Services de répartition de charge pour le Cloud : application au traitement de données multimédia

par Sylvain Lefebvre

Thèse de doctorat en Informatique

Sous la direction de Eric Gressier-Soudan et de Raja Chiky.

Le président du jury était Philippe Roose.

Le jury était composé de Pierre Sens, Renaud Pawlak, Françoise Sailhan.

Les rapporteurs étaient Christine Morin, Jean-Marc Pierson.


  • Résumé

    Le travail de recherche mené dans cette thèse consiste à développer de nouveaux algorithmes de répartition de charge pour les systèmes de traitement de données massives. Le premier algorithme mis au point, nommé "WACA" (Workload and Cache Aware Algorithm) améliore le temps d’exécution des traitements en se basant sur des résumés de contenus. Le second algorithme, appelé "CAWA" (Cost Aware Algorithm) tire partie de l’information de coût disponible dans les plateformes de type "Cloud Computing" en étudiant l’historique d’exécution des services.L’évaluation de ces algorithmes a nécessité le développement d’un simulateur d’infrastructures de "Cloud" nommé Simizer, afin de permettre leur test avant le déploiement en conditions réelles. Ce déploiement peut se faire de manière transparente grâce au système de distribution et de surveillance de service web nommé "Cloudizer", développé aussi dans le cadre de cette thèse. Ces travaux s’inscrivent dans le cadredu projet de plateforme de traitement de données Multimédia for Machine to Machine (MCUBE), dans le lequel le canevas Cloudizer est mis en oeuvre.

  • Titre traduit

    Load distribution services for the Cloud : a multimedia data management example


  • Résumé

    The research work carried out in this thesis consists in the development of new load balancing algorithms aimed at big data computing. The first algorithm, called « WACA » (Workload and Cache Aware Algorithm), enhances response times by locating data efficiently through content summaries. The second algorithm, called CAWA (Cost AWare Algorithm) takes advantage of the cost information available on Cloud Computing platforms by studying the workload history.Evaluation of these algorithms required the development of a cloud infrastructure simulator named Simizer, to enable testing of these policies prior to their deployment. This deployment can be transparently done thanks to the Cloudizer web service distribution and monitoring system, also developed during this thesis. These works are included in the Multimedia for Machine to Machine (MCUBE) project, where the Cloudizer Framework is deployed.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Conservatoire national des arts et métiers (Paris). Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.