Thèse soutenue

Stabilité de l'équation d'advection-diffusion et stabilité de l'équation d'advection pour la solution du problème approché, obtenue par la méthode upwind d'éléments-finis et de volumes-finis avec des éléments de Crouzeix-Raviart

FR  |  
DE  |  
EN
Auteur / Autrice : Marcus Mildner
Direction : Paul Deuring
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 30/05/2013
Etablissement(s) : Littoral
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Laboratoire de mathématiques pures et appliquées (Calais, Pas de Calais)
Jury : Président / Présidente : Jean-Paul Chehab
Examinateurs / Examinatrices : Hassane Sadok
Rapporteurs / Rapporteuses : Robert Eymard, Jean-Luc Guermond

Résumé

FR  |  
DE  |  
EN

On considère le problème d’advection-diffusion stationnaire v(∇u, ∇v)+( β•∇u, v) = (f, v) et non stationnaire d/dt (u(t), v) + v(∇u, ∇v)+( β•∇u, v) = (g(t), v), ainsi que le problème d’advection (β•∇u, v) = (f, v) sur un domaine polygonal borné du plan. Le terme de diffusion est approché par des éléments de Crouzeix Raviart et le terme de convection par une méthode upwind sur des volumes barycentriques finis avec un maillage triangulaire. Pour le problème stationnaire d’advection-diffusion, la L²-stabilité (c’est-à-dire indépendante du coefficient de diffusion v) est démontrée pour la solution du problème approché obtenue par cette méthode d’éléments finis et de volumes finis. Pour cela une condition sur la géométrie doit être satisfaite. Des exemples de maillages sont donnés. Toujours avec cette condition géométrique sur le maillage, une inégalité de stabilité (où la discrétisation en temps n’est pas couplée à une condition sur la finesse du maillage) est obtenue pour le cas non-stationnaire. La discrétisation en temps y est faite par un schéma d’Euler implicite. Une majoration de l’erreur, proportionnelle au pas en temps et à la finesse du maillage, est ensuite proposée et exprimée explicitement en fonction des données du problème. Pour le problème d’advection, une approche utilisant la théorie des graphes est utilisée pour obtenir l’existence et l’unicité de la solution, ainsi que le résultat de stabilité. Comme pour la stabilité du problème d’advection-diffusion, une condition géométrique - qui est équivalente pour les points intérieurs du maillage à celle du problème d’advection-diffusion - est nécessaire.