Thèse soutenue

Modélidation de la combustion diluée par tabulation de la cinétique chimique

FR  |  
EN
Auteur / Autrice : Jean Lamouroux
Direction : Olivier Gicquel
Type : Thèse de doctorat
Discipline(s) : Energétique
Date : Soutenance le 19/03/2013
Etablissement(s) : Châtenay-Malabry, Ecole centrale de Paris
Ecole(s) doctorale(s) : École doctorale Sciences pour l'Ingénieur (Châtenay-Malabry, Hauts de Seine)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'énergétique moléculaire et macroscopique, combustion (Gif-sur-Yvette, Essonne)
Jury : Président / Présidente : Mourad Boukhalfa
Examinateurs / Examinatrices : Olivier Gicquel, Luc Vervisch, Laurent Gicquel, Benoît Fioriana, Mathieu Ourliac

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Cette thèse se situe dans le cadre du projet CANOE, piloté par GDF SUEZ et l'ADEME, qui vise à étudier la faisabilité et la viabilité du régime de combustion sans flamme dans les chaudières industrielles. Il est maintenant établi que le préchauffage des réactifs permet d'améliorer le rendement thermique et de diminuer la consommation de combustible d'une configuration. Pour contourner la formation d'oxydes d'azote résultant de l'augmentation de température des réactifs, ces derniers peuvent être massivement dilués par des produits de combustion. Cela permet d'éviter la formation de points chauds et d'homogénéiser les gradients de température: c'est le principe de la combustion sans flamme. L'objectif de cette thèse est de développer un modèle de combustion turbulente adapté à ce type de régime. La cinétique chimique complexe et le contrôle des pertes thermiques est d'une importance capitale dans l'établissement et la stabilisation du processus de combustion sans flamme. Ici, ces effets sont considérés dans une approche de tabulation de la cinétique chimique de type FPV. Pour discriminer les effets associés aux évolutions suivant les paramètres de contrôle de nos bases de données, on effectue une analyse des réponses de flammes laminaires à différents niveaux de dilution et de pertes thermiques. De plus, nous évaluons l'importance de l'utilisation de tabulations de dimensions élevées, et les capacités prédictives des méthodes de tabulation développées sont mises en exergue. Puis, des simulations aux grandes échelles de la turbulence de configurations adiabatique et à parois refroidies sont effectuées. On compare des tabulations de nombre de degrés de libertés variés aux données expérimentales. Les résultats obtenus sont en très bon accord avec ces dernières pour les tabulations les plus complexes, alors que des limitations significatives apparaissent pour des tabulations de dimensions inférieures. Les simulations proposées indiquent la capacité de nos modèles à reproduire des structures de flammes réalistes.