of

the flow unsteadiness. The sensitivity gradients that we will introduce in the following

carry valuable information on locations were steady control means might stabilize the

unstable modes thus suppress flow unsteadiness.

2.2.2 Sensitivity gradients of the unstable eigenvalue

Let us consider a particular eigenmode (λ,ŵ). Following previous studies (Hill [30],

Marquet et al. [32], Bottaro et al. [86]), this eigenmode may be considered as a function

of the baseflow wb, since the Jacobian matrix has been obtained by linearization of

the governing equations near the baseflow. Hence, a small baseflow perturbation δwb

generates a small variation of the eigenvalue δλ, which can be written as:

δλ = 〈∇wb
λ, δwb〉 . (2.6)

This expression defines the gradient ∇wb
λ ∈ C

N, called the sensitivity of the eigen-

value to baseflow modifications. It is a complex vector field, the real and imaginary

parts respectively dealing with the sensitivity of the amplification rate ∇wb
σ and the

frequency ∇wb
ω. Note that in the case of governing equations including a turbulence

model, one may analyse the sensitivity of the global mode to variations of turbulent

scales of the baseflow. In Eq. (2.6), the discrete inner product 〈·〉 refers to the Euclidian

inner-product in C
N:

〈u,v〉 = u∗v, (2.7)

where ∗ denotes conjugate transpose. The associated norm ‖u‖ =
√

〈u,u〉 will be used

in the following.

We now derive an explicit expression of ∇wb
λ. Note again that this has been done up

to now in a continuous framework, while the goal of the present study is to introduce

the discrete one. Considering a small baseflow variation δwb, the eigenvalue problem in
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Eq. (2.5) is perturbed and becomes to the first order:

δJŵ + Jδŵ = δλŵ + λδŵ. (2.8)

We then multiply the previous equation with a complex vector w̃∗ such that:

w̃∗Jδŵ = w̃∗λδŵ. (2.9)

Hence, w̃ ∈ C
N can be taken as the solution of the adjoint problem:

J∗w̃ = λ∗w̃ with 〈w̃,ŵ〉 = 1. (2.10)

Finally, Eq. (2.8) becomes:

w̃∗δJŵ = δλw̃∗ŵ = δλ. (2.11)

As a consequence, we can link an arbitrary variation of the Jacobian δJ to a variation

of the eigenvalue δλ with:

δλ = 〈w̃, δJŵ〉 , (2.12)

where w̃ is the adjoint global mode solution of the adjoint eigenproblem. If δJ cor-

responds to a variation of the Jacobian induced by a variation of the baseflow δwb,

then:

δJŵ =
∂(Jŵ)

∂w

∣
∣
∣
∣
w=wb

δwb, (2.13)

where the global mode ŵ is assumed to be frozen. This expression may be written in a

different manner using the Hessian H of R:

δJŵ = H(ŵ, δwb). (2.14)

Here H (u,v) ∈ C
N designates the vector z such that zi =

∑

j,k Hijkujvk, with:

Hijk =
∂2Ri

∂wj∂wk

∣
∣
∣
∣
w=wb

. (2.15)

Similarly to the discussion for the Jacobian J, if compact differential stencils are used,

then for each component i only few values of Hijk are non-zero.

Let us introduce the matrix H′ ∈ C
N×N such that H′δwb = H(ŵ, δwb) for all δwb.

Hence:

H′
ik =

∑

j

Hijkŵj = 〈ei,H(ŵ, ek)〉 . (2.16)
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Here, ei denotes the unit vector on the ith component of the canonical basis of R
N.

Equation (2.14) may then be rewritten as:

δJŵ = H′δwb. (2.17)

Introducing Eq. (2.17) into (2.12), we have:

δλ =
〈
w̃,H′δwb

〉
=
〈
H′∗w̃,δwb

〉
. (2.18)

If we identify this expression with Eq. (2.6), we obtain the following expression of the

gradient:

∇wb
λ = H′∗w̃. (2.19)

In the view of open-loop control that aims at stabilizing the unstable global modes, we

will consider control devices that act by adding volumic source terms to the Navier-

Stokes equations. For example, any object in the flow may be represented as a force,

while heating or cooling is a source term in the energy equation. If a turbulence model

is considered in the governing equations, then control devices that locally modify the

turbulent scales of the flow may also be considered. In the following, we consider the

impact of a small amplitude source term δf ∈ R
N , which modifies the baseflow such that

R (wb + δwb) + δf = 0. Linearising this expression about wb, we obtain the baseflow

modifications due to the small amplitude source term: δwb = −J−1δf . Rewriting

equation (2.18), we obtain:

δλ =
〈
H′∗w̃,− J−1δf

〉
=
〈
−J∗−1H′∗w̃,δf

〉
. (2.20)

The sensitivity of the eigenvalue to the introduction of a source term ∇fλ ∈ C
N , which

links the eigenvalue variation δλ to the steady source term δf , is thus given by:

δλ = 〈∇fλ,δf〉 with ∇fλ = −J∗−1
∇wb

λ. (2.21)

The impact of a small amplitude steady source term on the flow spectrum can therefore

be predicted a priori and control maps can be obtained beforehand.

2.2.3 Comparison with a continuous approach

We used up to now the canonical inner product (2.7). Yet, to give physical meaning to

the gradient so as to allow comparisons of results (if available) with those obtained from

a continuous approach, it may be useful to choose another inner-product, based on a
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positive definite hermitian matrix Q such that:

〈u,v〉|Q = u∗Qv, (2.22)

with the corresponding norm ‖u‖Q =
√

〈u,u〉 |Q. The definition of Q is given in Ap-

pendix A.1. Based on this new inner-product, the sensitivities may be defined as follows

δλ = < ∇wb
λ|Q , δwb >

∣
∣
∣
Q

(2.23)

= < ∇fλ|Q , δf >
∣
∣
∣
Q
, (2.24)

and one straightforwardly obtains:

∇wb
λ|Q = Q−1

∇wb
λ (2.25)

∇fλ|Q = Q−1
∇fλ. (2.26)

For sake of completeness, the adjoint global mode associated to this new inner-product

is:

w̃|Q = Q−1w̃. (2.27)

To sump up, in order to compute the sensitivity gradients, we need to compute:

1. unstable direct global modes ŵ based on the discrete Jacobian J (Eq. (2.5));

2. unstable adjoint global modes w̃ based on the discrete adjoint Jacobian J∗ (Eq.

(2.10));

3. H′∗w̃ (see Eq. (2.16) for the definition of H′) to obtain the sensitivity of the global

mode to baseflow modifications ∇wb
λ (Eq. (2.19));

4. −J∗−1
∇wb

λ to obtain the sensitivity of the global mode to the introduction of a

steady source term ∇fλ (Eq. (2.21)).

5. ∇wb
λ|Q = Q−1

∇wb
λ (Eq. (2.25)) and ∇fλ|Q = Q−1

∇fλ (Eq. (2.26)) to obtain

sensitivities with a physically relevant inner-product (2.22).
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2.3 Noise amplifiers

2.3.1 Optimal forcing and response

If the Jacobian matrix J does not have unstable eigenvalues in (2.5), then the baseflow is

stable. However, the flow may exhibit transient growth due to the non-normality of the

Jacobian matrix (Trefethen et al. [19], Farrell and Ioannou [20], Schmid and Henningson

[21]). As stated in Chapter 1, the quantification of transient growth is of importance as

it may significantly affect the flow dynamics.

Noise amplifiers dynamics can be analysed by considering the response x of the baseflow

to a small amplitude forcing f , in particular we have:

dx

dt
= R (wb + x) + f . (2.28)

Considering an harmonic forcing f = f̂eiωt with f̂ ∈ C
N and looking for a response with

similar structure x = x̂eiωt with x̂ ∈ C
N , we linearize Eq. (2.28) to obtain:

x̂ = Rω f̂ , (2.29)

where Rω = (iωI− J)−1 is referred to as the global resolvent matrix and I is the identity

matrix. The global resolvent matrix Rω ∈ C
N×N is defined for any real frequency ω

since all eigenvalues of J are strictly damped. Considering the optimal forcing f̂ that

maximizes the energetic gain µ2 ∈ R of the response, we have:

µ2 = sup
f̂

〈x̂,x̂〉
〈

f̂ ,f̂
〉 . (2.30)

Inserting Eq. (2.29) into Eq. (2.30), we obtain:

µ2 =
f̂∗R∗

ωRω f̂

f̂∗f̂
. (2.31)

The previous ratio is a Rayleigh quotient since R∗
ωRω is an Hermitian matrix. The

optimal gain µ2 is real and corresponds to the singular value of the global resolvent Rω:

R
∗
ωRω f̂ = µ2f̂ , (2.32)

with f̂ the corresponding optimal forcing. We will denote the maximum gain µ1 obtained

for optimal forcing f̂1 and response x̂1. The gain function µ2 which varies with the

frequency ω corresponds to the transfer function of the flow and quantifies if the flow

acts like a high, low or broad band filter.
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Since the eigenvalue problem (2.32) is Hermitian, the set of normalized optimal forcing
(

f̂i

)

(one set per frequencies ω) defines an orthonormal basis which is adequate to

represent the forcing space. The set of optimal responses (x̂i) of unit norm can be

obtained by solving x̂i = µ−1
i Rω f̂i, and forms an orthonormal basis of the response

space. Therefore, if we are given the structure of a forcing term F̂ at the frequency ω,

the structure of the response X̂ is obtained using:

X̂ =
∑

j

µj

〈

f̂j,F̂
〉

x̂j. (2.33)

The corresponding energy response is readily obtained from:

〈

X̂,X̂
〉

=
∑

j

µ2
j

〈

f̂j,F̂
〉2

. (2.34)

A consequence of Eq. (2.34) is that to maximize the flow response, the external forcing

should drive the flow with a structure as close as possible to the optimal forcing f̂1,

leading to a response close to x̂1. In particular, the dynamical flow response can be

a priori predicted using this set of optimal forcing and response given by the number

of frequency ω tested. Several studies have shown that a reduced number of optimal

forcing and response are sufficient to predict the flow dynamics to external noise (see

Dergham et al. [87, 88]).

As aeronautical cases are noisy by nature (turbulence, structural vibrations), one way

to control the flow unsteadiness would be to damp the amplifications µ2 of the external

noise. As for the oscillators, we will introduce the sensitivity gradients for noise amplifiers

which indicate areas where steady control means would modify the gain µ2.

2.3.2 Sensitivity gradients of the singular eigenvalue

Let us consider a particular optimal set
(

µ2,x̂,f̂
)

. These quantities are linked to the

baseflow through the Jacobian J in the global resolvent Rω. We can hence define the

sensitivity gradient of the singular value to a baseflow perturbation ∇wb
µ2 such that a

small baseflow perturbation δwb generates a small variation of the singular value δµ2

with:

δµ2 =
〈
∇wb

µ2,δwb

〉
. (2.35)

Note that here the gradient ∇wb
µ2 ∈ R

N is a real vector field. We now derive an

explicit expression of ∇wb
µ2 in a discrete framework which has been done up to now in

a continuous framework (Sipp et al. [17], Brandt et al. [38]). The equations governing
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our optimal forcing and response can be recast in the following form:

x̂ = µ2
R

−1∗
ω f̂ , (2.36)

f̂ = R
−1
ω x̂. (2.37)

Perturbing Eqs. (2.36)&(2.37) with a small baseflow variation we have to the first order,

using δR−1
ω = −δJ:

δx̂ = δµ2
R

−1∗
ω f̂ − µ2δJ∗f̂ + µ2

R
−1∗
ω δf̂ , (2.38)

δf̂ = −δJx̂+ R
−1
ω δx̂. (2.39)

We then respectively multiply Eqs. (2.38)&(2.39) with a complex vector x̃∗ and f̃∗ and

sum the obtained equations to get:

[

x̃∗ − f̃∗R−1
ω

]

δx̂+
[

f̃∗ − µ2x̃∗
R

−1∗
ω

]

δf̂ = δµ2x̃∗
R

−1∗
ω f̂ − µ2x̃∗δJ∗f̂ − f̃∗δJx̂. (2.40)

We look for x̃∗ and f̃∗ such that:

x̃∗ = f̃∗R−1
ω , (2.41)

f̃∗ = µ2x̃∗
R

−1∗
ω , (2.42)

which yields:

x̃ = R
−1∗
ω f̃ , (2.43)

f̃ = µ2
R

−1
ω x̃, (2.44)

f̃ = µ2
R

−1
ω R

−1∗
ω f̃ . (2.45)

As the singular vectors of Rω are orthogonal we thus have, noting α a complex constant:

f̃ = αf̂ , (2.46)

x̃ = αR
−1∗
ω f̂ =

α

µ2
x̂. (2.47)

Finally, Eq. (2.40) reduces to, taking α = 1:

δµ2

µ2
x̂∗

R
−1∗
ω f̃ = x̂∗δJ∗f̃ + f̃∗δJx̂, (2.48)

δµ2

µ2
f̃∗f̂ = 2Real

[

f̃∗δJx̂
]

. (2.49)
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An arbitrary variation of the Jacobian δJ induces the following variation of the singular

value δµ2:

δµ2 = 2µ2Real
[〈

f̃ ,δJx̂
〉]

, (2.50)

with
〈

f̃ ,f̂
〉

= 1 and thus f̃ = f̂ . In particular, the previous equation is nearly equivalent

to Eq. (2.12) with the optimal forcing f̃ as the adjoint global mode w̃ and the optimal

response x̂ as the direct global mode ŵ. Therefore, using the formalism presented in

Section 2.2.2 we finally obtain:

δµ2 = 2µ2Real
[〈

H′∗f̃ ,δwb

〉]

, (2.51)

where the complex matrix H′ is defined such that H′δwb = H(x̂, δwb) for all δwb.

Noting ei the unit vector on the ith component of the canonical basis of RN, we have:

H′
ik =

∑

j

Hijkx̂j = 〈ei,H(x̂, ek)〉 . (2.52)

The gradient ∇wb
µ2 takes the form:

∇wb
µ2 = 2µ2Real

[

H′∗f̃
]

. (2.53)

Finally, as for the oscillators, we may also consider the impact on the singular value µ2

of a small amplitude steady source term δf acting on the baseflow. Similarly to Section

2.2.2, we define the sensitivity gradient of the singular value to the introduction of a

source term ∇fµ
2, which links the singular value variation δµ2 to the steady source term

δf . In particular we have:

δµ2 =
〈
∇fµ

2,δf
〉

with ∇fµ
2 = −J∗−1

∇wb
µ2. (2.54)

The impact of a small amplitude steady source term on the flow singular values can

therefore be predicted a priori and control maps can be obtained beforehand.

2.3.3 Kinetic energy maximization

For the sake of clarity, we used in the previous Section the canonical inner product (2.7).

However, for the analysis to have a physical relevancy, we shall use the discrete inner

product 〈,〉|Q defined in (2.22). Furthermore, the gain µ2 can also be defined as the

maximization of the kinetic energy E of the response x̂ to the forcing f̂ . In particular,

as the response contains all the conservative variables, we do not have that 〈x̂,x̂〉 |Q = E.

We thus define a pseudo scalar product 〈,〉 |Qe
such that 〈x̂,x̂〉 |Qe

= x̂∗Qex̂ = E. The

computation of the matrix Qe is detailed in Appendix A.1, where we show in particular
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that Qe is real, symmetric and semi-definite positive. The maximization problem in

Eq. (2.30) thus becomes:

µ2 = sup
f̂

〈x̂,x̂〉 |Qe
〈

f̂ ,f̂
〉

|Q
= sup

f̂

f̂∗R∗
ωQeRω f̂

f̂∗Qf̂
. (2.55)

This is a generalized Rayleigh quotient since R∗
ωQeRω is symmetric semi-definite posi-

tive, and the optimal gain corresponds to the largest eigenvalue of the matrixQ−1R∗
ωQeRω.

That is:

R
∗
ωQeRω f̂ = µ2Qf̂ . (2.56)

The equations governing our optimal forcing and response now become:

Qex̂ = µ2
R

−1∗
ω Qf̂ , (2.57)

f̂ = R
−1
ω x̂. (2.58)

Perturbing this system as in the previous section, Eq. (2.40) is modified into:

[

x̃∗Qe − f̃∗R−1
ω

]

δx̂+
[

f̃∗ − µ2x̃∗
R

−1∗
ω Q

]

δf̂ = δµ2x̃∗
R

−1∗
ω Qf̂ − µ2x̃∗δJ∗Qf̂ − f̃∗δJx̂.

(2.59)

We thus impose:

Qex̃ = R
−1∗
ω f̃ , (2.60)

f̃ = µ2QR
−1
ω x̃. (2.61)

Here, the matrix Qe (defined in Appendix A.1) is not invertible so that the solution of

this system is not unique. However, the current analysis only requires to find two valid

vectors x̃ and f̃ . The following choices ensure that Eqs. (2.60)&(2.61) are respected:

x̃ =
α

µ2
x̂. (2.62)

f̃ = αQf̂ . (2.63)

Finally Eq. (2.59) reduces to, imposing α = 1:

δµ2

µ2
x̂∗

R
−1∗
ω f̃ =

µ2

µ2
x̂∗δJ∗f̃ + f̃∗δJx̂, (2.64)

δµ2 = 2µ2Real
[

f̃∗δJx̂
]

, (2.65)

= 2µ2Real
[

< f̃ ,δJx̂ >
]

, (2.66)

f̂∗f̃ = < f̂ ,f̂ >
∣
∣
∣
Q
= 1. (2.67)
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We recover Eq. (2.50), the gain variation δµ2 does not depend on the inner-product

choice. In order to compare to a continuous approach results if available, we introduce

the relevant sensitivity gradients and optimal forcing defined using the inner-product

〈,〉 |Q instead of the canonical one 〈,〉:

δµ2 = < ∇wb
µ2
∣
∣
Q
, δwb >

∣
∣
∣
Q
, (2.68)

= 2µ2Real

[

< Q−1H′∗f̃ ,δwb >
∣
∣
∣
Q

]

, (2.69)

δµ2 = < ∇fµ
2
∣
∣
Q
, δf >

∣
∣
∣
Q
, (2.70)

∇wb
µ2 = H′∗f̃ , (2.71)

∇wb
µ2
∣
∣
Q

= Q−1H′∗f̃ , (2.72)

∇fµ
2
∣
∣
Q

= −J∗−1
∇wb

µ2
∣
∣
Q
, (2.73)

f̃ = Qf̂ , (2.74)

< f̂ ,f̂ >
∣
∣
∣
Q

= 1. (2.75)

Remark: The pseudo scalar product that we defined with the matrix Qe can be further

modified. The energy maximization can also be performed on a restricted domain of

our configuration for example, or a different quantity may be seek for the optimization.

The previous demonstration still holds provided that the newly defined matrix Qe is

still symmetric semi-definite positive.

2.3.4 Forcing restrictions

In a practical experiment the forcing may be localized and does not necessarily include

all the conservative variables. It may thus be interesting to use a restrained forcing term

f̂s ∈ S that evolves in a subspace S ∈ C
M ⊂ C

N with M < N of the flow configuration

(we consider spatially localized forcing and/or a forcing that only acts on considered

conservative variables). We thus introduce a prolongation matrix P ∈ C
N×M such that

if f̂s ∈ S then Pf̂s ∈ C
N, which effect is to add 0 to the restricted term. Similarly

we define the restriction matrix P∗ such that if f̂ ∈ C
N then P∗f̂ ∈ S. Note that by

definition of these matrices we have: P∗P = I. In particular, the response x̂ now verifies:

x̂ = RωPf̂s. (2.76)
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The energy maximization (2.55) remains a generalized Rayleigh quotient which solutions

are given by:

R
∗
ωQeRωPf̂s = µ2QPf̂s. (2.77)

The solutions f̂s of this eigenvalue problem are thus seek in the subspace S and then

extended to our configuration with f̂ = Pf̂s.

Following the same perturbation and multiplication method as in the previous sections

we now have:

[

x̃∗Qe − f̃∗R−1
ω

]

δx̂ +
[

f̃∗P− µ2x̃∗
R

−1∗
ω QP

]

δf̂s = (2.78)

δµ2x̃∗
R

−1∗
ω QPf̂s − µ2x̃∗δJ∗QPf̂s − f̃∗δJx̂. (2.79)

Hence we impose:

Qex̃ = R
−1∗
ω f̃ , (2.80)

P∗f̃ = µ2P∗QR
−1
ω x̃. (2.81)

Once again, the solution of the previous set of equations is not unique. In particular,

Eq. (2.81) states that we are only interested in the restriction of the solution f̃ to the

space S. As a consequence, we can use the following choices:

x̃ =
α

µ2
x̂, (2.82)

f̃ = αQPf̂s. (2.83)

Finally, we obtain using α = 1:

δµ2 = 2µ2Real

[

< Q−1H′∗f̃ ,δwb >
∣
∣
∣
Q

]

, (2.84)

= < ∇wb
µ2
∣
∣
Q
, δwb >

∣
∣
∣
Q
, (2.85)

∇wb
µ2|Q = Q−1H′∗f̃ , (2.86)

f̃ = QPf̂s, (2.87)

< Pf̂s,Pf̂s >
∣
∣
∣
Q

= 1. (2.88)

2.3.5 Method summary

To sump up, in order to compute the sensitivity gradients for noise amplifiers, we need

to compute:

1. the discrete Jacobian J (Eq. (2.5)) and assess its stability;
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2. the inverse of the global resolvent Rω
−1 for a given set of frequency ω, its adjoint

Rω
−1∗, as well as the matrices Q and Qe and the prolongation and restriction

operators P and P∗;

3. the set of optimal gain µ2, forcing f̂ and response x̂ obtained solving the eigenvalue

problem in Eq. (2.77) and then (2.76) ;

4. H′∗f̃ (see Eq. (2.52) for the definition of H′) to obtain the sensitivity of the

amplification gain to baseflow modifications ∇wb
µ2 (Eq. (2.71));

5. −J∗−1
∇wb

µ2 to obtain the sensitivity of the amplification gain to the introduction

of a steady source term ∇fµ
2 (Eq. (2.54)).

6. ∇wb
µ2
∣
∣
Q

= Q−1
∇wb

µ2 and ∇fµ
2
∣
∣
Q

= Q−1
∇fµ

2 to obtain sensitivities with a

physically relevant inner-product.

2.4 Concluding remarks

A fully discrete formalism was proposed to define the Jacobian matrix and the sensitivity

gradients. The proposed framework is discrete as the equations are first discretized and

then linearized. In particular, the sensitivity gradients were shown to be linked to

the Hessian of the RANS equations. The definitions of the stability problem and the

sensitivity gradients were derived for both both oscillators and noise amplifiers dynamics.

Several operators were also introduced for the characterization of noise amplifiers. The

numerical methods and procedures used to compute these quantities will be detailed in

the next Chapter.
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Numerical aspects

We present in this Chapter the different numerical aspects encountered in the compu-

tation of the sensitivity gradients. First, a general view point is taken in Section 3.3.4

regarding the numerical strategy that can be adopted to compute the gradients in a

discrete framework. In particular, the choice of algorithms to perform matrix inversion

and to solve eigenvalue problems, as well as the question of the storage of the matrices

are discussed. Second, the computational procedure used to obtain the Jacobian J and

the matrix H′ from residual evaluations are detailed in Section 3.2. A particular set of

vectors is introduced to optimize the procedure, and the choice of linearization parame-

ters is discussed. An adaptation of shape optimization code to compute the sensitivity

gradients is proposed. Finally, we introduce the RANS equations used in the application

cases in Section 3.3, as well as the available choices of numerical schemes.

3.1 Numerical strategy

3.1.1 Explicit storage of matrices with direct inversions

The procedure to compute the sensitivity gradients presented in Chapter 2 relies on

the knowledge of the first (the Jacobian J) and second (the Hessian H) derivatives

of the discrete operator R(w). As mentioned in the Introduction, we follow in this

study a strategy based on a finite difference method to obtain both Ju and H(u,v)

with u and v arbitrary vectors. More precisely, we want to evaluate these matrices by

repeated evaluations of the residual function. The code may then be used in a black

box manner: assuming that the code generates a valid discrete residual R(u), one may

27
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obtain approximations of Ju and H(u,v) with the following first order approximations:

Ju =
1

ǫ
[R (wb + ǫu)−R (wb)] , (3.1)

H (u,v) =
1

ǫ1ǫ2
[R (wb + ǫ1u+ ǫ2v)−R (wb + ǫ1u) (3.2)

−R (wb + ǫ2v) +R (wb) ],

where ǫ, ǫ1 and ǫ2 are small constants. The choice of these constants will be further

detailed in Section 3.2.4. In the context of global stability analyses, finite difference

methods have recently been used to approximate the discrete Jacobian (De Pando et al.

[69], Mack and Schmid [89]). Here, we suggest that these methods may also be useful

to compute the sensitivity gradients introduced in Chapter 2.

To validate this idea, we have chosen an ”explicit matrix” approach combined with

a direct sparse LU solver to perform matrix inversions, which is relevant for small-

scale-problems of the order of 106 − 107 degrees of freedom for w. The advantage of

this strategy is that it yields fast and accurate results. The ”explicit matrix” strategy

consists in computing and storing all non-zero values of the various matrices involved

in Chapter 2. Due to the large size of the meshes this is possible only if these matrices

are sparse. The Jacobian structure is intrinsically linked to the stencil width used to

discretizeR, which we assume to be compact, ensuring the sparse nature of J. Moreover,

a similar result holds for matrix H′ (see next section for details). Explicit knowledge of

these matrices induces that we also have direct access to J∗ and H′∗ involved in steps 2,

3 and 4 of the procedure summarized at the end of Section 2.2.3, as well as in steps 2, 4,

and 5 of the method in Section 2.3.5. The eigenvalue problems in Eqs. (2.5) and (2.10)

for oscillators may be solved using Krylov methods with a shift-invert strategy (open

source library ARPACK [90]), so as to focus on the least-damped eigenvalues. For noise

amplifiers, the eigenvalue problem in Eq. (2.77) can be solved using the power method

algorithm of Lanczos. Matrix inversions involved are carried out in the following with a

direct sparse LU solver for distributed memory machines (MUMPS see http://graal.ens-

lyon.fr/MUMPS/, or SuperLU-dist see http://acts.nersc.gov/superlu/). The inverses

are obtained extremely fast but the drawback is the very high requirements in terms

of memory (typically around 50 times the memory of the matrix to be inverted). In

order to avoid this overshoot in memory, one could use, instead of the direct LU solvers,

iterative algorithms such as BICGSTAB with an incomplete LU preconditioner (Mack

and Schmid [89]). This would however result in a strong increase in computational time.
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3.1.2 On-the-fly computation

For problems with a larger number of degrees of freedom, typically 3D problems, one

has to resort to ”on the fly” approaches, where the matrix is never stored explicitly. The

”on the fly” strategy has been introduced in the context of global stability analyses by

Mamun et al. [91], Bagheri et al. [92] and Mack et al. [89]. The objective here is to avoid

forming any matrix explicitly in order to save memory. This requires specific algorithms

that are solely based on the action of the matrices on a vector. De Pando et al. [69]

have shown in the context of laminar compressible flows how to efficiently compute Ju

and J∗u by using finite differences with an existing direct numerical simulation code.

Also, they showed that time-integration of Eq. (2.3) combined with a Krylov-Schur

method and a harmonic extraction technique effectively recovered the least-damped

direct and adjoint global modes. From the similarity between oscillators and noise

amplifiers, such technique can also be applied to Eq. (2.29) to compute the optimal

gain with the corresponding optimal forcing and response. However, these previous

studies using ”on the fly” strategies were not concerned with the computation of the

sensitivity gradients. In the following lines, the formalism introduced for the oscillators

is used. We shall remark here that during the computation of the sensitivity to baseflow

modifications, the evaluation of z = H′∗w̃ can in principle also be performed ”on the

fly”:

zi =
∑

j

H′
jiw̃j =

∑

j

〈ej ,H(ŵ, ei)〉w̃j (3.3)

= 〈w̃,H(ŵ, ei)〉. (3.4)

where H(ŵ, ei) can be approximated from Eq. (3.2). This evaluation may be computa-

tionally intensive since one Hessian evaluation H(ŵ, ei) has to be performed by degree

of freedom so that some optimization may be useful. Nevertheless, since this evaluation

is only done once per considered eigenmode, it is less critical than the evaluations of

Ju and J∗u, required for the time-integration in the eigenvalue problems. The same

remark is true in the case of noise amplifiers, as we need to evaluate z = H′∗f̃ . Finally,

the required inversion Q−1u may easily be carried out with a cheap conjugate gradient

algorithm with diagonal preconditioning.

3.2 Efficient evaluation of matrices with explicit storage

This section describes the procedure used to efficiently compute the matrices J andH′ by

taking advantage of their structure dependence to the discretization stencil. The choice

of the linearization parameters is then discussed. A more intrusive approach suited
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for codes containing an existing linearization of the RANS equations such as shape

optimization codes will finally be investigated. We consider in the following a case of

dimension d solved using finite volume or finite difference methods with a discretization

scheme using an ns points stencil in each direction. We assume the governing equations

(2.1) to be discretized on a mesh of size Nm = Im × Jm × Km for a system of nc

conservative variables. As will be further detailed, the Jacobian is a square matrix of

size N ×N where N = nc ×Nm, with a total number of non zero elements ne.

3.2.1 Example case

As an example case, we consider the following d = 1 dimensional model with nc = 2

conservative variables discretized on an ns = 2 points stencil, the discretization step ∆x

is taken uniform and equal to 1 for simplicity :

R (w) = R
(

a

b

)

=

(

b∂xa

a∂xb

)

Ri =

(

bi [ai+1 − ai]

ai [bi+1 − bi]

)

. (3.5)

Linearizing the discrete equations, we obtain the product Ju in the stencil (i, i+ 1, i+ 2):










−bi ai+1 − ai bi 0 0 0

bi+1 − bi −ai 0 ai 0 0

0 0 −bi+1 ai+2 − ai+1 bi+1 0

0 0 bi+2 − bi+1 −ai+1 0 ai+1










J















dai

dbi

dai+1

dbi+1

dai+2

dbi+2















u

(3.6)

We foresee that all the Jacobian coefficients can be obtained independently from this

matrix vector product using the following set of vectors u :
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u =


























...

dai−1

dbi−1

dai

dbi

dai+1

dbi+1

dai+2

dbi+2

...


























=


























...

0

0

1

0

0

0

1

0
...


























=


























...

1

0

0

0

1

0

0

0
...


























︸ ︷︷ ︸

da

=


























...

0

0

0

1

0

0

0

1
...


























=


























...

0

1

0

0

0

1

0

0
...


























︸ ︷︷ ︸

db

(3.7)

This set corresponds to perturbation vectors ei taken every ns = 2 points for each

variable a and b separately. The non zero indices in the perturbation vectors are shifted

every nc × ns = 4 points to ensure that we only compute one contributing term (dai,

dai+1, dbi or dbi+1 for example) for each matrix vector product. The Jacobian can thus

be obtained using ns × nc = 4 residual evaluations. Each line of the Jacobian contains

nc × ns non zero coefficients, we thus have ne ≈ nc × ns ×N = 8Nm.

3.2.2 Jacobian computation

The Jacobian is computed according to Eq. (3.1) by evaluation of the discrete residuals

at each point. Using an ns points stencil, the discrete residual at point (i, j, k) for the

vth variable Rv
ijk = R (Wlmn) is only a function of the (l,m,n) points linked to (i, j, k) by

the discretization stencil, that is at most nd
s points (d = 1,2,3 if we consider respectively

a one, two or three dimensional case). As an example, a two dimensional case with

ns = 5 is depicted in Fig. 3.1 where the dependency of the residual Rv
ij towards the

stencil is plotted. We foresee from this example that the total number of points np

which contribute to the residual evaluation at one point may differ from the maximum

value nd
s , that is np ≤ nd

s (in the Figure np = 13 while n2
s = 25).

The Jacobian coefficients can be interpreted as the contribution of the (l,m, n) point to

the linearization around the baseflow of the discretized equations at the point (i, j, k).

Linearizing the equations at (i, j, k) for a given variable, we obtain nc coefficients for

each of the np contributing points (l,m, n). Therefore the total number of non zero

elements in the Jacobian scales as ne ≈ npncN = npn
2
cNm. Note that ne corresponds

to the maximum number of non zero elements in the matrix and may overpredict the
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actual number. The sparsity coefficient of the matrix S = 1 − ne/N
2 ≈ 1 − np/Nm is

reduced when the stencil width of the system is increased.

Perturbing the baseflow with a vector elmn equal to 1 for a given conservative variable

at a point (l,m, n) and 0 elsewhere, Eq. (3.1) becomes:

Jelmn =
1

ǫ
[R (wb + ǫelmn)−R (wb)] . (3.8)

Due to the stencil dependency, the perturbation only impacts the discrete residuals at

the np points around (l,m, n) in their evaluation. Therefore, the right hand side of

the previous equation yields npnc non zero coefficients of J. These terms correspond

to the contribution of (l,m, n) to the linearization of the equations at these np points.

Therefore the complete linearization of the discrete equations at a point (i, j, k) can

be obtained by perturbing individually all the np points that intervene in the residual

evaluation at (i, j, k) for each conservative variable. The Jacobian coefficients can thus

be obtained independently using Eq. (3.8) by defining a set of perturbation vectors

(ep) for each conservative variable and every ns points in each direction. The matrix

is obtained by performing nres = ncn
d
s residual evaluations (or matrix vector products)

and then assembling it explicitly. We shall note here that the residual evaluations for

each perturbation vector ep are independent from one to another: the computational

time of this procedure can be greatly lowered using parallel computation.

Figure 3.1: Example of stencil dependency of the residual evaluated at the point
(i, j).
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3.2.3 Hessian computation

As detailed in Chapter 2, the computation of the sensitivity gradients mainly requires

the computation of the matrix H′. As the structure of H′ depends on the discretization

stencil similarly to that of J, a similar perturbation method may be used to compute it.

Due to the analogy between the computation of H′ for noise amplifiers and oscillators,

we will here use the formalism dedicated to oscillators. Note that the results can be

straightforwardly extended to noise amplifiers by changing the roles of the adjoint mode

w̃ with the optimal forcing f̃ , and of the unstable mode ŵ with the optimal response x̂.

In particular, using Eq. (2.16) we have:

H′ep = H (ŵ,ep) (3.9)

=
1

ǫ1ǫ2
[R (wb + ǫ1ŵ + ǫ2ep)−R (wb + ǫ1ŵ)

−R (wb + ǫ2ep) +R (wb)],

where (ep) corresponds to the set of perturbation vectors previously defined. The size

of H′ and its number of non zero elements are thus equal to the Jacobian ones. The

computational cost of explicitly formingH′ is four times the Jacobian one as two complex

residual evaluations have to be performed for each ep in Eq. (3.9). In a code where

only real structures are available, all the above mentioned evaluations shall be done

separately for both real and imaginary parts of the eigenmode ŵ. Indeed, as δJ and

δwb are real quantities in Eq. (2.17), both real and imaginary parts of Eq. (2.17) can

be computed separately.

We previously introduced first order linearization formulas for explanation purpose. In

practice, second order formulas are used for the computation of both J and H′:

Jep =
1

2ǫ
[R (wb + ǫep)−R (wb − ǫep)] , (3.10)

H′ep =
1

4ǫ1ǫ2
[R (wb + ǫ1ŵ + ǫ2ep)−R (wb + ǫ1ŵ − ǫ2ep) (3.11)

−R (wb − ǫ1ŵ + ǫ2ep) +R (wb − ǫ1ŵ − ǫ2ep)].

For both matrix computations, the second order precision procedure is twice more costly

than the first order one as twice more residual evaluations have to be performed for each

ep.
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3.2.4 Adequate choice of linearization parameters

The linearization parameters ǫ,ǫ1,ǫ2 in Eqs. (3.8-3.12) should not be too small to avoid

round-off errors and not too large for the approximations to remain accurate. This issue

and optimal choices of ǫ have been discussed in detail by Knoll et al. [93] in the context

of Jacobian free methods.

Here, we compute each coefficient of the Jacobian individually, so that we actually

linearize a scalar equation. The linearizaton parameter can thus be taken as mentioned

in [93] : ǫ = ǫm (|w|+ 1), with w the local baseflow value of the considered variable.

Noting Mp the machine precision (64 bit machines), An et al. [94] showed that the

ǫm which minimized the error should be taken equal to ǫm =
√
Mp ≈ 10−8 for the

first order approximation, and equal to ǫm = 3

√
Mp/2 ≈ 5.10−6 for second order ones.

Note that when performing second order precision computations, as some conservative

variables should remain positive by definition, the imposed perturbation must remain

smaller than the baseflow local value. When the previous choice of ǫ does not satisfy

this criterion, we imposed ǫ to be 10 times smaller than the local baseflow value |w|.

For the computation of H′ which is a second order derivative, ǫ1 is taken (similarly

to Jacobian free methods [89]) such that the unstable mode ǫ1ŵ can be considered as

small compared to the baseflow ǫ1 ‖ŵ‖ =
√
Mp ‖wb‖. This choice of global ǫ1 ensures

that the matrix can be computed in ncn
d
s residual evaluations. In the case of a local

ǫ1 (where the value of ǫ1 may differ from one point to another), each local contribution

Hijkŵj in Eq. (2.16) should be computed independently. This can be done by defining

a set of vectors (ep
′) with the same structure as the previously defined set (ep) but with

local non zero values epj equal to ǫ1ŵj . For each perturbation vector ep, the residual

evaluation in Eqs. (3.9) and (3.12) should be done for all the ep
′ and then summed as

in Eq. (2.16) to obtain the column of H′ given by the considered ep.The total cost of

the method would thus raise to nres =
(
ncn

d
s

)2
residual evaluations.

Finally, we also imposed ǫ2 to be of the form ǫ2 = ǫm2
(|w|+ 1), forthcoming results

will show that the choice of ǫm2
appeared to be more complex as the gradients are more

sensitive to this choice. In particular, several values of local ǫm2
adapted to each flow

variable were tested to obtain the best linearization set.

3.2.5 Adaptation of optimization codes

Optimal design methods require the evaluation of aerodynamic quantities with respect

to some parametrization of the flow (Sobieszczanski-Sobieski [95]). The solution is ob-

tained using a gradient based optimization process which requires the computation of
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the product Ja where a is a specific vector field. Note that we consider here a discrete

framework where the equations to linearize are the discrete ones. Usually, J is obtained

using an analytical linearization rather than a discrete linearization for precision pur-

pose, as the optimization process is very sensitive to the precision of the Jacobian and

its adjoint (Peter and Dwight [72]). However, due to the complexity of the equations to

linearize, several simplifications may be done in the linearization process. For example,

the thin layer assumption (Candler and MacCormack [96]) may be used so that cross

derivatives of the stress tensors in the RANS equations are neglected.

Despite the simplifications achieved in the linearization, such optimization codes can be

used to compute the sensitivity gradients. Indeed, the code can be intrusively modified

in order to yield a product Ju for any vector u. Using the same set of vector (ep) as

before, we can obtain all the Jacobian terms by matrix vector evaluations.

The matrix H′ can then be obtained using finite differences applied directly to the

Jacobian. Indeed we have from Eq. (2.17):

Jwb+ǫ2epŵ − Jwb
ŵ

ǫ2
= H′ep. (3.12)

For each vector ep, the Jacobian associated to the perturbed baseflow wb + ǫ2ep is

obtained using the above mentioned Jacobian computation. Subtracting it with the

unperturbed baseflow Jacobian and multiplying by the global mode ŵ we obtain H′ep

so that H′ can be formed explicitly using Eq. (3.12). We shall note that if no approxi-

mations are done in the analytical linearization, such a procedure would be more precise

then our fully discrete approach since only a first order derivative would be approximated

using finite differences.

3.3 RANS equations and turbulence models

3.3.1 Mean field variables

The Navier-Stokes equations in (2.1) can be rewritten as:

d

dt

(

wmf

wtf

)

=

(

Rc,mf +Rd,mf

Rc,tf +Rd,tf + T

)

(3.13)

where the superscripts mf and tf refer respectively to the mean and turbulent fields of

the RANS equations. In particular, wmf = (ρ, ρU, ρE)T where ρ designates the density

, U the velocity and E the total energy of the flow. Terms Rc, Rd and T correspond

respectively to the convective and diffusive fluxes of the equations and the turbulence
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source term. The continuous form of the mean field fluxes in Eq. (3.13) are given by:

Rc,mf = −







ρU

ρU⊗U+ pI

ρEU+ pU







Rd,mf =







0

τ + τr

τU+ τrU− q− qt







, (3.14)

with

p = ρRT τ = −2

3
µ (∇ ·U) I+ 2µD q = −cpµ

Pr
∇T, (3.15)

τr = −2

3
µt (∇ ·U) I+ 2µtD qt = −cpµt

Prt
∇T, (3.16)

p is the pressure, R the perfect gas constant, cp the heat capacity at constant pressure,

µ the viscosity, T the temperature, τ the viscous tensor, q the heat flux, D and I the

strain and identity tensors respectively, µt the eddy viscosity (computed with the chosen

turbulence model), τr the Reynolds stress tensor, qt the flux of diffusion of turbulent

enthalpy, Pr and Prt the classical and turbulent Prandtl number assumed constants

and taken respectively equal to 0.72 and 0.9. The preceding equations were derived

using Boussinesq hypothesis and perfect gaz relations. The viscosity is computed using

Sutherland’s law:

µ = µs

√

T

Ts

1 + Cs/Ts

1 + Cs/T
, (3.17)

using the constants µs = 1.71 10−5Pa.s,Cs = 110.4 and Ts = 273K. The variables

U, E, k, ω are mass weighted averaged using Favre average whereas the other ones are

averaged according to the classical RANS average in time.

For turbulent flows, we chose to use two widely encountered turbulence models, the

k − ω model of Wilcox and the Spalart-Allmaras model. In particular, the turbulent

kinetic energy term k in the energy conservative equation is neglected as suggested by

dimensional analysis for high Reynolds number flows.

3.3.2 k − ω model of Wilcox

The k − ω model of Wilcox [51] introduces the turbulent conservative variables wtf =

(ρk, ρω)T , where k is the turbulent kinetic energy and ω the rate of dissipation of

turbulence. The turbulent fluxes and source terms are then given by:

Rc,tf = −
(

ρkU

ρωU

)

, Rd,tf =

(

(µ+ σ∗µt)∇k

(µ+ σµt)∇ω

)

, (3.18)
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β∗ β σ∗ σ γ K

0.09 0.075 0.5 0.5
β

β∗
− σK2

√
β∗

0.41

Table 3.1: Constants used in the k − ω model of Wilcox.

T =




τr : ∇U− β∗ρkω
γ

νt
τr : ∇U− βρω2



 , (3.19)

where the constants used are summarized in Table 3.1.

The turbulent eddy viscosity is finally defined with:

µt =
ρk

ω
. (3.20)

3.3.3 Spalart-Allmaras model

The turbulence model of Spalart and Allmaras [65] is a one equation turbulence model

which introduces the kinematic viscosity transform ν̃ with wtf = (ρν̃). The turbulent

fluxes and source terms are then given by :

Rc,tf = −
(

ρν̃U
)

Rd,tf =

(
µ+ ρν̃

σν̃
∇ν̃

)

, (3.21)

T =
(

Prod+ Cross+Dest+ Trans
)

. (3.22)

The source terms can be identified as:

- a production term Prod = Cb1S̃ρν̃,

- a cross diffusion term Diff =
Cb2

σ
∇ρν̃ · ∇ν̃,

- a destruction term Dest = −Cw1fwρ
ν̃2

η2
,

- a transition term Trans = ft2

(
Cb1

K2
ρ
ν̃2

η2
− Cb1S̃ρν̃

)

,

with, noting Ω the vorticity :

S̃ = |Ω|+ ν̃

K2η2
fv2,

g = r + Cw2

(
r6 − r

)
,

fv2 = 1− χ

1 + χfv1
,

ft2 = Ct3e
−Ct4χ2

,

fw = g

(
1 + C6

w3

g6 + C6
w3

)1/6

,

r =
ν̃

S̃K2η2
.
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Cb1 Cb2 σ K Cw1 Cw2 Cw3 Cv1 Ct3 Ct4 ft2
0.1355 0.622 2/3 0.41 Cb1/K

2 + (1 + Cb2)/σ 0.3 2 7.1 1.2 0.5 0

Table 3.2: Constants used in the Spalart-Allmaras model.

The turbulent eddy viscosity is finally defined with:

µt = ρν̃fv1, (3.23)

with :

fv1 =
χ3

χ3 + C3
v1

, χ =
ρν̃

µ
. (3.24)

The values of the constants for the Spalart-Allmaras model are given in Table 3.2. As

we are not interested in the transition to turbulence induced by the turbulence model,

we set in this study the transition terms to 0 in the following. The model is designed

such that the turbulent variable ρν̃ tends towards the eddy viscosity µt far from the

walls.

iter

R (wb)

ρ
ρu
ρv
ρe
ρk
ρω

Figure 3.2: Typical evolution of the explicit residuals during a baseflow computation
using the k − ω model of Wilcox.

3.3.4 Numerical schemes

We use the finite volume code elsA developed at ONERA (Cambier et al. [97, 98]) to solve

the steady RANS and unsteady uRANS equations. The system defined in Eq. (3.13) is

solved for each cell (i, j) of volume Ω and surface Σ in its integral formulation :

d

dt
Wij = Rc

ij −Rd
ij + Tij = Rij, (3.25)
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with :

Wij =
1

Ω

∫

Ω
WdΩ, Tij =

1

Ω

∫

Ω
T dΩ, (3.26)

Rc,d
ij =

1

Σ

∮

Σ
Rc,d · ndΣ =

1

Ω

(

Rc,d
i+1/2,j +Rc,d

i,j+1/2 +Rc,d
i-1/2,j +Rc,d

i,j-1/2

)

. (3.27)

In particular, Rij corresponds to the discrete residual operator. In order to check the

robustness of the method, several spatial discretization schemes of the mean field con-

vective flux Rc,mf
ij can be used both for baseflow and Jacobian computations: a central

difference formula with Jameson’s scalar dissipation and Martinelli’s correction (Mar-

tinelli [99]), a Roe scheme extended to the second order using MUSCL method (Van Leer

[100]) and an AUSM scheme (Mary et al. [101]). The convective flux associated with the

turbulence equations Rc,tf
ij are discretized using the first order Roe scheme with Harten’s

correction to prevent the occurrence of low eigenvalues (Harten and Hyman [102]). A

central difference scheme is used for the turbulent diffusive flux. The viscous flux of the

mean field is calculated at the interface by averaging cell-centered values of flux density

which is computed from cell-centered evaluation of gradients. The source terms are

discretized using estimates of gradients and variables at cell centers. The Zheng limiter

operator (Zheng et al. [103] designed to limit the values of ρω) is used for the baseflow

computation with the k − ω model, but is switched off for the stability analysis. These

discretization choices all lead to an ns = 5 points stencil, an example of the dependency

of the residual evaluated at the cell (i, j) being depicted in Fig.3.1. As mentioned in

Section 3.2.2, the total number of points np = 13 contributing to the residual evaluation

at one point does not scale with n2
s = 25 (in a three dimensional case we would have

np = 34 rather than n3
s = 125). Boundary conditions are imposed by computing the

residuals at the interfaces defined by the boundaries. The characteristic equations are

integrated to obtain boundary values in the case of inlet or outlet conditions. Turbulent

quantities at walls are computed as proposed by Wilcox [51] and Spalart and Allmaras

[53]. Note that all these discretization choices combined with turbulence model yield

to second order differentiable discrete equations as required for the sensitivity gradients

to be defined. Steady state solutions are obtained using a backward-Euler scheme with

local time-stepping. Unsteady solutions are computed using the second order implicit

Gear scheme. Convergence of the baseflow is assessed by ensuring that the explicit resid-

uals of the mean field equations are small (typically 10-11) and that the residual of the

turbulent equations have decreased by several orders of magnitude. A typical evolution

of the residuals is given in Fig.3.2 for the deep cavity case described in Chapter 5.



Chapter 3. Numerical aspects 40

3.3.5 Treatment of boundary conditions

Two types of boundaries can be distinguished: material surfaces, such as adiabatic walls,

and permeable boundaries which are introduced to artificially limit the computational

domain. In elsA, the boundary conditions are imposed directly in the fluxes evaluation

at the boundary in Eq. (3.13). For material surfaces, the boundary condition dictates

the values of several conservative variables at the interface defined by the boundary, the

missing variables being extrapolated from the computational domain.

For permeable boundaries, the characteristic equations are used in order to compute

the conservative variables at the boundary from the computational domain. A par-

ticular treatment is performed on permeable boundaries, where the discrete residual

R (Wb + δWb) is evaluated using a pseudo integration in time:

R (Wb + δWb) =
(Wb + δWb)

n+1 − (Wb + δWb)

∆t
. (3.28)

This procedure ensures that unsteady boundary conditions are used in the evaluation of

R (Wb + δWb) and thus in the Jacobian J, and justifies that unsteady perturbations

w′ can be considered in Eq. (2.3).

3.3.6 Shape optimization code adaptation

The elsA software includes a shape optimization module in which the discrete RANS

equations and various turbulence models were analytically linearized (Peter [104], El Din

et al. [105], Peter et al. [106], Renac [107]). We modified this code as stated in Section

3.2.5 in order to enable the computation of both matrices J and H′, for the turbulence

model k − ω model of Wilcox and the Roe scheme for the mean field convective fluxes,

other terms being discretized as described above. Nonetheless, the analytical lineariza-

tion in the module was done using the thin layer assumption [96], so that we expect to

observe some differences when comparing results obtained with this strategy to those

obtained by the fully discrete approach.

3.4 Concluding remarks

A fully discrete method was proposed where the discrete equations are linearized using

finite differences. Such a procedure is generic regarding the system of equations and

can be used in a black box manner. The resolution of an eigenvalue problem being

mandatory to perform linear stability analysis, several strategies for matrices inversion
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were proposed. An explicit storage of matrices strategy was adopted, which allows

immediate access to adjoint matrices required for the computation of the sensitivity

gradients. Both direct and adjoint problems are solved using direct methods for matrices

inversions. This strategy is fast and accurate and exploits the sparsity of the Jacobian

matrix. It however remains costly in terms of computational memory. An on-the-

fly strategy was hence described to tackle three dimensional configurations. An efficient

procedure was proposed to compute the Jacobian and the Hessian of the RANS equations

from residual evaluations, which introduce a particular set of vector intrinsically linked

to the stencil discretization. The choice of linearization parameters was also discussed,

and a possible adaptation of shape optimization codes to perform linear stability analysis

and compute the sensitivity gradients was proposed. Finally, the complete system of

equations used in this study and their numerical discretization were described. We will

now test the proposed tools and formalisms on several cases to assess the validity of our

method.





Chapter 4

Validation on laminar flows

Two incompressible laminar cases are analysed as validation cases for our method in

this Chapter, where we reproduce former studies results obtained using a continuous

approach. In a first time, we consider in Section 4.1 the oscillator dynamics of the

wake behind a two dimensional cylinder. The critical Reynolds number at which the

baseflow becomes unstable is determined, and the sensitivity gradients are computed.

Ours results show good agreement with those obtained by Marquet et al. [32] on an

identical configuration. In a second time, we analyse in Section 4.2 the noise amplifier

dynamics of a two dimensional evolving boundary layer. Optimal perturbations are

found to correspond to Tollmien-Schlichting waves as expected. The sensitivity gradients

are then computed and reproduce the results obtained by Brandt et al. [38].

4.1 Wake behind a two dimensional cylinder

4.1.1 Configuration

We consider a two dimensional cylinder of diameter D in a uniform upstream flow of

velocity U∞ = U∞ex. As we use a compressible code which does not allow us to impose

the incompressibility condition, we set the Mach number to M = 0.2. The stagnation

temperature is set to 292.5K, and the flow is governed by the laminar Navier-Stokes

equations. All quantities are made dimensionless using the cylinder diameter D, the

upstream velocity U∞, density ρ∞ and viscosity µ∞, the viscosity being computed using

Sutherland’s law. The flow characteristics are thus entirely determined by imposing the

Reynolds number Re = ρ∞U∞D/µ∞. This configuration mimics the study by Marquet

et al. [32].

43
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(a) (b)
x iter

y R (wb)

ρ
ρu
ρv
ρe

Figure 4.1: (a): Mesh discretization of the cylinder. (b): History of residual conver-
gence with the number of iterations during baseflow computation for Re = 47.

The mesh used for the simulation is depicted in Fig.4.1(a). Non-reflexion conditions

with upstream flow properties are imposed on the outer part of the configuration while

a viscous adiabatic condition is imposed on the cylinder. In order to ease the convergence

of the steady solution, the symmetry of the configuration with respect to the plane y = 0

is exploited. The baseflow is first computed on a half domain (in black in Fig.4.1(a))

imposing symmetry conditions at the frontier y = 0, and is then symmetrized to obtain

the baseflow on the full domain required for the stability analysis. The Roe scheme

extended to second order (MUSCL) is used for the discretization of the convective flux.

The convergence history of the residual for the different conservative variables is depicted

in Fig.4.1(b). The steady solution is converged as the different residuals reach a plateau

lower than 10−8, ensuring R (wb) = 0.

x

y

Figure 4.2: Velocity streamlines and vorticity contours of the baseflow obtained for
Re = 47.

The baseflow streamlines and vorticity contours computed for Re = 47 are plotted
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in Fig.4.2. The vorticity is mainly located on the upstream surface of the cylinder. A

symmetric recirculation bubble is observed behind the cylinder, with a length (measured

from the rear stagnation point) of L = 3.3 in agreement with the literature. In the next

two Sections, we will follow the method summarized in Section 2.2.3 and compare the

computed results with those of Marquet et al. [32].

4.1.2 Critical Reynolds number

As a first validation step, we compute several baseflows in the range Re = 40 − 70.

Once each baseflow is obtained, the Jacobian matrix is extracted as presented in Section

3.2.2 and its stability is assessed. The evolution of the least stable eigenvalue growth

rate σ and frequency f = ω/2π with the Reynolds number are respectively plotted in

Figs.4.3(a) and 4.4(a). We recover a critical number around 47 for which the baseflow

becomes unstable with a frequency around f = 0.117. For comparison purpose, we

plotted in Figs.4.3(b) and 4.4(b) the same results computed by Marquet et al. [32].

Excellent agreement is observed for the growth rate variation σ.

(a) (b)Re Re

σ

Figure 4.3: Comparison of the evolution of the least stable eigenvalue growth rate σ
with the Reynolds number Re between the current study (a) and the results of Marquet

et al. [32] (b).

The frequency variation is shifted by 10−3 in our case which is still in good agreement

with these previous results. Note that this difference is probably linked to numerical

errors. These results suggest that the Jacobian matrix J is correctly computed with our

fully discrete approach.
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(a) (b)Re Re

f

Figure 4.4: Comparison of the evolution of the least stable eigenvalue frequency f
with the Reynolds number Re between the current study (a) and the results of Marquet

et al. [32] (b).

4.1.3 Direct and adjoint unstable mode

We then consider in more detail the unstable case Re = 47 and perform steps 1 & 2 of

Section 2.2.3. The streamwise component ρu spatial structure of the unstable mode ŵ is

plotted in Fig.4.5(a) together with the one computed by Marquet et al. [32] in Fig.4.5(b).

Note that a mode is defined up to a phase and a normalization which are not given in [32]

so that scales are not given here. The mode is antisymmetric and propagates downstream

with the formation of typical structures linked to Kelvin-Helmholtz instabilities.

(a)

(b) x

x

y

y

Figure 4.5: Comparison of the streamwise component of the unstable mode ŵ at
Re = 47 (a) with the study by Marquet et al. [32] (b). The real part is plotted.
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The adjoint equations in Eq. (2.10) are solved and the adjoint mode w̃ computed. We

depicted in Fig.4.6(a) the streamwise component of the adjoint mode w̃|Q which is once

again compared with the results of Marquet et al. [32] in Fig.4.6(b). The discrete inner-

product Q is used here to compare our results to the continuous approach used in [32],

with Q a diagonal matrix whose terms correspond to the surface of the mesh cells such

that:

∀ (u,v) < u,v >=
∑

i,j

u∗i viΩij = u∗Qv. (4.1)

Both direct and adjoint mode structures are similar to the one computed by Marquet

et al. [32]. The adjoint mode propagates upstream while direct mode propagate down-

stream which comes from the opposite sign of the transport equations in the direct and

adjoint problems (see Chomaz [18], Sipp and Lebedev [68]). In particular, the non-

normality of the Jacobian matrix J is recovered here as the spatial structure of both

modes ŵ and w̃ are clearly separated.

(a)

(b) x

x

y

y

Figure 4.6: Comparison of the streamwise component of the adjoint unstable mode
w̃|Q at Re = 47 (a) with the study by Marquet et al. [32] (b). The real part is plotted.

4.1.4 Sensitivity gradient to baseflow perturbations

We then perform step 3 of Section 2.2.3 and compute the matrix H′ as presented in

Section 3.2.3. The linearization parameters discussed in Section 3.2.4 are set to ǫ1 = 1.0

and ǫ2 = 5 × 10−6. We should mention that as we work using dimensionless variables,

all variables are of comparable order between one another (unity). The problem is thus

well scaled and the choice of ǫ2 is facilitated.

The sensitivity gradient of the eigenvalue to baseflow perturbations ∇wb
λ is then com-

puted according to Eq. (2.19). The real part of sensitivity gradient ∇wb
λ corresponds
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to the sensitivity gradient of the eigenvalue growth rate ∇wb
σ while its imaginary part

relates to the sensitivity of the unstable mode frequency ∇wb
ω.

For comparison purpose, we consider the sensitivity gradient of the growth rate to base-

flow perturbations occurring on the momentum component ∇ρUσ|Q which we depicted

in Fig.4.7(a). It is a vector field represented by its amplitude, its orientation being given

by the arrows. Our result clearly differ from the one computed by Marquet et al. [32]

in Fig.4.7(b). A similar difference is observed in Figs.4.8(a) and 4.8(b) for the sensi-

tivity gradient of the frequency to baseflow perturbations occurring on the momentum

component ∇ρUω|Q.

(a) (b)

y

x x

Figure 4.7: Comparison of the growth rate sensitivity of the unstable eigenvalue to
baseflow perturbation ∇ρUσ|Q (a) with the study by Marquet et al. [32] (b).

(a) (b)

y

x x

Figure 4.8: Comparison of the frequency sensitivity of the unstable eigenvalue to
baseflow perturbation ∇ρUω|Q (a) with the study by Marquet et al. [32] (b).

Although our results differ from [32], we recover similar tendencies: far from the cylinder

the sensitivities decay to zero due to the spatial separation of the direct and adjoint

global modes, while highest magnitudes are reached inside the recirculation region, and

the gradients are similarly oriented in the recirculation bubble.

We claim that these differences between both studies come from the compressibility of

our equations and do not affect the validity of our results. Indeed, in [32], the equations

are incompressible so that the quantity plotted in Fig.4.7(b) actually corresponds to
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∇Uσ. Furthermore, although the gradient ∇wb
λ carries physical information, an arbi-

trary baseflow modification is not physically relevant. As a consequence, comparing the

impact of two arbitrary baseflow perturbations with different dynamics (a compressible

and an incompressible one) does not make sense. Hence, such a difference between both

gradients is not necessarily surprising. The fact that both results are similarly oriented is

however reassuring as ∇ρUσ|Q indicates us that the instability is reduced when blowing

inside the recirculation bubble, a fact known from experiments.

For both results to be compared, a constraint with a physical meaning should be applied

to these gradients to enable a relevant comparison. A not so simple way to do this would

be to compute the divergence free part of the gradients and compare them. Indeed, as the

dynamics is mostly incompressible, only the divergence free part of the gradient works

in the eigenvalue variation. Computing the divergence free part of the gradients should

thus lead to a good overlapping of both studies. However, this approach is complex and

would require the datas computed in [32].

We chose to set a different constraint on the gradients by imposing the baseflow modifi-

cation to stem from a steady force. As stated in Section 2.2.2, the baseflow perturbation

induced by a steady force can be computed using the inverse of the Jacobian J−1. In

particular, such a perturbation takes into account the inherent physics of the problem,

notably the fact that the flow occurs at a low Mach number. This choice naturally leads

to the definition of the sensitivity gradient to a steady force perturbation ∇fλ, which

are now relevant quantities to be compared with the results in Marquet et al. [32].

(a) (b)

y

x x

Figure 4.9: Comparison of the amplitude and direction of the momentum component
of the growth rate sensitivity to a steady force ∇fσ|Q (a) with the study by Marquet

et al. [32] (b).

We thus computed this gradient to a steady force perturbation and decomposed it once

again into its real and imaginary parts. The amplitude and direction of the momentum

component of the growth rate sensitivity to a steady force ∇fσ|Q and of the frequency

sensitivity to a steady force ∇fω|Q are respectively plotted in Figs.4.9(a) and 4.10(a).
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They show excellent agreement with those computed by Marquet et al. [32] which are

represented in Figs.4.9(b) and 4.10(b).

(a) (b)

y

x x

Figure 4.10: Comparison of the amplitude and direction of the momentum component
of the frequency sensitivity to a steady force ∇fω|Q (a) with the study by Marquet

et al. [32] (b).

Three regions in the vicinity of the cylinder and extending a few diameters downstream

may be identified: the separation region near the separation point on the cylinder, the

recirculation region, and the outer region corresponding to the region half a diameter in

size surrounding the recirculation region. Two strong local maxima of the growth rate

sensitivity to a steady force may be distinguished. The first is located in the vicinity of

the separation point and the second in the recirculation region, close to the centerline. A

local force oriented in the opposite direction to the arrows plotted in Fig.4.9(a) induces

a negative variation of the growth rate which is proportional to the local magnitude of

the sensitivity function. Therefore, near the separation and inside recirculation regions,

a local force is stabilizing when oriented downstream. The opposite is true in the outer

region. The frequency sensitivity is oriented downstream everywhere in the flow in

Fig.4.10(a). In particular, a stabilizing local force is associated with an increase of the

frequency both near the separation and inside recirculation regions.

These results are in excellent agreement with the results of Marquet et al. [32], suggesting

that the proposed method is a valid candidate to perform stability analysis of laminar

flows. Furthermore, this approach allowed us to validate our gradients in the case of

oscillators dynamics.

4.2 Evolving boundary layer over a flate plate

4.2.1 Configuration

We consider a uniform flow U∞ = U∞ex impinging on a flat plate located at (x, y) =

(0, 0) and extending up to x = 1.25. We impose the Mach number M = 0.3 with a static
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temperature T∞ = 283K, which poorly affects the results compared to the incompressible

case as will be shown in the following. We use a reference length L shorter than the

flat plate, and set the Reynolds number based on L to Re = 6 × 105. The viscosity

is computed according to Sutherland’s law, and all quantities are made dimensionless

using the upstream velocity U∞, temperature T∞, density ρ∞ and the reference length

L. The computational domain and the imposed boundary conditions are sketched in

Fig.4.11(a).

(a) (b)
x

y

x

δ∗

Figure 4.11: (a): Domain and boundary conditions. In the inlet are depicted stream-
wise velocity contours of the baseflow (in boundary layer units). (b): Comparison of
the computed displacement thickness δ∗ (plain line) with the Blasius boundary layer

solution (dotted line).

We impose an injection condition at the entrance of the domain (x = −0.5), a symmetry

condition on the upper part (y = 1.0), and set the pressure p∞ at the exit (x = 1.25).

The flat-plate boundary is taken as an adiabatic wall while a symmetry condition is

imposed upstream of the plate for x ∈ [−0.5, 0] , y = 0. Roe scheme extended to second

order is used for the discretization of the convective flux. The domain is discretized on

y using a tangential evolution of the discretization step imposing for the first cell on

the wall ∆y = 10−5. A uniform discretization on the plate is used for x ∈ [0, 1] with

∆x = 2× 10−4. A tangential evolution for the increase of the discretization step size is

finally used to meet the inlet and outlet boundary conditions. This configuration mimics

the study of Brandt et al. [38].

The baseflow wb is first computed, the streamwise velocity contours near the edge of

the plate can be observed in the inlet of Fig.4.11(a). Note that as this case is stable, the

convergence of the baseflow is easily obtained. For validation purpose, we compute the

displacement thickness δ∗ along the plate and compare it in Fig.4.11(b) to the analytical

expression δ∗ = 1.72R
−1/2
e

√
x obtained for the asymptotic Blasius similarity solution.
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The development of the boundary layer is observed to be very close to the Blasius

solution similarly to [38]. In the following, we will refer to the quantity δ defined as

the displacement thickness at x = 1, and the frequency F = 106ω/Re will be used

for convenience. We will follow the method summarized in Section 2.3.5 in order to

characterize the dynamics of the boundary layer.

4.2.2 Optimal gain

The noise amplifier dynamics of the boundary layer is analysed by considering the op-

timal energetic gain µ2 for a given harmonic forcing at the frequency ω. Following step

1, we first extract the Jacobian matrix J according to the procedure detailed in Section

3.2.2. The resolvent matrix Rω is then computed for several values of harmonic forc-

ing at the pulsation ω. Similarly to [38], the energy maximization is restricted to the

domain x ∈ [0, 1] (with no restriction on y), we thus use the pseudo-scalar product Qe

for the energy maximization as described in Section 2.3.3. The previously introduced

inner-product Q is used for the normalization of the forcing terms. Finally, as explained

in Section 2.3.4, we impose a restricted forcing f̂s solely acting on the momentum com-

ponents. The prolongation operator P is thus straightforwardly obtained by adding 0

to the extended vector f̂ = Pf̂s. All quantities required in step 2 (Section 2.3.5) are now

defined and we can thus perform step 3 solving Eqs. (2.77) and (2.76).

(a) (b)F F

µ2

Figure 4.12: Comparison of the optimal gain µ2 variation with the frequency F
between the current study (a) and the results by Brandt et al. [38] (b).

The variation of the gain µ2 with the frequency F is plotted in Fig.4.12(a) and shows

excellent agreement with the one computed by Brandt et al. [38] depicted in Fig.4.12(b).

We recover a maximum gain around the frequency F = 88 with an optimal gain of

µ2 = 225 close to [38]. We can notice the noise amplifier dynamics of the boundary layer
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which acts as a filter that enables strong amplifications of harmonic forcing located

within the range F ∈ [50,150].

Imax Jmax Number of cells dx/dy λ/dx

mesh 3567 249 888× 103 28.5 133

coarse x 1817 249 452× 103 57 67
coarse 2x 867 249 215× 103 125 30
coarse y 3567 149 531× 103 28.5 133
coarse xy 1817 149 270× 103 57 67
fine y 3567 349 1.24× 106 28.5 133

Table 4.1: Properties of the different meshes used for the gain function convergence.
dx/dy is given for the first discretization cell near the flat plate.

4.2.3 Mesh convergence

In order to better comprehend the impact of the mesh choice onto our results, we varied

the discretization and computed the gain functions for several meshes described in Table

4.1. For each mesh, the baseflow wb is first computed, the Jacobian matrix J is then

extracted and finally the gain µ2 is calculated for several frequencies F ranging in the

interval F ∈ [50,150].

The variations between the meshes correspond to a modification of the discretization of

the boundary layer. In the streamwise direction x, as the mesh is uniformly discretized,

we vary the discretization step (dividing it by 2 in coarse x, and 4 in coarse 2x). In the

crosswise direction y, we increase (fine) or decrease (coarse) the number of discretization

points. As the discrete step dy follows a tangential repartition, these variations mainly

impact the discretization within the boundary layer. The different mesh characteristics

are described in Table 4.1.

We shall remark here that Brandt et al. [38] used finite elements in their study with

triangular isosceles cells for the discretization. As the boundary layer mainly develops

in the crosswise direction, such a procedure is computationally intense since the config-

uration is over discretized in the x direction. Using finite volumes here, we are able to

stretch the cells in the x directions, we thus also give in Table 4.1 the stretching dx/dy

of the first discrete cell near the wall (note that finite elements methods also allow such

stretching).

The different gain function are plotted in Fig.4.13 together with the one depicted in

Fig.4.12(a). Several remarks can be made. We do observe a convergence of the gain

curve with the mesh, but notice that both the gain value and the location of the maxi-

mum of the curve are strongly influenced by the mesh discretization. The discretization
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F

µ2

Figure 4.13: Convergence of the gain function µ2 with the mesh discretization.

in the streamwise direction x appear to be of fundamental importance in order to accu-

rately compute the gain µ2. We can remark that most discretization points are used to

discretize the streamwise direction which is generally not the case for traditional analysis

of boundary layers but necessary for stability analysis here. This is most likely due to

the quick evolution of optimal forcing and response in this direction as will be observed

in Figs.4.14(a) and 4.15(a). We evaluated the wave length λ of the optimal answer in

Fig.4.15(a) and gave in Table 4.1 the ratio λ/dx which indicate for each mesh the num-

ber of discrete points in one wavelength. The discretization in the y direction seems to

have a poorer impact on the gain curve. Note that the final mesh used (mesh) does not

necessarily yields the completely converged curve although it provides good agreement

with [38].

N × 10−6 Mv ne × 10−6 nobt
e × 10−6 nobt

e /N2 MJ

mesh 4.4 35MB 289 15.2 7.7× 10−6 2.4GB

coarse x 2.3 18MB 147 77.4 1.5× 10−5 1.2GB
coarse 2x 1.1 8 MB 70 36.9 3.2× 10−5 0.6GB
coarse y 2.7 21MB 173 90.8 1.3× 10−5 1.4GB
coarse xy 1.4 11MB 88 46.2 2.5× 10−5 0.7GB
fine y 6.2 49MB 405 213 5.5× 10−6 3.3GB

Table 4.2: Matrix and vector properties for the different meshes used with nc = 4
and nres = 2× 100.

Finally, in order to give an idea of the typical costs of our method, we depicted in Table

4.2 the characteristic dimensions of our problem for the different meshes used. We recall

that we consider here a two dimensional flow, we thus have nc = 4 conservative variables,

and require nres = 2 × 100 residual evaluations to compute the Jacobian matrix with

second order precision. We detailed in Table 4.2 the vector size N as well as Mv the
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memory cost of storing one vector. Similarly, the theoretical ne and obtained nobt
e number

of elements of the Jacobian are given, together with the ratio nobt
e /N2 quantifying the

Jacobian sparsity, and the memory cost of storing the matrix MJ . Note again that the

formula giving the total number of elements ne was derived in Section 3.2.2, assuming

that all the conservative variables intervene in each equations. This is not necessarily

the case which explains the lower number of actual non zero elements obtained nopt
e .

4.2.4 Optimal forcing and response

In the following, we further characterize the forcing frequency case F = 100. The

spatial structures of the optimal forcing f̃ and response x̂ are respectively depicted in

Figs.4.14(a) and 4.15(a), and compared to the one computed by Brandt et al. [38] in

Figs.4.14(b) and 4.15(b). Note that Brandt et al. used a parabolic step upstream of

their flat plate in order to ease the computation of the baseflow. We used instead an

infinitesimally small flat plate and thus we added a black rectangle to our figures in

order to ease the comparison with their results.

(a)

(b)
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x
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δ

y

δ

Figure 4.14: Comparison of the streamwise component of the optimal forcing f̃ at
F = 100 (a) with the study by Brandt et al. [38] (b).

Both optimal forcing and optimal response show good agreements with [38]. Note once

again that these terms are defined up to a phase and a normalization so that scales

were not plotted. We can observe a slight difference between the response terms in

Figs.4.15(a) and 4.15(b) for x > 1 which probably comes from the strong decrease of

mesh refinement we imposed in this zone. However, as this area of the flow is not
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taken into account in the optimization process for the gain computation, such a small

discrepancy poorly affects our results.

(a)

(b)
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Figure 4.15: Comparison of the streamwise component of the the optimal response
x̂ at F = 100 (a) with the study by Brandt et al. [38] (b).

The optimal response consists of a series of waves clearly localized downstream of the

flat plate and reaches a maximum around x = 0.9. These structures correspond to

Tollmien-Schlichting waves. Inversely, the optimal forcing is localized upstream and

reaches a maximum around x = 0.25. The non-normality of the Jacobian matrix J is

once again recovered in the comparison of the spatial structure of the optimal forcing

and response. Indeed, the disturbance f̃ is dominated by its streamwise component,

while the optimal response x̂ is equally distributed on its streamwise and cross-stream

components. The streamwise forcing is dominant because the forcing is leaning against

the shear of the baseflow, suggesting that the well-known Orr mechanism is also at play

to efficiently initiate the Tollmien-Schlichting instability as explained in Åkervik et al.

[108].

4.2.5 Gain sensitivity to baseflow perturbation

Following step 4 (Section 2.3.5), the matrix H′ is then computed as presented in Section

3.2.3, setting the perturbation parameters discussed in Section 3.2.4 to ǫ1 = 1.0 and ǫ2 =

5× 10−6. Similarly to the cylinder case, the variables are of similar order of magnitude

near unity. The gain sensitivity to baseflow perturbation ∇wb
µ2 is then computed

according to Eq. (2.53). We depicted in Fig.4.16(a) the obtained field ∇wb
µ2|Q.
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Figure 4.16: Comparison of the streamwise component of the gain sensitivity to
baseflow perturbation ∇wb

µ2|Q at F = 100 (a) with the study by Brandt et al. [38]
(b).

We observe an excellent agreement with the results of [38] which are depicted in Fig.4.16(b).

This field is weakly varying in the streamwise direction but exhibits strong variations in

the cross-stream direction. The baseflow is found to be sensitive to external perturba-

tions only in the vicinity of the flat plate. We shall remark that contrarily to the cylin-

der case, both incompressible and compressible gradients are identical. In Fig.4.16(b),

Brandt et al. [38] depicted the divergence free part of the gradient. We believe that this

similarity is due to the fact that in this case both divergence free and non-divergence

free part of the gradient are nearly identical.

(a) (b)
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x

Figure 4.17: Comparison of the wall normal gain sensitivity to baseflow perturbation
at the station x = 0.7 for F = 100 (a) with the study by Brandt et al. [38] (b). The y

coordinate is here normalized with the local displacement thickness δ∗ (x = 0.7)
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A final validation step is taken by considering the wall normal gain sensitivity to baseflow

perturbation at the station x = 0.7 in Fig.4.17(a) and comparing it with the results of [38]

in Fig.4.17(b) (the streamwise component of the gradient is considered). Both variation

of the sensitivity gradient with y (in boundary layer units) are found identical. These

results demonstrate that our gradients are correctly computed in the case of laminar

flows.

4.3 Concluding remarks

The oscillator dynamics of a two-dimensional cylinder was studied and the critical

Reynolds number for flow instability was recovered. The sensitivity gradients to base-

flow perturbations and steady force were computed and show good agreement with those

computed by Marquet et al. [32]. The noise amplifier dynamics of a boundary layer was

also analysed. The optimal gain curve was computed and optimal forcing and response

structure detailed. The sensitivity gradient of the optimal gain to baseflow perturbation

was finally extracted and reproduce the results obtained by Brandt et al. [38]. The

coherence observed with previous results demonstrates that both oscillators and noise

amplifiers dynamics can be characterized using our fully discrete formalism in the case

of laminar flows. Moreover, it also validates the laminar computation of our gradients.

We will now extend this validation to a compressible turbulent flow in the next Chapter.



Chapter 5

Sensitivity analysis of a turbulent

compressible flow over a deep

cavity

We explore in this Chapter the dynamics of a turbulent compressible flow over a deep

cavity. The flow configuration was experimentally characterized by Forestier et al. [83],

while Larchevêque et al. [84] showed that three-dimensional large-eddy simulations re-

produced the flow dynamics. Further experimental analyses including steady control

were carried out by Illy et al. [109] and Yamouni [110]. In a first hand, this case will

enable us to demonstrate the valuable information that both stability and sensitivity

analysis provide compared to experimental results. In particular, the coherence of the

physical information obtained suggest the relevancy and the correctness of the current

method. In a second hand, the fully discrete procedure proposed in this study will be

extensively analysed on this configuration. Genericity of the method with the system

of equations, influence of the numerical scheme and physical modeling onto the results,

convergence with the linearization parameters, and finally validity of the gradients will

be demonstrated.

The configuration, baseflow computation and unsteady dynamics of the cavity will first

be detailed in Section 5.1, and typical size of the Jacobian matrices will also be presented.

Section 5.2 is dedicated to the linear study of the cavity dynamics. The unstable modes

are presented and their physical properties analysed. The impact of the mesh discretiza-

tion onto the spectrum as well as the equations choice are also investigated. Finally, the

convergence of the eigenvalues with the linearization parameter is proven and the prop-

erties of the adjoint modes are detailed. The sensitivity analysis is performed in Section

5.3 were the sensitivity gradients are computed. The validity of the gradients is tested

59
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using a discrete evaluation of eigenvalue variation. A previsional control map using a

small steady cylinder as a means to control the flow is computed. Finally, a particular

analysis of the linearization of the Spalart-Allmaras turbulence model is performed in

Section 5.4.

5.1 Characterization of the cavity

5.1.1 Configuration

We consider a two dimensional cavity of height D = 0.12m and width L = 0.05m

(L/D = 0.42) as illustrated in Fig.5.1(a). The flow is compressible with a Mach number

M = 0.8, stagnation conditions being equal to 94400Pa for the pressure and 292.5K for

the temperature. The Reynolds number based on the free stream velocity U∞, density

ρ∞, temperature T∞, the cavity length L and Sutherland’s law for the viscosity is equal

to Re = 860000. We impose a turbulent parallel profile with a boundary layer thickness

δ=2.3mm at the inlet of the domain. The lower part of the domain is composed of an

adiabatic wall, while a wall slip condition is imposed on the upper part of the domain,

the outlet static pressure p∞ being fixed at 61900Pa. All quantities are made dimen-

sionless using the free stream variables ρ∞,U∞,T∞ and the cavity length L.

x y Discretization points Number of cells

Bloc 1 −1 ≤ x1 ≤ 0 0 ≤ y1 ≤ 2 151× 221 33000
Bloc 2 0 ≤ x2 ≤ 1−2.4 ≤ y2 ≤ 2 401× 601 240000
Bloc 3 1 ≤ x3 ≤ 5 0 ≤ y3 ≤ 2 101× 221 22000

Table 5.1: Definition of the blocs and their discretization properties.

The mesh used for the simulations is depicted in Fig.5.1(a) and is composed of three

vertical blocs. For each block, we either use a tangential or semi-tangential law for

the evolution of the discretization step. The cells adjacent to the cavity corners are

squares of size ∆x = 7.0E−05 imposing ∆y+ = 1.4 on the upstream wall, ensuring that

the first discretization points are inside the viscous sublayer. Each bloc properties are

summarized in Table 5.1, yielding a total number of cells Nm = 295000. The various

discretization schemes proposed in Section 3.3.4 for the convective flux are used as well

as both Spalart-Allmaras and k − ω Wilcox turbulence models.
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5.1.2 Baseflow computation

Convergence of the baseflow is assessed by ensuring that the explicit residuals of the

mean field equations are small (typically 10-8) and that the residual of the turbulent

equations have decreased by several orders of magnitude. Streamlines and streamwise

velocity component of the baseflow wb obtained with the Roe scheme and the k − ω

model of Wilcox are plotted in Fig.5.1(b).

(a) (b)
x x

y

Figure 5.1: (a): Mesh discretization example. (b): Baseflow streamlines and stream-
wise velocity contours.

We observe the formation of a mixing layer induced by the presence of a large recircu-

lation bubble inside the cavity, growing from the upstream corner of the cavity. This

configuration corresponds to the experimental study of Forestier et al. [83] who charac-

terized this flow to be unsteady with a dominant frequency around 2000 Hz (ω = 2.4).

The mixing layer is subject to Kelvin-Helmholtz instabilities which lead to the creation

of vortices that impact the downstream corner of the cavity. This impact generates pres-

sure waves propagating upstream that perturb the mixing layer sustaining the instability

mechanism. This mechanism of aeroacoustic feedback was proposed by Rossiter [111].

In order to compare the results obtained with the different turbulence models and dis-

cretization schemes regardless of their dependence to the baseflow, we chose to keep

the depicted baseflow for all stability computations (regardless of the equations to lin-

earize for the stability analysis). Similarly to the work of Deck et al. [112], a conversion

function is applied to compute ρν̃ for the Spalart-Allmaras model from ρk and ρω by

matching the eddy viscosity of both models.
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5.1.3 Unsteady dynamics

The unsteady RANS equations closed with the k − ω model of Wilcox are known to

well reproduce the frequency selection of the natural flow as well as the dynamics of the

large scale structures of the turbulence (Lawson and Barakos [9]). We integrate Eq. (2.1)

in time for a field w(t) initialized from the baseflow w(0) = wb. We thus observe at

small times of the computation the natural growth of an arbitrary perturbation due

to numerical noise and superimposed onto the baseflow. The evolution of the pressure

extracted at the downstream corner of the cavity is plotted in the lower inward of

Fig.5.2(a).

(a) (b)
x
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A

Figure 5.2: (a): Contours of the norm of the density gradient ‖∇ρ‖ for a arbitrary
time in the periodic regime. In the inward is depicted the pressure signal extracted
at the downstream corner of the cavity for small times. (b): Spectrum amplitude A
(arbitrary scale) of the flow computed with the unsteady simulation results. We recover

the fundamental frequency around ω = 2.4 as well as several harmonics.

We observe at small times features corresponding to unstable modes evolution: the

perturbation oscillates and grows inside an exponential envelope. At larger times the

perturbation saturates and a periodic regime establishes. We depicted in Fig.5.2(a) the

contours of the norm of the density gradient ‖∇ρ‖ at an arbitrary time in the periodic

regime. We recover features of the aeroacoustic feedback mechanism of Rossiter [111]

with the vortex formation, the impact on the downstream corner and the propagation

of pressure waves. Finally, we compute the flow spectrum using the extracted pressure

signal. The uRANS spectrum is depicted in Fig.5.2(b): we recover the natural frequency

around 2000Hz (ω = 2.4) as well as several harmonics, in agreement with the experi-

mental study of Forestier et al. [83]. The unsteady RANS equations reproduce well the

flow dynamics especially the frequency selection. A stability analysis of the baseflow
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is thus performed in order to link the uRANS unsteadiness to unstable mode(s) of the

steady RANS solution wb.

5.1.4 Memory cost of Jacobian computation, storage and inversion

The baseflow wb being computed, the Jacobian matrix J is extracted with the method

presented in Section 3.2 and stored on disk. The method requires nres = 25nc resid-

ual evaluations (times 2 for second order precision) and each vector of size N shall be

stored. The quantities characterising the Jacobian size for both k − ω and Spalart-

Allmaras turbulence models are summarized in Table 5.2, where we introduce Mv and

MJ the memory costs of storing a real vector and the Jacobian matrix respectively.

Model nc N Mv nres ne nobt
e nobt

e /N2 MJ

Spalart-Allmaras 5 1475.103 11 MB 125 96.106 63.106 3.10−05 0.9 GB
k − ω 6 1770.103 14 MB 150 138.106 80.106 3.10−05 1.2 GB

Table 5.2: Jacobian matrix dimensions.

We can remark that the obtained number of non zero elements nobt
e is about 30 percent

lower than the maximum potential non zero elements ne introduced in Section 3.2. This

is not surprising as all conservative variables do not intervene in each equation. The

matrices are sparse with very small ratio of non zero elements to their size nobt
e /N2.

Model Max memory Number of procs Memory per proc Time per proc

Spalart-Allmaras 52 GB 24 2.1 GB 214 s
k − ω 65 GB 24 2.7 GB 256 s

Table 5.3: Jacobian matrix inversion cost.

The eigenvalue problem in Eq. (2.5) is then solved using a shift and invert strategy

with direct inversion of the matrix as described in Section 3.1.1. Direct inversions are

fast and accurate but require large amount of memory. We show in Table 5.3 the

total computational cost of one direct inversion of a complex matrix (we use complex

shifts to focus on some particular eigenvalues) in terms of maximum amount of memory,

number of processors and computational time per processors. The maximum memory is

reached during the LU factorization of the matrix and is about 50 times the matrix size,

the inversions being quickly processed. We foresee that the increase of memory would

become prohibitive for very large systems (nobt
e > 109). Note that the scope of this study

is not to propose an optimal method in terms of computational time or memory cost to

compute the sensitivity gradients, but lies in the discrete definition and computation of
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these quantities. However, the method overview presented in Section 3.1.2 presents a

fully on-the-fly approach for optimization of this procedure.

5.2 Flow dynamics analysis

5.2.1 Linear stability versus unsteady simulations

We first consider the results obtained with the k−ω model of Wilcox and the Roe scheme

for the convective flux discretization. Solving the eigenvalue problem in Eq. (2.5) we

obtain the set of unstable eigenvalues depicted in Fig.5.3(a): the cavity flow dynamics

corresponds to an oscillator. We recover a spectrum similar to the one computed by

Yamouni et al. [113] for a laminar compressible flow in a square cavity. We observe an

upper branch (modes 1−7, denoted with square symbols �) seemingly corresponding to

Kelvin-Helmholtz modes and a lower branch (modes 8−13, denoted with circle symbols

#) that we attribute to acoustic modes.

(a) (b)
σ A

ω

Figure 5.3: (a): Stability analysis spectrum, we observe an upper branch denoted
with square symbols (�) and a lower branch denoted with circles (#). (b): Spectrum

extracted from the unsteady simulation.

Comparing both stability and unsteady simulations spectra in Figs.5.3(a) and 5.3(b), we

observe that both spectrum for modes 1−7 overlap reasonably well in terms of frequency

selection. We recover the fundamental mode (mode 1) which exhibits a frequency close

to the natural flow frequency (ω = 2.4), as well as several of its harmonics (modes 2−7)

with frequencies close to the unsteady signal. The fundamental mode is not the most

amplified mode but is found to dominate the unsteady dynamics of the flow at large
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times when integrating the unsteady equations. These results tend to suggest that the

flow unsteadiness is linked to the unstable modes of the steady RANS equations.

I1 J1 I2 J2 I3 J3 N

mesh 0 151 221 401 601 101 221 295000

mesh 1 101 221 151 301 61 121 64200
mesh 2 151 81 201 151 101 81 50000
mesh 3 301 121 401 301 201 121 180000
mesh 4 151 121 401 301 101 121 150000
mesh 5 151 221 201 601 101 221 175000

Table 5.4: Properties of the different configurations used for the analysis of the mesh
discretization influence onto the spectrum.

5.2.2 Mesh discretization impact on the spectrum

The impact of the mesh discretization on the spectrum was investigated by considering

the different configurations presented in table 5.4 where mesh 0 designates the mesh

finally chosen. As our discretization step follows a tangential evolution, the impact

of changing the number of discretization points is not trivial, but basically consists in

adding or removing discretization points near the walls and in the mixing layer area.

The spectrum convergence is studied using the adaptation of the elsA optimization code

as presented in Section 3.2.5 for the k−ω model of Wilcox. The reason for this choice is

that this analysis was performed at the beginning of this study when only this tool was

available to perform stability analysis. The obtained spectra are depicted all together

in Fig.5.4.

A first striking observation is that the frequency ω of the different modes is poorly

affected by the mesh discretization while the growth rate σ is strongly impacted. Mesh

1 and 2 are poorly discretized and lead to very different growth rates for modes 5, 6, 7

as well as spurious modes that disappear when refining the discretization. Mesh 3 and

mesh 4 correspond to variations of mesh 1 where we increase the number of discretization

points in x on the whole configuration for mesh 3 and only in bloc 2 for mesh 4. They

both lead to identical spectra suggesting that the zone of interest for mesh refinement

is located in bloc 2 where the mixing layer develops. Finally, mesh 5 was obtained by

increasing the number of discretization points in y compared to mesh 1. It appears to

have a strong impact on the modes growth rate suggesting that mesh 1− 5 lack points

in the crosswise direction of the flow. We finally choice to use mesh 0 where the mixing

layer is particularly well refined in bloc 2 for both x and y directions. Although the

impact of the mesh discretization is not uniform on all the modes most eigenvalues are

converged for mesh 0. We can notice some differences between mesh 0 and mesh 5 which
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Figure 5.4: Variation of the spectrum with the different mesh presented in Table 5.4.
The modified elsA optimization code is used with the k − ω model of Wilcox.

may be linked to the fact that the cells are strongly stretched in the x direction for mesh

5.

5.2.3 Unstable modes analysis

The upper branch of the spectrum in Fig.5.3(a) is composed of the fundamental mode

(mode 1), which exhibits a frequency close to the natural flow frequency around 2000Hz

(ω = 2.4), as well as several of its harmonics (modes 2− 7). These modes correspond to

dynamical modes linked to the aeroacoustic feedback mechanism proposed by Rossiter

[111]. We depicted in Fig.5.5 the real part of the mode 1 spatial structure which dom-

inates the flow dynamics at large times. Kelvin-Helmholtz instabilities grow from the

upstream edge and propagate downstream. The turbulent fluctuations are located within

the unstable Kelvin-Helmholtz like structures, with the downstream propagation of re-

gion of low and high values of turbulent kinetic energy (ρk) and dissipation rate (ρω).

Note that in order to give sense to the comparison of modes scales, all modes are phased

at (x = −1, y = 0) and normalized by setting the norm of their momentum equal to 1.

The upper branch modes structures also present acoustic resonance patterns. As we

consider compressible equations, acoustic resonance may occur in the cavity as suggested

by East [114]. The coupling between the aeroacoustic feedback and acoustic resonance

mechanism was further characterized by Yamouni et al. [113]. They showed that the
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Figure 5.5: Spatial structure of the fundamental mode (mode 1) obtained with the
k − ω model of Wilcox.

most unstable mode corresponds to an aeroacoustic mode for which acoustic resonance

occurs.

The lower branch (modes 8− 13) of unstable eigenvalues in Fig.5.3(a) refers to unstable

modes with smaller amplification rates and which exhibit strong patterns of acoustic

resonance. As an example we compare in Fig.5.6 the spatial structure of the density of

the fundamental mode and mode 10. We clearly see stronger resonance patterns com-

pared to mode 1 (same scaling is used). These modes are likely to be acoustic resonance

modes which became unstable under the excitation of Kelvin-Helmholtz instabilities.

Remark: The spatial structure of the unstable non-oscillating mode (mode 0, denoted
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(a) mode 1 (b) mode 10

Figure 5.6: Comparison between the real part of the ρ component spatial structure
of a Kelvin-Helmoltz mode (mode 1) and an acoustic mode (mode 10), same scaling is

used in both figures.

with a triangle symbol ▽ in Fig.5.3(a)) differs from the other modes. It is not located

near the mixing layer but near the upstream wall of the cavity around (0,−0.4). As will

be shown below, this mode is extremely sensitive to the numerical discretization and the

turbulence modeling. These observations lead us to believe that it is a spurious mode.

5.2.4 Influence of the system of equations

The impact of the physical modeling is investigated using the Roe scheme with the

baseflow obtained in Section 5.1.2. We plot in Fig.5.7 the spectrum computed with the

k − ω and Spalart-Allmaras turbulence models, with uncoupled equations and with the

modified elsA optimization code. Uncoupled equations correspond to the mean field

equations in Eq. (3.13) for which the turbulent viscosity is frozen in the linearization

process, so that turbulent fluctuations are not considered (see studies by Cossu et al.

[23], Juan and Jiménez [58], Hwang and Cossu [60]).

A first interesting result is that the model choice (⋄, ▽ and # in Fig.5.7) mainly affects

the growth rate of the modes but not their frequency. This result is in agreement with

Rossiter’s mechanism where the frequency selection is only linked to the cavity width and

Mach number. As for the amplification rate, we do observe some discrepancy between

the intrusively modified elsA code (�) and our fully discrete method (⋄) suggesting that

the thin layer assumption may have some impact on the spectrum in this configuration.

The modelling does not have a strong impact on the modes although some tendency can

be observed. Uncoupling the equations seems to increase most unstable modes growth

rate suggesting that the discarded term representing eddy viscosity fluctuations µ′
t is

likely to dissipate some energy. On the contrary, the Spalart-Allmaras modes seem to

be more dissipative with smaller growth rates. The cavity modes (8−13) are less affected

by the physical modelling as they correspond to acoustic resonance mode that are more
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Figure 5.7: Impact of the physical modeling on the spectrum: � elsA optimization
code, ⋄ k − ω model of Wilcox, ▽ Spalart-Allmaras model, # Uncoupled equations.

inviscid in nature.

The spatial structure of the Spalart-Allmaras fundamental mode is plotted in Fig.5.8.

Comparing the mode structure with the one obtained using the k − ω Wilcox model

in Fig.5.5, we observe strong similarities between both modes structures for the mean

field variables. In order to compare the relative contributions of the different component

fluctuations to the baseflow, we summarize in Table 5.5 for each conservative variable

the ratio of the mode maximum value to the baseflow maximum value (here for mode

1). This ratio being defined up to an arbitrary amplitude, we rescale it by setting the

variable ρ ratio to 1 for both modes.

Model ρ ρu ρv ρE ρk ρω ρν̃ µt

Spalart-Allmaras 1 5 2 1 . . 0.8 0.8
k − ω 1 6 2 1 13 48 . 1.5

Table 5.5: Ratio for each conservative variable of the maximum value of mode 1 to
the maximum value of the baseflow.

We observe that the turbulent fluctuations obtained using both turbulence models

strongly impact the baseflow compared to the mean field variables, suggesting that

the turbulent quantities do seem to play a role in the instability mechanism. Hence,

assuming frozen eddy viscosity fluctuations does have an impact on the obtained flow
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Figure 5.8: Spatial structure of the fundamental mode (mode 1) obtained with the
Spalart-Allmaras turbulence model of Wilcox.

dynamics. In order to compare the impact of both turbulence models, we compute the

eddy viscosity fluctuation µ′
t associated with the mode fluctuations. Denoting mode

fluctuations with ′ to distinguish them from baseflow quantities, the eddy viscosity fluc-

tuation µ′
t associated to a given mode for the k − ω model of Wilcox is defined by:

µt + µ′
t =

(ρ+ ρ′)
(
ρk + (ρk)′

)

(
ρω + (ρω)′

) . (5.1)

That is to the first order:

µ′
t =

ρk

ρω
ρ′ +

ρ

ρω
(ρk)′ − ρρk

(ρω)2
(ρω)′ . (5.2)
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For the Spalart-Allmaras turbulence model we have:

µ′
t = µ

(
µt

µ

)′

+
µt

µ
µ′, (5.3)

(
µt

µ

)′

=
4χ3

(
χ3 + C3

v1

)
− 3χ6

(
χ3 + C3

v1

)2 χ′, (5.4)

χ′ =
(ρν̃)′

µ
− ρν̃

µ2
µ′, (5.5)

(5.6)

µ′ =
µs√
Ts

1 + Cs/Ts

1 + Cs/T

[

1

2
√
T

+

√
TCs

T 2 (1 + Cs/T )

]

T ′, (5.7)

T ′ = −T

ρ
ρ′ +

γ − 1

ρR
(ρE)′ (5.8)

+
γ − 1

ρR

[

−ρu

ρ
(ρu)′ + 0.5

(ρu)2

ρ2
ρ′ − ρv

ρ
(ρv)′ + 0.5

(ρv)2

ρ2
ρ′

]

.

(a) k − ω model of Wilcox (b) Splalart-Allmaras model

Figure 5.9: Eddy viscosity fluctuation µ′

t induced by mode 1 using both turbulence
model.

We can observe in Fig.5.9 that both turbulence models lead to very similar fluctuation

fields µ′
t in terms of structure and order of magnitude. The eddy viscosity fluctuations

are mainly located in the path of the unstable modes.

Finally, the impact of the numerical scheme was investigated for both turbulence models

using the different schemes presented in Section 3.3.4. Results obtained are depicted in

Figs.5.10(a) for the k − ω model of Wilcox and 5.10(b) the Spalart-Allmaras model.

As expected, the spectrum is poorly affected by the choice of numerical discretization,

especially for the Kelvin-Helmholtz branch (1− 7).
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Figure 5.10: Influence of the discretization scheme on the spectrum, � Roe scheme, ⋄
Jameson scheme, ▽ AUMS scheme. (a): k−ω model of Wilcox. (b): Splalart-Allmaras

model.

5.2.5 Spectrum convergence with the linearization parameter

As stated in Section 3.2.4, the linearization parameter ǫm should be chosen carefully. In

order to check the convergence of the method with ǫm, we extracted the set of eigenvalues

λǫm for Jacobian matrices computed with various values of ǫm. The spectrum is found

converged for ǫm < 10−5, we thus use as a reference the set of eigenvalues λ0 obtained us-

ing the optimal ǫm = 5.10−6. We then compute the relative error err = |λǫm − λ0| / |λ0|
as a function of the different ǫm used. We plot in Figs.5.11(a) and 5.11(b) the base

10 logarithm of the relative error for the dynamical branch eigenvalues (modes 1 − 7)

and interpolate the different sets with linear fits. Note that the curves were arbitrarily

shifted from each other to ease visualization.

The slopes a obtained with the linear fit evaluation as well as the regression parameter

R2 are summarized in Table 5.6 for the different modes and both turbulence models.

We observe a strong convergence of the method for the k − ω model of Wilcox with

a slope coefficient of 2 for nearly all the modes, the convergence coefficients for the

Spalart-Allmaras modes being lower but close to 2.

Mode number 1 2 3 4 5 6 7

Parameters a R2 a R2 a R2 a R2 a R2 a R2 a R2

Spalart-Allmaras 1.8 0.99 2.0 0.99 2.1 0.99 2.0 0.99 1.9 0.99 1.7 0.99 1.6 0.98

k − ω 2.00 0.99 1.97 0.99 1.99 0.99 1.99 0.99 1.97 0.99 2.00 0.99 2.02 0.99

Table 5.6: Linear fit parameters of the eigenvalues convergence with ǫm.
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Figure 5.11: Convergence with ǫm of the upper branch unstable eigenvalues (1 − 7)
for both turbulence models. (a): k− ω model of Wilcox. (b): Spalart-Allmaras model.

5.2.6 Adjoint modes

As detailed in Section 2.2.2, the resolution of the adjoint problem in Eq. (2.10) is nec-

essary to evaluate the sensitivity gradients. We use the discrete inner-product defined

such that :

∀ (u,v) < u,v >=
∑

i,j

u∗i viΩij = u∗Qv, (5.9)

where Q is a diagonal matrix whose terms correspond to the surface of the mesh cells.

The spatial structure of the fundamental adjoint mode w̃|Q for the k−ω model of Wilcox

is plotted in Fig.5.12.

Note that the adjoint mode is normalized according to Eq. (2.10). As for the direct

modes, turbulent scales and mean field quantities present similar structures. Adjoint

modes are mostly located upstream the leading edge of the cavity: direct modes prop-

agate downstream while adjoint modes propagate upstream, which comes from the op-

posite transport of the perturbations by the baseflow in the direct and adjoint linear

operators (Sipp and Lebedev [68]). The structure of the adjoint modes obtained with

the Spalart-Allmaras model are similar to those obtained with the k−ω model of Wilcox.



Chapter 5. Sensitivity analysis of a turbulent compressible flow over a deep cavity 74
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Figure 5.12: Real part of the spatial structure of the adjoint mode 1 obtained with
the k − ω model of Wilcox.

5.3 Sensitivity analysis

5.3.1 Sensitivity gradient to baseflow perturbations ∇wb
λ

Once both direct and adjoint modes are available, we compute the sensitivity gradient

to baseflow perturbations ∇wb
λ|Q as presented in Section 2.2.2. As stated by Marquet

et al. [32], the sensitivity analysis to baseflow modifications is appropriate to determine

which regions of the baseflow participate to the development of the instabilities. The

gradient ∇wb
λ|Q is a complex vector field, its real part corresponds to the sensitivity

of the growth rate to baseflow perturbation ∇wb
σ|Q while its imaginary part refers to

the sensitivity of the mode frequency to baseflow perturbation ∇wb
ω|Q.
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Figure 5.13: Growth rate sensitivity to baseflow perturbations ∇wb
σ|Q of mode 1

obtained with the k − ω model of Wilcox.

We depicted the gradient ∇wb
σ|Q in Fig.5.13 for mode 1 obtained with the k−ω model

of Wilcox and the Roe scheme. We observe that the eigenvalue is mostly sensitive

to perturbations of the baseflow in the mixing layer area which corresponds to the

region where Kelvin-Helmholtz instabilities are active. We should also mention that the

gradient ∇wb
ω|Q has a similar structure in terms of location as the sensitivity of the

growth rate.

From a physical point of view, the gradient ∇wb
λ corresponds to the baseflow perturba-

tion that yields the strongest eigenvalue variation [32]. From a numerical point of view,

it indicates which areas of the baseflow shall be well captured by the mesh discretization

in order to accurately compute the eigenvalues.
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5.3.2 Validation of the gradient ∇wb
λ

In order to validate our gradients, we first compare the results obtained in the fully

discrete approach with those obtained with the modified elsA code using the method

presented in Section 3.2.5. Both methods lead to similar gradient fields but with slightly

different amplitudes suggesting the equivalence of both methods. As an example, we plot

in Figs.5.14(a) and 5.14(b) the ρk component of ∇wb
σ|Q obtained using both methods.

(a) (b)
x x

y

Figure 5.14: Comparison of the ρk component of the growth rate sensitivity to base-
flow perturbations ∇wb

σ|Q obtained with our fully discrete method (a), and the mod-
ified elsA code (b). The k − ω model of Wilcox is used.

The validity of the gradient is then further tested by comparing for a given direction

w1, the eigenvalue variation predicted by our gradient δλ = 〈∇wb
λ,βw1〉, to the eigen-

value variation obtained with a finite difference method, δλ1 = [λ (wb + βw1)− λ (wb)]

(where β is a small parameter to remain in the linear domain). The Jacobian matrices

J|wb+βw1
and J|wb

are extracted and their spectrum computed, leading to the discrete

evaluation of δλ1.

Note that the discrete evaluation of δλ1 is a complex issue in itself: the baseflow per-

turbation βw1 shall be small compared to the baseflow wb although its various com-

ponents may scale differently from one another. In order to ease the computation of

δλ1, we can use the fact that by linearity the full perturbation effect of βw1 can

be computed from the contributions of its various components separately. Indeed, if

w1 = ρ1 + ρU1 + ρV1 + ρE1 + ρk1 + ρω1, where x1 corresponds to a perturbation

vector where only the conservative variable x1 is perturbed, we have by linearity (using
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the k − ω model for example):

δλ1 = 〈∇wb
λ,βw1〉 , (5.10)

= β( 〈∇wb
λ,ρ1〉+ 〈∇wb

λ,ρU1〉+ 〈∇wb
λ,ρV1〉 (5.11)

+ 〈∇wb
λ,ρE1〉+ 〈∇wb

λ,ρk1〉+ 〈∇wb
λ,ρω1〉 ),

= β (δλ1,ρ + δλ1,ρU + δλ1,ρV + δλ1,ρE + δλ1,ρk + δλ1,ρω) . (5.12)

We thus impose a perturbation on the ρ component for example ρ1, compute the asso-

ciated Jacobian matrix J|wb+βρ1
and the corresponding new eigenvalue λwb+βρ1

. The

discrete eigenvalue variation δλ1,ρ =
1

β
(λwb+βρ1

− λwb
) can then be evaluated and com-

pared to the one obtained with our gradient δλρ = 〈∇wb
λ,ρ1〉. We can thus validate

our gradient component by component.

We chose w1 = wb along with a small value for β and restricted w1 to each conservative

variable independently as previously stated. As a consequence, we perturb independently

each quantity (ρ, ρU ...) of the baseflow (wb + βw1) on the full domain.

We summarized in Table 5.7 the relative difference
|δλ1,x − δλx|

|δλx|
between both eigenvalue

variation prediction for each conservative variable perturbations x. We observe that the

gradient is correctly evaluated up to within 3% for the Spalart-Allmaras model and 0.4%

for the k−ω model for each perturbation vector. Once again, the method seems to give

better results using the k − ω model of Wilcox.

w1 ρ ρu ρv ρE ρk ρω ρν̃

Spalart-Allmaras 0.01 0.001 0.02 0.01 . . 0.03
k − ω 0.003 0.001 0.004 0.002 0.0004 0.002 .

Table 5.7: Relative difference between eigenvalue variation predicted with the sensi-
tivity gradient and a discrete evaluation. The evaluation is performed on each compo-

nent of the gradient independently.

This validation process also enables us to determine accurately the best set of ǫ2 values

in Eqs. (3.9) and (3.12). The perturbation parameter was fixed with ǫ2 = ǫm2
(|w|+ 1)

where |w| is the local baseflow value. The best set of ǫm2
is obtained using different

values of ǫm2
adapted to each conservative variable: these values are summarized in

Table 5.8.

Model ρ ρu ρv ρE ρk ρω ρν̃

Spalart-Allmaras 10−4 10−4 10−5 10−3 . . 10−6

k − ω 10−5 10−5 10−5 10−3 10−6 10−4 .

Table 5.8: Linearization parameter ǫm2
used for the computation of the sensitivity

gradient to baseflow perturbations ∇wb
λ.



Chapter 5. Sensitivity analysis of a turbulent compressible flow over a deep cavity 78

The sensitivity gradient ∇wb
λ indicates where and how a baseflow perturbation would

affect the unstable eigenvalues and consists in a first step in view of steady control.

The question is then how to generate this baseflow perturbation with a meaningful

control device, which we consider here as a steady volumic source term in the governing

equations. It is thus of interest to consider the sensitivity gradient to a steady force

∇fλ.

5.3.3 Steady control

Sensitivity gradient of the unstable eigenvalue to a steady force ∇fλ is readily obtained

from the sensitivity gradient to baseflow perturbations ∇wb
λ through Eq. (2.21). This

gradient indicates locations in the flow were a steady force δf could lead to stabiliza-

tion/destabilization of the unstable modes [32].

Rather than looking at the gradient fields ∇fλ|Q, we propose to consider the impact

of an infinitesimal control cylinder located at (x,y) on the eigenvalue variation δλ using

Eq. (2.21). Similarly to Marquet et al. [32], the local force fxy that the cylinder exerts

on the fluid is taken as a first approximation as proportional and opposite to the drag

experienced by the cylinder placed in the baseflow:

fxy ∝ −Uxy/Ωxy (5.13)

where Ωxy corresponds to the volume of the cell located at (x,y). The choice of such a

simple model to represent the effort of the control cylinder is motivated by the fact that

we are mainly interested in the direction of the eigenvalue variation (stabilization or

destabilization). More sophisticated models can be found in (Marquet et al. [32], Meliga

et al. [66]).

Computing this force for each cell location in our mesh, we obtain the eigenvalue vari-

ation field δλxy which indicates how the eigenvalue is impacted by the presence of an

infinitely small control cylinder located at (x,y). The real part of δλxy corresponds to the

growth rate variation δσxy of the mode while its imaginary part refers to its frequency

change δωxy. In particular, negative values of δσxy indicate that the mode growth rate

is decreased when the cylinder is located at (x,y), which thus induces a stabilizing ef-

fect. On the opposite, if δσxy is positive then the cylinder destabilizes the mode and no

control effect shall be observed.

We plot in Fig.5.15 the field δσxy for the different turbulence models that were studied

(the maximum value was set to 1 in each Figure). We observe that the control maps

slightly differ from one modeling to another. In all cases, we recover a stabilization
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(a) k − ω of Wilcox (b) Spalart-Allmaras

(c) elsA optimization code (d) Frozen eddy viscosity

Figure 5.15: Variation of the eigenvalue growth rate δσxy/ ‖λ‖ due to the presence of
a control cylinder at (x,y) (mode 1). Blue regions indicate that the amplification rate

is lowered while increased in the red regions.

region in blue near y = 0.05 that extends upstream and downstream of the leading

edge of the cavity. We shall mention that for all models, stabilizing regions δσxy < 0

also correspond to region where the presence of the cylinder induces an increase of the

mode frequency δωxy > 0. These results are in agreement with the experimental study

by Illy et al. [109] whom configuration was similar. They controlled the flow using a

small steady cylinder located at the station (−0.1, y) with 0 ≤ y ≤ 0.22. They found

a critical region 0.05 < y < 0.12 in which the cylinder had to be placed to control

the flow unsteadiness. A small destabilizing region is also obtained just upstream the

leading edge of the cavity. We observe small differences between the elsA optimization

code results and our fully discrete approach (Figs.5.15(a) & 5.15(c)) which are probably

linked to the approximations done in the linearization of the optimization code.

Finally, we depicted in Fig.5.16 the control map experimentally obtained by Sami

Yamouni [110] for a similar configuration where the flow was controlled using a small

cylinder. A pressure sensor was placed at the downstream edge of the cavity enabling

the computation of the controlled flow spectrum. The impact of the cylinder is mea-

sured by integrating the spectrum and subtracting it to the natural case. Blue regions

in Fig.5.16 correspond to areas where the control cylinder significantly lower the noise

emission of the natural flow, while red regions correspond to areas where the cylinder

poorly affect the natural case. We observe similar tendencies with the control maps pre-

sented in Figs.5.15, with a stabilizing region near the upstream corner of the cavity that
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Figure 5.16: Control map experimentally obtained by Sami Yamouni [110] with a
small control cylinder. Blue regions indicate areas where the control cylinder signif-
icantly lower the noise emission of the natural flow, while red regions correspond to

areas where the control device poorly affect the natural flow.

extends far upstream. Our results are thus in relatively good agreement with the exper-

imental datas and suggest that sensitivity analysis does provide interesting information

regarding steady control of turbulent flows.

5.4 Detailed analysis of the Spalart-Allmaras model

Comparing the numerical tests performed on both turbulence models, the Spalart-

Allmaras appeared to have poorer features then the k − ω model. Indeed, both spec-

trum convergence with ǫ in Fig.5.11(b) and gradient validation in Table 5.7 are slightly

stronger when using the k − ω model. These observations lead us to further investigate

the results obtained with the Spalart-Allmaras model.

5.4.0.1 Discontinuities in the gradient

The streamwise component of the growth rate sensitivity to baseflow perturbations

∇wb
σ|Q is depicted in Fig.5.17(a). We clearly observe the appearance of several discon-

tinuities in three different areas A,B,C of the field, these discontinuities being present

in all the other components of the gradient. These results suggest that the linearization

of the Spalart-Allmaras turbulence model is more difficult then expected. Surprisingly

enough, these discontinuities do not seem to strongly affect the gradient validation and

vanish when computing the sensitivity gradient to a steady force ∇fλ. However, as such

discontinuities remain problematic, we chose to have a deeper insight into this turbulence

model in order to identify the source(s) of these discontinuities.
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Figure 5.17: (a): Streamwise component of the growth rate sensitivity to baseflow
perturbations ∇wb

σ|Q computed using the Spalart-Allmaras turbulence model. Three
regions of discontinuities are identified. (b): Saturated levels on the vorticity modulus
|Ω| of the baseflow. We clearly observe a correlation between the discontinuities in zone

A and B and the 0 values of the vorticity.

5.4.0.2 Numerical origin

In a first hand, a closer look to the definition of S̃ = |Ω|+ ν̃

K2η2
fv2 in Section 3.3.3 reveals

that the modulus of the vorticity |Ω| is not a continuously differentiable term near 0.

Note that S̃ intervenes in the computation of both the production and destruction source

terms of the model. The saturated level of the vorticity module of the baseflow wb are

depicted in Fig.5.17(b), where we clearly notice a correlation between the discontinuities

observed in the gradient in Fig.5.17(a) and the zone were the vorticity modulus is close

to 0.

A simple way to adapt the code into a continuously differentiable manner is to replace

the vorticity modulus |Ω| with
√
Ω2 +M2−M where M is a small constant. For M = 0,

we recover the initial formulation while for M 6= 0 this adaptation only impacts the areas

where |Ω| ≈ M . We plotted in Fig.5.18(a) the new gradient field obtained for M = 0.1.

The discontinuities in zone A have disappeared and the discontinuities in zone B are

strongly damped while zone C remains unaffected.

We shall mention that we found several limiters implemented in the elsA code for the

source terms of the model which may lead to non-differentiable equations:

- the cross diffusion term is bounded by the production term with

Cross = min (Cross,20Prod),
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Figure 5.18: Streamwise component of the growth rate sensitivity to baseflow pertur-
bations ∇wb

σ|Q computed with a modified Spalart-Allmaras turbulence model. (a):

the constant M = 0.1 is used for the computation of S̃. (b): The term fw is frozen in
the residual evaluation.

- during the destruction term computation, the computation of the quantity r̃ is

limited with

r̃ = max



0,min



10,
1

max
(

S̃, 10−15
)
ρν̃

ρ

1

κ2η2







.

Although these limiters are not responsible for the discontinuities observed in our case,

their presence in CFD code (generally for numerical convergence) may limit the black

box use of our fully discrete method.

The zone C discontinuities were found to arise from the linearization of the term fw in

the destruction term (see Section 3.3.3 for a complete definition). This function seems

extremely hard to linearize to the second order using finite differences. Hoping that

this term would not have a strong contribution to the final gradient, we computed the

gradient by freezing this function in the residual evaluation of the gradient, using the fw

function computed from the baseflow. The new gradient field is depicted in Fig.5.18(b)

were discontinuities in zone C have vanished. The gradient does not seem to be strongly

affected by this modification.

5.4.0.3 Corrected gradient

The previous remarks lead us to recompute the gradients. The constant M = 0.1

was used for the Jacobian matrix computation as the zero vorticity lines are clearly

responsible for discontinuities while linearizing the turbulence model. Both direct and
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(a) (b)
ω log10 (ǫm)

log10 (err)

σ

Figure 5.19: (a): Impact of the parameterM = 0.1 used for the Jacobian matrix com-
putation onto the spectrum: � spectrum obtained using the classical Spalart-Allmaras
model M = 0, # spectrum obtained using M = 0.1. The spectrum is poorly affected
by the modification. (b): Spectrum convergence with ǫ using M = 0.1 for the Jacobian

computation.

adjoint modes are computed and are found identical to the previous ones. The spectrum

is poorly affected by this modification as can be noticed in Fig.5.19(a). Note that the

term fw was linearized for the Jacobian computation. Indeed we observed that the

sensitivity gradients were greatly modified if fw was frozen in the Jacobian computation.

The spectrum convergence is re-investigated similarly to Section 5.2.5. The eigenvalues

convergence for mode 1−7 with the linearization parameter ǫm are shown in Fig.5.19(b).

The convergence is not strongly affected as can be observed in Table 5.9 where we

compare the regression coefficients R and the convergence slopes a with the case M = 0.

Mode number 1 2 3 4 5 6 7

Parameters a R2 a R2 a R2 a R2 a R2 a R2 a R2

M = 0 1.8 0.99 2.0 0.99 2.1 0.99 2.0 0.99 1.9 0.99 1.7 0.99 1.6 0.98

M = 0.1 2.1 0.99 2.0 0.99 2.1 0.99 2.1 0.99 2.0 0.99 1.9 0.99 1.7 0.99

Table 5.9: Linear fit parameters of the eigenvalues convergence with ǫm for the
Spalart-Allmaras turbulence model.

We then compute the sensitivity gradient to baseflow perturbations ∇wb
λ using the

constant M = 0.1 and freezing the computation of fw in the residual evaluation. The

different components of the growth rate sensitivity gradient ∇wb
σ|Q are depicted in

Fig.5.20. All forms of discontinuities have vanished.

Finally, the sensitivity gradient to a steady force ∇fλ is computed using both the new

Jacobian matrix and sensitivity gradient∇wb
λ. We depicted in Fig.5.21(a) the predicted

impact of a control cylinder onto the mode 1 growth rate δσxy obtained with our modified

Spalart-Allmaras model. We compare it to the one initially computed in Section 5.3.3
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(a) ρ (b) ρu

(c) ρv (d) ρE

(e) ρν̃

Figure 5.20: Growth rate sensitivity to baseflow perturbations ∇wb
σ|Q of mode 1

obtained with the modified Spalart-Allmaras model. The constant M = 0.1 is used and
the term fw is frozen.

(a) (b)
x x

y

Figure 5.21: Variation of the eigenvalue growth rate δσxy/ ‖λ‖ due to the presence
of a control cylinder at (x,y) (mode 1) for the Spalart-Allmaras. (a): modified model
with M = 0.1 and freezing the function fw. (b): model version implemented in elsA.
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(a) (b)
x x
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Figure 5.22: Variation of the eigenvalue frequency δωxy/ ‖λ‖ due to the presence of a
control cylinder at (x,y) (mode 1) for the Spalart-Allmaras. (a): modified model with

M = 0.1 and freezing the function fw. (b): model version implemented in elsA.

an re-plotted in Fig.5.21(b). Both control maps compare reasonably well suggesting

that the added modifications poorly affect our final results. Similarly, the impact of

the control cylinder onto the mode frequency δωxy computed with our modified version

is depicted in Fig.5.22(a) and can be compared to the control map initially obtained

in Fig.5.22(b). As a consequence, the proposed modification seems to barely affect the

final results but improve significantly the linearization process of the Spalart-Allamaras

turbulence model.

5.5 Concluding remarks

A turbulent compressible flow over a deep cavity was considered as a test case study for

our fully discrete formalism. The flow dynamics is modeled using the RANS equations

closed with a turbulence model, and the natural flow unsteadiness is recovered when

integrating in time the unsteady RANS equations in agreement with experimental re-

sults. A stability analysis was then performed using our fully discrete method. The

discrete equations were linearized using finite differences applied to the evaluation of the

Navier-Stokes residual R. The stability of the flow is assessed by solving the direct and

adjoint eigenvalue problems linked to the Jacobian matrix J.

The flow is found to be unstable with the existence of several unstable modes. The

fundamental frequency of the flow as well as several harmonics were shown to be linked

to aero-acoustic modes associated with a feedback mechanism. The agreement between

the linear stability analysis and the unsteady simulations suggest that the flow un-

steadiness is linked to the existence of these unstable modes. Typical structures of

Kelvin-Helmholtz instabilities are recovered when considering the spatial structure of

the modes. The acoustic features of the flow were also captured as we observed acoustic

resonance modes excited by Kelvin-Helmholtz instabilities. In the view of open loop

control, the sensitivity gradient of the unstable eigenvalue to baseflow perturbations
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∇wb
λ was computed. The flow was found to be mostly sensitive near the mixing layer

and upstream of the cavity. Finally, the sensitivity gradient to a steady force ∇fλ was

extracted, indicating interesting areas of the flow where a steady force could lead to the

stabilization of the unstable eigenvalue. A previsional control map using a steady cylin-

der as a mean to control the flow was derived for the fundamental mode. The cylinder

was found to have a stabilizing effect on the mode near and upstream of the leading

edge of the cavity, in agreement with experimental results.

Numerous numerical tests were performed to analyse the robustness and validity of our

fully discrete method. Mesh discretization was found to poorly affect the unstable modes

frequency but did influence their growth rate. The impact of the linearization param-

eter onto the Jacobian computation was characterized. The spectrum was observed to

converge to the second order with the linearization parameter attesting the precision of

the Jacobian computation. The genericity of the method with the system of equations

was also investigated. As expected, the numerical scheme poorly affect the results. On

the contrary, the choice of turbulence model had a slight impact on the growth rates of

the unstable eigenvalues but not on their frequency. Still, similar features were obtained

using both k − ω of Wilcox and Spalart-Allmaras turbulence model. The sensitivity

gradients were validated using a discrete evaluation of the eigenvalue. In particular,

steady control maps computed with the different models lead to similar areas near and

upstream of the mixing layer to investigate flow control. The gradient were found to

correctly predict the eigenvalue variation with an error lower then 3%. Finally, a par-

ticular analysis of the Spalart-Allmaras model was performed and a modification was

proposed to improve the linearization of the model. The modifications were shown to

poorly modify our results.

To conclude, the cavity configuration appeared as a robust case to test our method.

The performed numerical validations demonstrate that our fully discrete formalism does

enable the computation of the discrete Jacobian and sensitivity gradients. The code can

be used in a black-box manner and no analytical derivations need to be performed. The

coherence of the linear stability results with experimental datas and unsteady simulations

suggest the relevancy of linear stability analysis to characterize unsteady dynamics of

turbulent flows modeled using RANS equations.
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Application cases

As the novelty of the present work consists in the development of a new tool to perform

linear stability analysis, we will present in the following three studies that were conducted

within and in parallel to this Ph.D at the DAFE, and using the formalisms and tools that

we previously presented. These three cases allowed us to further analyse the information

carried out by stability analysis and verify on other dynamics the validity of our tools.

The role of this Chapter is to give an insight of the applications of the developed methods

rather than to fully characterize new configurations. We will thus focus on specific

results such as unstable modes, adjoint modes, gain curves, or sensitivity maps made

available thanks to our tools, and will not present the integrality of the performed

work (parametric study, mesh convergence...). A brief overview to place each study in

its context will be given, which may lack references as these works were not the core

of this Ph.D. We will first detail two analyses concerned with the dynamics of shock

wave/boundary layer interactions (SWBLI). In Section 6.1.1, the oscillator dynamics

of a transonic shock over an airfoil will be analysed. This work was performed in

collaboration with Fulvio Sartor an other Ph.D student at the DAFE. We will then detail

in Section 6.1.2 some results obtained by Fulvio Sartor who analysed the noise amplifier

dynamics of a strong shock over a curved wall. As a last case, the characterization of a

supersonic under-expanded jet in a co-flow as an oscillator will be presented in Section

6.2, a study performed by Samir Benedine during his Master’s thesis at the DAFE.

6.1 Shock wave/boundary layer interactions

As detailed by Dolling [115], SWBLI have been extensively studied over the last decades.

Such interactions are present in many aeronautical applications and generally induce un-

desirable features such as drag rise, massive flow separation, shock unsteadiness, and high

87
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wall heating. SWBLI remain a challenging problem which encompasses compressibility,

turbulent effects and separation. The question of the origin of SWBLI unsteadiness

remains open. Investigating the linear stability of a laminar SWBLI on a flat plate,

Robinet [71] was the first to link SWBLI unsteadiness to the existence of a steady three-

dimensional unstable mode. More recently, Touber and Sandham [116] performed a

stability analysis on a mean-flow computed from a three dimensional LES simulations,

and found that the most unstable mode was steady and two dimensional. As previously

stated, Crouch et al. [63] analysed the SWBLI over an airfoil and linked the buffeting on-

set to the existence of a globally unstable mode of the RANS equations. These previous

studies suggest that linear stability analysis may be an interesting tool to characterize

flow unsteadiness in SWBLI.

(a) (b)x x

y

Figure 6.1: (a): Mesh discretization of the profile OAT15A. (b): Mach number con-
tours of the baseflow wb.

6.1.1 Transonic buffet over an airfoil

In transonic conditions, a strong compression shock forms on wings, followed by a bound-

ary layer separation upstream of the trailing edge. For sufficiently high angle of attack

of the wing, the interaction between the shock and the turbulent boundary layer leads

to the creation of large scale instabilities. The shock oscillates inducing structural vi-

brations and load fluctuations, a phenomenon named buffeting. The determination and

understanding of the buffet occurrence is of critical importance for designers as it limits

the performance of a wing profile in terms of maximum lift. The postponing of buffet

onset is a key target in the profile design process and constitutes the aim of most flow

control techniques, such as vortex generators on wings or suction slots in air intakes (see

Seegmiller et al. [117], Caruana et al. [118]). Numerical simulations based on the un-

steady RANS equations or zonal detached eddy simulations have been extensively used
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to predict buffet onset with some degree of success (Deck [43], Barakos and Drikakis

[119], Chung et al. [120]). Although CFD simulations well capture the flow physics, the

agreement with experimental results remains however qualitative (Jacquin et al. [1]).

Recently, Crouch et al. [63, 64] linked the buffet onset over a NACA0012 profile to the

appearance of a globally unstable mode, performing a linear stability analysis of the

RANS equations closed with the Spalart-Allmaras turbulence model. These results en-

couraged us to revisit the buffet onset problem with our fully discrete formalism. Rather

than analysing the NACA0012 profile, we chose to use an OAT15A profile which was

designed at the ONERA and experimentally characterized by Jacquin et al. [1]. The

wing profile, depicted Fig.6.1(a), is characterized by a cord length c = 0.23m and a

relative thickness of 12.3%.

(a) ρ (b) ρu (c) ρv

(d) ρE (e) ρν̃

Figure 6.2: Spatial structure of the direct buffet mode ŵ, the real part is plotted.

We impose an adiabatic wall condition on the profile and the angle of attack α of the

wing is fixed by changing the incoming fluid direction. The computational domain is

taken sufficiently large (computational borders are imposed at 40c of the wing) so that

the flow returns to its initial state on the external boundaries were a non reflexion with

upstream flow conditions are imposed. An example of mesh discretization used is plotted

in Fig.6.1(a), the mesh being generated with an ONERA software.
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We mimic the study by Jacquin et al. [1] using a stagnation temperature T∞ = 300K, a

stagnation pressure P∞ = 105Pa and a Mach number M = 0.73, leading to a Reynolds

number based of the cord length of Re = 3× 106. All quantities are made dimensionless

using the free stream variables ρ∞,U∞,T∞ and the profile cord c. The parametric study

of this configuration was performed by Fulvio Sartor, who varied the angle of attack

α and the mesh discretization to study their impact on the buffet onset. He found

that unsteady simulations (uRANS) closed with the Spalart-Allmaras turbulence model

reproduced the buffet onset for a critical angle of attack. Using our discrete method, he

observed the appearance of a globally unstable mode of the baseflow for critical angles

of attack close to the one computed using uRANS simulations.

Among the available datas, we chose to use the baseflow computed with the mesh de-

picted in Fig. 6.1(a) for a critical angle of attack α = 4.5, and performed a complete

stability analysis of this configuration in the following. Contours of the Mach number

for the computed baseflow are depicted in Fig.6.1(b). We observe the formation of a

shock on the suction side of the profile, with the formation of a recirculation bubble

downstream of the shock.

(a) ρ (b) ρu (c) ρv

(d) ρE (e) ρν̃

Figure 6.3: Spatial structure of the adjoint buffet mode w̃|Q, the real part is plotted.

The Jacobian matrix J is then computed as in Section 3.2.2, and the eigenvalue problem

in Eq. 2.5 solved. The baseflow is found to be unstable with the existence of one unstable
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mode of growth rate σ = 4.5×10−2 and pulsation ω = 0.46. The real part of the spatial

structure of the mode is depicted in Fig.6.2. The mode structure is mainly located

in the shock and in the recirculation bubble. Typical structures of Kelvin-Helmoltz

instabilities are observed for the different components that propagate downstream of

the profile. These structures seem to raise from the recirculation bubble. The turbulent

fluctuations do not seem to impact the shock, while for all other components, we observe

an opposite sign between the shock and the recirculation bubble. This suggest that shock

oscillations and bubble expansions or breathing are in phase opposition.

The corresponding adjoint mode is straightforwardly obtained solving Eq. 2.10. The

real part of the spatial structure of the adjoint mode is depicted in Fig.6.3. The adjoint

mode is mostly located near and upstream of the shock and propagates upstream.

(a) (b)
x x

y

Figure 6.4: Saturated levels of the ρ component of the direct mode ŵ (a) and the
adjoint mode w̃|Q (b). The real part is plotted.

Model ρ ρu ρv ρE ρν̃

Spalart-Allmaras 10−4 10−4 10−5 10−3 10−8

Table 6.1: Linearization parameter ǫm2
used for the computation of the matrix H′.

As we use compressible equations, we expect to observe some acoustic effects in the

flow. We depicted in Fig.6.4(a) the saturated levels of the density component ρ of the

direct mode as well as those of the adjoint mode Fig.6.4(b). We observe the propagation

of acoustic waves downstream of the profile for the direct mode and upstream for the

adjoint. In particular, we recover the non normality of the Jacobian due to the oppositive

sign of the advection term between the direct and adjoint equations.

We then compute the matrix H′ as proposed in Section 3.2.3. The linearization pa-

rameter ǫ1 was set to 10−3, while the values used for ǫ2 are summarized in Table 6.1.

The sensitivity gradient to baseflow perturbation ∇wb
λ is straightforwardly obtained
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using Eq. (2.19). We depicted in Fig.6.5 the real part of the different components of the

gradient.

(a) ρ (b) ρu (c) ρv

(d) ρE (e) ρν̃

Figure 6.5: Sensitivity of the growth rate ∇wb
σ|Q to baseflow perturbations.

A first remark is that some discontinuities are observed near the trailing edge. These

discontinuities are not linked to the linearization of the turbulent equations. Note that

in the spirit of Section 5.4, the constant M = 1.0 was used in the linearization process

and fw was frozen. Furthermore, the limiter on the cross diffusion term was suppressed

as it lead to discontinuities in the gradient in this case. We believe that the origin of

these discontinuities relies in the poor mesh discretization in this area. This suggests

that the mesh should be further refined in this zone for a complete characterization.

The baseflow is sensitive near the shock and the boundary layer, as well as upstream of

the shock and the wing.

Finally, we compute the sensitivity gradient to a steady force∇fσ|Q using Eq. 2.21. The

real part of the gradient fields are plotted in Fig.6.6. As for the cavity case in Chapter

5, the discontinuities are smoothed by the inverse of the adjoint Jacobian J-1∗. We

observe in Fig.6.6(b) that a streamwise force in the boundary layer or in the recirculation

bubble will have a stabilizing effect on the unstable mode. This can be interpreted as

an energization effect of the boundary layer that becomes less prone to separation.
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(a) ρ (b) ρu (c) ρv

(d) ρE (e) ρν̃

Figure 6.6: Sensitivity of the growth rate ∇fσ|Q to a steady force.

To conclude, the buffet onset seems to be linked to the appearance of a globally unstable

mode. The mode is mostly located near and inside the shock and the recirculation

bubble. A control map was derived which indicates that a streamwise forcing near the

wing profile may lead to a stabilization of the flow. These results remain preliminary as a

further analysis of the mesh discretization needs to be performed, but lead to interesting

features of the flow.

6.1.2 Strong shock over a curved profile

This study realised by Fulvio Sartor at the DAFE focuses on a strong normal shock

impinging on a curved profile as depicted in Fig.6.7. The shock shape is modified by the

interaction with the boundary layer and adopts a lambda pattern. The boundary layer

detaches near the shock foot and forms a recirculation bubble downstream of the shock.

The flow unsteadiness is characterized by two distinct frequencies: a low frequency linked

to a slow motion of the shock, and a high frequency that can be observed in the mixing

layer downstream of the separation line.

This configuration was experimentally studied at the DAFE by Sartor et al. [121] and the

aim of this study is to further characterize this dynamics using linear stability analysis.
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From a linear stability point of view, this flow is stable: no unstable modes are observed,

and the flow dynamics may be analysed as a noise amplifier. We will briefly introduce in

the following some interesting results obtained by Fulvio Sartor using the methodology

and computational procedures presented in Section 2.3 and 3.1.1. A deeper analysis of

these results can be found in Sartor et al. [122].

x

y

Figure 6.7: Isocontours of the streamwise velocity component of the baseflow.

The incoming flow is subsonic and turbulent with a Reynolds number of Re = 1.4 ×
106. A wall adiabatic condition is imposed on the upper and lower part of the domain

while an injection condition is fixed at the inlet. The pressure at the outlet is fixed

so that the shock position corresponds to the experimental case. Isocontours of the

streamwise velocity of the baseflow can be observed in Fig.6.7 were we recover the

lambda pattern of the shock. The Spalart-Allmaras turbulence model is used to model

the baseflow turbulence, the convective flux is discretized using the AUSM+ scheme,

and the turbulence modeled is linearized for the Jacobian computation.

f

µ2

Figure 6.8: Optimal gain curve as a function of the forcing frequency f (Hz). The
Spalart-Allmaras turbulence model was used for the baseflow computation.

As stated in Section 2.3, the dynamics of noise amplifiers is analysed by considering the

flow response x̂ to harmonic forcing. The methodology proposed in Section 2.3.5 is thus
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followed. The Jacobian matrix J is first computed according to the procedure detailed

in Section 3.2.2 with a linearization parameter ǫ = 5.0× 10−6 (results were observed to

be converged with ǫ). The pseudo scalar product Qe introduced in Section 2.3.3 is used

for the maximization of the kinetic energy, and the forcing terms are normalized with

the scalar product Q introduced in Chapter 4. The forcing restriction f̂s introduced

in Section 2.3.4 is also applied as only momentum components forcing is allowed. The

prolongation operator P is thus straightforwardly derived by adding 0 to the prolonged

vector f̂ = Pf̂s. The resolvent Rω is finally computed for different frequencies ω and

the optimal gain µ2 is then obtained solving the eigenvalue problem in Eq. (2.77). The

resolution of the eigenvalue problem gives access to the set of optimal forcing f̂s, and

the set of optimal response x̂ is then determined solving Eq. (2.76).

x

y

(a) Optimal forcing f̂s.

x

y

(b) Optimal response x̂.

Figure 6.9: Streamwise component of the optimal forcing and response for a forcing
frequency of f = 50Hz.

The three most energetic singular values of the global resolvent are depicted in Fig.6.8.

The gain function is not constant, and is more energetic for low frequencies up to 50 Hz.

It then decreases rapidly to another plateau for f = 1− 4 kHz. As the configuration is

known to be characterized by a low and a high frequency (Sartor et al. [122]), two types

of flow forcing and response are analysed.

For low frequency forcing, f = 50Hz was chosen to study both optimal forcing and

response. As can be observed in Fig.6.9(a), the optimal forcing is mostly located in the

boundary layer on the divergent part of the bump and its strongest values are located

within the shock foot. The optimal response in Fig.6.9(b) extends on the shock wave,
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with a spatial structure similar to low-frequency Fourier mode observed experimentally

by Sartor et al. [122]. Low-frequency response is associated to a breathing of the recir-

culating bubble whose contractions are related to downstream motion of the reflected

shock as indicated by the opposite sign in the shock and the mixing layer in Fig.6.9(b).

Similarly, the expansions of the bubble are induced by upstream motion of the reflected

shock. This observation is consistent with the model proposed by Piponniau et al. [123].

In the same spirit, a high-frequency f = 3000Hz is then considered. The optimal forcing

in Fig.6.10(a) is still located before the shock and near the beginning of the mixing

layer. Moreover, the maximum value is once again attained at the shock foot, where the

pressure gradient causes the separation of the boundary layer. The induced response

structures start from the separation point around x = 0.33mm as shown in Fig.6.10(b).

They are characterized by a small wavelength compared to the size of the recirculation

bubble. This feature suggests that the high-frequency unsteadiness is associated to the

so called flapping motion of the shear layer (see Kiya and Sasaki [124]).

x

y

(a) Optimal forcing f̂s.

x

y

(b) Optimal response x̂.

Figure 6.10: Streamwise component of the optimal forcing and response to a forcing
frequency of f = 3000Hz.

To conclude, the fully discrete method used to perform a linear stability analysis of the

flow dynamics leads to interesting features in agreement with experimental results. The

low-pass filter behavior of the shock is recovered as well as the high frequency flapping

of the recirculation bubble.
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6.2 Screech in jets

Under certain conditions, imperfectly expanded jets produce a discrete tone referred to

as screech. The study of supersonic jet screech began in the early 1950s with the seminal

work of Powell [125–127], who discovered this phenomenon solely from schlieren visu-

alization of rectangular chocked jets. Almost 50 years after Powell’s discovery, screech

still plays a critical role in the design of advanced aircraft because it can cause sonic

fatigue failure. Indeed, as stated by Raman [4], such failures have been observed before

on the British Aircraft Corporation’s V C − 10 and on the F − 15 and B1 − B of the

United States Air Force.

Under expanded jets correspond to flows in which the static pressure is higher inside the

jet than outside. Shocks and expansion fans naturally appear at the nozzle lip region to

compensate the pressure mismatch. When the oblique shocks or expansion fans impinge

on the jet boundary they are reflected back into the jet leading to the formation of quasi-

periodic shock-cells structures (see Tam [128]). Perturbations created at the nozzle lip

propagate downstream and are reflected by the shocks, leading to an acoustic feedback

mechanism between the nozzle lip and the shocks responsible for screech.

The screech frequency f is thus expected to be related to the travel time of the perturba-

tion. A simple relation can be found in Powell’s work [125–127] for jets with an ambient

flow at rest. Imposing a co-flow u1 alters the screech frequency, since it has an impact

on the time a perturbation needs to travel upstream. This point has been studied by

Bryce and Pinker [129] who proposed an adaptation accounting for the co-flow, leading

to the following formula for screech frequency:

f =
0.7 (uj − u1) + u1

ls

(

1 +
0.7 (uj − u1) + u1

c1 − u1

) , (6.1)

where ls is the shock-cell spacing, uj the fully expanded jet velocity and c1 the speed of

sound in the co-flow.

Linear stability analysis has been successfully used to characterize jet flows dynamics

(Bagheri et al. [130], Meliga and Chomaz [131], Nichols and Lele [132]). For under-

expanded jets, Tam [128] gave a prediction of the extension of the shock-cell structures

ls in good agreement with experimental datas using a vortex-street shock cell model

combined with local stability analysis. These results suggest that global stability analysis

may be a useful tool to characterize such dynamics. In this spirit, the present study

was conducted by Samir Benedine at the DAFE who considered a two dimensional cold

supersonic under-expanded free jet. The jet is laminar and formed by the junction of a
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co-flow and a flow exiting a nozzle of height h = 3mm and width b = 15mm (b/h = 5)

at x = 0 as sketched in Fig.6.11(a).

(a) (b)x x

y

Figure 6.11: (a): Sketch of the jet configuration with boundary conditions. In the
inward is depicted the discretization near the nozzle exit (one discrete point out of two).

(b): Mach number contours of the baseflow wb near the nozzle exit.

The imposed boundary conditions are also sketched in Fig.6.11(a) together with an

example of the mesh structure near the jet nozzle in the inward of the figure. An

injection condition is imposed at the entrance of the nozzle with a Mach number set to

M = 1 leading to a Mach number at the nozzle exit Md = 1. An injection condition

is also used for the ambient flow, whom characteristics are chosen to impose the ratio

between the pressure at the nozzle exit pe and the ambient pressure p1 to 1.4, leading

to a Mach number in the co-flow equal to M1 = 0.5. Ambient pressure conditions are

imposed on the upper and lower part of the domain, as well as at the outlet where the

flow is subsonic. No particular boundary conditions are required at the outlet where

the flow is subsonic as the characteristic relations are respected on the boundaries. In

the planes y = +− h, a wall slip condition is imposed for x < −b (ambient flow), while

an adiabatic no-slip condition is imposed for −b ≤ x ≤ 0 (for both nozzle and ambient

flow). The stagnation temperature is set to T = 288K, the Prandt number to Pr = 1,

and the Reynolds number based of the ambient velocity u1, density ρ1, nozzle height h,

and Sutherland’s law for the viscosity is equal to Re = 5325. All quantities are made

dimensionless using the nozzle height h, the ambient velocity u1, density ρ1 and viscosity

µ1 computed with Sutherland’s law.

The Mach number contours or the baseflow are depicted in Fig.6.11(b) where we recover

the shock-cell structures. The shock-cell length is found to be equal to ls = 1.44 in good

agreement with the formula by Tam [128]. The Mach number at the nozzle exit being

equal to Md = 1, the fully expanded jet Mach number Mj is defined by (see Berland

et al. [133]):

Mj =

{

2

γ − 1

[(

1 +
γ − 1

2
M2

d

)(
pe
p1

)(γ−1)/γ

− 1

]}1/2

, (6.2)
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and is equal to 1.27, leading a fully expanded jet velocity uj of 2.15 (taken at y = 0 at

the x station where M = Mj).

σ

ω

Figure 6.12: Spectrum of the baseflow wb.

The Jacobian matrix J is then extracted as presented in Section 3.2.2 and the eigenvalue

problem in Eq. (2.5) is solved. An example of computed spectrum for this configuration

is plotted in Fig.6.12. Two globally unstable modes are found, mode 1 is characterized

by a growth rate σ1 = 0.067 and a pulsation ω1 = 2.3, while mode 2 is characterized

by σ2 = 0.0136 and ω2 = 2.54. Both modes present similar spatial structures, as an

example we depicted the streawise and crosswise component of mode 1 in Figs.6.13(a)

and 6.13(b) respectively. For both modes, the streamwise component is anti-symmetric

while the crosswise is symmetric. Such features are similar to sinuous and varicose modes

as observed by Berland et al. [133].

(a) (b)x x

y

Figure 6.13: Spatial structure of the streamwise ρu (a) and crosswise ρv (b) compo-
nents of the unstable mode 1. The real part is plotted.

The frequency prediction using Eq. (6.1) leads to a dimensionless screech frequency

around f = 2.7, close but higher than both unstable mode frequencies f1 = 2.29 and in

f1 = 2.54. These preliminary results enhance the valuable information carried out by

stability analysis to characterize the dynamics of under-expanded jets.
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6.3 Concluding remarks

Our fully discrete method was further applied to analyse several configurations. The

dynamics of shock-boundary layer interactions was first investigated in the case of the

transonic buffet over a wing profile. The flow unsteadiness was found to be reproduced

by unsteady simulations and was linked to the existence of an unstable mode of the

RANS equations. Both frequency and growth rate of the modes match reasonably well

those obtained when integrating in time the unsteady RANS equations. The sensitivity

gradients were then computed and the impact of a baseflow variations and a steady force

were briefly discussed. A streamwise velocity forcing was found to have a stabilizing

effect in the boundary layer and inside the recirculation bubble near the wing. We

then presented some results obtained by Fulvio Sartor using our discrete method on the

dynamics of a strong shock impinging of a curved wall. The noise amplifier dynamics

of the flow was analysed and the low pass filter behavior of the shock was recovered.

Properties of optimal forcing at high and low frequency were presented which reproduce

the natural flow features. Finally, preliminary results obtained by Samir Benedine on

sound generation in under-expanded jets were presented. The screech phenomenon seems

to be linked to the existence of unstable modes of the RANS equations. These tests cases

enhance the valuable information carried out by linear stability analysis and further

validate our fully discrete methods. The proposed tools and developed formalism can

thus be further applied in the future to characterize new configurations.



Chapter 7

Towards turbulence model free

sensitivity analysis

We revisit in this Chapter the dynamics of the wake behind a D-shaped cylinder. The

flow is turbulent and unsteady, characterized by Strouhal number of St = 0.22. This

configuration was experimentally studied by Parezanović and Cadot [67], who showed

that the use of a small steady cylinder can significantly alter the unsteadiness frequency

of the natural flow. More recently, Meliga et al. [66] analysed this configuration by

performing a stability analysis of the meanflow computed using the RANS equations

closed with the Spalart-Allmaras model. They found that a slightly unstable mode

existed, associated with a Strouhal number close to the one of the natural flow. Moreover,

they showed using sensitivity analysis that the control effect of the cylinder was to

modify the unstable mode frequency, in good agreement with the results of Parezanović

and Cadot [67].

We propose to reconsider this turbulent case using our fully discrete formalism. The

main idea behind this work is to question the definition of a relevant eddy viscosity for

linear stability analysis of a turbulent meanflow, without the use of a turbulence model

but rather thanks to available datas from a Direct Numerical Simulations (DNS) or

experimental measurements. Note that this question is also relevant in the case of linear

perturbations of meanflows computed from RANS simulations. Indeed, integrating in

time the RANS equations yields the fluctuation of the coherent large scale structures of

the turbulent flow, which may be used in order to redefine the eddy viscosity for linear

stability analysis.

The configuration is presented in Section 7.1, while Section 7.2 is devoted to the analysis

of the flow dynamics. The unstable modes are computed in Section 7.3, and the sensi-

tivity gradients depicted in Section 7.4. Finally, beforehand control maps using a steady

101
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cylinder as a means to control the flow are detailed in Section 7.5. This work was per-

formed in collaboration with Farid Benyoucef and Hervé Bezard from the Aerodynamics

and Energetics Modeling Department (DMAE) at ONERA.

7.1 Configuration

(a)
(b) x

y

Figure 7.1: (a): Sketch of the configuration. (b): Mesh discretization near the cylin-
der. In the inlet are distinguished the two computational blocs.

We consider a D-shaped cylinder of height D = 25mm, length L = 2D and width W =

3D as sketched in Fig.7.1(a). We impose the incoming flow characteristics by setting

the mach number M = 0.2, the stagnation pressure p∞ = 11667Pa and the stagnation

temperature T∞ = 292.5K. The Reynolds number based of the cylinder height, the free

stream density ρ∞, velocity U∞ and viscosity µ∞ (computed with Sutherland’s law) is

equal to Re = 13000. The turbulence level is set to 10−4 and the viscosity ratio µt∞/µ∞

is set to 0.1. All quantities are made dimensionless using the cylinder height D and

the free stream variables ρ∞, U∞ and T∞. This configuration mimics the studies by

Parezanović and Cadot [67] and Meliga et al. [66]. Similarly to [67], we place a sensor S

from which we measure the velocity and pressure fluctuations for the three dimensional

unsteady simulations (see Fig.7.1(a)).

Discretization points Number of cells

Bloc 1 357× 85× 40 30345× 40 = 1.2× 106

Bloc 2 150× 273× 40 40950× 40 = 1.6× 106

Table 7.1: Bloc discretization properties.

The two dimensional mesh discretization in the x, y plane is shown in Fig.7.1(b) and

consists in two blocs, with an external boundary located at 20D from the cylinder. A

symmetric discretization is used with respect to the plane y = 0, with a tangential

law for the evolution of the discretization step and imposing the cells adjacent to the

downstream edge of the cylinder to be square of size ∆x = 5× 10−4. The configuration
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is extended in the z direction for three dimensional simulations with a spatial extent of

W = 3D and is uniformly discretized with ∆z = 7.7× 10−2. Both blocs characteristics

are summarized is Table 7.1 leading to a total number of cells of N3D
m = 2.8 × 106 for

unsteady simulations and N2D
m = 70000 for two dimensional stability analysis. Non-

reflecting conditions with upstream properties are imposed on the outer part of the

domain, with a periodic condition in the z direction, while a no-slip adiabatic condition

is imposed on the cylinder surface.

Rather then performing a complete DNS, we propose to use three dimensional unsteady

RANS simulations in order to obtain a relevant turbulent meanflow. The turbulence

impact is modeled using the SAS model proposed by Menter and Egorov [134] which

includes an additional source term compared to the original k − ω model of Wilcox.

The effect of this source term is to reduce the eddy viscosity νt in areas where local

unsteadiness develop, allowing the structures to stay alive and grow. Hence, this model

differs from the classical turbulence models in the sense that it allows the resolution of

a larger band of wavelength in the Kolmogorov spectrum.

Benyoucef et al. [135] have shown that the SAS turbulence model efficiently reproduced

the turbulence features of the three dimensional wake behind a circular cylinder, while

Didorally et al. [136] observed similar results for the three dimensional wake behind a

heated square cylinder. From the similarity of these studies with our configuration, we

performed the following analysis in collaboration with Hervé Bezard and Farid Benyoucef

at ONERA (DMAE) who furnished the simulation maps (modeling, numerical schemes)

used in [135], which we applied to compute the flow-field around our D-shaped cylinder.

Similarly to Didorally et al. [136], a slight modification is applied in the definition of

the additional source term in the k − ω model as proposed by Benyoucef (SAS-αL

model, [135, 137]) which was shown to improve its efficiency. The Zeng limiter is used

to prevent large values of ω. The Roe scheme extended to second order (MUSCL) is

used for the discretization of the convective fluxes, with the Superbee limiter for the

mean-field variables.

7.2 Flow dynamics

7.2.1 Unsteady simulations

The natural flow unsteadiness is characterized by a Strouhal number close to St = 0.22.

The time integration is performed using an implicit backward Euler scheme, with a

global time step ∆t = 10−4/St which ensures that the time discretization will capture
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Figure 7.2: Q-criterion contours of the flow field at an arbitrary time.

the flow unsteadiness and yields a CFL condition of 1. We depicted in Fig.7.2 the Q-

criterion contours of a snapshot of the flow field once the oscillatory regime is attained.

We observe that the flow detaches quickly on the cylinder, and recover structures typical

of a Von-Kármán alley in the wake of the cylinder. We extracted the velocity fluctuations

at the sensor S and computed the flow spectrum using a Fast-Fourrier transform. The

obtained spectrum is plotted in Fig.7.3(a) where we recover a dominant Strouhal number

of St = 0.23 in close agreement with the expected one St = 0.22.

7.2.2 Meanflow computation

The meanflow wm is then computed by averaging both in time and in the z direction in

space wm = w. Note that the computed meanflow was found to be slightly dissymmet-

ric, which probably comes from the fact that the average has been achieved on a small

number of periods. We thus enforced the symmetry by keeping only the symmetric part

of the meanflow.

In a first approximation, the mean eddy viscosity µt is defined from the mean turbulent

variables with:

µt =
ρρk

ρω
. (7.1)

Contours of the obtained eddy viscosity field µt are plotted in Fig.7.3(b) together with

the velocity streamlines of the meanflow. We observe a recirculation bubble at the rear

of the cylinder of length l̄r = 0.89 in relative agreement with the experimental result

l̄r = 0.82 of Parezanović and Cadot [67] (note that due to the two dimensional nature
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(a)
(b)f x

A y

Figure 7.3: (a): Flow spectrum obtained with the signal extracted at the sensor S.
(b): ρk contours and streamlines of the two dimensional meanflow wm.

of their configuration, the recirculation length computed in Meliga et al. [66] was 30%

lower than the experimental value).

7.2.3 Discussion on the choice of a relevant eddy viscosity

Reynolds and Hussain [48] have shown that the linear stability analysis of a mean turbu-

lent profile in a channel flow is generally improved when using an eddy viscosity. They

justified the use of a frozen eddy viscosity as a fixed spatial field, for flows in which

the perturbation waves do not impact the characteristic time of turbulent fluctuations.

Analysing the dynamics of a turbulent flow around a NACA0012 profile, Crouch et al.

[63] found that the eddy viscosity should be allowed to fluctuate when linearizing the

RANS equations in order to observe the existence of a globally unstable. Oppositely,

Barkley [138] observed that in the Reynolds number range Re = 46 − 180, the flow

dynamics of the wake behind a two dimensional cylinder could be described using lam-

inar perturbations around the meanflow. These studies suggest that the impact of the

viscosity field for flow modeled through the Boussinesq assumption may have a great

impact onto the linear evolution of perturbations.

In a first approximation, we proposed to use the value given by our averaged turbulent

variable to define this eddy viscosity νt. Note that this definition is not necessarily rele-

vant, since the impact of the large scale coherent structures of the turbulence, available

from our unsteady simulations, are not included in this definition. Furthermore, in DNS

or experiments, one does not have direct access to this eddy viscosity field νt. The

question of an intrinsic definition solely based on the computed or measured datas thus

naturally arises.

Numerous models can be used with different levels of complexity. As an example, we

can mention the K − ǫ model which relates the eddy viscosity to the turbulent kinetic
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energy K and to the dissipation rate of turbulence ǫ with:

νt = Cµ
K2

ǫ
. (7.2)

Note that here, as we integrated in time the RANS equations, we have access to the

fluctuations of the large scale coherent structures of turbulence. These terms are not

included in the turbulence model which was used, as it only models the small scales of

turbulence. These fluctuations may thus be used to complement the definition of the

turbulent energy K as well as the dissipation rate ǫ associated with the RANS model.

The point of this short study was to investigate the impact of this eddy viscosity modeling

and show that its definition remains a difficult problem. We will thus perform in the

following laminar (νt = 0) and frozen eddy viscosity perturbations of the turbulent

meanflow, and compare the results obtained with both approaches.

7.3 Direct and adjoint unstable modes

Viscosity model σ f = ω/2π

µ 0.28 0.259
µ+ µt 0.23 0.256

Table 7.2: Unstable eigenvalues obtained with a laminar and a frozen eddy viscosity
model.

The linear stability analysis is performed similarly to the previous Chapters using in

our formalism wb = wm. The Jacobian matrix J is first extracted and its spectrum

is analysed. We observed the existence of an unstable mode for both laminar and

frozen viscosity linearization, the corresponding eigenvalues are summarized in Table 7.2.

Similarly to Meliga et al. [66], the unstable mode is slightly unstable with a frequency

relatively close to the frequency computed from unsteady simulations (0.23). The spatial

structure of the direct mode ŵ computed using the frozen eddy viscosity is depicted in

Fig.7.4, while the corresponding adjoint mode structure w̃|Q is shown Fig.7.5.

We recover typical structures of Kelvin-Helmholtz instabilities with an opposite traveling

direction between the direct and adjoint modes. Both direct and adjoint mode structures

are similar to those computed by Meliga et al. [66]. The modes computed using a laminar

model have similar structures.
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(a) ρ (b) ρu

(c) ρv (d) ρE

Figure 7.4: Spatial structure of the unstable mode ŵ computed using a frozen eddy
viscosity. The real part is plotted.

(a) ρ (b) ρu

(c) ρv (d) ρE

Figure 7.5: Spatial structure of the unstable adjoint mode w̃|Q computed using a
frozen eddy viscosity. The real part is plotted.

7.4 Sensitivity gradients

The matrix H′ is then extracted and the sensitivity gradient to meanflow perturbations

∇wm
λ|Q is computed. Note that as stated by Sipp and Lebedev [68], for flows close to

bifurcation, the linear analysis of the meanflow gives relevant information regarding the

natural flow frequency selection, but lead to marginally stable modes with amplification
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rates which are not physically relevant. We will thus focus in the following in the

sensitivity analysis of the eigenvalue frequency ω.

We plotted in Fig.7.6 the spatial structure of the frequency sensitivity ∇wm
ω|Q. The

flow is mostly sensitive near the cylinder surface and inside the recirculation bubble.

(a) ρ (b) ρu

(c) ρv (d) ρE

Figure 7.6: Spatial structure of the frequency sensitivity to meanflow perturbations
∇wm

ω|Q using a frozen eddy viscosity model.

As the meanflowwm is a solution of the steady RANS equationsR (wm) = 0, the impact

of a small amplitude steady force δf can be linked to a small meanflow variation δwm

through δf = −J−1δwm similarly to Section 2.2.2. Hence, we can still define the sensi-

tivity gradient of the unstable eigenvalue to a steady force using ∇fλ = −J−1∗
∇wm

λ.

The frequency sensitivity to a steady force∇fω|Q is then derived and depicted in Fig.7.7.

We observe that a streamwise steady force has a destabilizing effect near the cylinder

surface (x < 1.5 in the Figure), while a similar tendency can be observed in most part

of the recirculating area.

Note that so far, the sensitivity gradients to meanflow perturbations ∇wm
λ are correctly

defined using both laminar and frozen eddy viscosity models. However, when linking a

steady force perturbation to a meanflow variation through the relation δf = −J−1δwm,

we may expect that some turbulence effects may be involved in the induced meanflow

variation as the meanflow is turbulent. As a consequence, as a more realistic approxi-

mation than the “full laminar method”, we can define a mixed sensitivity gradient to a
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(a) ρ (b) ρu

(c) ρv (d) ρE

Figure 7.7: Spatial structure of the frequency sensitivity to a steady force ∇fω|Q
using a frozen eddy viscosity model.

steady force ∇fλ
mixed = −J−1∗

frozen∇wm
λlaminar, where the gradient ∇wm

λlaminar is com-

puted using laminar perturbations while the Jacobian J−1∗
frozen is obtained with our frozen

eddy viscosity method. This mixed analysis allows us to forsee the impact of a steady

force which incorporates turbulence effect onto the evolution of laminar perturbations.

7.5 Steady control of the flow frequency

Finally, similarly to Meliga et al. [66], we consider the impact of a control cylinder of

diameter d = 0.04m onto the flow frequency. The local force fxy exerted by the cylinder

is modeled to the first order with:

fxy = −1

2
dCdUxy ‖Uxy‖ /Ωxy, (7.3)

where the drag coefficient was set to Cd = 1 and Ωxy corresponds to the surface of the

considered cell. The control map δωxy = 〈∇fω,fxy〉 which indicates the variation of the

unstable frequency due to the presence of the control cylinder is depicted in Fig.7.8 for

both laminar and frozen eddy viscosity model together with the results computed by

Meliga et al. [66] and the results obtained using the aforementioned mixed model.

Several remarks can be made. First, we recover similar features between both analysis

and the control map derived in [66]. Note that as both our computational procedure

and our eddy viscosity model are different than those used in [66], we did not expect to
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(a) Laminar (b) Frozen eddy viscosity

(c) Mixed (d) Results of Meliga et al. [66]

Figure 7.8: Frequency variation δωxy of the unstable mode due to the presence of a
small control cylinder located at (x, y).

fully recover these previous results. The cylinder seems to lower the frequency of the

mode when located near the surface of the D-shaped cylinder, while it does not impact it

when located within the recirculation bubble. A striking result is that to the first order,

the effect of the control cylinder can be approximated using laminar perturbations. The

mixed model, which includes turbulence effects in the steady force, seems to lead to

slightly improved results compared to the simple laminar approximation. This is a very

interesting result as for an industrial application, the impact of a steady device can

be approximated beforehand using laminar linear perturbations, without the inherent

complexity of the definition of a turbulent eddy viscosity.

7.6 Concluding remarks

We revisited in this Chapter the dynamics of the turbulent wake behind a two dimen-

sional cylinder. The linear stability analysis was performed onto a two dimensional

meanflow computed from three dimensional unsteady simulations. The difficulty of the

definition of a relevant eddy viscosity from available unsteady datas, in order to perform

a linear stability analysis was emphasized. Using time and spatially averaged quantities,
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the dynamics of the flow was analysed. The flow frequency selection seems to be link

to the existence of an unstable mode. A sensitivity analysis was performed and the

impact of a steady control device onto the unstable mode frequency was derived. Our

results are in relative agreement with previous studies and suggest the validity of this

study. The control effect of the cylinder was found to be well reproduced using laminar

perturbations superimposed onto the turbulent meanflow, enhancing strong potential

for industrial applications.





Chapter 8

Conclusion and perspectives

8.1 Conclusion

This theoretical and numerical study aimed at developing a new tool to perform linear

stability analysis of a turbulent compressible flow modeled using RANS equations. To

this end, a fully discrete formalism was developed in Chapter 2. The linear stability

problem was derived by linearizing the discretized equations and the Jacobian matrix

J was defined within this framework. The baseflow stability is then assessed with the

resolution of an eigenvalue problem. Two types of dynamics can be observed: oscillators

correspond to unstable flows for which one or several unstable modes will naturally

develop and contaminate the whole flow field; noise amplifiers correspond to stable flows

which may strongly amplify external perturbations. Both flows dynamics analyses were

extended to the discrete framework. The sensitivity gradient to baseflow perturbations,

which links modifications of the baseflow to eigenvalue variations for oscillators and to

gain modifications for noise amplifiers was defined. In particular, the sensitivity gradient

was shown to be linked to the Hessian of the RANS equations. Finally, the sensitivity

gradient to a steady force was introduced for both oscillators and noise amplifiers, which

gives access to interesting zones of the flow where a steady control device may lead to a

stabilization of the flow.

Numerical aspects of the proposed formalism were detailed and analysed in Chapter 3.

One of the critical steps of the method consists in the resolution of an eigenvalue problem

which requires a matrix inversion algorithm. An explicit storage of matrices strategy

was adopted, which allows fast and accurate computation of the matrices eigenvalues.

Furthermore, the combination of discrete framework and explicit matrix storage allows

immediate access to adjoint matrices required for the computation of the sensitivity gra-

dients. The method remains however costly in terms of computational memory. Several

113
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other strategies with iterative algorithm, and on-the-fly strategy were hence described

to tackle three dimensional configurations. An efficient procedure was proposed to com-

pute the Jacobian and the Hessian of the RANS equations using repeated evaluations

of the residual operator. More specifically, the discrete equations are linearized using

finite differences. The procedure exploits the sparsity of the considered matrices and al-

lows the computation of all their coefficients in a few residual evaluations. The method

efficiency relies on the definition of a particular set of perturbation vectors linked to

the stencil discretization. The linearization parameters choice was also analysed, and a

possible adaptation of shape optimization codes to perform linear stability analysis and

compute the sensitivity gradients was proposed. We applied our fully discrete formalism

to a finite volume code, and chose two widely used turbulence models to close the RANS

equations: the k − ω model of Wilcox and the Spalart-Allmaras model.

A first validation step was carried out in Chapter 4 where we reproduced former results

obtained on laminar flows in a continuous framework. The dynamics of the wake behind

a two dimensional cylinder was first investigated similarly to Marquet et al. [32]. The

critical Reynolds number was recovered, and the unstable mode and its adjoint were

found to have similar features to those previously computed. The sensitivity gradient

to a steady force was then computed and found identical to the one presented in [32].

As a second test case, the noise amplifier dynamics of an evolving boundary layer was

analysed. Similarly to Brandt et al. [38], the amplifier properties of the flow were charac-

terized through the gain function, and the sensitivity gradients to baseflow perturbations

were computed. Our results are in excellent agreement with [38], suggesting that our

fully discrete method is a valuable tool to perform such analysis.

The method was then tested on a turbulent compressible flow over a deep cavity in

Chapter 5. This case enabled us to demonstrate the valuable information that both

stability and sensitivity analysis of turbulent flows provide. Furthermore, it also allowed

us to extensively analyse the validity and numerical properties of our fully discrete

approach. The flow dynamics was modeled using the RANS equations closed with a

turbulence model. The natural flow unsteadiness is recovered when integrating in time

the unsteady RANS equations in agreement with experimental results. The baseflow was

then computed and found to be unstable with the existence of several unstable modes.

The fundamental frequency of the flow as well as several harmonics were shown to be

linked to aero-acoustic modes associated with a feedback mechanism. The agreement

between the linear stability analysis and the unsteady simulations suggest that the flow

unsteadiness is linked to the existence of these unstable modes. Typical structures of

Kelvin-Helmholtz instabilities are recovered when considering the spatial structure of

the modes. The acoustic features of the flow were also captured as we observed acoustic

resonance modes excited by Kelvin-Helmholtz instabilities. In the view of open loop
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control, the sensitivity gradient of the unstable eigenvalue to baseflow perturbations

∇wb
λ was computed. The flow is found to be mostly sensitive near the mixing layer

and upstream of the cavity. Finally, the sensitivity gradient to a steady force ∇fλ was

determined. It indicates interesting areas of the flow where a steady force could lead to

the stabilization of the unstable eigenvalue. A previsional control map using a steady

cylinder as a mean to control the flow was derived for the fundamental mode. The

cylinder was found to have a stabilizing effect on the mode near and upstream of the

leading edge of the cavity, in agreement with experimental results. Numerous numerical

tests were performed to analyse the robustness and validity of our fully discrete method.

Mesh discretization was found to poorly affect the unstable modes frequency but did

influence their growth rate. The impact of the linearization parameter onto the Jacobian

computation was tested. The spectrum was observed to converge to the second order

with the linearization parameters proving accuracy of the Jacobian computation. The

genericity of the method with the system of equations was also investigated. As expected,

the numerical scheme poorly affect the results. On the contrary, the choice of turbulence

model had a slight impact on the growth rates of the unstable eigenvalues but not on

their frequency. Still, similar features were obtained using both k − ω of Wilcox and

Spalart-Allmaras turbulence model. The sensitivity gradients were validated using a

discrete evaluation of the eigenvalue. The gradient were found to correctly predict the

eigenvalue variation with an error lower then 3%. Finally, a particular analysis of the

Spalart-Allmaras model was performed and a modification was proposed to improve the

linearization of the model. The modifications were shown to poorly modify our results.

We presented in Chapter 6 results of parallel studies that were conducted using the

formalism and tools that we developed. The dynamics of shock-wave/boundary layer

interactions was first investigated in the case of the transonic buffet over a wing profile.

The flow unsteadiness was found to be reproduced by unsteady simulations and was

linked to the existence of an unstable mode of the RANS equations. The sensitivity

gradients were then computed and the impact of a baseflow variations and a steady

force were briefly discussed. Two other studies that were performed independently from

this Ph.D were then presented. Results obtained on the dynamics of a strong shock

impinging of a curved profile were first detailed. The noise amplifier dynamics of the

flow was characterized and the low pass filter behavior of the shock was recovered.

Properties of optimal forcing at high and low frequency were presented which reproduce

the natural flow features. Finally, preliminary results obtained on sound generation in

under-expanded jets were summarized. The screech phenomenon seems to be linked to

the existence of unstable modes of the RANS equations.

Finally, we revisited in Chapter 7 the dynamics of the turbulent wake behind a two

dimensional D-shaped cylinder. The linear stability analysis was performed onto a two
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dimensional meanflow computed from three dimensional unsteady simulations. The

difficulty of the definition of a relevant eddy viscosity from available unsteady datas was

discussed. The flow frequency selection seems to be link to the existence of an unstable

mode. A sensitivity analysis was performed and the impact of a steady control device

onto the unstable mode frequency was derived. Our results are in relative agreement with

previous studies. The control effect of the cylinder was found to be well reproduced using

laminar perturbations superimposed onto the turbulent meanflow, enhancing strong

potential for industrial applications.

The coherence of the numerical tests, as well as the physical information obtained on

the several cases presented suggest the relevancy and the correctness of the proposed

method. Linear stability and sensitivity analysis performed on RANS equations thus

appear as a robust tool to analyse turbulent flows dynamics.

8.2 Perspectives

The proposed formalism and tools appeared to be adequate to characterize compressible

turbulent flow dynamics. In a first time, the natural evolution of this work would con-

sist in analysing new configurations and identify Hopf bifurcations or transient growth

properties for flows at very high Reynolds number. Furthermore, the information car-

ried out by sensitivity analysis could be also further compared to experimental studies.

In a recent study, Grandemange et al. [139] considered the wake behind a three di-

mensional axisymetric body. They explored the control impact of steady devices onto

the unsteadiness of the wake and showed that three dimensional steady control means

could significantly alter the natural flow frequency. A complete linear stability analysis

of this case with the computation of the sensitivity gradients may lead to interesting

information regarding the mechanism responsible for frequency change of the flow.

Further developments can also be performed in terms of formalism and methods, based

on the knowledge of the Hessian H. The computational method used to compute the

Hessian may be used to perform a weakly non linear stability analysis of a turbulent

flow. Indeed, turbulent flows occur at high Reynolds number thus generally far from the

critical Reynolds number. In such conditions, secondary instabilities may occur which

are not predicted by linear stability analysis. A weakly non-linear analysis may thus be

required to better understand turbulent flows unsteadiness for such cases. As detailed in

Sipp and Lebedev [68], three steps are required to perform a weakly non-linear analysis.

The first two step respectively consist in the computation of a baseflow and the resolution

of an eigenvalue problem, similarly to a classical linear stability analysis. The third step

corresponds to the resolution of a linear inhomogeneous equation where the forcing term
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is given by the average of the Hessian applied to the unstable mode. As our formalism

gives access to the Hessian, such an extension of the current method to perform weakly

non linear analysis would thus be an other natural evolution of the current work.

An other natural next step would consist in the computation of three dimensional turbu-

lent unstable modes. A full TriGlobal stability analysis is theoretically possible (three

inhomogeneous spatial directions) with our method, although the necessary mesh di-

mensions for relevant analysis will require very high computational capabilities. A less

intense approach would be to perform a pseudo BiGlobal stability analysis of a two

dimensional baseflow, where the baseflow fluctuations in the linearization process are

assumed periodic with a wavenumber β in the third direction. Such an analysis is pos-

sible here by extending our 2D baseflow in a 3D domain and imposing a periodical

condition on the borders of our domain. The fluctuation wave number β would be im-

posed by the extension in the third direction of the computational frontiers. The residual

evaluation can then be carried out and the Jacobian and unstable modes computed for

this wave number. Of course, this procedure would require one jacobian computation

and one eigenvalue resolution per wavelength β thus inducing important computational

costs in terms of memory and time. However, such a procedure remains the fastest track

to compute three dimensional turbulent unstable modes with our formalism.

However, such an analysis will lead to important matrices sizes requiring too large

amount of memory for direct inversion methods. A first step to lower such a memory

cost would be to use iterative algorithms for matrices inversions. Still, the matrices size

may become problematic and the explicit storage strategy may become irrelevant. The

implementation of an on the fly strategy as proposed by De Pando et al. [69] thus appear

as a critical step with our fully discrete method to perform three dimensional stability

analysis. The optimal set of vectors that we introduced may be used to optimize such a

procedure.

Finally, in the view of industrial applications, the extension of linear stability analysis to

turbulent flows obtained from Direct Numerical Simulations or experimental datas could

be further analysed. The impact of the closure model, as well as the question of the

relevant quantities of the flow to define the eddy viscosity remain interesting points to

investigate. In this spirirt, the analysis we performed on the D-shaped cylinder suggests

that for some flow configurations, a simple laminar sensitivity analysis may yield in

a first approximation significant results regarding frequency control of unsteady flows.

Such features may be exploited to design generic methods for industrial applications

where experimental turbulent meanflow are available.
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Appendix A

A.1 Scalar products definitions

A.1.1 Matrix Q

Let us consider two continuous complex functions f ,g: Ω∈ R
N → C

N. The domain Ω

which corresponds to our mesh is discretized such that Ω =
⋃

i=1,N

Ωi, and we designate

by F ∈ C
N and G ∈ C

N the complex vectors corresponding to the discrete form of the

functions f and g on
⋃

i=1,N

Ωi.

The discrete inner product 〈,〉 |Q in Eq. (2.22) is defined as the discretization of the

continuous inner product inducing the L2 norm. That is:

∫

Ω
f∗gdΩ =

∑

i=1,N

F ∗
i GiΩi = F∗QG = 〈F,G〉 |Q. (A.1)

As a consequence, Q is a real diagonal matrix whose terms Qi correspond to the volume

Ωi of the discretized cell i.

A.1.2 Matrix Qe

We use in Chapter 2 the pseudo inner-product based on the energy matrix Qe and

defined such that for any response field x̂:

〈x̂,x̂〉 |Qe
= x̂∗Qex̂ = E, (A.2)

where E is the kinetic energy of the response x̂. Let us consider the two dimensional

laminar response at a given cell location of our mesh x̂ =
(
ρ′, (ρu)′ , (ρu)′ , (ρE)′

)T
. As
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the response corresponds to small perturbations of the baseflow conservative variables,

we will denote its variable with ′ to differentiate them from the baseflow values. We aim

at computing the kinetic energy E =
(
u′2 + u′2

)
Ω of the response at the considered cell

of volume Ω. We have at the first order:

(ρu)′ = ρ′u+ ρu′, (A.3)

(ρv)′ = ρ′v + ρv′. (A.4)

In particular, we are looking for for the coefficients a, b, c, d such that:

u′2 =
(
ρ′, ρ′u+ ρu′

)

(

a, b

c, d

)(

ρ′

ρ′u+ ρu′

)

, (A.5)

= aρ′2 + bρ′2u+ bρρ′u′ (A.6)

+ cρ′2u+ dρ′2u2 + dρρ′uu′ (A.7)

+ cρρ′u′ + dρρ′uu′ + dρ2u′2, (A.8)

which by identification leads to:

a = u2

ρ2
, b = − u

ρ2
, c = − u

ρ2
, d = 1

ρ2
. (A.9)

Therefore the energy matrix Qe is given by:

u′2 + v′2 = x̂∗













(u2+v2)Ω
ρ2

, −uΩ
ρ2

, −vΩ
ρ2

, 0

−uΩ
ρ2

, Ω
ρ2

, 0 , 0

−vΩ
ρ2

, 0 , Ω
ρ2

, 0

0 , 0 , 0 , 0

0 , 0 , 0 , 0













x̂. (A.10)

The matrixQe is real, symmetric,and by definition semidefinite positive (enabling Cholesky

decomposition). The extension of Qe to turbulent response x̂ is straitforwardly obtained

by adding 0 to the matrix.
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