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Abstract

A lready 60 years of intense international pursuit of the laboratory
confinement of high temperature (T > 108K) plasmas for the purpose
of obtaining successful controlled nuclear fusion reactors, conceived

to produce stable burning plasmas with large amplification factors. Micro-
turbulence and macro-scale magnetohydrodynamical instabilities govern the
confinement properties of tokamak plasmas. Nowadays, the simulation of
turbulence in a full tokamak is very challenging since one must simultaneously
resolve the machine size and the scales of turbulence. The scale of the turbu-
lence is on the order of the ion gyroradius, ρi, while the size of an ITER-like
tokamak is much larger, a/ρi ∼ 500, where a is the minor radius. This requires
a very fine computational grid and is slightly beyond today’s computational
capabilities for realistic a/ρi. Thus, one can conceive that much more efficient
codes are made possible by a suitable choice of coordinates that allow the
smallest number of grid points in a certain direction, exploiting the elongated
nature of turbulence, which has short perpendicular scales but long parallel
scales. The idea consists on finding a local transformation that aligns a suitable
coordinate to the magnetic field, thus leading to efficient computation of the
parallel derivative. For this purpose, the so-called field-aligned coordinates
have been employed so far in tokamak turbulence simulations . The gain in
computational efficiency obtained by using optimal coordinates can be a cou-
ple of orders of magnitude for a turbulence simulation of a large device like ITER.

In this Thesis, I develop and illustrate a new approach to field-aligned
coordinates which is not based on flux variables [Hariri 2013] that I call FCI.
The method employs standard Cartesian or Polar coordinates to discretize the
fields. Parallel derivatives are computed directly along a coordinate that follows
the local field, and poloidal derivatives are computed in the original Cartesian
frame. I first show how the new method has a number of advantages over
methods constructed starting from flux coordinates, allowing for more flexible
coding in a variety of situations including X-point configurations. It permits
high resolution in realistic tokamak geometry while retaining the important
toroidal features. This method is also applicable to non-tokamak magnetic
configurations. In light of these findings, a plasma simulation code FENICIA has
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been developed based on the FCI approach with the ability to tackle a wide class
of physical models. The code has been validated on several three-dimensional
test models. The accuracy of the approach is tested in particular with respect to
the question of spurious radial transport, an obvious concern when abandoning
flux coordinates. In this regard, I also show that numerical radial diffusion can
be easily kept under control with the choice of suitable algorithms, at a minimal
computational cost.

Then, tests on a 3D model for Ion Temperature Gradient (ITG) driven tur-
bulence in cylindrical geometry demonstrate that the method is well suited to
exploit the flute property of small parallel gradients by minimizing the number
of degrees of freedom needed to treat a given problem in an accurate and efficient
manner. Benchmarks and numerical method accuracy are detailed in the linear
regime. Moreover, simulations in the nonlinear turbulent regime allow one to
recover, at reduced numerical cost, the standard features of slab ITG turbulence.
Finally, the method was tested in an X-point configuration such as one with a
magnetic island. Results show good agreement with the exact solutions of the
sound wave propagation inside and outside the island. On the magnetic sep-
aratrix including the X-point, convergence studies are performed and adequate
conservation properties are verified showing the robustness of the approach in
very demanding situations.
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Résumé

C e travail porte sur le développement et la vérification d’une nouvelle
approche de coordonnées alignées, qui tire partie de l’anisotropie du
transport dans un plasma immergé dans un fort champ magnétique.

Sa prise en compte dans les codes numériques permet de réduire grandement
le coût de calcul nécessaire pour une précision donnée. Une particularité de
l’approche nouvellement développée dans ce manuscrit est en particulier sa
capacité à traiter, pour la première fois, des configurations avec point X. Toutes
ces analyses ont été conduites avec FENICIA, code modulaire entièrement
développé dans le cadre de cette thèse, et permettant la résolution d’une classe
de modèles génériques.

Le premier chapitre précise le contexte de la physique des tokamaks dans
lequel se place ce travail. C’est une introduction à la problématique du confine-
ment d’un plasma dans un champ magnétique et au principe du tokamak. La
rupture du confinement due à la turbulence et aux instabilités magnétohydro-
dynamiques (MHD) est également présentée. L’anisotropie du transport dans
un tokamak, qui a motivé le développement des coordonnées alignées et qui est
donc au cœur du projet de cette thèse, est présentée en détail. La motivation
du travail est ainsi exposée, et replacée dans le contexte général des différents
systèmes de coordonnées alignées qui sont proposés dans la littérature et utilisés
dans les codes internationaux. Dans ce chapitre introductif, la classe de modèles
abordés dans la thèse est également présentée sous une forme générique, qui
utilise un découplage entre parties résolues numériquement de manière explicite
et implicite.

Le deuxième chapitre est consacré à un état de l’art des systèmes de coordon-
nées utilisés dans les codes dédiés à l’étude de la turbulence dans les plasmas
de tokamaks. Ces rappels historiques et scientifiques permettent de mettre
en exergue les avancées et avantages que représente la technique introduite
dans ce travail. Du fait que les gradients dans la direction des lignes de champ
magnétique sont de plusieurs ordres de grandeur plus petits que les gradients
perpendiculaires aux lignes de champ, des systèmes de coordonnées curvilignes
adaptées à cette propriété permettent de réduire considérablement les coûts
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de calcul, en autorisant en particulier un maillage plus lâche dans une des
directions. Divers types de telles coordonnées curvilignes ont étés introduites
dans la littérature depuis plus de vingt ans. Une revue des principales variantes
est faite dans ce chapitre, rappelant leurs avantages et inconvénients. L’idée
introduite par M. Ottaviani, qui consiste à utiliser un système de coordonnées
où l’abscisse curviligne le long des lignes de champ est décrite localement entre
deux plans poloïdaux par la coordonnée toroïdale, est rappelée et généralisée à
un contexte indépendant de tout système de coordonnées de flux. Cette nouvelle
méthode est appelée FCI pour Flux Coordinate Independent. Son principe
est de discrétiser un problème tri-dimensionnel (3D) dans un tokamak par un
petit nombre de plans poloïdaux. Ces mêmes plans peuvent être discrétisés
de manière quelconque, mais avec un maillage assez fin pour représenter les
variations perpendiculaires aux lignes de champ. En pratique un maillage
cartésien des plans poloïdaux est utilisé dans ce travail. Pour la discrétisation des
dérivées parallèles, la méthode utilise une ligne de champ qui, d’un de ses côtés,
prend appui sur un point du maillage poloïdal. L’autre extrémité de cette même
ligne n’est pas sur un point de grille a priori. Cela nécessite la détermination
de l’intersection de cette ligne de champ avec les plans poloïdaux voisins. Une
interpolation sur ceux-ci est alors réalisée, ayant comme avantage de permettre
une discrétisation indépendante de chaque plan poloïdal. Dans la dernière
partie du chapitre, les outils mathématiques nécessaires au calcul efficace des
lignes de champ et des dérivées parallèles avec cette méthode sont précisés.
Les démontrations sont données, et des applications à certains cas particuliers
permettent de mieux comprendre le principe. Il est précisé également comment
des configurations avec point X peuvent aussi être traitées avec cette méthode.
Finalement, une présentation mathématique avec une suite de propositions et de
leur démonstration est adoptée pour la partie technique énonçant les résultats
permettant de calculer de manière efficace les dérivées le long des lignes de
champ.

Le troisième chapitre est consacré à la description du code FENICIA et des
algorithmes qui y sont utilisés. Ce code parallèle en Fortran a été développé
entièrement au cours de cette thèse. Les schémas d’intégration en temps sont
présentés en premier. Ils sont destinés à pouvoir s’appliquer à toute une classe de
systèmes abstraits d’équations différentielles partielles (EDP) ayant en commun
d’avoir une partie linéaire qui pourra être traitée implicitement et une partie
non-linéaire qui sera traitée explicitement. Une méthode de type prédicteur-
correcteur d’ordre 2 construite pour stabiliser un schéma saute-mouton est
dérivée pour ce type de problème. Les différents opérateurs différentiels en es-
pace apparaissant dans les opérateurs abstraits sont discrétisés par des schémas
de différences finis adéquats, y compris ceux basés sur les dérivées parallèles
introduits dans le chapitre précédent. En dehors de techniques classiques, un
point spécifique à la méthode développée dans cette thèse est l’interpolation
des valeurs à l’intersection avec une ligne de champ dans les plans poloïdaux.
Une interpolation de type Hermite bicubique, donc d’ordre 4, est utilisée pour
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ceci, les dérivées nécessaires étant reconstruites à partir des valeurs ponctuelles
voisines par différences finies d’ordre correspondant. Une vérification de
l’ordre de la méthode est effectuée ainsi qu’une comparaison à une méthode de
splines cubiques de MATLAB, montrant que pour le problème traité, l’erreur
est comparable. Une représentation graphique des modules du code ainsi
que des extensions possibles est présentée, ainsi que pour l’évolution en temps
du code. Ce chapitre montre la modularité du code permettant de le faire évoluer.

Le quatrième chapitre décrit la validation du code et de la méthode FCI
développée dans cette thèse sur des cas tests représentatifs. Il commence par
la validation de la méthode d’interpolation, en particulier sur le cas le plus
simple du transport parallèle aux lignes de champ d’une quantité scalaire. Pour
estimer la précision numérique nécessaire, une étude physique des ordres de
grandeur des différents termes impliqués est menée. Ensuite une étude de la
diffusion numérique est proposée dans un cas où le gradient parallèle est nul et
où le seul transport transverse aux lignes de champ proviendrait de la diffusion
numérique. On vérifie que cette diffusion numérique est régie par le nombre de
points par longueur d’onde. Ensuite commence la validation de l’approche FCI
à proprement parler, en montrant que les ondes acoustiques ioniques peuvent
être simulées par cette approche avec une résolution très faible dans la direction
toroïdale. Finalement, le code entier est validé sur des simulations de modèles
de plus en plus complets. D’abord un modèle centre-guide 2D avec diffusion
est validé pour tester le comportement dans un seul plan poloïdal. On passe
ensuite à un modèle fluide linéaire d’instabilité ITG. Dans les deux cas les
résultats numériques sont en accord avec la théorie, ce qui permet une validation
convaincante du code.

Dans le cinquième chapitre, on exploite le code pour des simulations non
linéaires d’une turbulence portée par le gradient de température ionique, dite
ITG (Ion Temperature Gradient), qui joue un rôle important dans le transport
de chaleur dans les tokamaks. Est également étudié un cas de géométrie avec
îlots magnétiques que les approches précédentes de coordonnées alignées ne
pouvaient pas traiter. Le chapitre commence avec une présentation du modèle
complet fluide de turbulence implémenté dans le code. Les simplifications
effectuées sont également discutées en relation avec les objectifs de la thèse.
Ensuite une discussion complète du modèle linéaire est proposée avec un calcul
de la relation de dispersion et des seuils et taux d’instabilité, avant de passer
aux simulations non-linéaires. Une étude de l’erreur en fonction du nombre
de points toroïdaux est en particulier effectuée. Elle montre qu’une précision
tout à fait satisfaisante est atteinte à partir d’une quinzaine de points seulement
dans la direction toroïdale. Pour montrer l’avantage principal de la méthode par
rapport aux techniques précédemment utilisées, le chapitre se conclut par une
discussion d’un cas test avec point X et de tests au travers de la séparatrice. La
bonne convergence du code vers des solutions analytiques de part et d’autre de
la séparatrice d’un îlot magnétique, ou vers la solution numérique centrée sur la
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séparatrice elle-même, attestent la capacité du code à traiter cette configuration
magnétique.

Le dernier chapitre conclut la thèse en rappelant les principaux résultats
obtenus et les points forts de la méthode ainsi que les axes de recherche futurs, en
particulier sur la physique à ajouter pour traiter des cas plus réalistes. En résumé,
la méthode développée dans ce travail est validée. Elle peut s’avérer pertinente
pour un large champ d’application dans le contexte de la fusion magnétique.
Il est montré dans cette thèse que cette technique devrait pouvoir s’appliquer
aussi bien aux modèles fluides que gyrocinétiques de turbulence, et qu’elle per-
met notamment de surmonter un des problèmes fondamentaux des techniques
actuelles, qui peinent à traiter de manière précise la traversée de la séparatrice.
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T oday, fusion energy is under the spotlight again as a carbon-free energy
source. Planet Earth is the only planet on which life exists, as far as we
know. Earth was formed 4.6 billion years ago, the geomagnetic field

and the ozone layer were created shielding most of the harmful radiation from
the Sun and realizing an environment where only the energy of light reaching
the ground was useful for life. As the use of fossil fuel resources has expanded
significantly in developed countries, large amounts of carbon dioxide are emitted
influencing the environment of Earth. An era of huge energy consumption is
beginning in the twenty-first century.

The ultimate objective of fusion research is to study the conditions and
design of fusion devices for reaching a burning plasma i.e., a fully ionized gas
self-sustained in an extreme state by power released from the fusion reactions
of its atomic nuclei. The burning plasma would then provide a new reliable,
clean and safe power producing system. To achieve this, fusion makes two
demands. Firstly, to ignite the plasma, temperatures in the order of hundreds
of millions of degrees centigrade must be attained for significant fusion yield.
The second, which is considered as the most difficult challenge, is to sustain
the plasma at these temperatures by confining and controlling it in order to
maintain its density and ensure that it does not suffer excessive heat losses.
Tokamaks, a large family of fusion research devices which early development
took place in the late 1950’s, utilize an ingenious scheme that addresses both
challenges at the same time. In this context, a worldwide cooperation aims
to build in south France (Cadarache) the International Thermonuclear Experi-
mental Reactor-ITER project a Sun on Earth, oriented towards demonstrating
the technical and scientific viability of fusion as an energy source. More infor-
mation about this project and about fusion theoretical concepts are available
in [Wesson 2011, Hazeltine 2003, Chen 1984, Tomabechi 1991, Holtkamp 2007].

A tremendous amount of development remains before fusion can be applied
to the commercially successful generation of electricity. Future experiments will
be large and expensive, costing as much as several billions of dollars each. Such
machines must be designed to perform optimally, allowing little room for uncer-
tainty. Numerical studies of plasma confinement is playing a profoundly impor-
tant role in designing these machines. It is an essential tool in analyzing the equi-
librium, stability, and transport of all current major fusion experiments. Even
when restricting to Magneto-Hydrodynamical (MHD) and turbulent transport
processes, the range of time scales to be resolved in a fusion plasma is already
very broad. It typically extends from about 10−6s for the fastest growing instabil-
ities to the energy confinement time of several seconds, the time scale required
for the plasma profile to relax to a steady state. As far as turbulence is concerned,
it develops on time scales in the range of a fraction to several milliseconds. Spa-
tial scales are also very disparate. They range from the Larmor (or cyclotron)
radius ρs of the order of a few millimeters for ions to the machine size a of a
few meters in the directions transverse to the equilibrium magnetic field B. As
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1.1. Tokamak topology and plasma confinement

a matter of fact, it is computationally very expensive to run algorithms that em-
body these complex processes on today’s generation of computers. Although
ab initio gyrokinetic particle simulations can now model the full torus down to
ITER-relevant ion spatial scales, namely ρ∗ ≡ ρi/a = 2.10−3, including the elec-
tron scales requires to step down the size of the domain of study. Besides, even
when restricting to kinetic ions, nowadays most powerful supercomputers can
hardly allow for the exploration of self-organization states in ITER-like plasmas
on energy confinement times.

However, as will be extensively discussed in this thesis, much computer re-
sources can be spared by employing coordinate systems which take benefit of the
physical characteristics of magnetized plasmas, namely the strong anisotropy of
both spatial and temporal scales in the parallel and transverse directions (with
respect to the equilibrium guiding magnetic field B). In turn, the full torus can
be resolved much more cheaply if a loose discretization is used in the parallel
direction, while still resolving the relevant scales.

1.1 Tokamak topology and plasma confinement

1.1.1 Topology and Magnetic Equilibrium

When they are immersed in a constant magnetic field, constant both in mag-
nitude and in direction, charged particles undergo a helical motion along the
magnetic field lines. The radius of the cross-section of the helix of “s" species
is given by the Larmor radius ρs = msv⊥/esB, while the gyro-frequency is
ωcs = esB/ms. Here, ms is the mass, v⊥ the transverse velocity, es the charge
and B the magnitude of the magnetic field. Particles are all the more bound to
field lines since the magnetic field magnitude is large. This is the basic principle
of plasma confinement by means of a magnetic field. For thermal particles at
temperatures of the order of Ti ∼ Te ∼ 20keV, then v⊥ ∼ vth =

√
T/m , with

vthi ∼ 106m.s−1 for Deuterium ions and vthe ∼ 6.107m.s−1 for electrons, so that
Larmor radii are of order of ρi ∼ 4.10−3m and ρe ∼ 6.10−5m for a magnetic
field of B = 5.3T. Conversely, particles are almost free to stream along the
magnetic field (up to trapping effects in between local mirrors, mainly due to the
inhomogeneity of B along the magnetic field lines). These roughly correspond to
the ITER parameters.

If the motion of charged particles is constrained by the cyclotron gyration in
the plane transverse to B, it remains free along the magnetic field. Then arises
the question of the confinement in the third direction, namely the parallel one.
Two options can then be envisaged: either open or closed magnetic configura-
tions. Open ones face the problem of particle and energy losses at the end points.
They have rapidly revealed inefficient in view of building economically viable
fusion power plants, even when adding magnetic mirrors to reduce these losses.
The only alternative then relies on closed configurations. From the mathematical
point of view, closed configurations of the 3-dimensional (3D) magnetic equilib-
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1.1. Tokamak topology and plasma confinement

Figure 1.1: Hairy ball (left) and doughnut (right), showing the existence of at
least one (here two) cowlick on the ball. Conversely, the doughnut can be entirely
covered without any cowlick.

rium can be topologically equivalent to either a sphere or to a torus (possibly with
several holes). Here comes into play the so-called hairy ball theorem, which was
first proved by L.E.J. Brouwer in 1912, after some seminal works by the French
mathematician Henri Poincaré (1854-1912) at the end of the 19th century, among
others. This theorem states that: « For the ordinary sphere, if f is a continuous
function that assigns a vector in R3 to every point p on a sphere such that f(p) is
always tangent to the sphere at p, then there is at least one p such that f(p) = 0 ».
In other words, whenever one attempts to comb a hairy ball flat, there will always
be at least one tuft of hair at one point on the ball (see Fig. 1.1).

When applied to the issue of plasma confinement by means of a magnetic
field, this theorem states that any closed magnetic flux surface which would be
topologically equivalent to a sphere would unavoidably have a point where the
magnetic field vector would vanish. The plasma would then inevitably leak from
this critical point, since it would no longer be confined by any magnetic field.
Indeed, the confinement of the plasma intrinsically requires that the surface
is covered by a non-zero magnetic field everywhere. This explains why only
toroidal configurations are relevant for magnetic confinement, since this is the
only 3D configuration which is not subject to any equivalent of the hairy ball
theorem (Fig. 1.1).

The second difficulty then consists in generating such stable toroidal magnetic
flux surfaces. In a tokamak, like the one shown in Fig. 1.2, a high temperature
plasma is confined in an axisymmetric toroidal vessel by a helical magnetic
field, as illustrated in Fig 1.3. The main component of the magnetic field B
is the toroidal field Bϕ, produced by poloidal currents in external coils. This
component of the magnetic field is of the order of a few Teslas, which is typically
5 orders of magnitudes larger than that of the Earth. The smaller (typically by
one order of magnitude) poloidal magnetic field Bθ is produced by the toroidal
current Ip of several mega Ampère which circulates in the plasma along the
toroidal direction (cf. Fig. 1.3). This current is primarily generated by a trans-
former effect, by varying the magnetic flux inside a central solenoid located on
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1.1. Tokamak topology and plasma confinement

Figure 1.2: The tokamak Tore Supra, at CEA Cadarache, France

the symmetry axis of the torus. The plasma then plays the role of the secondary
circuit. The combination of Bϕ and Bθ causes field lines to twist around a
torus. The resulting magnetic flux surfaces are nested tori, characterized by a
mean helicity of the field lines. In section 1.1.2 are briefly recalled the different
magnetic field representations in toroidal geometry.

Figure 1.3: Schematic of the magnetic configuration of a torus described here by
the toroidal coordinate system (r, θ, ϕ) with aspect ratio R/a. R denotes the major
radius measuring distance from the symmetry axis, and a is the minor radius
measuring distance from the magnetic axis.
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1.1. Tokamak topology and plasma confinement

1.1.2 Mathematical description of a Tokamak magnetic equilib-
rium

Preliminaries

Coordinates should be introduced to understand the physics of the torus,
quantitatively. For this purpose, I recall in this section the basic definitions used
to describe the torus coordinate systems that will be discussed throughout this
thesis.

Magnetic field lines are lines which are everywhere tangent to the magnetic
field. In other words, the magnitude B of B can vary along these lines, but
B.∇∇∇s = 0, with s the curvilinear abscissa along the field line. Magnetic surfaces,
or flux surfaces, correspond to those surfaces engendered by field lines. Their nor-
mal vector is everywhere orthogonal to the magnetic field. To define a coordinate
system, we need to introduce three spatial functions

ψ(x), θ(x), ϕ(x) (1.1)

which have non-coplanar gradients. Mathematically, this is a condition on the
triple vector product of the gradients, or the Jacobian J ,

∇∇∇ψ ×∇∇∇θ.∇∇∇ϕ ≡ J−1 ≥ 0, (1.2)

where the equality can hold only at isolated singular points, for example at the
origin of the coordinate system (or at the magnetic axis). The coordinate system
is said to be direct if the Jacobian J is strictly positive.

Flux coordinates are a set of coordinate functions adapted to the shape of the
flux surfaces. Flux labels correspond to f functions which are constant on flux
surfaces. To make (1.1) a magnetic flux coordinate system, we choose ψ to be a
flux label, i.e.,

B.∇∇∇ψ = 0 (1.3)

We take θ to be a poloidal angle (increasing the short way around the torus)
and ϕ to be a toroidal angle (increasing the long way around the torus), each
varying between 0 and 2π. Here we will choose ϕ to be the same angle as that
in a cylindrical coordinate system, making these axisymmetric magnetic flux
coordinates. Thus, we have ∂/∂ϕ = 0 for axisymmetric quantities.

Efforts to provide the most appropriate coordinates for the torus have lead
to two most commonly used flux coordinate systems: the Hamada coordi-
nates [Hamada 1962] in which the angle variables are chosen to make the Jaco-
bian a constant; and Boozer coordinates [Boozer 1981] which is obtained if we
take the Jacobian to be proportional to the inverse of the square of the magnetic
field. These coordinates have been shown to be particularly useful for calcu-
lating guiding center drift orbits in magnetic confinement devices [Boozer 1981,
Boozer 1980, White 1984].
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1.1. Tokamak topology and plasma confinement

Expression of B in flux coordinates

In a tokamak equilibrium, there exist two common labels of magnetic flux sur-
faces. These are the poloidal flux ψP (also simply ψ) and the toroidal flux ψT .
The poloidal flux is defined on a ribbon-like surface Sθ stretched between the
magnetic axis and the flux surface at a given value of θ by:

ψP =

∫
Sθ

∇∇∇θ
|∇∇∇θ|

.B dS (1.4)

Similarly, but at given values of ϕ, the toroidal flux is defined by:

ψT =

∫
Sϕ

∇∇∇ϕ
|∇∇∇ϕ|

.B dS (1.5)

From these functions, it is possible to construct a flux label function r(ψ) with the
dimension of a length.

Then, the general form of the magnetic field in an axisymmetric toroidal con-
figuration like a tokamak is:

B = F∇∇∇ϕ+∇∇∇ψ ×∇∇∇ϕ (1.6)

where F can be shown to be a function of the poloidal magnetic flux ψ only:
F (ψ) [Hazeltine 2003]. By computing the scalar product of B with the toroidal
direction vector∇∇∇ϕ, it readily appears that the function F relates to the toroidal
component of the magnetic field Bϕ ≡ RB.∇∇∇ϕ: F (ψ) = RBϕ.

One important quantity for characterizing the magnetic equilibrium of a toka-
mak plasma is the measure of the number of toroidal turns per poloidal turn of
these field lines, called the safety factor q. It can be expressed as the rate of change
of toroidal flux with poloidal flux as follow:

q =
dψT
dψP

(1.7)

q is constant on a given flux surface, but varies from one surface to another.
Its logarithmic variation across the flux surfaces defines the magnetic shear s ≡
d log q/d log r, with r a radial coordinate labeling magnetic surfaces. Both the
safety factor and its shear have important implications for the MHD stability of
the plasma. q typically varies from 1 in the core plasma, on the magnetic axis,
to several units in the vicinity of the last closed field surface. The safety factor
q is so called because of the role it plays in determining stability. If q is a ratio-
nal q = m/n, where m and n are integers, the field line joins up on itself after
m toroidal and n poloidal rotations. Rational surfaces play a critical role in the
confinement properties of the plasma, since they are the locations where macro-
MHD instabilities preferentially develop.
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1.1. Tokamak topology and plasma confinement

The magnetic geometry around the X-point

This fairly simple description of the tokamak magnetic equilibrium omits one
important characteristic of magnetic surfaces, which is encountered in a certain
number of devices. It deals with the existence of an X-point at the boundary of the
plasma confined region. The current flowing in judiciously located at external
toroidal coils is used so as to cancel the poloidal component of B at some specific
location. In this case, one moves from a limiter configuration, where the last
closed field surface (LCFS) is created by the direct interaction with plasma facing
components (fig.1.4a), to an axisymmetric divertor one, where the LCFS intercept
the divertor target plates in a private region only, far from the main confined
plasma (fig.1.4b). The advantage of such diverted plasmas is then to benefit from
a larger volume to radiate the power that is convected out of the confined plasma.

Figure 1.4: (left) Tore Supra tokamak (CEA, France) with a limiter configuration.
(right) WEST tokamak (CEA, France) with an axi-symmetric X-point divertor.

The X-point connects two otherwise-separated magnetic surfaces. It is sin-
gular in the sense that the safety factor q diverges at this point: there, the field
lines no longer loop poloidally (cf. discussion in section 1.1.2). When plasmas
are bounded by a separatrix as shown in Fig. 1.5, the q profile is fundamentally
modified. The reason is that the value of q for surfaces close to the separatrix is
dominated by the null at the X-point. Let d be the shortest distance of a flux sur-
face from the X-point. The analytical expressions of q as d −→ 0 in terms of Bθ

and Bϕ can be written as:

q −→ Bϕ

πR|∇Bθ|
ln
λ

d
(1.8)

where λ is a length characterizing the overall geometry. Thus, as the separatrix
is approached, q −→ ∞. It turns out that the numerical implementation of the
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1.1. Tokamak topology and plasma confinement

parallel operator ∇‖ which involves q, is critical in the neighborhood of the X-
point and shall be discussed in the next section.

Figure 1.5: Illustrating the geometry of the flux surface around the X-point when
the plasma is bounded by a separatrix

1.1.3 Basics of plasma confinement

When considering single particle trajectories, the fact that the field lines are
helical appears to be essential to their confinement. It ensures the existence of
three motion invariants, which are the magnetic moment µ = mv2

⊥/2B which is
an adiabatic invariant, with φ the electric potential and ψ the poloidal magnetic
flux (see section 1.1.2), the energy E = mv2

‖/2 + µB + eφ, and the toroidal kinetic
canonical momentum Pϕ = eψ + mRvϕ (with R the major radius and vϕ the
toroidal velocity). In addition, the motion is characterized by three angles (i.e.
periodic coordinates): the gyro-angle ϕc, and the two periodic directions θ and
ϕ of the torus. In this case, the particle trajectories are integrable. Conversely,
field lines which would be toroidal only would not allow for their confinement.
Indeed, in such a case, particles would drift away from the field lines, approxi-
mately in the B×∇B direction (mostly vertical in tokamaks) at a speed typically
ρ∗ smaller than the thermal velocity vd ∼ ρ∗vth. Furthermore, since this vd
drift depends on the particle charge, ions and electrons would drift in opposite
directions. The resulting vertical electric field E would then push all the particles
out of the domain due to the additional electric drift vE = E×B/B2.

From the plasma point of view as a whole, so to say, confinement results from
a macroscopic MHD balance: the Lorentz force j×B (j being the plasma current
density) opposes to the pressure gradient ∇∇∇p, which tends to push the plasma
out of the toroidal volume:

j×B =∇∇∇p (1.9)

Here, the only component of j which contributes to the MHD equilibrium is
the diamagnetic current. As a matter of fact, the plasma beta parameter β =
p/(B2/2µ0), defined as the ratio of the plasma pressure (or equivalently its ther-
mal energy) p to the magnetic energy B2/2µ0, with µ0 the permeability of free
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1.2. Breaking the confinement: turbulence and MHD modes

space, is always smaller than unity (it actually hardly exceeds 10% because of
MHD instabilities above a certain threshold).

The Grad-Shafranov equation exactly accounts for this macroscopic MHD bal-
ance in toroidal magnetic configurations. Projecting Ampère’s law on the toroidal
direction provides the toroidal component of the current. Considering the expres-
sion of the magnetic field in toroidal configurations, Eq. (1.6), leads to:

µ0jϕ/R = (∇∇∇×B).∇∇∇ϕ
= [∇∇∇× (∇∇∇ψ ×∇∇∇ϕ)] .∇∇∇ϕ
= ∇∇∇.[(∇∇∇ψ ×∇∇∇ϕ)×∇∇∇ϕ] (1.10)

= ∇∇∇.
(
−|∇∇∇ϕ|2∇∇∇ψ

)
= −∇∇∇.

(
∇∇∇ψ
R2

)
(1.11)

The two components of the plasma current then read as follows:

µ0jϕ = −R2∇∇∇.
(
∇∇∇ψ
R2

)
∇∇∇ϕ (1.12)

µ0jθ = ∇∇∇× (F∇∇∇ϕ) = F ′ ∇∇∇ψ ×∇∇∇ϕ (1.13)

where the prime denotes derivative with respect to ψ: F ′ ≡ dF/dψ. Injecting
these previous expressions into Eq. (1.9) then leads to:

j×B = jϕ ×Bθ + jθ ×Bϕ

= − FF ′

µ0R2
∇∇∇ψ −∇∇∇.

(
∇∇∇ψ
µ0R2

)
∇∇∇ψ

= p′ ∇∇∇ψ

One finally obtains the Grad-Shafranov equation:

∆∗ψ + FF ′ + µ0R
2p′ = 0 (1.14)

with ∆∗ψ ≡ −R2∇∇∇.(∇∇∇ψ/R2). This differential equation involving the poloidal
flux function ψ provides the equilibrium dynamics for an axisymmetric system
such as a tokamak. Solving this equation requires the knowledge of the flux func-
tions F (ψ) and p(ψ), respectively associated to the plasma current profile and to
the pressure profile.

1.2 Breaking the confinement: turbulence and MHD
modes

Plasma confinement is not ideal in tokamaks. One can basically distinguish two
classes of physical processes which lead to a degradation of the confinement:
those breaking the conservation of at least one of the motion invariants (E , Pϕ, µ)
without affecting significantly the magnetic equilibrium, and those leading to
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1.2. Breaking the confinement: turbulence and MHD modes

magnetic islands inside the LCFS. Electrostatic (and to a less extent electromag-
netic) micro-turbulence and collisional transport belong to the first category: nei-
ther energy nor kinetic toroidal momentum are conserved in the turbulent state,
while collisions lead to an increase of the entropy of the system. The second cat-
egory contains the large spectrum of MHD instabilities. In this case, magnetic
islands are usually created at low-order rational values1 of the safety factor q.
The growth of these islands can not only degrade the confinement by reducing
the pressure gradient, but can even lead to disruptions, i.e. to the sudden and
complete loss of confinement, such that all the energy stored in the plasma is re-
leased on the plasma facing components, and possibly on the whole surrounding
wall, in a few hundreds of microseconds. A brief overview of some of the main
characteristics of these two classes of physical processes is given in the following
sub-sections.

1.2.1 Drift wave turbulence

From a general point of view (in contrast with the sometimes more restrictive
understanding of this term), drift-wave (DW) turbulence refers to the saturated
nonlinear regime of those instabilities where waves become unstable within the
framework of magnetized plasmas, where the transverse motion of particles and
fluid is governed by velocity drifts. In the fluid description, these drift velocities
are the electric (or E × B) drift vE = E×B/B2 and the diamagnetic drift v∗s =
B×∇∇∇ps/esnsB2, with s being the plasma species and es, ps and ns the Coulomb
charge, the pressure and the density of the s-species respectively. Such a regime
is encountered in plasmas where turbulence develops on much longer time scales
than the cyclotron gyro-period ω−1

cs = ms/esB. Within this framework, most of
the cross-field turbulent transport is governed by the fluctuations of the electric
drift velocity.

Among the DW instabilities, two main families can be distinguished: those
already arising in the presence of a constant (both in magnitude and in direction)
guiding magnetic field, and those relying on the existence of the magnetic field
inhomogeneity. Obviously, both require the plasma to be out of thermodynamical
equilibrium to develop, i.e. that there exist gradients (typically of density, pres-
sure or temperature) in the system. The first branch develops as long as some
mechanism leads to the existence of a phase shift between the electric potential
fluctuations and those of the transport quantity (e.g. density or temperature). The
second branch arises due to the curvature drift currents of oppositely charged
species flowing in opposite directions. The model derived by Hasegawa and
Wakatani [Hasegawa 1983] and the slab branch of the ITG (ion temperature gra-
dient) driven turbulence both belong to the first class of DW instabilities. While

1Any rational number m/n can be recast in the form of a so-called continuous fraction: m/n =
a1 + 1

a2+
1

a3+ 1
...

, with ai ∈ N. The rank k of the last term of the series [a1, a2, ..., ak] provides the

order of the rational number m/n. For instance, 3
2 = 1 + 1

2 is of order 2, while 11
7 = 1 + 1

2+ 1
3

is of
order 3.
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1.2. Breaking the confinement: turbulence and MHD modes

the phase shift is due to collisions in the HW model, it is due to Landau damping
or parallel diffusivity in the slab ITG case. The latter case correspond to the model
presently implemented in the FENICIA code, as discussed in Chapter 5. Relying
on different classes of particles (ions or electrons, either passing or trapped in
the magnetic wells), the toroidal branches of ITG and ETG modes, and also TEM
(trapped electron modes) all belong to the second family of DW instabilities.

1.2.2 Tearing modes and magnetic islands

Magnetohydrodynamical (MHD) instabilities in the plasma can lead to the spon-
taneous appearance of usually large scale magnetic islands, such as those illus-
trated in Fig. 1.6. They break the simple nesting of the axisymmetric toroidal sur-
faces, hence the axisymmetry of the magnetic equilibrium. These islands form at
surfaces with (usually low order) rational values of the safety factor q. They in-
volve modes characterized by poloidal m and toroidal n wave numbers such that
q = −m/n. These modes are resonant on this magnetic surface, in the sense that
their parallel gradient vanishes there2. There, initially well-defined magnetic field
lines break and reconnect to form a magnetic island. As illustrated in Figure 1.7,
magnetic islands modify the topology of the magnetic equilibrium. The surface
that separates the closed and open surfaces is called the separatrix. Its center de-
fines the O-point, while X-points separate two adjacent O-points. The formation
of magnetic islands is generally associated with resistive instabilities, particularly
the so-called tearing modes (see below). The reason is that ideal MHD instabili-
ties, which assume that the plasma is perfectly conducting (zero resistivity), are
described within the framework of the ideal Ohm’s law, which states that the
sum of Lorentz and Coulomb forces is equal to zero: E + v ×B = 0. In this case,
the magnetic flux can be considered as frozen-in to the fluid, in the sense that it
moves with the fluid (it can be shown that the magnetic flux through each surface
moving with the fluid is constant). Conversely, resistive magnetic instabilities ac-
count for some finite resistivity η of the plasma, such that E + v ×B = ηj, with j
being the plasma current density. In this case, it is no longer forbidden that field
lines cross over. As a matter of fact, since the plasma is not perfectly conducting,
island formation can occur in the nonlinear regime of all MHD instabilities.

The tearing instability in a tokamak is driven by the radial gradient of
the equilibrium toroidal current density. The name derives from the tearing
and rejoining of magnetic field lines which occur during the instability as a
consequence of finite resistivity [Wesson 2011]. At and in the neighborhood of
the resonant surface for the mode, the Lorentz’s force contribution to Ohm’s law
goes to zero, so that the ηj term becomes important in balancing the induced
electric field. In the nonlinear regime, tearing modes lead to magnetic islands.
The growth of these islands is mainly determined by resistive diffusion.

2 Indeed, considering a mode φ = φ̂(r, t) exp{i(mθ+nϕ)}+cc (with cc the conjugate complex),
then it comes, in the limit of large aspect ratio tokamaks (R/a � 1): R∇‖φ = i(n +m/q)φ̂ + cc,
which vanishes at rmn such that q(rmn) = −m/n
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1.2. Breaking the confinement: turbulence and MHD modes

Figure 1.6: Simulation of a (m,n) = (2, 1) neoclassical island in ITER, with m and
n the poloidal and toroidal wave number, respectively [ITER physics basis, Nucl.
Fusion 39 (1999) 2251, chapter 3].

The development of magnetic islands is particularly deleterious to the
confinement for several reasons. First of all, the pressure tends to flatten inside
the island as a result of the fast parallel transport, hence reducing the overall
energy content of the plasma. Secondly, several magnetic islands located at
different radial positions can overlap, leading to chaotic transport over large
radial distances. Somewhat related is the possibility for these modes to lead
to the too fast outward transport of energetic particles such as Helium ashes
(alpha particles), possibly preventing them to deposit their energy into the bulk
plasma before escaping the confined region. Last but not least, these islands may
not saturate before reaching the boundary of the plasma, hence leading to the
sudden loss of any confinement called a disruption.

A major concern is the study of the growth and the saturation mechanisms
of magnetic islands in tokamaks. These issues are expected to depend on the
interplay between the island and turbulence, which also affects both pressure
and current transport. Nowadays, theoretical tools to study those phenomena
are limited (see e.g. [Connor 1988, Cowley 1986]). In chapter 5, we attempt a
numerical treatment of the effects of turbulence on resistive tearing modes using
FENICIA.
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1.3. The anisotropy of transport in the plasma

Figure 1.7: Schematic view of a magnetic island.

1.3 The anisotropy of transport in the plasma

A strongly magnetized high-temperature plasma is strongly anisotropic due to
the presence of the magnetic field itself. Physically, this anisotropy is due to the
fact that particles are relatively free to stream in the parallel direction, i.e. along
the magnetic field lines, but exhibit gyro-orbits in the transverse direction to the
magnetic field. In other words, it is a consequence of the rapid communication
along the magnetic field lines (at the sound speed for electrostatic instabilities)
and slow communication across the field lines (typically velocities across the field
do not exceed the diamagnetic speed, which is about ρ∗ smaller than the acoustic
one). This property is inherent to the confinement principle in tokamaks: no up-
per constraint is put on plasma transport coefficients along the magnetic field B.
Instead, the aim behind confinement is to lower those coefficients in the direction
transverse to B. In addition, fluctuation measurements indicate a relatively short
perpendicular correlation length (∼ 5 − 10ρi) [Fonck 1993, Mazzucato 1993], but
a long parallel correlation length (∼ qR) [Zweben 1989].

An estimation of the parallel transport coefficient, dominated by collisions,
for any ion or electron “α” species is given by

χ‖ ≈
v2
th

να
(1.15)

where vth is the thermal velocity. The collision frequency να, which typically
scales like να ∼ nαT

−3/2
α (with nα and Tα the density and temperatures of α

species), is small in hot and rarefied plasmas such as tokamak plasmas. χ‖ is of
the order of 109m2.s−1 for ions in typical fusion plasmas. Due to this fast parallel
transport, fluid quantities such as density n, temperature T and current density
j, can be assumed at lowest order to be fairly constant on magnetic flux surfaces.
Fluctuations are usually of order ρ∗ smaller in the core confined plasma.
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1.3. The anisotropy of transport in the plasma

The perpendicular turbulent transport coefficient which governs the dynam-
ics of the equilibrium profiles is governed by turbulence. It can be estimated by
assuming it is of the order of the gyro-Bohm coefficient, namely

χ⊥ ≈ ρ∗ρ
2
αωcα (1.16)

ωcα being the cyclotron frequency for a species α and ρ∗ being the Larmor radius
ρα normalized to the minor radius a. Consequently, the ratio of parallel transport
to perpendicular transport coefficients writes

χ‖
χ⊥
∼ ωcα
ρ∗να

(1.17)

For ITER-like tokamak parameters, (ρ∗ = 2.10−3, ωci ≈ 108s−1 and νi ≈ 102s−1).
Considering ion transport, this leads to the following very large ratio of transport
coefficients for equilibrium quantities:

χ‖
χ⊥
≈ 109 � 1 (1.18)

As far as turbulence is concerned, time dynamics is typically of the order of
the ion diamagnetic frequency ω∗i ∼ (k⊥ρi)vthi/LT , with LT the temperature gra-
dient length. It is equilibrated by parallel transport, either governed by csk‖ (cs
being the sound speed) or k2

‖χ‖, depending on whether the plasma is weakly
collisional or not, respectively. Here k⊥ and k‖ stand for typical wave vectors of
turbulence in transverse and parallel directions, respectively. The most important
direct result of the anisotropy of transport in strongly magnetized plasmas is that
turbulence has elongated structures along the magnetic field lines3. Knowing that tur-
bulence develops transverse scales of the order of the ion gyro-radius, k⊥ρi ∼ 1,
the typical ratio between parallel and transverse correlation length of turbulent
eddies is then given by:

k‖
k⊥
∼ ρi
qR
� 1

The ratio of the characteristic scales is typically of the order of ρ∗, which is
expected to be equal to about 2.10−3 in ITER.

This important property leads to a considerable simplification to be gained
in performing analysis or numerical solutions using a coordinate system aligned
with the magnetic field. Indeed, in this case, one can then take benefit of the
anisotropy to adopt a much smaller number of grid points in the parallel direction
than in the transverse one, typically in the ratio ρ∗a/R. With a minimal necessary

3The fact that turbulent structures are much more elongated in the parallel direction than in
the transverse one also results from the resonant character of wave-particle interactions in these
weakly collisional plasmas. At leading order, the resonance condition takes the following form:
ω = k‖v‖, with ω the wave frequency. It turns out that micro plasma instabilities which develop
in tokamaks are in the range ω . vth/R. Considering thermal resonating particles for which
v‖ ≈ vth, it readily appears that the following inequality k‖R . 1 has to be fulfilled for the
resonance condition to be satisfied.
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simulation mesh, the same physics can be tackled. As detailed in the next section,
this is the primary motivation for developing a numerical approach which takes
advantage of this anisotropy, which is the subject of this thesis.

1.4 Motivation and outline

1.4.1 Taking advantage of the plasma anisotropic transport

Tokamak plasma turbulence evolves from a large class of instabilities (such as,
for instance, ion temperature gradient driven modes, trapped-electron modes
and current and pressure driven MHD modes) that have a highly elongated
mode structure along the equilibrium magnetic field. From the theoretical point
of view, these instabilities are characterized by long parallel wavelengths, of the
order of the system size (∼ qR) , and short perpendicular wavelengths of the
order of the ion gyro-radius (ρi). Also, there is ample evidence from numerical
simulations and experimental measurements [Fonck 1993, Zweben 1989] that
the nonlinear (turbulent) regime is also characterized by gradients parallel to the
magnetic field much smaller than the gradients in the perpendicular direction.
As a consequence, from the numerical viewpoint, one can assume that the
number of degrees of freedom necessary to describe the solution of a given
model is substantially less than what it would be if the turbulence had small
scales in all the directions. Especially, the grid mesh does not need to be of the
order of the Larmor radius in all directions: it can be much larger in the parallel
direction. Thus, one can conceive that much more efficient codes are made
possible by a suitable choice of coordinates, that allow the smallest number of
grid points in a certain direction. for this purpose, field-aligned coordinates
have been employed for already a couple of decades in tokamak turbulence
simulations [Cowley 1991, Hammett 1993, Dimits 1993, Scott 1998, Scott 2001].
The resulting gain in computational efficiency obtained by using this type of
coordinates can be a couple of orders of magnitude for a turbulence simulation
of a large device like ITER.

There are several potential difficulties of using field aligned coordinates for
the numerical meshgrid. Among them, it is important to mention the fact that
one looses at least one of the two natural periodic directions of the torus. But
in practice, the important criterion is that parallel gradients are accurately com-
puted even though fewer grid points are considered in a given direction. The
approach developed in this thesis shows that it is indeed possible to reach such
a target with different types of meshing which do not even need being related
to flux functions. In addition, and most importantly, our approach allows one
to deal with any kind of magnetic equilibrium, including the case of X-points
configurations either in an axisymmetric divertor or across a magnetic island.
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1.4.2 The general class of models

The second motivation for this thesis is to construct a numerical code capable
of handling a very large class of models relevant to controlled magnetic fusion.
Turbulent transport in tokamaks is studied via numerical simulations of a variety
of model equations which retain the important physics one wants to study. A
fairly general structure of model equations is given as follows:

∂tL · S = E(S) + I · S (1.19)

where S is a structure of vectors representing the state of the system. E(S) is a
nonlinear operator that can be treated explicitly without much penalty. L and
I represent linear operators such that the reduced problem obtained by setting
E(S) = 0 could be treated implicitly. The splitting of the right hand side (r.h.s.)
betweenE and I is by no means unique and depends on the physics to be studied.
As a general rule, one aims at treating explicitly only the physics occurring at the
timescale of interest for the specific problem. The main constraint with respect to
a generic r.h.s. is that the implicit problem be linear. We further assume thatL and
I are time-independent. And boundary conditions are built into L beforehand.

This general structure includes a broad class of turbulence models ranging
from the simple Hasegawa-Mima equation up to the fluid and kinetic equa-
tions. For instance, one can consider fluid and gyro-fluid equations, which
have longly been used to gain insight into plasma instabilities and turbulence
[Hammett 1993]. They provide the dynamics of a few moments (typically 4-6
moments, for density, parallel flow, parallel and perpendicular pressure, par-
allel and perpendicular heat flux, etc.) of the gyro-kinetic equation, express-
ing fundamental nonlinear conservation laws which the turbulence must sat-
isfy. Closure approximations for the high order moments are made which pro-
vide improved fluid models of kinetic effects such as wave-particle resonances
(Landau-damping and its inverse) [Hammett 1990, Hammett 1992, Sarazin 2009],
gyro-radius orbit averaging [Dorland 1993b], and the dominant nonlinearities
[Dorland 1993b]. An example of a typical gyro-fluid model can be found in
[Dorland 1993a, Ottaviani 1999, M.A.Beer 1995]. Besides, one may also study
within this general structure of models the drift-kinetic and gyro-kinetic equa-
tions which have also been widely used to investigate turbulence.

As for the splitting of the r.h.s. of Eq. (1.19) between E(S) and I , we note that
E(S) would typically contain nonlinear terms such as the electric drift, possible
parallel nonlinearities, linear terms related to the drift frequencies and source
terms while I would typically account for perpendicular diffusive terms (either
accounting for collisions or modeling turbulent transport) as well as linear terms
pertaining to the parallel dynamics.

To highlight the main motivation, we exemplify the class of models (1.19) by
considering the following normalized drift-wave model that one can get, for in-
stance, from Eqs.(7-8) of the gyro-fluid model given in [Dorland 1993b] in the
zero Larmor radius limit. It belongs to the general class of drift-wave models dis-
cussed just above. The ion temperature is kept as a constant. This model will be
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used to demonstrate the viability of the FCI approach in Chapter 4. It involves
the linearized versions of both continuity and parallel momentum conservation
equations: 

∂tn+ [φ, log(n0)] + C‖∇‖u = 0

∂tu+ 1
τ
C‖∇‖n+ C‖∇‖φ = 0

n = φ− ρ2
∗∇2
⊥φ

(1.20)

The last relationship derives from the quasi-neutrality condition, with the
assumption that electrons respond adiabatically to the electric potential fluc-
tuations. The last term accounts for the ion polarization density. Here n is
the relative perturbed ion guiding center density, n0 is the equilibrium density
profile, u is the ion parallel velocity normalized to the thermal speed, and φ is
the electrostatic potential normalized to Te/e. Both transverse coordinates (x, y)
involved in the Poisson bracket are normalized to the tokamak minor radius a.
We define two dimensionless parameters: C‖ = a/(ρ∗R) where R is the tokamak
major radius, ρ∗ = ρs/a is the reduced gyro-radius with ρs = (mTe)

1/2/eB being
the ion sound Larmor radius. Moreover τ is the ratio of electron temperature
to ion temperature Te/Ti. Time is normalized to the Bohm timescale a2/(ρscs),
where cs = (Te/m)1/2 is the ion sound speed. The explicit expression of the
dimensionless parallel derivative operator ∇‖ depends on the magnetic field
structure. In the case of a cylindrical geometry one can write ∇‖ = ∂φ + 1/q(r) ∂θ
with (r, θ) the polar coordinates in the poloidal plane and q(r) the safety factor.

Writing this system in the same form as (1.19) yields

∂t

∣∣∣∣∣∣
1− ρ2

∗∇2
⊥ −1 0

0 1 0
0 0 1

∣∣∣∣∣∣
∣∣∣∣∣∣
φ
n
u

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0

−[φ, log(n0)]
0

∣∣∣∣∣∣−
∣∣∣∣∣∣

0 0 0
0 0 C‖∇‖

C‖∇‖ 1
τ
C‖∇‖ 0

∣∣∣∣∣∣
∣∣∣∣∣∣
φ
n
u

∣∣∣∣∣∣
(1.21)

It follows from the latter form of the system that solving the equations often re-
quires the computation of ∇‖ while constructing the matrix-vector product I.S.
A challenging numerical task is thus to implement parallel derivatives with min-
imal numerical dissipation and minimal number of points. It turns out that
employing a coordinate system for nonlinear simulations where coordinates are
aligned with the magnetic field lines is computationally more efficient. Those are
called “field-aligned coordinate systems". In the next chapter, we review the dif-
ferent approaches to field-aligned coordinates that have been developed in the
last two decades and the advantages of using them in turbulence codes.

1.4.3 Outline

Field-aligned coordinates employed so far are derived from predefined flux
coordinates. In this Thesis, a new flux-independent field-aligned coordinate
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1.4. Motivation and outline

system that I refer to as the FCI (Flux Coordinate Independent) approach is
presented. The method employs standard Cartesian coordinates, such that
poloidal derivatives are computed in the original Cartesian frame, but parallel
derivatives are computed directly along the local field line.

In Chapter 2, I give a historical overview on all the field-aligned coordinate
approaches that have been employed so far. The new method is shown to have
a number of advantages over earlier approaches [Hariri 2013], allowing for
more flexible coding and coping with tokamak X-point magnetic geometries, a
situation that can not be handled by conventional approaches.

Chapter 3 contains a detailed description on the implementation of the FCI
approach into a new nonlinear 3D code that I have developed from scratch
during the course of this Thesis and I have called FENICIA. The code solves
the general class of plasma models (1.19), thus allowing one to simultaneously
tackle a wide range of physics problems. The code is furthermore designed to be
flexible and easily adaptable to many magnetic geometries.

Several numerical tests carried out with FENICIA are described in Chapter 4
to qualify both the new method and the code, using various models belonging
to Eq. (1.19). More precisely, the accuracy of the approach is tested in particular
with respect to the question of spurious radial transport, an obvious concern
when abandoning flux coordinates. In this regard, I show that numerical radial
diffusion can be easily kept under control with the choice of suitable algorithms,
at a minimal computational cost. The contribution of the parallel dynamics to
the overall error is shown to be negligible. In addition, the numerical method’s
accuracy is detailed in the linear regime where I demonstrate that the numerical
growth rate and rotational frequency match the values predicted by theory.

In Chapter 5, simulations in the nonlinear turbulent regime allow one to re-
cover, at reduced numerical cost, the standard features of slab ITG turbulence. A
study of the linear instability’s threshold and growth rate is investigated. There-
after, I demonstrate the strength of the approach by showing a convergence test
on a 3D model for Ion Temperature Gradient (ITG) driven turbulence which
proves that the method is well suited to minimize the number of degrees of free-
dom needed to treat a given problem in an accurate and efficient manner. Unlike
elder approaches, the FCI approach can be extended to deal with X-point con-
figurations such as magnetic islands. To finish, I subsequently show that this
approach can indeed be applied to an X-point geometry in any modular tokamak
simulation code and I show its robustness in very demanding cases. In this in-
stance, I consider a magnetic configuration with an island and a separatrix and
I perform tests on a sound wave propagation problem. Analytical solutions are
constructed both inside and outside the island. I first show that the numerical
results are in good agreement with the exact solutions. Then, I carry out a study
of an initial perturbation sitting across the X-point of the island in a numerically
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1.4. Motivation and outline

demanding situation. Since there is no analytic solution in this case, I perform
convergence studies and I verify the adequate conservation properties.
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Chapter 2
A General Overview on Field-Aligned
Coordinate Systems
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Acrylique, (F. Hariri, 2006)
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2.1. Review

F ield-aligned coordinates are necessary to optimize plasma turbulence
codes. It’s widely employed in today’s codes allowing the number of grid
points needed to represent structures elongated along the magnetic field

to be greatly reduced compared with traditional coordinate systems as shown in
Fig. 2.1. The main idea is that one of the coordinates be aligned along the mag-
netic field as illustrated in Fig. 2.1. The coordinate ϕ is transformed onto s in the
new field-aligned system.

(a) (b)

Figure 2.1: (a) Conventional coordinate systems; (b) field-aligned coordinate sys-
tems

In this chapter, I give a historical review on two-dimensional field-aligned co-
ordinate techniques that have been used so far, with their respective advantages
and drawbacks. In the last part, I introduce a new three-dimensional Flux Coor-
dinate Independent (FCI) field-aligned approach that will be considered through-
out this thesis.

2.1 Review

In this section, we review the different approaches to field-aligned coordinate
systems that have been implemented in present codes. Polar coordinates (r, θ, ϕ)
in cylindrical geometry are used for simplicity.

In general, the procedure consists of a. dividing the simulation domain (either
a given magnetic surface or the whole toroidal manifold) into suitable blocks; b.
for each block, finding a coordinate transformation from the original system, e.g.
(R,Z, ϕ), to a new system where one of the coordinates (s) is such that∇‖ ∝ ∂/∂s;
and c. using a suitable numerical implementation. Typically, one employs finite
differences in s for fluid codes and also integration of ∂f/∂t + ∂f/∂s = 0 along
the characteristics in the s direction for kinetic codes.
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2.1. Review

2.1.1 S. Cowley 1991

Historically, coordinate transformations were in 2D, on given magnetic surfaces.
The first implementation of field-aligned coordinates in a plasma turbulence code
can be traced back to thinking in the early nineties [Cowley 1991] that led to Ref.
[Hammett 1993, Beer 1995] in which the following transformation is considered:

ξ = ϕ− q(r) θ
s = θ
ρ = r

(2.1)

Here ρ determines a flux surface, ξ determines a magnetic field line and θ la-
bels a position along the field lines. The magnetic surface corresponding to this
type of transformations is illustrated below in Fig. 2.2 where ϕ is the toroidal
angle shown in the abscissa and θ is the poloidal angle shown in the ordinate.
Derivatives with respect to the original variables are given by

Figure 2.2: Field lines corresponding to the magnetic field direction on a given
magnetic surface (θ, ϕ).

∂

∂r
=

∂

∂ρ
− q′(r) θ ∂

∂ξ
∂

∂ϕ
=

∂

∂ξ
(2.2)

∂

∂θ
=

∂

∂s
− q(r) ∂

∂ξ

while the parallel derivative is given by

R∇‖ =
1

q(r)

∂

∂s
. (2.3)

Since the parallel variable is coarse, in this representation, on any given flux
surface, all the information on the fine structure of turbulence is necessarily
carried by the toroidal angle ϕ. This coordinate transformation, as it is, has
some drawbacks. (a) First, one notices that the new coordinate s is not periodic.
Care must be taken, when setting boundary conditions at the end points of
an s line, that the original double-periodicity of the given magnetic surface
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2.1. Review

is enforced. Non-compliance with this constraint would lead to spurious
solutions and dubious results [Scott 1998, Ottaviani 2011]. (b) The second
problem is the consequence of the term, proportional to θ, appearing in the
expression of the radial derivative in Eq. (2.2). This term, familiar from the
ballooning transformation, leads to mixed-derivatives of increasing weight as
one moves away from θ = 0, when computing certain operators, such as the
Laplacian. These terms are the consequence of θ-dependent non-diagonal metric
coefficients in the new coordinate system. Although mathematically correct,
they pose a numerical challenge since their numerical treatment can introduce
artificial inhomogeneities in the poloidal direction even for systems possessing
poloidal symmetry [Ottaviani 2011]. (c) A third problem is in the actual code
implementation, where the derivative along s is usually dropped from the
poloidal derivative expression, thus approximating it by ∂/∂θ ≈ −q(r) ∂/∂ξ. (d)
The last problem with this coordinate transformation is that R∇‖ = 1/q(r) ∂s
which means that it cannot deal with the separatrix, since there the safety factor
becomes infinite. In other words, in the expression of ξ, the term proportional
to θ dominates as q −→ ∞, thus leading the two coordinates ξ and s to merge
and become identical. In that case, their respective orientation vectors turn out
to be almost aligned at a given magnetic surface (a constant r value). That is:
∇∇∇ξ|r =∇∇∇ϕ− q∇∇∇θ ∝∇∇∇s.

One can see that transformation (2.2) is equivalent to the ballooning trans-
formation [Connor 1979], as already remarked in [Kim 1994]. Indeed it seems
that when dealing with linear analytic theory, the possibility of exploiting a
ballooning-type (WKB) approximation turns out to be a clear advantage of this
approach.

2.1.2 B. Scott 2001

The second approach was introduced in Ref. [Scott 2001]. The key difference with
respect to the first approach is the use of the so-called shifted-metric technique.
It consists in sectioning the toroidal manifold given by the magnetic surface into
a number of parts, Nθ, each having its own coordinate system, differing one from
the other by a shift in the origin as follows:

ξ = ϕ− q(r) (θ − θk)
s = (θ − θk)
ρ = r

(2.4)

The parallel direction is still labeled by the poloidal angle θ, but it integrates the
shifted-metric technique. Figure 2.3 illustrates the division of the poloidal mani-
fold into k sectors, where θk = k ∆θ with ∆θ = 2π/Nθ and k = 0, Nθ − 1. A given
sector is defined by quadrangles such that 0 ≤ ϕ ≤ 2π and θk ≤ θ ≤ θk + ∆θ.
Derivatives with respect to the original variables are now given by

27



2.1. Review

Figure 2.3: The shifted metric coordinate system chooses these shifts such that
the coordinate system is orthogonal at a particular value of θk. At each θk, one is
on a different coordinate system, but each of them is still field aligned.

∂

∂r
=

∂

∂ρ
− q′(r) (θ − θk)

∂

∂ξ
∂

∂ϕ
=

∂

∂ξ
(2.5)

∂

∂θ
=

∂

∂s
− q(r) ∂

∂ξ

The main progress achieved by using this approach can be summarized by
the following. One observes that operations are now performed on an orthogonal
grid as a result of the shifted-metric technique and spurious effects from magnetic
shear are removed since for each poloidal sector k, the additional term that leads
to metric distortion vanishes at θ = θk giving ∂r = ∂ρ. Thus problem (b) of the first
approach (2.1) is solved. Problem (a) is less harmful by splitting the interpolation
equally at sub-domain boundaries instead of having it localized on the manifold
ends. Notice that the accuracy needed to compute the values of a function at
the interpolation points is automatically assured by the high resolution needed
to describe a function on a given sk = 0 line. Problems (c) and (d) are still a
drawback of this approach.

2.1.3 M. Ottaviani 2011

Later, a third approach was suggested in Ref. [Ottaviani 2011]. The key observa-
tion of this approach is that, as a consequence of the flute property, one can lower
the resolution in any chosen direction, provided that enough information on the
fine structure of the turbulent fields can be carried by the variation in any other
direction. One then realizes that there is just another alternative to this meshing,
which preserves the good property of double periodicity. It is given by switching
the roles of coarse/fine mesh between the poloidal/toroidal angles. The author
in [Ottaviani 2011] introduces a new way of labeling the position along a field
line by its toroidal angle instead of the poloidal angle. This approach retains the
advantages of the second approach and differs only by interchanging the role of
the toroidal/poloidal angles.
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2.1. Review

This latter choice has a coarse toroidal grid. This implies that it is now the
toroidal angle that must be used to describe variations along the field lines. This
can be justified mathematically by sectioning the toroidal manifold in Nϕ over-
lapping toroidal sectors, each with its own set of field-aligned coordinates given
by the family of transformations:

ξ = θ − 1
q(r)

(ϕ− ϕk)
s = (ϕ− ϕk)
ρ = r

(2.6)

where ϕk = k∆ϕ with ∆ϕ = 2π/Nϕ and k = 0, Nϕ − 1. Here a given sector is de-
fined by quadrangles such that 0 ≤ θ ≤ 2π and ϕk−∆ϕ ≤ ϕ ≤ ϕk+∆ϕ. Figure 2.4

Figure 2.4: The third schematic of a magnetic surface where the number of points
is reduced in the toroidal direction rather than the poloidal direction

illustrates the new way of tracing the field lines, retaining the advantages of the
shifted-metric technique, but interchanging the role of the angles. Derivatives
with respect to the original variables are now given by

∂

∂r
=

∂

∂ρ
− q′(r)
q2(r)

(ϕ− ϕk)
∂

∂ξ

∂

∂ϕ
=

∂

∂s
− 1

q(r)

∂

∂ξ
(2.7)

∂

∂θ
=

∂

∂ξ

whereas the parallel derivative is now simply given by

R∇‖ =
∂

∂s
. (2.8)

This new system has additional advantages. Problem (c) common to the first
and the second approach is solved because the poloidal derivative ∂θ becomes
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2.2. The Flux-Coordinate Independent (FCI) Approach

exactly equal to ∂ξ. Furthermore, problem (d) is solved simply because ∇‖ =
∂/∂s, so there is no more difficulty dealing with the region around the magnetic
axis. This is due to the fact the two coordinates ξ and s become respectively equal
to θ and (ϕ− ϕk) as q −→ ∞, and no longer reduce to a single coordinate as was
the case in the transformations discussed in sections. 2.1.2 and 2.1.1.

2.2 The Flux-Coordinate Independent (FCI) Ap-
proach

The last approach of Sec. 2.1.3 represents a substantial step forward. It sepa-
rates the coordinate needed to label a position along a field line (ϕ), from the
coordinates needed to describe a given function in the poloidal plane (r, θ). In
order to fully describe a given field, of the type occurring in plasma turbulence
models, one needs high resolution in any given poloidal plane, but only a small
number of these planes. The parallel derivative is then computed in one go, by
using values at the end points of arcs of magnetic field lines. This generically re-
quires interpolating in the poloidal plane, since, usually, end points are not grid
nodes. Accuracy of the interpolation operation would constrain the resolution in
the poloidal planes to be adequately high, but one needs high resolution anyway,
in order to keep the necessary information on the fine structure and to carry out
the operations in the poloidal plane to a satisfactory accuracy. Thus, the need to
use interpolation for the parallel operations does not introduce substantial con-
straints, and indeed one can anticipate that the tests of Chapter 4 indicate that the
poloidal operations, and not parallel operations, are the main source of error in
common situations.

The approach of Sec. 2.1.3 still relies on flux coordinates, for instance (r, θ).
This section sketches how the field-aligned coordinates approach can be con-
structed in a way that avoids the use of flux coordinates to discretize the fields
in the poloidal plane. Instead, the fields are discretized on a given grid related
to the laboratory reference frame. For a tokamak, these are the usual (R,Z, ϕ)
cylindrical coordinates such that Z is the direction of the torus symmetry axis, R
the distance from the axis and ϕ the toroidal angle. We refer to this method as
FCI (Flux-Coordinate Independent) approach [Hariri 2013].

Although the final result will be found fairly intuitive, at least in the context
of cylindrical geometry, we prefer to proceed in a formal manner. This ensures
that the approach is mathematically sound and prepares the way to extensions to
more general situations and geometries.

2.2.1 Generic 2D coordinate transformations, straight geometry

One considers a class of static low-β equilibria, such that the suitably normalized
axisymmetric magnetic field is given by

B = b(x) + ẑ (2.9)
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2.2. The Flux-Coordinate Independent (FCI) Approach

where one employs a three dimensional Cartesian reference system (x, y, z) such
that ẑ is the direction of the magnetic axis, the main magnetic field along z is
constant and normalized to unity, and b(x) is the poloidal magnetic field in
the poloidal plane (x, y). The vector x indicates the position in this plane. The
poloidal field can be written in terms of a flux function ψ(x) such that

b =∇∇∇× (ψẑ) (2.10)

Magnetic surfaces can be labeled by the value of ψ. Both closed and open field
lines can be treated. The parallel derivative operator is given by

∇‖ = b .∇∇∇+ ∂/∂z (2.11)

One has to look for a change of coordinates from the original (x, y, z) to a new
set (ξα, s) such that s can be treated as a slowly-varying coordinate and only the
two ξα (α = 1, 2) carry the information on the small scales. Taking advantage
from what was learned in the previous sections, one divides the domain in a
certain number of sectors centered around zk, and extending to the boundary in
the (x, y) directions, with k labeling a given sector. One then considers a set of
transformations of the form:{

ξα = V α(x) + Cα(x)(z − zk)
s = z − zk

(2.12)

where V α(x) and Cα(x) are yet unknown functions. Derivatives with respect to
the original variables, (x, y, z), are now given by

∂

∂xα
=
∂V β

∂xα
∂

∂ξβ
+
∂Cβ

∂xα
(z − zk)

∂

∂ξβ

∂

∂z
= Cα ∂

∂ξα
+

∂

∂s
(2.13)

In terms of the new variables the parallel derivative is given by

∇‖ = bα
∂V β

∂xα
∂

∂ξβ
+ (z − zk) bα

∂Cβ

∂xα
∂

∂ξβ
+ Cβ ∂

∂ξβ
+

∂

∂s
(2.14)

In order to get ∇‖ = ∂/∂s and eliminate the fast-varying derivatives, one has to
satisfy the conditions:

Cα = −bβ ∂V
α

∂xβ
(2.15)

bα
∂Cβ

∂xα
= 0 (2.16)

Knowing that

bx =
∂ψ

∂y
(2.17)

by =
−∂ψ
∂x

(2.18)
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and that for any function A,

[ψ,A] =
∂ψ

∂x

∂A

∂y
− ∂ψ

∂y

∂A

∂x
, (2.19)

Hence, the Poisson bracket notation is used such that the following operation is
satisfied:

bα
∂A

∂xα
≡ −[ψ,A], (2.20)

Eqs. (2.15-2.16) can then be written as

[ψ, [ψ, V α]] = 0, (2.21)

where Cα = [ψ, V α].

Conjecture:

A general solution of Eq. (2.21) is

V α = fα(ψ) + gα(ψ)χ(x, y), (2.22)

where fα and gα are arbitrary functions of ψ, and χ(x, y) is a function chosen such
that

[ψ, χ] = 1, (2.23)

whose solution can be found with the method of characteristics. χ(x, y) identifies
the position on ψ = const surfaces and plays the role of a poloidal angle. Note
that the Poisson bracket in (2.23) is equal to 1 for simplicity (see proof below).

• Proof: Let V α = fα(ψ) + gα(ψ)χ(x, y), then

[ψ, V α] =
∂ψ

∂x

∂(fα + gα χ)

∂y
− ∂ψ

∂y

∂(fα + gα χ)

∂x
, (2.24)

Using the chain rule one gets

[ψ, f(ψ)] =
∂ψ

∂x

∂f(ψ)

∂y
− ∂ψ

∂y

∂f(ψ)

∂x
, (2.25)

=
∂ψ

∂x

∂f(ψ)

∂ψ

∂ψ

∂y
− ∂ψ

∂y

∂f(ψ)

∂ψ

∂ψ

∂x
(2.26)

= 0 (2.27)

Similarly, [ψ, g(ψ)] = 0. This leads to

[ψ, V α] = [ψ, f(ψ)] + g(ψ) [ψ, χ] + χ [ψ, g(ψ)] (2.28)
= g(ψ) [ψ, χ] (2.29)

Recall that [ψ, χ] may be a constant or a function of ψ, but for simplicity, χ is
chosen here such that [ψ, χ] = 1, yielding

[ψ, V α] = g(ψ) (2.30)
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2.2. The Flux-Coordinate Independent (FCI) Approach

Therefore,

[ψ, [ψ, V α]] = [ψ, g(ψ)] (2.31)
= 0 (2.32)

Thus, V α in Eq. (2.22) is a general solution to Eq. (2.21) such that the parallel
gradient computed at fixed ξα reduces to

∇‖ =
∂

∂s
.

Consequently,
Cα(x) = [ψ, V α] = gα(ψ). (2.33)

The system 2.12 then writes{
ξα = fα(ψ) + gα(ψ)χ(x, y) + gα(ψ)(z − zk)
s = z − zk

(2.34)

Discretization of∇‖ using the FCI approach

In practice, one defines any field at nodes in the Cartesian (x, y, z) grid. Deriva-
tives in the poloidal plane are computed in this reference frame by holding z
constant without performing any coordinate transformation. Knowledge of the
magnetic field geometry and performing the FCI transformation is only needed
for the implementation of the parallel derivative. This depends on the scheme of
choice. In order to compute the parallel derivative by finite differences, one has to
use function values at points (x+∆x, zk+∆z) corresponding to a given increment
∆s along s. This means finding end points along field lines for a given displace-
ment ∆z along z. From the set of equations (2.12), and knowing that ξα = cst, one
finds the following finite difference equations for the unknown increments ∆x:

[fα(ψ) + gα(ψ)χ(x)]x+∆x + [gα(ψ)]x+∆x∆z = [fα(ψ) + gα(ψ)χ(x)]x (2.35)

But on a field line, the following condition is satisfied

ψ(x + ∆x) = ψ(x) (2.36)

It follows that f(ψ(x + ∆x)) = f(x) and g(ψ(x + ∆x)) = g(x).

Consequently, from Eq. (2.35) one gets the following constraint

χ(x + ∆x) = χ(x)−∆z. (2.37)

Thus end points for FD computations are obtained by moving along field lines
for a given increment along z.
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Conjecture:

Assuming bz = 1, computing the map from ψ reduces to solving the following
system of differential equations for the set of unknowns ∆x, ∆y and ∆z an incre-
ment taken along the magnetic field line:

dx
dz

= bx = ∂yψ

dy
dz

= by = −∂xψ
(2.38)

• Proof: Let x(z) = x0 + ∆x(z) and zk ≤ z ≤ zk + ∆z. Equations (2.36) and (2.37)
equivalently write

ψ[x(z)] = ψ(x0) (2.39)
χ[x(z)] = χ(x0)− z (2.40)

Differentiating the latter system of equations yields

dx

dz
· ∇∇∇xψ = 0 (2.41)

dx

dz
· ∇∇∇xχ = −1 (2.42)

One can equivalently write

dx

dz
∂xψ +

dy

dz
∂yψ = 0 (2.43)

dx

dz
∂xχ+

dy

dz
∂yχ = −1 (2.44)

From (2.43) one gets
dy

dz
= −dx

dz

∂xψ

∂yψ
(2.45)

Putting Eq. (2.45) into Eq. (2.44) yields

dx

dz
∂xχ−

dx

dz

∂xψ ∂yχ

∂yψ
= −1 (2.46)

Using condition Eq. (2.23), one finally gets

dx

dz
∂xχ−

dx

dz

∂xχ∂yψ + 1

∂yψ
= −1 (2.47)

from which one obtains the field-line equations:
dx
dz

= ∂yψ

dy
dz

= −∂xψ
(2.48)
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Given a certain magnetic equilibrium defining ψ, it is then possible to calculate
the unknown displacements ∆x and ∆y for a given displacement ∆z along the
field line using∇∇∇ψ. Practically, ∆x and ∆y are obtained bt integrating along the
field lines (2.48) from (x, y, z) = (x0, y0, zk) to (x, y, z) = (x0 +∆x, y0 +∆y, zk+∆z).

This method gives the coordinates of a point that follows the field lines. How-
ever, as shown in Fig. 2.5, this point is not necessarily a node of the given mesh.
Consequently, computation of parallel derivatives by finite differences require
interpolation at end points of each field line. The interpolation technique and its
implementation into a new code will be discussed in details in Chapter 3.

Figure 2.5: A grid showing the path of a point going from one poloidal plane to
the next one. It does not necessarily hit a node of the next plane.

Special case, cylindrical geometry

The usual cylindrical geometry can be recovered by taking ψ = ψ(r) with r =
(x2 + y2)1/2 and with the magnetic axis located at x = 0, y = 0. The solution
of Eq. (2.23) is obviously χ ∝ arctan (y/x) where χ is proportional to the usual
poloidal angle, via the safety factor. The ultimate goal is to solve for the vector
∆x for a given ∆z using Eq. (2.37).
Let χ = h(ψ) arctan (y/x) and solve for [ψ, χ] = 1:

⇐⇒ h(ψ)
[
ψ(r), arctan

(y
x

)]
= 1 (2.49)

⇐⇒ h(ψ)∂rψ(r)
[
r, arctan

(y
x

)]
= 1 (2.50)

⇐⇒ h(ψ) =
r

∂rψ(r)
(2.51)

Knowing that the poloidal magnetic field is defined as

b =∇∇∇× (ψẑ) (2.52)
= −∂rψ(r) (2.53)
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and that Bz = 1, the expression of the safety factor writes

q =
rBz

||b||
(2.54)

=
−r

∂rψ(r)
(2.55)

So
h(ψ) = −q. (2.56)

Eq. (2.37) can then be rewritten as

arctan

(
y + ∆y

x+ ∆x

)
= arctan

(y
x

)
− ∆z

q
(2.57)

where

x+ ∆x = r cos(θ + ∆θ) (2.58)
y + ∆y = r sin(θ + ∆θ) (2.59)

θ + ∆θ = arctan

(
y + ∆y

x+ ∆x

)
(2.60)

From Eq. (2.60) one gets

∆θ =
−∆z

q
(2.61)

Leading to the following final map for a given increment ∆z:{
x+ ∆x = x cos(∆z/q)− y sin(∆z/q)
y + ∆y = y cos(∆z/q) + x sin(∆z/q)

(2.62)

Special case, X-point configuration

As an example of an X-point configuration one can assume ψ = ψ0(x)+A cos(kyy).
If ψ0 has an extremum at x = 0, A is not too big and a ky is chosen judiciously,
one gets a configuration used in magnetic island theory. The angle χ is obtained
in terms of elliptic functions by solving numerically Eqs. (2.38) and (2.38).

2.2.2 3D coordinate transformations

Consider, as before, a magnetic field given by

B =∇∇∇× (ψẑ) + ẑ (2.63)

with a flux function ψ(x, y, z). The parallel derivative operator is given by

∇‖ = −[ψ, .] + ∂/∂z (2.64)
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2.2. The Flux-Coordinate Independent (FCI) Approach

Look for a transformation of coordinates of the form:{
ξα = V α + Cα(z − zk)
s = z − zk

(2.65)

for each toroidal sector centered around zk, where V α and Cα are functions of x, y
and z to be determined. Then the parallel derivative is given by

∇‖ = ∇‖ξα
∂

∂ξα
+∇‖s

∂

∂s
(2.66)

= ∇‖ξα
∂

∂ξα
+

∂

∂s
(2.67)

In order to get∇‖ = ∂/∂s, the following condition should be satisfied:

∇‖ξα = 0 (2.68)

Equivalently,
∇‖V α + Cα +∇‖Cα(z − zk) = 0 (2.69)

One wants then {
Cα = −∇‖V α

∇‖Cα = ∇‖(∇‖V α) = 0
(2.70)

Functions that satisfy these conditions exist in the integrable case. Assume that a
function ψ∗ exists such that

∇‖ψ∗ = 0 (2.71)

Explicitly this means
∂ψ∗

∂z
= [ψ, ψ∗] (2.72)

Note that ψ∗ is like a conserved quantity of the particle motion in the (x, y) plane,
z being the time and ψ being the time-dependent Hamiltonian.

Special case, Helical configuration in slab geometry

ψ = ψ(x, y − λz) (2.73)

then
ψ∗ = ψ + λx (2.74)

Special case, Helical configuration in cylindrical geometry

ψ = ψ(r,mθ − nϕ) (2.75)

then
ψ∗ = ψ +

n

m
r2 (2.76)

Take
V α = fα(ψ∗) + gα(ψ∗)χ, (2.77)
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2.2. The Flux-Coordinate Independent (FCI) Approach

Then
Cα = ∇‖V α = gα(ψ∗)∇‖χ. (2.78)

Choose χ such that ∇‖χ = 1 then ∇‖Cα = 0 so condition (2.70) and ∇‖ = ∂/∂s
are satisfied, but χ exists only in the integrable case where it satisfies a 1st order
linear PDE in two variables. In conclusion, the transformation writes{

ξα = fα(ψ∗) + gα(ψ∗)χ+ gα(ψ∗)(z − zk)
s = z − zk

(2.79)

Note that one can easily prove that the Jacobian of the transformation is nonzero
for arbitrary fα and gα. Similarly to the 2D case, to compute the parallel deriva-
tive by finite differences, one has to find ∆x corresponding to a given increment
∆s along s with ξα = cst. The following finite difference equation results for the
unknown increments ∆x

[fα(ψ∗) + gα(ψ∗)χ]x+∆x,zk+∆z − [gα(ψ∗)]x+∆x,zk+∆z∆z = [fα(ψ∗) + gα(ψ∗)χ]x,zk
(2.80)

Solutions to these FD equations exist if the following conditions are satisfied

ψ∗(x + ∆x, zk + ∆z) = ψ∗(x, zk) (2.81)
χ(x + ∆x, zk + ∆z) = χ(x, zk)−∆z. (2.82)

Now ∆x are solutions of the field line equations for a displacement ∆z. The proof
consists of taking the derivative of x with respect to z. This gives:

dx

dz
· ∇∇∇xψ

∗ + ∂zψ
∗ = 0 (2.83)

dx

dz
· ∇∇∇xψ

∗ + ∂zχ = −1 (2.84)

The increments ∆x and ∆y then simply derive from the field-line equations:

dx

dz
= [∂yψ

∗]x+∆x,zk+∆z (2.85)

dy

dz
= −[∂xψ

∗]x+∆x,zk+∆z (2.86)

which satisfy the system (2.83)-(2.84) above, since∇‖ψ∗ = 0 and ∇‖χ = 1.

The direct calculation of ∇‖ at a given point is done by considering an arc of
field-line passing through a point (x, y, z). Use a parametrization x(τ), y(τ), z(τ)
to get the following system:

dx

dτ
= ∂yψ

∗

dy

dτ
= −∂xψ∗ (2.87)

dz

dτ
= 1
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2.2. The Flux-Coordinate Independent (FCI) Approach

For any differentiable function f(x, y, z), one can compute the derivative along
the field-line with respect to τ as follows:

d

dτ
f [x(τ), y(τ), z(τ)] =

dx(τ)

dτ
∂xf +

dy(τ)

dτ
∂yf +

dz(τ)

dτ
∂zf (2.88)

= ∂yψ ∂xf − ∂xψ ∂yf + ∂zf (2.89)
= (∇‖f)τ (2.90)

Since dz/dτ = 1, one can choose to parametrize z = zk + 1 for each toroidal sector
(∆z = ∆τ). This shows that (∇‖f)z=zk can be computed by finite differences as
follows with increments ∆z along the field line:

∇‖f =
f(τ + ∆τ)− f(τ −∆τ)

2 ∆τ
(2.91)

Special case, Toroidal geometry

In polar coordinates, (R,ϕ, Z), the infinitesimal displacements are (dR,Rdϕ, dZ).
These must be proportional to the components of B. Thus,

dR ∝ BRdτ

Rdϕ ∝ Bϕdτ (2.92)
dZ ∝ BZdτ

where τ is a parameter for the position along the field line. It is convenient to fix τ
such that dϕ/dτ = 1 (case for toroidal sectors). The following field line equations
result:

dR

dτ
= R

BR

Bϕ

dϕ

dτ
= 1 (2.93)

dZ

dτ
= R

BZ

Bϕ

Then for a function f(R,ϕ, Z)

d

dτ
f(R,ϕ, Z) =

dR

dτ
∂Rf +

dϕ

dτ
∂ϕf +

dZ

dτ
∂Zf

=
R

Bϕ

[BR∂Rf +
Bϕ

R
∂ϕf +BZ∂Zf ] (2.94)

=
R

Bϕ

(B.∇∇∇f)

At a given point ϕ, this leads to the following expression in FD form:

(B.∇∇∇f)ϕ =

(
Bϕ

R

)ϕ [
f(ϕ+ ∆ϕ− f(ϕ−∆ϕ)

2 ∆ϕ

]
(2.95)

where f(ϕ±∆ϕ) corresponds to the value of f(R,Z, ϕ) points (R±, Z±, ϕ±∆ϕ)
where R± and Z± are obtained by integrating the field-line equations (2.93).
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Chapter 3
FENICIA: Description of the code
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3.1. FENICIA: Flux indepENdent fIeld-aligned CoordInate Approach

T hroughout my Thesis, I developed from scratch a new modular code that
I call FENICIA: Flux indepENdent fIeld-aligned CoordInate Approach,
after the FCI approach described in Sec. 2.2. In this chapter, I first list

the main features of the code, then I describe details of the different numerical
methods implemented. Since the most immediate application of FENICIA is to
problems in plasma physics, present implemented operators are drawn from this
field, in particular, operators embedded in models corresponding to the physics
of drift waves and ITG turbulence. Later in Chapter 4, a series of test problems is
presented to demonstrate the accuracy and flexibility of the code.

3.1 FENICIA: Flux indepENdent fIeld-aligned Coor-
dInate Approach

FENICIA is a generic plasma simulation code written in FORTRAN, aimed at
simulating a wide range of geometries and models, involving an arbitrary num-
ber of scalar and vector fields. It solves the general class of models (1.19), i.e.
any model belonging to (1.19) as discussed in 1.4.2. The specifications of the code
include:

• A generic code adapted to evolve a considerable number of scalar and vec-
tor fields.

• A modular code designed for easy assembly and flexible arrangement of
operators. Each of the routines can be modified without altering the other
modules/routines. This allows for the simulation of a wide class of models
belonging to (1.19).

• Any coordinate system could be chosen for the discretization of operators
in the poloidal plane.

• A flux-independent coordinate system (FCI) is used in the direction parallel
to the magnetic field, thus allowing one to decouple the grid of the numeri-
cal problem from the magnetic field geometry where the description in the
poloidal plane does not employ magnetic coordinates. Information on field
lines will only be needed to compute parallel derivatives.

• Operators can be freely discretized using any desired numerical scheme (Fi-
nite differences, Finite Volumes, Finite Elements, FFTs...)

• The geometry of the problem can address both straight, toroidal configu-
rations and X-point configurations. In the present version of the code, a
magnetic configuration with cylindrical geometry in a rectangular box is
considered, leaving the toroidal case for future work.
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3.2. Time Integration Schemes

• Boundary conditions are chosen such that everything outside the prede-
fined plasma radius is set to zero and the points are periodic in the z direc-
tion. Generalized implementation of more complicated coupled boundary
conditions is a possible future extension.

• Parallel communication in the z direction using the Message Passing Inter-
face (MPI).

• Input and output to Unformatted FORTRAN files and HDF5 file format

FENICIA is designed to automate the common tasks needed for simulation
codes, and to separate the complicated details such as differential geometry, par-
allel communication, and file input/output from the user-specified physics equa-
tions to be solved, while remaining as flexible as possible. Thus the physics equa-
tions being solved are clearly provided in one place, and can be easily changed
with only minimal knowledge of the inner workings of the code. Each of the pro-
gram components can be modified without altering the other modules. As much
as possible, this allows the user to concentrate on the physics, rather than worry-
ing about the numerics. This flexibility, and the ability to code in a general way
allows one to tackle a wide range of analytical theories (fluid and kinetic models)
and helps in their development. Furthermore, the use of the FCI approach is a
new crucial technique that makes the code easily adaptable to any other compli-
cated geometry. It is thus a powerful tool for plasma theory and a necessity for
the numerical tokamak turbulence codes in general [Hariri 2013].

3.2 Time Integration Schemes

3.2.1 Semi-discrete time-advancing scheme with operator split-
ting

A variety of physical phenomena arising in tokamak plasmas is modeled by sys-
tems of partial differential equations (PDEs). Computing the solutions of these
systems is challenging and requires development of fast, reliable and accurate
numerical methods. A conventional Divide and Conquer (D&C) strategy is to de-
compose the given system of PDEs into simpler subproblems and treat them indi-
vidually using specialized numerical algorithms and mixed discretization meth-
ods. The criterion is to use an operator splitting technique allowing us to decou-
ple the physics effects occurring at different timescales. For instance, one may
choose to evolve nonlinear terms explicitly and linear terms implicitly. Further-
more, the use of different time steps for different subproblems is feasible. Excep-
tions could be made depending on the physics timescale of the terms in question.
In this section, I describe the details of the second-order time-advancing scheme
and the operator splitting technique implemented in FENICIA. A centered Leap-
frog scheme is applied to solve the explicit part of the model. However, the Leap-
frog scheme requires a time-filtering because the nonlinearities and the round-off
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3.2. Time Integration Schemes

errors lead to a decoupling of the solution between even and odd time steps. A
remedy is to use a predictor-corrector scheme to initialize the Leap-frog. Our
interest is evolving a general system of the form

∂tL · S = E(S) + I · S, (3.1)

described in Chapter 1. Mathematically, it is equivalent to splitting the vector
field on the R.H.S of this equation into integrable parts E and I .

Leap-frog:

The Leap-frog scheme requires the following steps:

Find P such that
∂t[e

P (t−t0)LS] = eP (t−t0)[∂tLS − I S] (3.2)

but,
∂t[e

P (t−t0)LS] = eP (t−t0)[∂tLS + P LS] (3.3)

Then P L = −I so P = −I L−1.

Multiplying (3.1) by eP (t−t0) yields:

∂t[e
P (t−t0)LS] = eP (t−t0)E(S) (3.4)

where P commutes with eP (t−t0). Let tn+1 = tn + ∆t where n is the time index.
Then perform a Leap-frog with tn being the middle point to get

eP ∆t LSn+1 − e−P ∆t LSn−1 = E(Sn) · 2 ∆t (3.5)

Recall that P = −I L−1, so expression (3.5) becomes

LSn+1 = e2 ∆t I L−1

LSn−1︸ ︷︷ ︸
(3.6-a)

+2∆t e∆t I L−1

E(Sn)︸ ︷︷ ︸
(3.6-b)

(3.6)

To solve for operators of the form eHt applied to a given operator, where H is a
time-independent matrix and t is a scalar denoting the time, consider the follow-
ing equation

∂tf −Hf = 0 (3.7)

One can equivalently write
∂t(e

−Htf) = 0 (3.8)

The solution to this differential equation is f(t) = eHtf(0). Thus, any expression
of the form eHtS can be obtained by solving Eq. (3.7), with an algorithm of choice
and to the desired accuracy, for a time t and any initial condition S.

For H = I L−1, t = 2∆t and with initial condition f(0) = LSn−1, one gets the
equation

∂tf − IL−1f = 0 (3.9)
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which solution is given by

e2∆tIL−1

LSn−1 = f(2∆t) (3.10)

One notices that (3.6-a) is thus a solution to (3.9). Let f = Lg, then g satisfies

∂tLg − Ig = 0 (3.11)

with initial condition g(0) = Sn−1. Consequently, f(2∆t) = Lg(2∆t) where g is
the solution of Eq. (3.11). Hence, the numerical scheme (3.6) can be expressed as
follows:

LSn+1 = LG(2∆t, Sn−1) + 2∆t e∆t I L−1

E(Sn) (3.12)

where G(τ, g0) indicates the general solution of (3.11) for a time τ and an initial
condition g(0) = g0.

Likewise, one can perform the same steps above for (3.6-b) to get

e∆t I L−1

L−1E(Sn) = LG(∆t, L−1E(Sn)) (3.13)

Ultimately, the time evolution scheme (3.6) written using the "G" notation (where
G is the solver of (3.11) i.e: G(∆t, F ) = e∆t I L−1

F ) becomes

Sn+1 = G(2∆t, Sn−1) + 2∆tG(∆t, L−1E(Sn)) (3.14)

Predictor Corrector:

The Predictor-Corrector scheme requires the following steps:

Multiplying (3.1) by L−1 and using e−I L−1 (t−t0) yields:

∂t[e
−L−1 I (t−t0)LS] = e−L

−1 I (t−t0) L−1E(S) (3.15)

The explicit predictor step is as follows:

e−L
−1 I ∆tS∗n+1 − Sn = ∆t L−1E(Sn) (3.16)

Then a second step corrector (1/2, 1/2) is applied as follows

e−L
−1 I ∆tSn+1 − Sn =

1

2
∆t {e−L−1 I ∆t L−1E(S∗n+1) + L−1E(Sn)} (3.17)

Again, using the "G" notation the ultimate scheme writes

S∗n+1 = G(∆t, Sn) + ∆tG(∆t, L−1E(Sn)) (3.18)

A necessary second step corrector is to be applied giving

Sn+1 = S∗n+1 +
1

2
∆t {G(∆t, L−1E(S∗n+1))−G(∆t, L−1E(Sn))} (3.19)

In FENICIA, one can use any scheme in solving for G. Practically, at the first time
step, one performs a predictor-corrector. Then a Leap-frog is used to advance the
equations for the remaining time steps and the solution is corrected every ntpc
times that the user defines in the input file.
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3.2.2 Calculate explicit operators E(S)

The first step into implementing any model belonging to (1.19) is to write it in
matrix-vector form as in (1.20) after deciding which operators to evolve explicitly
and which to evolve implicitly. The easiest task is calculating the nonlinear oper-
ators vector field. The routine calc_exp_op takes an input vector S containing
all the states (n, u‖, T‖, etc...) and calculates E(S), a vector field containing all the
operators to be solved explicitly.

In general, this vector contains terms pertaining to the frequency range of
the physics problem. For example, in (1.20), nonlinearities are embedded in the
Poisson bracket term. In this case, E(S) writes:

E(S) =

 0
−[φ, log(n0)]

0

 (3.20)

Note that it could be expanded to any desired dimension and it may contain
nonlinearities of other types as well.

3.2.3 Solve linear operators LS = E(S ′)

The second step is to solve the linear system

LS = E(S ′) (3.21)

given E(S) and L. This is done by the routine solv_lin_op by back substi-
tution. It takes the vector E(S) as input and returns L−1E(S) in output. For
example, for model (1.20), the system takes the form∣∣∣∣∣∣

1− ρ2
∗∇2
⊥ −1 0

0 1 0
0 0 1

∣∣∣∣∣∣
∣∣∣∣∣∣
φ
n
u

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0

−[φ′, log(n0)]
0

∣∣∣∣∣∣ (3.22)

By back substitution one solves the following system of equations corresponding
to that model:

1− ρ2
∗∇2
⊥φ− n = 0 (3.23)

n = −[φ′, log(n0)] (3.24)
u = 0 (3.25)

This reduces to solving the Helmholtz equation

(1− ρ2
∗∇2
⊥)φ = n (3.26)

This type of differential operators is solved using Fourier transforms in FENI-
CIA. In other instances, particularly when it comes to solving the entire quasi-
neutrality equation, other numerical schemes can be applied. The size of L varies
depending on the number of fields in the desired model. The important thing
to notice here is that adding a field to the matrix L corresponds to adding an
additional diagonal element equals to 1.
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3.2.4 Generate derivatives

One routine in the code is concerned with the approximation of derivatives up
to fourth order accuracy using finite differences. It is called generate_deriv.
If nx is the number of points in x and ny is the number of points in y, then for a
given function g, a 5-points stencil is used to compute values of derivatives gx, gy
in the bulk of the domain delimited by i = 2, nx− 2 and j = 2, ny− 2 respectively
as

∆x gx(i, j) =
1

12
g(i−2, j)− 2

3
g(i−1, j)+

2

3
g(i+1, j)− 1

12
g(i+2, j)+O(h4) (3.27)

and

∆y gy(i, j) =
1

12
g(i, j−2)− 2

3
g(i, j−1)+

2

3
g(i, j+1)− 1

12
g(i, j+2)+O(h4) (3.28)

with ∆x and ∆y being the grid sizes in the x and y directions, respectively. The
first derivative in x and y, gxy, is computed in the domain delimited by i = 1, nx−1
and j = 1, ny − 1 as

∆x∆y gxy(i, j) =
g(i+ 1, j + 1) + g(i− 1, j − 1)− g(i− 1, j + 1)− g(i+ 1, j − 1)

4
(3.29)

Furthermore, gx, gy and gxy are all set to zero on the boundary layer where i ∈
{0, nx} and/or j ∈ {0, ny}. And non-centered forward 3rd order finite differences
are used at the boundary where i = 1, nx − 1 and j = ny − 1 with the following
form

∆x gx(1, 1 : ny − 1) = −11

6
g(1, 1 : ny − 1) + 3 g(2, 1 : ny − 1) (3.30)

− 3

2
g(3, 1 : ny − 1) +

1

3
g(4, 1 : ny − 1) +O(h3)

∆x gx(nx− 1, 1 : ny − 1) =
11

6
g(nx− 1, 1 : ny − 1)− 3 g(nx− 2, 1 : ny − 1)

(3.31)

+
3

2
g(nx− 3, 1 : ny − 1)− 1

3
g(nx− 4, 1 : ny − 1) +O(h3)

∆y gy(1 : nx− 1, 1) = −11

6
g(1 : nx− 1, 1) + 3 g(1 : nx− 1, 2) (3.32)

− 3

2
g(1 : nx− 1, 3) +

1

3
g(1 : nx− 1, 4) +O(h3)

∆y gy(1 : nx− 1, ny − 1) =
11

6
g(1 : nx− 1, ny − 1)− 3 g(1 : nx− 1, ny − 2)

(3.33)

+
3

2
g(1 : nx− 1, ny − 3)− 1

3
g(1 : nx− 1, ny − 4) +O(h3)
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∆x gx(2 : nx− 2, 1) =
1

12
g(0 : nx− 4, 1)− 2

3
g(1 : nx− 3, 1) (3.34)

+
2

3
g(3 : nx− 1, 1)− 1

12
g(4 : nx, 1) +O(h3)

∆x gx(2 : nx− 2, ny − 1) =
1

12
g(0 : nx− 4, ny − 1)− 2

3
g(1 : nx− 3, ny − 1)

(3.35)

+
2

3
g(3 : nx− 1, ny − 1)− 1

12
g(4 : nx, ny − 1) +O(h3)

∆y gy(1, 2 : ny − 2) =
1

12
g(1, 0 : ny − 4)− 2

3
g(1, 1 : ny − 3) (3.36)

+
2

3
g(1, 3 : ny − 1)− 1

12
g(1, 4 : ny) +O(h3)

∆y gy(nx− 1, 2 : ny − 2) =
1

12
g(nx− 1, 0 : ny − 4)− 2

3
g(nx− 1, 1 : ny − 3)

(3.37)

+
2

3
g(nx− 1, 3 : ny − 1)− 1

12
g(nx− 1, 4 : ny) +O(h3)

3.2.5 Solve parallel operations I.S

The parallel operation routine, parallel_operation, calculates the product I.S given
a vector of states S. For example, for model (1.20), this is equivalent to the fol-
lowing operation

I.S =

∣∣∣∣∣∣
0 0 0
0 0 A∇‖

A∇‖ 1
τ
A∇‖ 0

∣∣∣∣∣∣
∣∣∣∣∣∣
φ
n
u

∣∣∣∣∣∣ (3.38)

Note that I may contain terms pertaining to the perpendicular dynamics as well.

The parallel gradient of any function f is computed along the field lines by 2nd

order centered finite differences in the grad_parall_centered routine as follows

∇‖f(i, j, k) =
fi,j,k+1 − fi′,j′,k−1

2 ∆ϕ
(3.39)

where i, j and k respectively indicate the indices along the x, y and z directions.
More precisely, k is the index of toroidal planes where the parallel gradient needs
to be calculated. Note that the Forward and Backward finite difference schemes
were implemented as well. Similarly, the parallel Laplacian is calculated using
the grad_parall_squared routine by

∇2
‖f(i, j, k) =

fi,j,k+1 − 2 fi′,j′,k + fi′′,j′′,k−1

∆ϕ2
(3.40)

Eventually, a Lagrangian scheme could be applied instead of any other higher
order appropriate scheme like Runge-Kutta. However, I demonstrate in the next
Chapter that the centered FD scheme is good enough for the physics to be tackled.
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3.2.6 Solve reduced equation ∂tLS = I.S

As a third step, one needs a solver for the reduced equation

∂tLS = I.S (3.41)

With the choice of the scheme discussed in Sec. 3.2.1, the "G" solver of Eq. (3.11)
becomes a general solver of reduced equations of the type (3.41). This is done
by the routine solv_red_eq. It applies the G solver to L−1E(S) and returns
G(∆t, L−1E(S)). For example, for model (1.20), this reduces to solving

∂t

∣∣∣∣∣∣
1− ρ2

∗∇2
⊥ −1 0

0 1 0
0 0 1

∣∣∣∣∣∣
∣∣∣∣∣∣
φ
n
u

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 0 0
0 0 A∇‖

A∇‖ 1
τ
A∇‖ 0

∣∣∣∣∣∣
∣∣∣∣∣∣
φ
n
u

∣∣∣∣∣∣ (3.42)

The "G" solver can thus embed any numerical scheme of choice. In particular, in
FENICIA, since this solver is concerned with the operators to be solved implic-
itly with terms that have short timescales with respect to the physics, an itera-
tive scheme is implemented to solve this part. The steps of the iterative scheme
to predict the solution to Eq. (3.41) are as follows: Knowing Sn, one can calcu-
late I.Sn using the parallel_operation routine and L−1(∆t I.Sn) using the
solv_lin_op routine. The predictor step to find S∗n+1 is as follows

LS∗n+1 − LSn = ∆t I.Sn (3.43)

Then the corrector step writes

LSn+1 − LSn =
∆t

2
I.Sn +

∆t

2
I.S∗n+1 +O(∆t3) (3.44)

Note that the corrector is applied twice to this routine in order to get O(∆t4) ac-
curacy. Using a fully implicit scheme is plausible. However, this might be time
consuming knowing that computing the matrix I requires interpolation, some-
thing that could be handled in future versions of the code.

3.2.7 Operator Splitting of the reduced equation

Assume H = A+B, solve
∂tf −Hf = 0 (3.45)

by splitting. The solution to this equation can be written as

f = eHτ f0. (3.46)

The operator eHτ can be split with third order accuracy either as

eHτ = e
1
2
Aτ eBτ e

1
2
Aτ +O(τ 3) (3.47)

or as
eHτ =

1

2
(eAτ eBτ + eBτ eAτ ) +O(τ 3) (3.48)
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The first choice requires 3 operations and the second choice requires 4. One needs
separate solvers for

∂tf − Af = 0 (3.49)

and
∂tf −Bf = 0. (3.50)

Call G(τ, f0) the solution with initial value f0 and a time τ . Use the most effective
solver in either case respectively as follows

GA(
τ

2
, .) ◦GB(τ, .) ◦GA(

τ

2
, f0), (3.51)

or,
GB(

τ

2
, .) ◦GA(τ, .) ◦GB(

τ

2
, f0). (3.52)

Thus, any expression of the form eHτF is obtained by solving Eq. (3.45), to the
desired accuracy, for a time t = τ , an initial condition f(0) = F . The solver G can
be applied as much as needed using only one routine in the code.

In FENICIA, this splitting technique is used when the operator I is equal to
the sum of two column operators P+D where P includes parallel dynamics along
with parallel diffusion terms and D contains perpendicular diffusion terms. For
example, for the more complex model that will be presented in Chapter 5 we have

P =

∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0
0 0 C‖∇‖ 0 0

C‖∇‖
C‖
τ
∇‖ 0 0 C‖∇‖

0 0 0 −χ‖⊥∇2
‖ 0

0 0
2C‖
τ
∇‖ 0 −χ‖‖∇2

‖

∣∣∣∣∣∣∣∣∣∣∣
(3.53)

and

D =

∣∣∣∣∣∣∣∣∣∣
0

Dn∇2
⊥ñ

Du∇2
⊥u‖

DT⊥∇2
⊥T⊥

DT‖∇2
⊥T‖

∣∣∣∣∣∣∣∣∣∣
(3.54)

Finally, a new routine solv_red_eq_parallel equivalent to solv_red_eq
has been added to solve only

∂tL · S = P · S (3.55)

and another one called solv_red_eq_dissipation has been added to solve

∂tL · S = D · S (3.56)

So when the model contains both parallel and perpendicular dis-
sipation, solv_red_eq_dissipation is called first at τ = ∆t/2
then solv_red_eq_parallel is called at τ = ∆t and at last
solv_red_eq_dissipation is called again at τ = ∆t/2 as detailed ear-
lier in (3.51).
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3.2.8 A second order accurate Predictor-corrector scheme

Below is a sketch of how the predictor-corrector scheme is used to stabilize the
Leap-frog:

1. Save the state Sn

2. Calculate E(Sn) and L−1E(Sn)

3. Solve G(∆t, Sn) and G(∆t, L−1E(Sn))

4. Predict S∗n+1 = G(∆t, Sn) + ∆tG(∆t, L−1E(Sn))

5. Calculate E(S∗n+1) and L−1E(S∗n+1)

6. Solve G(∆t, L−1E(S∗n+1))

7. Correct Sn+1 = G(∆t, Sn) + 1
2
∆t
{
G(∆t, L−1E(S∗n+1) +G(∆t, L−1E(Sn))

}
3.2.9 A second order accurate Leap-frog scheme

Below is a sketch of how the Leap-frog scheme works to advance the general set
of equations:

1. Save the state Sn

2. Calculate E(Sn) and L−1E(Sn)

3. Solve G(∆t, L−1E(Sn)) and G(2∆t, Sn−1)

4. Calculate Sn+1 = G(2∆t, Sn−1) + 2∆tG(∆t, L−1E(Sn))

3.3 Data handling and Optimization

3.3.1 Data Storage

Data storage is time-consuming and error-prone. In FENICIA, this is handled by
a set of workspace Pointer arrays which manage memory dynamically, allowing
the code to be written in a much more concise manner, and making the source
code much easier to read. Pointers are used in the code to tailor the storage re-
quirements exactly to the size of the problem in hand. Those are variables which
are dynamically associated with (or aliased to) some target data. As well as point-
ing to existing variables which have the TARGET attribute, pointers may be as-
sociated with blocks of dynamic memory. This memory is allocated through the
ALLOCATE statement which creates an un-named variable or array of the spec-
ified size, and with the data type, rank, etc. of the pointer. However care must
be taken to avoid programming errors. This was indeed possible by making sure
that all pointers to a defunked target are deallocated.
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Several data classes have been implemented: 3D scalar and vector fields, and
2D scalar and vector fields which are constant in the z-coordinate. Scalar oper-
ations include addition, multiplication, exponentiation by real values or scalar
fields. In addition to arithmetic operations, standard mathematical functions
such as sqrt() and abs() are also used. This allows all operations on scalar and
vector fields to be written very clearly and concisely.

The number of states and workspaces to be used are set by the user depending
on the target physics model. There are global parameters and variables that are
unchanged in the code and that the user will not have to worry about. Input
parameters, likely to change at runtime, should be entered by the user in a file
called "input_file" that should be included in the runtime directory.

All aspects of a simulation can be set at run-time except the equations solved
which are set in a compiled physics module. This includes the number of steps,
run-time limits, data and restart output period, differencing methods, field ini-
tialization and boundary conditions. Instead, by keeping all options in one file
and assigning default values to new options, simulations can be easily restarted
at a later time.

Binary data input and output (grid input, data and restart file output) can be
to both unformatted format files and the Hierarchical Data Format (HDF5) file
format. Furthermore, I have written post-processing MATLAB scripts in order to
view and analyze the results. Those can be found in the folder "scripts". t

3.3.2 Optimization

Since flexibility is an aim of FENICIA, and performance is a concern for large-
scale simulations, optimization must be addressed. A major optimization used
in the data objects to speed up the code execution is memory recycling, which
eliminates allocation and freeing of memory. This is done by memory recycling,
which can be used because all the scalar fields are the same size. Each routine im-
plements a global stack of available memory blocks. When an object is assigned
a value, it attempts to grab one of these memory blocks, and if none are available
then a new block is allocated. When an object is destroyed, its memory block is
not freed, but is put onto the stack. Since the evaluation of the time-derivatives
involves the same set of operations each time, this system means that memory is
only allocated the first time the time-derivatives are calculated, after which the
same memory blocks are re-used. This eliminates the slow system calls needed
to allocate and free memory, replacing them with fast pointer manipulation. This
mechanism is handled internally, and is invisible to the programmer.

3.4 Differential Operators Discretization

In FENICIA, differential operators are divided into two classes: those which
are independent of any coordinate system, specifically operators pertaining to
the perpendicular dynamics; and those which are intended for use in a flux-
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independent field-aligned coordinate system, specifically operators pertaining
the parallel dynamics. In the present version of the code, one defines any field at
nodes in the Cartesian (x, y, z) grid. Derivatives in the poloidal plane are com-
puted in this reference frame by holding z constant, and only parallel derivatives
need to know about the magnetic field geometry and are computed using the
new FCI coordinate system.

3.4.1 Perpendicular dynamics

Nonlinear Advection Operators

Nonlinear operators belonging to E(S) can be discretized with a scheme of
choice. In the models considered in this thesis, the Poisson brackets are the
main nonlinearities driving instabilities. Those are time consuming and may
lead to undesirable effects due to the superposition of frequencies higher than the
Nyquist frequency. Those are called aliasing effects in signal theory [Max 1977,
Press 2007]. In the actual implementation, I use Arakawa’s finite difference
scheme, Eq.(45) of [Arakawa 1966], to guarantee the conservation of mean ki-
netic energy and mean square vorticity and to get rid of aliasing effects. In fact, it
was shown in [Arakawa 1966] that in two-dimensional incompressible flow some
of the integral constraints on quantities of physical importance, such as the con-
servation of mean kinetic energy, mean square vorticity, can be maintained if the
finite difference analogue for the advection term is properly designed. Since the
required constraints are on the advection term, which has the form of a Jacobian
operator for the flow considered, the finite difference scheme for the Jacobian
must have a certain restricted form. Based upon a consistent interaction between
grid points, a general form of finite difference Jacobian, which maintains the inte-
gral constraints, was derived by Arakawa [Arakawa 1966]. When the quadratic
quantities are conserved in a finite difference scheme, nonlinear computational
instability cannot occur. This follows from the fact that if the square of a quantity
is conserved with time when summed up over all the grid points in a domain, the
quantity itself will be bounded, at every individual grid point, throughout the en-
tire period of integration. The demonstration that advection terms can be written
into a Jacobian form is given in Appendix C. Tests have been done using FENI-
CIA to prove the conservation of the quadratic quantities for a 2-D Navier-Stokes
equation. These will be shown in Chapter 4.

The Laplace Operator

Calculating the Laplace operator or inverting it are common operations in solving
turbulent models. For instance, one needs to solve typical operations like the
Helmholtz operator

H = (1− ρ2
∗∇2
⊥)φ, (3.57)

and the diffusion equation
∂tn = Dn∇2

⊥n. (3.58)
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Other models might have other operators. But those are the common ones con-
sidered in our physics models. They’re all examples of the Poisson equation

W = ∇2
⊥φ, (3.59)

where the Laplace operator∇2
⊥ is defined by

∇2
⊥φ = ∂2

xφ(x, y) + ∂2
yφ(x, y). (3.60)

In order to calculate the discrete Laplacian, consider an approximation of the
latter operator using the two-dimensional five-point stencil finite difference
method. For each 1 ≤ i ≤ nx − 1 and 1 ≤ j ≤ ny − 1 with suitable extensions at
i = (0, nx) and j = (0, ny), this results in the following expression:

∇2
⊥φij =

φi+1,j − 2φi,j + φi−1,j

∆x2
(3.61)

+
φi,j+1 − 2φi,j + φi,j−1

∆y2

where ∆x and ∆y are the respective increments in the x and y directions and
φ(x, y) vanishes on the boundary layer of the lattice grid. Consequently, a sine
Fourier transform should be used. Furthermore, to ensure the continuity of the
first order derivatives, symmetry is imposed around i = 0 and i = nx such as

φ−1,j = −φ1,j (3.62)

and
φnx+1,j = −φnx−1,j (3.63)

This results in a vanishing Laplacian at the edges

(∂2
xφ)i=0 = (∂2

xφ)i=nx = 0. (3.64)

Similarly,
(∂2
yφ)j=0 = (∂2

yφ)j=ny = 0. (3.65)

This means, if φi,j represents an odd function, then (∂2
xφ)ij and (∂2

yφ)ij must
represent odd functions.

In FENICIA, Sine Discrete Fourier Transforms (DFT)s are used to solve for φ.
Let φi be the discrete set of values corresponding to φ where 0 ≤ i ≤ n and
φ0 = φn = 0. Then φ can be written as a sum of Sinus functions

φi =
n∑
l=0

φ̂l sin

(
iπl

n

)
(3.66)

One can verify that we indeed get

φ0 =
n∑
l=0

φ̂l sin (0) = 0 (3.67)
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and

φn =
n∑
l=0

φ̂l sin (πl) = 0 (3.68)

The expression of the second order derivative using second order finite differ-
ences becomes

∂2
xφi ≈ 1

∆2
x

(φi+1 − 2φi + φi−1) (3.69)

=
1

∆2
x

n∑
l=0

φ̂l

{
sin

[
(i+ 1)πl

n

]
− 2 sin

[
iπl

n

]
+ sin

[
(i− 1)πl

n

]}
(3.70)

=
1

∆2
x

n∑
l=0

φ̂l

{
2 sin

[
iπl

n

]
cos

[
πl

n

]
− 2 sin

[
iπl

n

]}
(3.71)

=
n∑
l=0

φ̂l sin

[
iπl

n

]
2

∆2
x

(
cos

[
πl

n
− 1

])
︸ ︷︷ ︸

= −k2
x

(3.72)

So formally
∂2
xφi −→ −k2

x φ̂l (3.73)

where −k2
x = 2 cos

[
πl
n
− 1
]
/∆2

x.

Practically, φ̂ is calculated using the FFTW library routines (see man-
ual [Johnson 2005]). Depending on the boundary conditions of the problem, one
can choose among different types of multi-dimensional transforms. For instance,
in a magnetic island geometry, Direct Fourier Transforms (DFTs) are employed
in the direction where φ is periodic. In a circular magnetic surfaces geometry, the
boundary conditions are such that the function φ vanishes at both ends and both
φij and ∇2φij represent odd functions. Consequently, Discrete Sine Transforms
(DST) of type FFTW_RODFT00 can be applied. An inverse Fourier transform is
then employed to get the values of φ in real space.

Since the operations involving the inversion of the Laplacian have all the same
form, only one routine is needed in the code to solve this problem. Tests are to be
shown in Chapter 5 where φ is periodic in the y direction when considering an
island geometry, and φ satisfies Dirichlet boundary conditions when considering
circular magnetic surfaces geometry.

3.4.2 Parallel dynamics

Discretization of∇‖

The FCI approach derived in Chapter 2 is employed to find the coordinates of a
point that follows the field lines and it is implemented in the routine map. The
grid considered in the present version of the code is shown in Fig. 3.1. As dis-
cussed in Sec. 2.2.1, one needs to find end points along field lines for a given
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displacement ∆z along z from the finite difference equations for the unknown
increments ∆x given by (2.35) in Sec. 2.2.1. Points following a field line are not
necessarily nodes of the mesh. Consequently, an interpolation technique is re-
quired at end points of each field line to find the function values and thus to cal-
culate ∇‖. Knowing that the FCI transforms points of coordinates (x, y) in z = 0
to a new set of coordinates (xt, yt) in z = ∆z, what remains is to find where does
every point fall in the plane z = ∆z so that we use the values of the function at
its neighboring points for interpolation. For this we calculate first

i′ ≡ INT
( xt

∆x

)
(i, j) (3.74)

j′ ≡ INT

(
yt

∆y

)
(i, j) (3.75)

where INT represents the integer part. Then we compute

tx =
xt − x(i′, j′)

∆x
(3.76)

ty =
yt − y(i′, j′)

∆y
(3.77)

Now we know the coordinates of the points neighboring the transformed points,
and the value of the function there. Finally, we can interpolate using values of
the function at those nodes, and ultimately calculate ∇‖. Then second order cen-
tered finite differences are used to compute parallel derivatives using the routine
generate_deriv and parallel_operation . Note that the use of finite differences
is not a limitation. In particular, in the case of a kinetic model, the implementa-
tion of a Semi-Lagrangian scheme for the parallel dynamics exploiting the same
ideas is also possible.

In FENICIA, a 2D Hermite spline interpolation is used. Details are presented
in the following section.

Z 

Figure 3.1: The grid used in the code showing a point following the field line
going from the poloidal plane at zk to the poloidal plane at zk + ∆z. The point
does not hit any node of the mesh. An interpolation is needed to know the value
of the function at that point.
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3.5 Cubic Hermite Spline Interpolation

Interpolation provides a means of estimating the function at intermediate
points. Cubic Hermite splines are third degree piecewise polynomials with each
polynomial in Hermite form. The Hermite form in 1D consists of two control
points and two control tangents for each polynomial.

Consider a 1D function f(x) defined in the interval 0 ≤ x ≤ 1, hereby assumed
of unit length. The interpolation formula is:

f(x) = a(x)f0 + a(1− x)f1 + b(x)f ′0 − b(1− x)f ′1 (3.78)

where a(x) = (1− x)(1 + x− 2x2), b(x) = x(1− x)2 and explicit use of symmetries
has been made.

Moreover,
f ′(x) = a′(x)f0 + a′(1− x)f1 + b′(x)f ′0 − b′(1− x)f ′1 (3.79)

with a′(t) = −6t(1− t) and b′(t) = (1− t)(1− 3t). Thus,

lim
x→0+

f ′(x) = f ′0 (3.80)

and
lim
x→1−

f ′(x) = f ′1 (3.81)

Continuity:

Continuity is ensured since
lim
x→0−

f(x) = f0 (3.82)

and
lim
x→1+

f(x) = f1 (3.83)

Differentiability:

Also differentiability is ensured since for −1 ≤ x ≤ 0 one has

f(x) = a(x+ 1)f−1 + a(−x)f0 + b(x+ 1)f ′−1 − b(−x)f ′0 (3.84)

Leading to

f ′(x) = a′(x+ 1)f−1 − a′(−x)f0 + b′(x+ 1)f ′−1 + b′(−x)f ′0 (3.85)

So
lim
x→0−

f ′(x) = f ′0. (3.86)

On the other hand, for 1 ≤ x ≤ 2 one has

f(x) = a(x− 1)f1 + a(2− x)f2 + b(x− 1)f ′1 − b(2− x)f ′2 (3.87)
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Leading to

f ′(x) = a′(x− 1)f1 − a′(2− x)f2 + b′(x− 1)f ′1 − b′(2− x)f ′2 (3.88)

So
lim
x→1+

f ′(x) = f ′1. (3.89)

Order of approximation:

Given a function g(x) defined in 0 ≤ x ≤ 1 such that

g(0) = f(0); g(1) = f(1); g′(0) = f ′(0); g′(1) = f ′(1),

one can show that
g(x)− f(x) = O(h4) (3.90)

with h being the interval length.

• Proof: Use Taylor expansion of g around 0 and 1 as follows

g(x) = f0 + f ′0x+
1

2
g′′0x

2 +
1

6
g′′′0 x

3 +O(h4) (3.91)

and

g(x) = f1 + f ′1(x− 1) +
1

2
g′′1(x− 1)2 +

1

6
g′′′1 (x− 1)3 +O(h4) (3.92)

with fn = gn = O(hn).

Equating (3.91) and (3.92) yields the following system of 4 equations in 4 un-
knowns

f0 = f1 − f ′1 +
g′′1
2
− g′′′1

6
(3.93)

f ′0 = f ′1 − g′′1 +
g′′′1
2

(3.94)

g′′0
2

=
g′′1
2
− g′′′1

2
(3.95)

g′′′0
6

=
g′′′1
6

(3.96)

The 4 unknowns g′′0 , g′′′0 , g′1 and g′′′1 can then be expressed as a function of f0, f
′
0, f1

and f ′1 as

g′′′1 = 6 [2(f0 − f1) + f ′0 + f ′1] (3.97)
g′1 = 6 (f0 − f1) + 2f ′0 + 4f ′1 (3.98)
g′′0 = −6 (f0 − f1)− 4f ′0 − 2f ′1 (3.99)
g′′′0 = g′′′1 = 6 [2(f0 − f1) + f ′0 + f ′1] (3.100)
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Plugging these expressions in (3.91) gives

g(x) = f0 + xf ′0 −
x2

2
[6 (f0 − f1) + 4f ′0 + 2f ′1] + x3 [2 (f0 − f1) + f ′0 + f ′1] (3.101)

= f0(1− 3x2 + 2x3) + f ′0(x− 2x2 + x3) + f1(3x2 − 2x3) + f ′1(−x2 + x3)

The result is expression (3.78) up to O(h4).

The formula given by (3.78) is a third order accurate representation of the
function if the control points and tangents are given with sufficiently high ac-
curacy. The error is then O(h4) where h is the interval length. In the case of a
two-dimensional function f(x, y) one can write

f(x, y) = a(y)f(x, 0) + a(1− y)f(x, 1) + b(y)fy(x, 0)− b(1− y)fy(x, 1) (3.102)

For any point (x, y) in the square 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, the 1D interpolation
at x for y∗ = 0, 1, i.e: along the red lines illustrated in Fig. 3.2, gives:

f(x, y∗) = a(x)f(0, y∗) + a(1− x)f(1, y∗) + b(x)fx(0, y
∗)− b(1− x)fx(1, y

∗) (3.103)

For this, one needs to compute the x-derivative at (0, 0), (0, 1), (1, 0) and (1, 1) by
a non-centered 5-points stencil scheme as follows:

fx(0, y
∗) = −1

3
f(−1, y∗)− 1

2
f(0, y∗) + f(1, y∗)− 1

6
f(2, y∗) +O(h3) (3.104)

fx(1, y
∗) =

1

6
f(−1, y∗)− f(0, y∗) +

1

2
f(1, y∗) +

1

3
f(2, y∗) +O(h3) (3.105)

Then interpolate along the green line of Fig. 3.2 by keeping x fixed to get:

fy(x, y
∗) = a(x)fy(0, y

∗)+a(1−x)fy(1, y
∗)+b(x)fxy(0, y

∗)−b(1−x)fxy(1, y
∗) (3.106)

where fxy can be evaluated with four control points

fxy(0, 0) =
1

4
[f(1, 1) + f(−1,−1)− f(−1, 1)− f(1,−1)] +O(h4) (3.107)

fxy(1, 0) =
1

4
[f(2, 1) + f(0,−1)− f(0, 1)− f(2,−1)] +O(h4) (3.108)

fxy(1, 1) =
1

4
[f(2, 2) + f(0, 0)− f(2, 0)− f(0, 2)] +O(h4) (3.109)

fxy(0, 1) =
1

4
[f(1, 2) + f(−1, 0)− f(1, 0)− f(−1, 2)] +O(h4) (3.110)

Or, one may choose to use a centered 5-points stencil scheme in the bulk and
non-centered scheme only at the boundaries where the centered scheme is not
defined. In that case the centered derivatives write:

fx(0, y
∗) =

1

12
f(−2, y∗)− 2

3
f(−1, y∗) +

2

3
f(1, y∗)− 1

12
f(2, y∗) +O(h4) (3.111)

fx(1, y
∗) =

1

12
f(−1, y∗)− 2

3
f(0, y∗) +

2

3
f(2, y∗)− 1

12
f(3, y∗) +O(h4) (3.112)
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3.6. Summary of the FENICIA scheme

Figure 3.2: The stencil of 16 control points needed for estimating the value of the
function at an intermediate point (x, y)

Similarly for fy and fxy. Hence, the resulting interpolation given by Eq. (3.102) at
the yellow point (x, y) requires 16 control quantities as illustrated in Fig. 3.2 and
it is 4th order accurate if these quantities are known to sufficiently high accuracy;
the error is again O(h4) for a unit square of side h. In the code, derivatives are
computed using the routine generate_deriv described in Sec. 3.2.4, and this
interpolation scheme is embedded in the routine interp. This procedure is
faster than the usual spline approach which requires the solution of a linear
problem, and not less accurate. Accuracy also depends on the scale length of
the function. For a function characterized by a wavenumber k and represented
by N points in a given box, a simple scaling argument based on replicating the
number of boxes shows that the actual error scales like (k/N)4.

We compared the maximum error given by the above interpolation scheme
to the one given by linear interpolation, by a MATLAB cubic spline interpola-
tion routine, by a 4th order Hermite interpolation with non-centered evaluation
of derivatives and a 4th order Hermite interpolation with an exact value of the
derivatives. The errors given by the different interpolation schemes are presented
in Fig. 3.3. We show that the 4th order Hermite cubic interpolation with 4 points
centered derivatives (solid red line with no marks) is as accurate as the 4th order
MATLAB cubic spline interpolation.
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Figure 3.3: The errors given by the different interpolation schemes show that
the 4th order Hermite cubic interpolation is as good as the 4th order cubic spline
interpolation

3.6 Summary of the FENICIA scheme

A general scheme of FENICIA is shown in Fig .3.4. The code relies on an operator
splitting general scheme defined as

∂tLS = E(S) + I.S

This is intended to show the generality of the scheme implemented in FENICIA
and the possibility to easily change/replace existing numerical techniques. In
the present version of the code, this class is advanced with a Leap-frog time
advancing scheme, stabilized by a predictor corrector. The G solver for the re-
duced equation discussed in section 3.2.6 uses an iterative scheme. Alternatively,
in future work, one may swap those schemes out for other explicit, implicit or
iterative numerical methods. Furthermore, the FCI coordinate system is used
in the parallel direction whereas in the transverse plane, Cartesian coordinates
are considered. Once again, other coordinate systems may be implemented with
minimal changes in the code affecting only one routine. In the perpendicular
direction, a polar coordinate system is plausible. In what concerns the mesh, fi-
nite differences with uniform meshing are implemented. Any other grid-type can
be implemented as well. This is indeed possible because the mesh is totally de-
coupled from the magnetic field geometry. Mainly, circular concentric surfaces,
sheared slab and island geometries are considered in the present version of the
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3.6. Summary of the FENICIA scheme

code. However, non-axisymmetric geometries are also possible cases that could
be handled. Further investigations need to be done in this regard (see Chapter 2).
Many physics problems have been studied and implemented so far to test the
code and validate it. Among them, a 2D Navier-Stokes model, a wave equation
model, a drift-wave model and an ITG nonlinear model. Nonetheless, it is im-
portant to mention that any other model belonging to (1.19) can be implemented.
Finally, boundary conditions for the cylindrical case are such that the fields are
set to zero outside the plasma radius rc and the rectangular box is periodic in the
z direction. In the island case, with a slab geometry, periodicity is also applied in
the y direction. An important aspect of FENICIA is that it’s very modular, thus
allowing easy swaping out of numerical techniques. Modularity is better seen
through the Flowchart presented in Fig. 3.5.

In order to start a run, one needs to create a test file in the directory
FENICIA/tests along with an input_file containing the different physical
parameters of the simulation. At the start of a simulation, the program makes
use of several modules. The module parameters contains all the parameters
and variables that are initialized and not changed during the execution. The
module pputils contains subroutines for dealing with the MPI parallel pro-
cessing (Thanks to P. Hill who parallelized the code in the z direction. Scaling
studies are still ongoing). Solvers for the time integration scheme are in the
module solvers. Two main solvers are considered: time_pc for advancing
the system using predictor-corrector, and time_lf for advancing the system
using Leap-frog. In addition, the module setup is concerned with setting up
equilibrium profiles and initialization of the geometry including the map to
follow the field lines. The module ITG_Physics contains subroutines of the
ITG problem. Another separate module contains physics of a drift-wave model
called DW_Physics. The module readinput contains subroutines to read
input parameters and initial states from the input_file and sets the various
global parameters not defined in the input_file. The diagnostics routines are
in the module diagnostics, particularly the file output. Finally the module
restarts reads and writes the restart files.

Let it be the time loop index, nt the number of time steps and ntpc is how
often to use predictor-corrector. After initializing the run, the main loop starts at
it = 1 and repeats itself as long as it < nt. IThe predictor-corrector is used every
nt steps, otherwise the Leap-frog is used. At the end of each iteration, the data is
saved either in unformatted file format or in HDF5 file format. Then, depending
on whether the user wishes or not to restart the simulation at a certain it, the
program either saves the restart files or not. The final step is closing all the open
files and finishing the mpi process. At the end of the simulation, the data is saved
into the file output.h5 in HDF5 format. As an option, each state can be also
saved in separate .dat unformatted format files.
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3.6. Summary of the FENICIA scheme

Figure 3.4: scheme
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3.6. Summary of the FENICIA scheme

Figure 3.5: Flowchart
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Chapter 4
Implementation and Qualification of
the FCI Approach
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4.1. Validation of the interpolation scheme

T he FCI approach discussed in Chapter 2 has been implemented in FENI-
CIA [Hariri 2013]. In this Chapter, I present several numerical tests car-
ried out with FENICIA to qualify the new method and the code using

various models belonging to the general class, Eq. 1.19. These are of three types:
a) tests to validate the Hermite interpolation scheme discussed in Section 3.5
by showing that numerical diffusion can be kept to the desired level at a mini-
mum computational cost, b) tests to validate the FCI approach by demonstrating
the capability of the new method to simulate wave propagation accurately even
when the toroidal mode number exceeds the Nyquist cut-off (half the number
of toroidal points) at the given toroidal resolution. This is precisely the situation
where the straightforward approach that computes the parallel derivative as a
combination of the toroidal and poloidal derivatives would fail, and c) tests that
validate the code FENICIA: efficiency of operators in the poloidal plane is tested
using a 2D Navier-Stokes model and properties of a linear ITG instability are ver-
ified using a 3D reduced ITG slab model. The main result is that the growth rate
obtained from analytical perturbation theory and the numerical growth rate are
consistent. All the tests were carried out with a safety factor profile q(r) = 1 + 2r2.
The nonlinear results will be discussed more fully in Chapter 5.

4.1 Validation of the interpolation scheme

4.1.1 Estimate of the numerical diffusion

The use of interpolation in the perpendicular plane introduces unavoidable
numerical diffusion, in particular in the radial direction. It is then important to
assess whether numerical diffusion can be kept to the desired low level such that
transport coming from actual physical mechanisms is not substantially affected.

In order to quantify numerical diffusion, it is convenient to set up initial
conditions such that the physical diffusion is theoretically zero. This can be done
by working directly with model (1.20) and choosing an initial condition such
that all the fields depend only on the radial coordinate r (zonal fields). Since the
action of the parallel gradient on such fields is null, any such initial condition
should not evolve in time. Thus, any measured radial diffusion in such a system
can be attributed to numerics.

For convenience, we initially choose a special case describing the propagation
of the sound wave in one direction only:

∂tn+
cs
R
∇‖n = 0 (4.1)

where∇‖ = ∂ϕ + 1/q(r)∂θ, cs is the ion sound speed and R is the major radius. In
the actual tests of the code, cs/R is set to 1 with the time t normalized to R/cs.
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4.1. Validation of the interpolation scheme

For a simple upwind scheme, one can estimate the effective numerical∇‖ to be

∇eff
‖ =

n(s+ ∆s)− n(∆s)

∆s
≈ Einterp

∆ϕ
, (4.2)

where Einterp is the interpolation error and ∆s = ∆ϕ = 2π/Nz is the distance
along the field-aligned coordinate. Note that, numerically, n(s+ ∆s) differs from
n(∆s) even for zonal fields because of the interpolation error.

As discussed previously in Sec. 3.5,Einterp ≈ (k/Nx)
α where k is the number of

waves in a grid of Nx ∼ Ny points in the perpendicular plane and α depends on
the interpolation scheme, with α = 4 for cubic Hermite interpolation employed
here.

The rate γnum associated with the numerical diffusion can be estimated as

γnum ≈
cs
R
∇eff
‖ ≈ cs

R

(
k

Nx

)α
1

∆ϕ
(4.3)

This diffusion rate must be compared to the rate γphys of the physical phenomenon
one wants to study. We consider two possible physical timescales of interest. One
is the energy confinement time given by the gyro-Bohm estimate

τE ∼ ρ−2
∗
a

cs
, (4.4)

which must be compared to (4.3) computed at the profile scale length, that is at
k = 1.
Another is the turbulence characteristic time at a given wavelength, which is of
the order of the drift-wave period

τw ∼
a

cs

2π

k⊥ρs
, (4.5)

where a is the minor radius, ρ∗ = ρs/a, and k⊥ is related to the number of waves
by k⊥ = 2π/λ = πk/a. Thus,

τw ∼
a

cs

π

kρ∗
(4.6)

Moreover, any sensible simulation must resolve ρs. This puts a constraint on Nx.
If one stipulates that at least four points are needed to resolve ρs one has

Nx ≥
8

ρ∗
(4.7)

Numerical diffusion is negligible when γnum � γphys, that is when the following
two conditions hold:

γnumτE � 1, (4.8)

and
γnumτw � 1. (4.9)
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4.1. Validation of the interpolation scheme

An estimate of γnumτE is given by

γnumτE ≈
( a
R

)( 1

Nx

)α(
1

∆ϕ

)(
Nx

2

)2

≤ 1

4∆ϕ

a

R

(ρ∗
8

)α−2

, (4.10)

showing that condition (4.8) is easily satisfied since α = 4 and ρ∗ is small.
Moreover, an estimate of γnumτw is given by

γnumτw ≈
( a
R

)( k

Nx

)α−1(
Nz

2π

)
(4.11)

One can foresee that, for well resolved waves, k/Nx is sufficiently small that (4.11)
is much less than one. A test is presented in the following section.

4.1.2 Testing numerical diffusion with a zonal field

The first test is carried out on Eq. (4.1) and a zonal field as an initial condition (see
Fig. 4.1):

n0 = cos(7kπr) + 1 (4.12)

with this initial condition, ∇‖ = 0. Thus any diffusion observed in the test must

Figure 4.1: A zonal flow to test numerical diffusion

be attributed to numerical diffusion. In Fig. 4.2, we plot the product γnumτw as a
function of the number of points per wavelength Nx/k. One notes that for points
in the rightmost part of the abscissas, corresponding to well resolved waves, the
numerical diffusion is negligible ∼ 10−10. However, even for cases that are badly
resolved (leftmost part of the abscissas) and that one would not consider ade-
quate for simulations, the numerical diffusion is nearly ∼ 10−2. Thus, condition
(4.9) is always satisfied for any practical purposes.
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4.2. Validation of the FCI approach
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Figure 4.2: The evolution of γnum τw as a function of the number of points Nx per
wavelength k. The slope is indeed equal to −3 as expected given that α = 4

4.2 Validation of the FCI approach

4.2.1 Testing the ability of the code to simulate sound waves
with a small toroidal resolution

We now show that the code FENICIA is able to simulate drift-wave propagation
with high accuracy even when the mode number in the toroidal (z) direction
exceeds the Nyquist cutoff Nz/2. Tests were carried out for both Eq. (4.1) and the
full model of Eq. (1.20). In the latter case, setting ρ∗ to zero allows one to obtain
analytic solutions of the wave propagation, which turns out useful for testing
purposes. For the density, we employ initial conditions of the form:

N0 = g0(r)× cos(mθ − nϕ), (4.13)

with

g0(r) = exp

[
−(r − rs)2

r2
s

m2

]
×
(
r

rs

)m
×
(
r − a
rs − a

)2

(4.14)

where rs is the position of the rational surface such that q(rs) = m/n. Notice that
the Gaussian can be recast as follows: exp (−k‖Ls)2 with k‖ = (n + m/q)/R and
Ls = s/qR. Indeed, one finds by Taylor expansion that

k‖(r) ≈ (r − rs)
d k‖
d r

∣∣∣∣
rs

= −(r − rs)
m

rs Ls
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4.2. Validation of the FCI approach

The latter expression ensures that the magnitude of the mode almost vanishes
for large wave vectors such that k‖Ls > 1.

The equilibrium density profile is such that

log(n0) = − 1

2Ln
(r2 − a2), (4.15)

in the full model (1.20). This corresponds to a class of drift-waves with uniform
drift frequency ω∗n = m/Ln. The analytic solutions are superpositions of waves
propagating with frequencies

ω± =
m

2Ln
±

√(
m

2Ln

)2

+ A2

(
1 +

1

τ

)(
m

q(r)
− n

)2

(4.16)

For the tests shown here the box size is 400 × 400 × 20 and m/n = 2, with (m,n)
ranging from (4, 2) to (30, 15). I start by showing results obtained from Eq. (1.20)
with log(n0) = 0 (zero drift frequency). The initial velocity is such that there is a
single wave propagating at frequency ω = A(1 + 1/τ)1/2(m/q(r)− n).

Figure 4.3 shows the density pattern obtained with m = 8 and n = 4 at t = 0
and t = 0.5. One observes that initially the vortices are round, whereas later they
are sheared by the differential rotation due to the radial dependence of the wave
frequency. Next, we consider a case with finite drift frequency and Ln = 0.25.

(a) (b)

Figure 4.3: For the sound wave case: (a) Density at t = 0; (b) Density at t = 0.5

Note that in the version of the code employed for these tests, the drift frequency
term is computed directly in its Poisson bracket form with the Arakawa scheme
as if it was a nonlinear term as discussed in Appendix A.

Figure 4.4 shows that after a while the potential develops the characteristic
pattern with two lobes which one finds also in the slab branch of ITG instabil-
ity. This occurs when the frequency has a local extremum at the rational surface,
as in Eq. (4.16) when the density gradient is nonzero. We now assess the over-
all accuracy of the algorithms by measuring the cumulative error per unit time.
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4.2. Validation of the FCI approach

(a) (b)

(c) (d)

Figure 4.4: For the drift-wave case: (a) Density at t = 0; (b) Density at t = 0.5; (c)
Velocity at t = 0 and (d) Velocity at t = 0.5

This is obtained by computing the norm of the difference between the numerical
solution and the exact solution obtained analytically. It turns out that this norm
grows linearly with time, so its time derivative is a reliable measure of the error.
The overall algorithms are adequate if this quantity, which has the dimensions of
a rate (time−1), is much smaller than the rate of the physics processes one wants
to study.

The results are summarized in Fig. 4.5 where the error per unit time E = (<
(nexact − ni)2 > / < (nexact)

2 >)1/2 is plotted as a function of the poloidal mode
number for three cases: 1) the full model (1.20) with Ln = 1/4 andA = 12.5, 2) the
same model with 1/Ln = 0 (no density gradient), and 3) the model with A = 0.
The latter case tests the effect of switching off the parallel dynamics so that the
system reduces effectively to

∂tn+ [n, log(n0)] = 0 (4.17)

The first thing to notice is that all the tests give an error per unit time much less
than one. We remark that the relative difference between case 1 and case 3 is
less than 10−3, which explains why the data points for the two cases look almost
superposed in Fig. 4.5. Since the model is normalized to the Bohm timescale
a2/(ρscs), any physics effect occurring on a shorter time scale is treated accurately.
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4.2. Validation of the FCI approach

(a)

Figure 4.5: The relative error between the exact and the numerical solution as
a function of the poloidal wavenumber m. For case 1: full model with finite
drift frequency, we get the blue solid line; For case 2: full model with zero drift
frequency, we get the red dashed line; For case 3: reduced model of Eq. (4.17)
without sound wave terms, we get the green bullets

This is the case, in particular, of plasma micro-turbulence, whose characteristic
frequency ranges from the drift frequency (evaluated at the Larmor radius scale
length), down to about a tenth of it, still much larger than one in Bohm units.

It is also apparent that the best results are obtained when the density gradient
is switched off (case 2 in the red dashed line). Thus the error associated with the
computation of the parallel dynamics is negligible with respect to the error due to
the perpendicular dynamics. This is not difficult to understand as discussed be-
low. Note also that the dependence on m of the error associated with the parallel
dynamics is weak, and that one obtains accurate results even when m = 30, such
that n = 15 exceeds the Nyquist cutoff. This proves the capability of the method
to deal with microscopic vortices, such as those produced by plasma turbulence,
with a limited number of points in the toroidal (z) direction.

There are two sources of error in the parallel dynamics algorithm, one coming
from the interpolation in the perpendicular plane, which is small as discussed in
Sec. 3.5, and the other coming from the discretization along the field lines. This
can be kept to the desired accuracy, but the results shown here demonstrate that
second order finite differences are adequate even with a moderate number of
points along z, as a consequence of weak gradients along the field lines.

By comparison, one can see that the second order accurate Arakawa scheme
produces errors that scale like m3. Indeed Eq. (4.17) describes advection of the
field n in the flow of the stream function log(n0). It is shown in Appendix B
that treating with a second order algorithm the problem of the propagation of
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4.3. Validation of the code FENICIA

a wave with large wavenumber k gives an error of O(k3∆x2) as obtained here.
Note that the Arakawa scheme is commonly used in numerical simulations of
plasma turbulence and it is often considered adequate. Thus, the fact that the
parallel dynamics scheme developed in this work contributes little to the over-
all algorithmic error, which is dominated by the Arakawa discretization in the
perpendicular plane, makes it a safe choice for further code development.

4.3 Validation of the code FENICIA

Code validation is important for it ensures that the code is correct. Numerous
tests focusing on specific physics problems can be considered and used to prove
that the numerical results comply with the analytical calculations. Thus, allowing
an efficient validation of the output. In the first place, we chose to perform a test
on a two-dimensional Navier-Stokes model in order to assess the efficiency and
accuracy of the 2D operators.

4.3.1 Testing the efficiency of 2D operators

The focus was firstly on testing the efficiency of operators in the poloidal plane.
For that purpose, the Navier-Stokes 2D problem was implemented


∂tω + [φ, ω] = ν∇2ω

ω = ∇2φ
(4.18)

which describes the evolution of the vorticity denoted by ω over time with ν
being the viscosity and φ the electrostatic potential. This model contains both
the Laplace operator solved by FFTs and the Poisson bracket nonlinear term dis-
cretized using the Arakawa finite differences scheme. We start the simulation at
t = 0 by an array of vortices and we try to study the evolution of the vorticity
with/without viscosity. The vorticity is initialized by

ω = sin(πx) × sin(πy) (4.19)

on a domain defined by nx = ny = 100 grid points in both the x and y directions.
Boundary conditions are such that φ = 0 outside the plasma radius rc = 1. Fig-
ure 4.6 shows the vorticity at t = 0 and at t = 5. Where the time scale corresponds
to one eddy turn over time of the largest vortex. It is normalized by L/v where L
is the system’s size and v is the velocity at large scales. One observes that vortices
are carried around over time and sheared by the flow.
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4.3. Validation of the code FENICIA

Figure 4.6: (a): vorticity at t = 0; (b): vorticity at t = 5

We then test the efficiency of the Jacobian expression of the advection term by
checking the conservation of the mean kinetic energy defined by

E =
1

2

∫
v2dx dy (4.20)

or equivalently

E =
1

2

∑
k

k2|φk|2 (4.21)

and the mean square vorticity written as

U =
1

2

∫
ω2dx dy (4.22)

or equivalently

U =
1

2

∑
k

k4|φk|2 (4.23)

where ω = ~∇ × ~v and k is the wavenumber. It is expected that the conservation
of the latter quantities will be guaranteed by the use of the Arakawa FD scheme.
That is, both E and U are conserved quantities in the absence of any dissipation
ν = 0. To verify it, we start by setting E = U = 1 then we plot the relative
variation of each of the quantities over a time scale breaking at t = 10. The result
in Fig. 4.7 shows that energy is conserved up to 10−7 and enstrophy is conserved
up to 10−4. The non-conservation of these quantities comes from the excitiation of
small scales in the nonlinear regime, up to the Nyquist cut-off. This results from
the shearing of eddies by vortex flows, as discussed earlier.

The second test on this model is performed with viscosity ν = 10−3 with the
same initial condition and parameters as the previous test. We notice that when

77



4.3. Validation of the code FENICIA

Figure 4.7: Testing the advection operator (Arakawa’s scheme) shows conserva-
tion of Energy(E) and Enstrophy(U)

Figure 4.8: (a): vorticity at t = 0; (b): vorticity at t = 1

viscosity is added, fast dissipation of small scales occurs as shown in Fig. 4.8
where vortices at t = 1 are already dissipated.

This is reflected in Fig. 4.9 by a fast decay of enstrophy until t = 1 when all
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small vortices have been dissipated. After t = 1, energy and enstrophy decay
at the same rate. Expressions 4.21 and 4.23 explain this behavior. Enstrophy is
mainly dominated by small scale (∼ k4) whereas energy is dominated by large
scales (∼ k2). So gradients are much more steep in enstrophy than in energy
which explains why adding viscosity affects mainly the enstrophy. Therefore,
dissipative terms are also validated through this test.

Figure 4.9: Decay of Energy(E) and Enstrophy(U) over time due to the addition
of viscosity

4.3.2 Verifying properties of a linear ITG instability

To fully check the forgoing 3D version of the code, what is left is to assess the fea-
sibility of the parallel gradient. It is useful to consider a simplified linear ITG slab
model belonging to (1.19) and verify whether the numerical results are in accor-
dance with the analytical properties of a linear ITG instability. For that purpose,
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4.3. Validation of the code FENICIA

the following linear model was considered
∂tφ̃+ C‖∇‖u‖ = 0

∂tu‖ + C‖∇‖T‖ = 0

∂tT‖ + ~vE.~∇⊥T‖0 = 0

(4.24)

In Fourier space this system leads to
ω φ̃ = k‖C‖u

ω u = k‖C‖T‖

ω T‖ = −φ̃ m∂T‖0
r ∂r

(4.25)

One can then deduce the linear dispersion relation

ω3 = (k‖C‖)
2ω∗T (4.26)

=⇒ω = ei(π+2`π)/3ωR with ` ∈ Z

where I refer to the linear frequency obtained from this dispersion relation with
the notation ω = ωR + iγtheory. ωR being the real frequency and γtheory being the
theoretical growth rate. Furthermore,

ω∗T = −
m∂T‖0
r ∂r

(4.27)

and
ωR =| (k‖C‖)2ω∗T |1/3 (4.28)

The equilibrium parallel temperature profile is given by

T‖0(r) =

{
−1

2
(r2 − r2

c ) if r < rc
0 if r > rc

(4.29)

Note that here C‖ = 1/ρ∗ with ρ∗ = 8 × 10−2 and rc = Lx/2, that is half the
box length in the x-direction. We then consider the following parameters: The
number of points in the x, y and z directions are chosen as nx = 100, ny = 100,
nz = 20. The lengths in each direction are given by Lx = 2, Ly = 2, Lz = 1. And
the poloidal and toroidal wavenumbers (m,n) are respectively set to (4, 2). Once
again, we employ initial conditions of the form:

T‖(t = 0) = g0(r)× cos(mθ − nϕ), (4.30)

φ̃(t = 0) = g0(r)

(
k‖C‖
ω0

)2

cos(mθ − nϕ+
2π

3
) (4.31)

u‖(t = 0) = g0(r)

(
k‖C‖
ω0

)
cos(mθ − nϕ− 2π

3
) (4.32)
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with

g0(r) = exp

[
−(r − rs)2

r2
s

m2

]
×
(
r

rs

)m
×
(
r − a
rs − a

)2

(4.33)

where rs =
√

(m/n− 1) r2
c/2 is the position of the rational surface such that

q(rs) = m/n, q being the safety factor written as q = 1 + 2(r/rc)2. Upon using
these parameters, the theoretical growth rate given by the imaginary part of the
frequency ∼ eγtheoryt writes

γtheory =

√
3

2
ωR (4.34)

For the sake of testing the code, we chose a constant q profile equal to 1, thus
setting k‖ = m/q − n = 2. In that case, the resulting growth rate is

γtheory ≈ 11.7 (4.35)

The numerical growth rate γnum obtained with the above parameters is given by
the graph in Fig. 4.10 which describes the evolution of the energy over time on a
logarithmic scale. Comparing γtheory = 11.7 to γnum = 11.4 allows one to conclude
that the match between theoretical and numerical growth rates is indeed very
good.

0 0.1 0.2 0.3 0.4

0

2

4

6

8

t

lo
g

(E
)

log(E) as a function of time where E=∫(φ2dV)

γ ≈ 11.4

Figure 4.10

In addition, the real frequency ωR given by Eq.(4.28) scales with k2/3
‖ . Hence, at

the resonant surface, eigenmodes are not expect to undergo any rotation. How-
ever, in regions outside the resonant surface where k‖ 6= 0, rotation frequency
should lead to rotation and stretching. The simulation run with the former pa-
rameters and an initial condition for temperature taken as in Fig. 4.11 (a), pro-
vides evidence regarding the validity of the results. In part (b) of this figure, it
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4.3. Validation of the code FENICIA

is shown that at the position of the resonant surface, the initial mode does not
rotate and stands unchanged. Conversely, in regions of nonzero k‖ we observe
deformations and rotation due to the rotation frequency. Hence, the numerical
results correspond to the appropriate theoretical calculations. This enabled us
to validate the computed results provided by the code and to guarantee that the
tests produce the concerned physics.

Figure 4.11
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Chapter 5
Nonlinear Simulations of Turbulence
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5.1. ITG model implemented in FENICIA

A s extensively discussed in Chapter 2, FENICIA code is based on a mod-
ular numerical scheme specially designed to address anisotropic trans-
port of any set of equations which can be recast in the form of (1.19)

presented in Chapter 1. The aim of this chapter is primarily to highlight the
special advantages underlying the use of the Flux Coordinate Independent (FCI)
field-aligned method for turbulence simulations. To this end, a 3-dimensional 4-
field fluid system, which models the slab branch of the ITG instability, serves as a
testbed for this study. In the first section, some of the linear properties of the drift-
instability in magnetized plasmas are recalled. In the second section, convergence
tests are performed in the nonlinear turbulent regime, showing fast convergence
achieved at nz = 15. Thus, with the new method, one needs only a few tens of
toroidal points to get a good result, regardless of the toroidal mode number, pro-
vided that adequate resolution is available in the poloidal plane. Finally, the last
section addresses the implementation of an island slab geometry, with a special
focus on the treatment of the X-point region. The ultimate result is showing that
the FCI approach allows, in particular, not only a more natural treatment of the
operations in the poloidal plane as discussed in Chapter 2, but it also deals with-
out difficulty with X-point configurations and with O-points such as the magnetic
axis, since it is constructed on coordinate systems with non-singular metric.

5.1 ITG model implemented in FENICIA

The most complete system of equations which has been implemented in the
framework of this thesis is explicitly shown here:

∂tñ+ [φ, log(n0)]− [φ, ρ2
∗∇2
⊥φ] + C‖∇‖u‖ = Dn∇2

⊥ñ

∂tu‖ + [φ, u] + C‖(
1
τ
∇‖ñ+∇‖φ+∇‖T‖) = Du∇2

⊥u‖

∂tT⊥ + [φ, T⊥]− χ‖⊥∇2
‖T⊥ = DT⊥∇2

⊥T⊥

∂tT‖ + [φ, T‖] + 2
τ
C‖∇‖u‖ − χ‖‖∇2

‖T‖ = DT‖∇2
⊥T‖

ñ = φ

(5.1)

As we shall see in the next section 5.2, the system (5.1) captures faithfully well the
slab branch of the Ion Temperature Gradient instability. The first equation stands
for the continuity (or mass conservation) equation, the second one for the parallel
momentum balance, and the last two for transverse and parallel heat transport
equations, respectively.

Notice that, in the present version of the model, the variable T⊥ appears only
in one equation. It has the vocation to be a passive scalar, in the sense that it is
sensitive to the turbulent field, namely φ, but it does not back-react on it. This
quantity can be considered as a tracer of the turbulent field.
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5.1. ITG model implemented in FENICIA

All quantities are dimensionless. ñ is the relative perturbed ion guiding cen-
ter density, n0 is the equilibrium density profile, u‖ is the ion parallel velocity
normalized to the thermal speed vth, T⊥ and T‖ the transverse and parallel ion
temperatures normalized to the constant electron temperature Te, and φ is the
electrostatic potential normalized to Te/e. Both transverse coordinates (x, y) in-
volved in the Poisson bracket are normalized to the tokamak minor radius a. We
define two dimensionless parameters: C‖ = a/R × 1/ρ∗ where R is the tokamak
major radius, ρ∗ = ρs/a is the reduced gyro-radius with ρs = (mTe)

1/2/eB being
the ion sound Larmor radius. Moreover τ is the ratio of electron temperature
to ion temperature Te/Ti. Time is normalized to the Bohm timescale a2/(ρscs),
where cs = (Te/m)1/2 is the ion sound speed. The explicit expression of the paral-
lel derivative operator ∇‖ depends on the magnetic field structure. In the case of
a cylindrical geometry one can write

∇‖ = ∂ϕ + 1/q(r) ∂θ

with (r, θ) the polar coordinates in the poloidal plane and q(r) the safety factor.

Finally, Dn, Du, DT⊥ and DT‖ are dissipative transverse transport coefficients
which account for the weak collisional transport and ensure the damping of small
scales. χ‖⊥ and χ‖‖ are the collisional parallel transport coefficients of transverse
and parallel temperature, respectively. They can be approximated as follows:

χ‖ ∼ v2
th/νcoll ≈ 3.1010m2 · s−1

and
D⊥ ∼ q2ρ2

sνcoll ≈ 5.10−3m2 · s−1

for a Deuterium plasma at T = 20keV, n = 1020m−3, B = 3T and q = 2. Here,
νcoll is the ion collision frequency, and the high collisionality regime has been
considered for D⊥ (so-called Pfirsch-Schlütter regime). Typically, the ratio of the
parallel to the transverse transport coefficient is χ‖/D⊥ ≈ 1012. This ratio is quite
large, however. But it is essential for two reasons:

• Physically, this explains the strong anisotropy of transport in magnetized
plasmas; the particles’ parallel motion being almost free while the trans-
verse one is constrained by the gyro-motion and by magnetic surfaces.

• It ensures that the ratio of parallel to transverse wave vectors remains small
(k‖/k⊥ ∼ ρi/R� 1) which permits the use of efficient coordinate systems al-
lowing one to simulate the smallest relevant volume of real space by taking
advantage of the short perpendicular correlation lengths while still allow-
ing for long parallel wavelengths and rapid parallel motions.

Note that one does not use these values of parallel transport and dissipation
coefficients. Conversely, ad hoc values are used with a much smaller ratio χ‖/D⊥
than the one expected in tokamaks (see section 5.3.1). In particular, D⊥ is chosen
so as to ensure the damping of the smallest scales that one can resolve at a given
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5.2. Linear ITG modes properties

grid size.

The quasi-neutrality constraint is the relationship between guiding-center
density fluctuations ñ and the electric potential. It is given by: ñ = φ − 〈φ〉 −
ρ2
∗∇2
⊥φ. The first two terms on the right hand side come from the assumption that

electrons have an adiabatic response, with 〈φ〉 the flux surface averaged potential.
The last term accounts for the ion polarization density in the long wavelength
(with respect to the ion Larmor radius) limit. In the upcoming nonlinear simula-
tions, it has been simply considered that ñ = φ. The implementation of the com-
plete quasi-neutrality equation into FENICIA should be investigated further. As
a matter of fact, computing the flux-surface average and inverting the 2D Lapla-
cian (to obtain φ out of ñ) would have required additional, although not critical,
developments and time. Note that the polarization term can be safely ignored in
the long wavelength limit, i.e. when k⊥ρs � 1. Upon dropping the 〈φ〉 term, one
is left with a large inertia of zonal flows, which are then expected to remain at a
fairly low level. Still, part of the polarization contribution has been taken into ac-
count in the continuity equation via the Poisson bracket [φ, ρ2

∗∇2
⊥φ]. In particular,

through the divergence of the (r, θ) component of the Reynolds stress tensor.

5.2 Linear ITG modes properties

Ultimately, one is interested in a reduced description of plasma turbulence to the
extent that it is economical and accurate. The system (5.1) models the slab branch
of the ITG instability. The driving terms of the linear instability are first the tem-
perature gradient (departure from thermodynamical equilibrium) and the phase
shift between the fluctuations of the advected fields and that of the electric poten-
tial. In the later case, the phase shift is provided by the finite motion of the ions
along the field lines. This corresponds to the terms proportional to C‖ in (5.1). It
is instructive to state that the model derived by Akira Hasegawa and Masahiro
Wakatani (H-W) in 1983 and presented in [Hasegawa 1983] consistently repre-
sents the simplest model for this type of instability. It was initially derived for
plasma edge turbulence. What we mean here is that the instability present in
the H-W model relies on the same mechanism as the one discussed in (5.1). More
precisely, the instability’s critical driving terms are (i) the existence of equilibrium
gradients, density in H-W model or parallel temperature in the slab ITG model,
and (ii) the existence of a phase shift between the electric potential fluctuations
and the fluctuations of the transported quantity: density or temperature, respec-
tively. In the H-W model, this phase shift results from the finite parallel resistivity
(the so-called adiabaticity parameter), while it is due to parallel transport χ‖ in
the present model.
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5.2. Linear ITG modes properties

5.2.1 Dispersion Relation

In the remainder of this section, we perform a simplified linear analysis. To do
so, we decompose each field into its equilibrium and fluctuating parts, the former
one being defined as the flux surface average of the given quantity, and is denoted
by the “0” subscript. One then gets:

n = n0 + ñ; u‖ = u‖0 + ũ‖; T‖ = T‖0 + T̃‖; T⊥ = T⊥0 + T̃⊥; φ = φ̃

We shall consider the following static equilibria: u‖0 = 0, T⊥0 = cst and
T‖0(r) 6= 0. Notice that this equilibrium is actually non-stationary. Indeed, in the
absence of heat source for the parallel temperature, T‖0(r) will evolve under the
action of the transverse dissipation coefficient DT‖ , until its gradient completely
vanishes. Provided DT‖ is small enough, such a relaxation of the equilibrium
profile can be considered as adiabatic with respect to the development of the
instability (this requires DT‖/L

2
T‖

to remain small with respect to the growth rate
of the instability, with LT‖ the transverse gradient of T‖0).

We then investigate the limit in which small amplitude fluctuations with re-
spect to equilibrium quantities are considered. All nonlinear terms can thus be
dropped at leading order and one is led to the following linearized system:



∂tφ̃− ∂rlog(n0)1
r
∂θφ̃+ C‖∇‖ũ‖ = Dn∇2

⊥φ̃

∂tũ‖ + C‖
(
1 + 1

τ

)
∇‖φ̃+ C‖∇‖T̃‖ = Du∇2

⊥ũ‖

∂tT̃⊥ − χ‖⊥∇2
‖T̃⊥ = DT⊥∇2

⊥T̃⊥

∂tT̃‖ − ∂rT‖0 1
r
∂θφ̃+ 2

τ
C‖∇‖ũ‖ − χ‖‖∇2

‖T̃‖ = DT‖∇2
⊥T̃‖

(5.2)

The usual scale separation assumption is then used to proceed further. The
characteristic perpendicular wavelengths of the fluctuations k−1

⊥ are assumed
to be much smaller than those of the equilibrium density and the parallel
temperature, i.e: Ln and LT : k⊥Ln ∼ k⊥LT � 1. In this framework, the
Fourier transform can be applied to the fluctuating fields only, with the implicit
assumption that results remain valid provided the above inequalities are fulfilled.

Following the standard Fourier transform approach, each 3D scalar field F

can then be decomposed as follows: F =
∑
F̂k(r) exp{i(mθ + nϕ− ωt)}. Eq. (5.2)

consequently writes:
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−iω − ikθ∂r log(n0) +Dnk

2
⊥ iC‖k‖ 0

iC‖k‖
(
1 + 1

τ

)
−iω +Duk

2
⊥ iC‖k‖

−ikθ∂rT‖0 i
2iC‖k‖
τ

−iω + χ‖‖k‖ +DT‖k
2
⊥




φ̂k

ûk

T̂‖k

 = 0

(5.3)
Here, kθ = m/r and k2

⊥ = k2
r + k2

θ , with k2
r ≡ −∂2

r log(F̂k). Since the linearized
system involves only the parallel temperature (but not T⊥), some of the ‖
subscripts can be safely dropped in the following calculations. DT‖ and χ‖‖ will
be replaced by DT and χ‖, respectively.

The expression of the dispersion relation may be found for nontrivial solu-
tions such that the determinant of the system vanishes. It is given by

ω3 + iω2
{

(Dn +Du +DT )k2
⊥ + χ‖k

2
‖ − iω∗n

}
−ω

{
(DnDu +DuDT +DnDT )k4

⊥ + χ‖(Dn +Du)k
2
‖k

2
⊥ + C2

‖k
2
‖

(
1 +

3

τ

)
−iω∗n

[
χ‖k

2
‖ + (Du +DT )k2

⊥
]}

(5.4)

−i
{
DnDuDTk

6
⊥ + χ‖DnDuk

4
⊥k

2
‖ + C2

‖k
2
‖

(
2Dn +DT

τ
+DT

)
+ χ‖C

2
‖k

4
‖

(
1 +

1

τ

)}
−ω∗n

{
DuDTk

4
⊥ +

(
χ‖Duk

2
⊥ +

2C2
‖

τ

)
k2
‖

}
+ C2

‖k
2
‖ω
∗
T = 0

with ω∗n ≡ kθ∂r log(n0) and ω∗T ≡ kθ∂rT‖0 the diamagnetic frequencies. It is third
order, consistently with the fact that only 3 fields were considered. Following
the nomenclature proposed in the book of D. B. Melrose [Melrose 1989], this is a
so-called kinetic instability, in the sense that the dispersion relation (5.4) contains
both real and imaginary coefficients1.

Note that dissipative coefficients (Dn, Du and DT ) and the parallel diffusiv-
ity χ‖ are essential to dissipate the energy at small scales. Hence, preventing the
unavoidable and intractable development of small scales, down to the grid reso-
lution, in the nonlinear regime.

5.2.2 Threshold and growthrate

The linear properties of the above model described by (5.1) are best understood
by first considering their parallel and perpendicular effects separately, and then
looking at the combination which results from their interaction. Much intuition
can be developed by evaluating Eq. (5.4) in two limits: the inviscid limit for which

1 This is usually the case in kinetic theory, where the imaginary coefficients of the dispersion
relation account for wave-particle resonant interactions, as first noticed by L. Landau.
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Dn = Du = DT = 0 and the inviscid limit without parallel transport for which
χ‖ = 0 . In the first case, Equation (5.4) appropriately reduces to:

ω3 + iω2
(
χ‖k

2
‖ − iω∗n

)
− ωk2

‖

{
C2
‖

(
1 +

3

τ

)
− iχ‖ω∗n

}
−iχ‖C2

‖k
4
‖

(
1 +

1

τ

)
+ C2

‖k
2
‖

(
ω∗T −

2

τ
ω∗n

)
= 0 (5.5)

leading to two separate cases to be considered.

We start by studying the inviscid case without parallel transport, that is in the
limit where χ‖ = 0. One then finds:

D(k, ω) ≡ ω3 + ω2ω∗n − ωC2
‖k

2
‖

(
1 +

3

τ

)
+ C2

‖k
2
‖

(
ω∗T −

2

τ
ω∗n

)
= 0 (5.6)

According to this expression, we are left with a reactive instability, for which all
coefficients of the dispersion relation are real. Possible complex conjugate solu-
tions of ω may then be found. In particular, this means that linearly damped
(=(ω) < 0) and excited (=(ω) > 0) waves appear at the same time. At the linear
threshold, above which the instability develops, all solutions are real, by defini-
tion. It can be obtained by looking for those real solutions of both the dispersion
relation D(k, ω0) = 0, and of ∂ωD(k, ω)|ω0 = 0, namely:

∂ωD(k, ω) = 3ω2 + 2ωω∗n − C2
‖k

2
‖

(
1 +

3

τ

)
= 0 (5.7)

From the expression of the derivative D, one can know the maxima and the min-
ima of the function. And upon calculating the discriminant of Eq. (5.7) one knows
how many solutions there exists. Typically, for a 3rd order degree polynomial
admitting 3 real solutions on gets the graph in Fig. 5.1 In the inviscid case with-
out parallel transport, the linear threshold is obtained from the system made of
Eq. (5.6) and of Eq. (5.7). As a result, the real frequency of the waves at the thresh-
old writes:

ω0± = −ω
∗
n

3
± 1

3

{
ω∗2n + 3C2

‖k
2
‖

(
1 +

3

τ

)}1/2

(5.8)

By plugging these ω0± solutions in Eq. (5.6), one obtains the implicit relationship
between temperature and density gradients at the threshold. Thus, two funda-
mental limits are distinguished:

• In the limit where ω∗n = 0: ω∗T,crit = ±2C‖k‖
(

1
3

+ 1
τ

)3/2

• In the limit where ω∗n → ±∞, two branches are to be distinguished: either
ω∗T,crit = 2

τ
ω∗n or ω∗T,crit = − 4

27
ω∗3n (C‖k‖)

−2

Rather than delve into much unpleasant algebra here, we will instead rely upon
Fig. 5.2 to show a few important features of the local limit. It is clear that the
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Figure 5.1: Graph of a 3rd order polynomial having 3 real solutions where the
regime is stable. Above or below the critical gradient, that is the threshold, there
exists at least one unstable mode

Figure 5.2: Critical temperature gradient as a function of the density gradient in
the inviscid ITG case without parallel transport, Eq. (5.6) (k‖ is taken equal to 0.4).

density gradient is stabilizing. That is, at constant temperature gradient, the
system becomes stable when the density gradient increases.
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Let us then study the inviscid case with vanishing density gradient, namely
in the limit where ∂r log(n0) = 0. Accordingly, one obtains:

D(k, ω) ≡ ω3 + iω2χ‖k
2
‖ − ωC2

‖k
2
‖

(
1 +

3

τ

)
−iχ‖C2

‖k
4
‖

(
1 +

1

τ

)
+ C2

‖k
2
‖ω
∗
T = 0 (5.9)

In this case, the linear threshold is obtained by looking for real solutions which
separately cancel the real and imaginary parts of the dispersion relation given by
Eq. (5.9). The real frequency of the waves at the threshold is simply expressed as:

ω0± = ±
√

1 +
1

τ
C‖k‖ (5.10)

Then, the critical temperature gradient for the inviscid ITG case at vanishing den-
sity gradient reads, for each of these waves2:

ω∗T,crit = ±
2C‖k‖
τ

√
1 +

1

τ
(5.11)

It readily appears that small scales in the parallel direction are stabilized by
parallel transport, as expected. Indeed, the linear instability threshold ω∗T,crit
tends to infinity in the limit k‖ →∞.

At this point, the algebra for solving the complete dispersion relation Eq. (5.4)
becomes tedious. It is thus solved numerically to look for unstable solutions. This
has been done3 for a set of parameters characterizing the nonlinear simulations
that will be discussed later in Sec. 5.3.

The equilibrium parallel temperature profile is such that ∂rT‖0 = ∇TM r2(1 −
r)[(1 − 2rM)r − (2 − 3rM)rM ]/[r2

M(1 − rM)2], with rM = 0.5 and ∇TM = −2 if
r ≤ rc, and T‖0 = 0 otherwise. Here, rc = 1 refers to the outer radial boundary
of the confined plasma. A vanishing value of the logarithmic density gradient is
considered, which maximizes the growth rate. For simplicity, k⊥ is replaced by
the poloidal wave number kθ = m/r (with m the poloidal wavenumber), there-
fore assuming that the radial gradient length of the fluctuations is much bigger
than the poloidal one. Finally, the normalized parallel wave vector is either con-
sidered as a free parameter, or set to be equal to k‖ = m

q(r)
− n, with n the toroidal

wavenumber and q = 1 + 2(r/rc)
2 the safety factor. The other parameters are

Dn = Du = DT = 2.10−3, χ‖ = 12.5, C‖ = 12.5 and τ = 1.

2 It can be shown that the other solutions of the dispersion relation are stable at the threshold:
they have a negative imaginary part.

They read: ω′± = −ω0/2− iχ‖k2‖/2
{
1∓

[
1− (C‖/χ‖k‖)

2(1 + 9/τ) + 2iω0/(χ‖k
2
‖)
]1/2}

.

Small modes with k‖ → 0 have the largest imaginary part, which is still negative:
limk‖→0 ω

′
± = −χ‖k2‖/2

{
1− [(1 + τ)/(9 + τ)]1/2

}
< 0.

3 A simple routine, written in Matlab, has been developed for this purpose.
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5.2. Linear ITG modes properties

Figure 5.3: Real and imaginary parts of the 3 solutions of Eq. (5.4) as a function of
k⊥ = kθ for the set of parameters detailed in the text (at r = 0.5) and for k‖ = 0.4.

Figure 5.4: Real and imaginary parts of the 3 solutions of Eq. (5.4) as a function of
k‖ for the set of parameters detailed in the text (at r = 0.5) and for k⊥ = 23.

Figure 5.3 (resp. Fig. 5.4) shows the real and imaginary parts of the three
solutions of Eq. (5.4) as a function of k⊥ (resp. k‖) at fixed k‖ = 0.4 (resp. k⊥ = 20).
Notice that, as expected, there is at most one single unstable branch. All branches
are stable at both small and large k⊥ values. The damping at small scales is
governed by the diffusion coefficients, D⊥ and χ‖. For these parameters, unstable
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5.2. Linear ITG modes properties

Figure 5.5: Real (left) and imaginary (right) parts of the most unstable solution of
Eq. (5.4) for a mode with (m,n) = (9, 6).

Figure 5.6: Profiles of k⊥ and k‖ for the mode having (m,n) = (9, 6).

modes are characterized by 0.3 . k⊥ρi . 1.6 and 0 . k‖ . 0.6 at mid radius
values.

Alternatively, by considering a single mode (m,n), one can look at the radial
locations at which it becomes unstable. This is examined more closely in Fig. 5.5.
It is apparent as a result of the parabolic q profile, that most of the changes come
from the variations of the k‖ wave vector relative to the chosen mode as a function
of radius. The range of the variation of k‖ is also plotted in Fig. 5.6. Beyond
these cursory investigations, it is of great interest to understand and discuss in
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the coming section the processes which set the nonlinear dynamics.

5.3 Nonlinear Simulations of Turbulence

5.3.1 Basic properties of slab-ITG turbulence with FENICIA

In general, fully developed ITG turbulence is difficult to describe analytically.
In the absence of analytic insights, it is difficult to know how well the numer-
ical code is performing, especially when the number of lines of code is large.
Nonlinear turbulence is herein studied numerically by solving model (5.1). It is
convenient to first start with a preliminary discussion on the properties of the
turbulent regime embedded in the model described by (5.1).

The main parameters used for the nonlinear simulations presented in this
chapter are chosen as follows: the code is run 6000 times with a time step equals to
dt = 10−3. We recall here that time is normalized to the Bohm time scale a2/(ρscs),
and lengths to the minor radius a. The differential operators are evaluated on
a grid of size (nx, ny, nz) = (200, 200, 20) (a parameter scan is performed over
different values of nz in the convergence test discussed in section 5.3.2), with
ρ∗ = 0.08. It follows that the transverse grid increment is equal to ρs/16. The
transverse dissipative coefficients and the parallel transport coefficient are set to
D⊥ = 10−3 and χ‖ = 12.5. Periodic boundary conditions are used in the z direc-
tion and the vector of states is set to zero outside the plasma radius. We consider
a density profile expressed as log(n0) = −(r2− a2)/2Ln and a q profile defined by
q = 1 + 2r2. The perturbed density is initialized by

ñ(t = 0, r) =
∑

g0(r)× cos(mθ − nϕ)

where

g0(r) = exp

[
−(r − rs)2

r2
s

m2

]
×
(
r

rs

)m
×
(
r − a
rs − a

)2

.

and the sum involves only two modes (m,n) = (9, 6) and (m,n) = (10, 7). The
radial envelope of the initial modes retains a Gaussian centered on their rational
surface rs (where q(rs) = m/n, so that k‖(rs) = 0), and is chosen sufficiently
narrow so as to minimize their parallel wave vector.4 The poloidal cross section
of the perturbed initial density field is plotted in Fig. 5.9 (top-left graph). As far
as the initial equilibrium profiles are concerned, parallel velocity is such that
u‖(t = 0, r) = 0 and both the parallel and perpendicular temperatures are chosen
to be equal at t = 0. The initial profile for both of the temperatures is plotted in
Fig. 5.7a (dashed line).

4Indeed, a Taylor expansion of the parallel wave vector around the resonance position rs leads
to: k‖(r) ' (r−rs) dk‖/dr|rs = −(r−rs)kθ/Ls, with the poloidal wave vector equals to kθ = m/rs
and the magnetic shear length defined by Ls = qR/s.
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(a)

(b)

Figure 5.7: Parallel and perpendicular temperature profiles at t = 0 and at the
t = 6, the time at the end of the simulation

Figure 5.8: Plot of Trms as a function of time
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Recall that the code is global, i.e. that there is no scale separation between
equilibrium and fluctuating quantities, including temperatures. Since no heat
source is added to sustain the profiles so far, one expects the initial temperature
profiles to relax under the action of heat turbulent transport. The result is
actually clearly visible in Fig. 5.7a and Fig. 5.7b, where the final temperature
profiles and temperature gradients are plotted. The gradient at the initial stage
exceeds its critical value at the position were the perturbations were initiated
(at roughly a mid-radius position on the simulation domain). Fluctuations
then become unstable, and grow exponentially during the linear phase and
eventually saturate as evidenced in the time evolution of the root mean square of
the temperature fluctuations Fig. 5.8. The magnitude of the fluctuations exhibits
an overshoot to reach a peak value at t ∼ 0.3, which results from the dynamical
balance between the linear excitation and nonlinear saturation mechanisms.
The latter refer to dissipation via mode-mode coupling, which involves energy
cascade towards linearly stable modes, and profile relaxation leading to the
reduction of the linear growth rate. Considering the fairly large ρ∗ value of the
reported simulation, the energy confinement time is quite small, so that the time
scale for profile relaxation − which is of the order of the energy confinement
time for the entire profile − competes with that of nonlinear energy transfer.
On one hand, assuming a Bohm-like scaling for τE leads to ωcτE ∼ ρ−2

∗ and on
the other hand, nonlinear energy transfer typically occurs on an eddy turn-over
time ωcτeddy ∼ (kθvE)−1 ∼ [(krρs)(kθρs)(eφ/T )]−1. Using a mixing length type
of argument, then eφ/T ∼ ρ∗, and krρs ∼ kθρs < 1. It readily appears that, in
this type of regime, both times are of the same order of magnitude: τE ∼ τeddy.
Therefore, both nonlinear mechanisms are likely to be effective in this case, and
efficiently contribute to the nonlinear saturation of turbulence.

A good amount of information is shown hereafter in figures 5.9,5.10 and 5.11
of nonlinear simulations carried out using FENICIA with the previously chosen
parameters. From the time sequence of the 2D snapshots of both fluctuating
density and velocity fields, respectively in figures 5.9 and 5.10, turbulence
progressively covers the whole radial domain of the cylinder but the center
where temperature gradient vanishes for symmetry reason. The entire domain
has become fully turbulent before the end of the simulation. The full temperature
field, including both equilibrium and fluctuations, is plotted in Fig. 5.11. It is
dominated by the equilibrium part, i.e. the flux-surface average component, the
fluctuations being of the order of a few percents only in the saturated regime. 3D
snapshots of density fluctuations allow one to highlight the fact that turbulent
eddies are elongated along the magnetic field lines, Fig. 5.12. When propagating
outwards, they encounter regions with larger safety factor values, hence looking
more aligned to the z direction. The presence of corrugations in the parallel
direction, characterized by finite k‖ values, will be discussed in section 5.3.2.

By looking at Fig. 5.13a where we plot the Trms values as a function of radius
over time, we observe a quasi-ballistic propagation of the fluctuations towards
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Figure 5.9: Snapshots of density fluctuations at different simulation times
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Figure 5.10: Snapshots of velocity fluctuations at different simulation times
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Figure 5.11: Snapshots of parallel temperature fluctuations at different simulation
times
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(a) t=0 (b) t=0.9

(c) t=2 (d) t=3

(e) t=4 (f) t=6

Figure 5.12: 3D snapshots of density fluctuations at different simulation times
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the core and the edges of the domain until saturation is reached at the end of the
simulation. Such a phenomenon is sometimes reported as turbulence spreading.
It is also reminiscent of avalanche-like transport. The front velocity propagation
is of the same order as the diamagnetic velocity, v∗ ∼ (kθρs)cs/LT , with LT being
the temperature gradient length. One may note that the motion is slightly faster
when moving left towards the core than when moving right towards the edge.
This is due to the small values of temperature at the edge. Front propagation of
the fluctuations is accompanied by fronts of equilibrium temperature gradient as
well, as illustrated in Fig. 5.13b. Interestingly, the gradient also steepens when
moving outward: it is maximal at r ≈ 0.65.

(a)

(b)

Figure 5.13: 2D plots of the root mean square of temperature fluctuations Trms
in (a) and the equilibrium temperature gradient ∇Teq in (b) as a function of the
radius r and the time t.
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5.3.2 The strength of field-aligned coordinates

Here I study the convergence properties of the ITG model presented in Sec. 5.1
with respect to the spatial resolution. A test of spatial convergence on a 3D ITG
nonlinear model showing the electric potential fluctuations level over time for
different number of grid points in the z direction.

Consider a 3D field φ in the torus. It can be expressed as a sum of Fourier
components along the periodic directions, θ and ϕ the respective poloidal and
toroidal angles, as follows:

φ(r, θ, ϕ) =
∑
m,n

φ̂m,n(r, t)ei(mθ+nϕ) (5.12)

When applied to this field, the parallel gradient given by ∇‖ = ∂ϕ + q(r)−1∂θ in
the large aspect ratio limit leads to the following expression:

∇‖φ(r, θ, ϕ) =
∑
m,n

i(n+m/q)φ̂m,n(r, t)ei(mθ+nϕ) (5.13)

Thus, the parallel wave vector is simply expressed as k‖(r) = n + m/q(r) and
is dependent on the magnetic surface via the safety factor profile q(r). It is
apparent that if the field is characterized by almost vanishing parallel gradients
k‖ ∼ 0, and small scales are to be resolved in a chosen direction (for instance the
poloidal direction), then even smaller scales should be captured in the toroidal
direction, i.e: a factor q−1 times smaller. Indeed, if ±mmax stands for the highest
poloidal wave number of interest for the problem to be addressed, then the
highest toroidal wave number should be nmax = ∓mmax/q(r) in order to ensure
that elongated structures in the parallel direction are well described at this scale,
namely k‖(r) = nmax + mmax/q(r) = 0. In tokamak turbulence, mmax is basically
constrained by micro-turbulence, which develops at Larmor scales such that
kθρi ∼ 0.3. The typical maximal m number of interest for standard situations 5 is
such that kθ,maxρi ∼ 2, so that mmax ∼ (r/a) ρ−1

∗ , which leads to mmax ≈ 500 and
nmax ≈ 250 in ITER-like plasmas at mid-radius values.

Alternatively, one may compute parallel derivatives using field-aligned coor-
dinates by employing a coarser grid in a chosen direction, while still properly
describing the relevant k‖ ∼ 0 modes. Although the method proposed in sec-
tion 2.2 and implemented in FENICIA is more general than the one discussed in
section 2.1.3, the reasoning is easier when focusing on the latter one. The paral-
lel gradient can be computed by finite differences along the parallel direction s,
which reads at second order:

∇FCI
‖ φ(ρ, ξ, s) ≈ φ(ρ, ξ, s+ ∆s)− φ(ρ, ξ, s−∆s)

2∆s
(5.14)

5 This may not be the case in regimes with ion transport barriers, where turbulence at electron
gyro-radius scales kθρe ∼ 0.1 can become dominant.
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where the superscript FCI stands for field-aligned coordinates, and ∆s = ∆ϕ is
the increment in the parallel direction. In terms of Fourier modes, an expression
as such leads to the following:

∇FCI
‖ φ(ρ, ξ, s) =

1

2∆s

∑
m,n

φ̂m,n(r, t){
ei[m(θ−∆ϕ/q)+n(ϕ+∆ϕ)] − ei[m(θ+∆ϕ/q)+n(ϕ−∆ϕ)]

}
=

∑
m,n

φ̂m,n(r, t)ei(mθ+nϕ) ei∆ϕ(n−m/q)] − e−i∆ϕ(n−m/q)]

2∆s

=
∑
m,n

φ̂m,n(r, t)ei(mθ+nϕ) i sin[(n−m/q)∆ϕ]

∆ϕ
(5.15)

It turns out that the effective parallel wave vector then reads kFCI‖ = sin[(n −
m/q)∆ϕ]/∆ϕ. In this framework, all modes characterized by n = m/q + `π/∆ϕ
(with ` ∈ N) are resonant, in the sense that their effective parallel wave number
is vanishing kFCI‖ = 0. In this case, even large m modes can be coupled to “reso-
nant” (i.e. such that kFCI‖ = 0) low nmodes. As a matter of fact, given a maximum
poloidal wave numbermmax which needs to be resolved, there is no need to go up
to nmax = mmax/q in order to properly account for resonant modes at this small
transverse scale: the toroidal n` modes characterized by n` = mmax/q + `π/∆ϕ
will already do the job.

This interesting property of field-aligned coordinates is evidenced in fig-
ure 5.14. We plotted the 2D Fourier transforms of the electric potential φ at mid-
radius at the end of the simulation for different number of grid points in the z
direction: nz = 10 and nz = 35. One notices that, in both cases, the spectrum
exhibits large amplitude modes (illustrated by the yellow and red colors) out-
side the exact resonant band n = −m/q. This aliasing appears when the number
of grid points in z is not sufficient, more precisely when ∆ϕ = 2π/nz is bigger
than half the inverse of the biggest physically relevant wavenumber nmax (after
the Nyquist-Shannon theorem). In this case, the mean exact parallel wavenumber
〈k‖〉 defined as

〈k‖〉 =

{∑
m,n(n+m/q)2 |φ̂m,n(r, t)|2∑

m,n |φ̂m,n(r, t)|2

}1/2

(5.16)

is large. It is equal to 12 and 10.5 for these two respective cases (see fig.5.15).
Conversely, the mean effective parallel wavenumber 〈kFCI‖ 〉, computed from flux-
coordinate independent (FCI) field-aligned coordinates and defined as:

〈kFCI‖ 〉 =

{∑
m,n {sin[(n+m/q)∆ϕ]/∆ϕ}2 |φ̂m,n(r, t)|2∑

m,n |φ̂m,n(r, t)|2

}1/2

(5.17)

remains small, of the order of 1 in both cases (cf. fig.5.15). This is due to the fact
that aliasing leads to modes which still satisfy the condition for effective reso-
nance, namely n` = −m/q + `π/∆ϕ, with ` ∈ N and ∆ϕ = 2π/nz (oblique dash
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lines on fig.5.14). In other words, numerical methods which rely on (θ, ϕ) co-
ordinates to compute the parallel derivative would interpret those off-diagonal
modes as non-resonant ones, with large k‖, while field-aligned coordinates are
still able to correctly interpret them as effectively resonant ones.

Figure 5.14: 2D Fourier transform of the electric potential φ at mid-radius and at
the end of the simulation runs for two different grid meshes in the axial direction:
nz = 10 (left) and nz = 35 (right). The oblique dash lines satisfy the relation
n` = m/q + `π/∆ϕ, with ` ∈ N and ∆ϕ = 2π/nz.

The main interesting result is that the FCI approach permits a coarser mesh in
the z direction while still allowing high resolution of the perpendicular spatial di-
mensions, where the small scales occur, and best representing the physical prop-
erties of the model. As Fig. 5.16 shows, the convergence is almost perfect, with
similar values of the square of the electric potential obtained starting nz = 15
only. Because the aim is to represent the Physics in the most economical way, it is
thus proven that the FCI system is indeed a judicious choice of coordinate trans-
formations best suited for describing the wave dynamics along the field lines and
providing us with even more efficiency and more flexibility in solving anisotropic
3D problems. In the next section, we further prove that this coordinate system is
equally powerful at the separatrix (X-point) region.
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Figure 5.15: Exact and effective mean parallel wavenumbers (see text) as a func-
tion of the number of grid points along z.
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5.4 Test Case for the Island Geometry

As extensively discussed before, the Flux-Coordinate Independent system (FCI)
allows the parallel derivative to be constructed by tracing the magnetic field
lines from one perpendicular plane to the next, and interpolating to find the de-
sired quantity. This frees us from using flux coordinates in the perpendicular
plane,thus allowing for complex magnetic geometries free of singularities. Since
FENICIA is easily extensible to different meshes and coordinate systems, we use
it here to demonstrate the application of the FCI coordinate system to a magnetic
island in a slab version of the code. Dirichlet boundary conditions are still used
in the x direction, but periodic boundary conditions are now set in the y and z
directions. The results of our investigation are presented into the influence of a
static n = 0 magnetic island including both the X- and O- points on drift-wave
turbulence.

5.4.1 Exact solutions for the island exterior and interior

In the remainder of this section, we will consider a magnetic equilibrium charac-
terized by a magnetic island whose half radial width is equal to δx = 2

√
A , with

A being a parameter. Such an equilibrium corresponds to a magnetic field given
by Eqs. (2.9)-(2.10), with:

ψ(x, y) = −(x− 1)2

2
+ A cos(y) (5.18)

The considered domain is xmin ≤ x ≤ xmax (in practice, xmax = 1 + ∆ and
xmin = 1−∆, with 0 < ∆ < 1) and −π ≤ y ≤ π, with 0 ≤ z ≤ 2π.

Let us consider the following model pertaining the parallel dynamics

∂tφ+ C∇‖u = 0 (5.19)

∂tu+
C(1 + τ)

τ
∇‖φ = 0

where the parallel gradient operator reads as follows:

∇‖ = −[ψ, ·] + ∂z (5.20)

The aim of the present section is to construct exact solutions of model (5.19)
in the magnetic equilibrium defined above, i.e. in the presence of a magnetic
island. These solutions will then serve as test beds for the numerical benchmarks
discussed in next subsection. To do so, one needs to define proper coordinates
associated to the field lines. It readily appears that ψ is a label of magnetic field
lines, since ∇‖ψ = 0. The coordinate η is a straight-field-line angle-like variable
and has still to be calculated.
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Let us introduce the following new set of coordinates:

ρ = −ψ/A =
(x− 1)2

2A
− cos y (5.21)

η = g(ρ)

∫ y

0

dy′

[cos y′ + ρ]1/2
(5.22)

As detailed in appendix D, for η to be an angle ranging from −π to π, g(ρ) has to
be given different expressions depending on whether ρ is bigger or smaller than
1, ρ = 1 being the radius at the separatrix of the island. The exterior of the island
corresponds to the region where ρ > 1, while ρ < 1 characterizes the interior of
the island.

For the exterior region ρ > 1, g(ρ) has the following expression:

g(ρ)|ρ>1 =
π

2
(1 + ρ)1/2

[
K

(
2

1 + ρ

)]−1

(5.23)

where K stands for the elliptic integral of the first kind:

K(x) ≡
∫ π/2

0

dθ (1− x sin2 θ)−1/2 (5.24)

Conversely, g(ρ) reads as follows for the interior region ρ < 1:

g(ρ)|ρ<1 =
π

2
√

2

[
K

(
1 + ρ

2

)]−1

(5.25)

The resulting graphs of both ρ, defining the island geometry, and of η in the inner
and outer regions of the island, are visible on figures 5.17a-5.17b. So far, we do
not have an expression of g(ρ) at the position of the separatrix, at ρ = 1. This
prevents us from finding exact analytic solutions at ρ = 1. This issue is left for
future investigation.

It can be shown that the parallel gradient takes the following compact expres-
sion in terms of this new set of coordinates:

∇‖ = g(ρ)
√

2A
∂

∂η
+

∂

∂z
(5.26)

Let us then look for wave-like solutions of the model (5.19) of the form:(
φ(ρ, η, t)
u(ρ, η, t)

)
=

(
φ0(ρ)
u0(ρ)

)
cos [mη − nz − ω(ρ)t] (5.27)

with (m,n) standing for the wave numbers in η and z, and ω(ρ) being the mode
frequency. Injecting these expressions in Eq. (5.19) leads to the following system: −ω C

[
g(ρ)
√

2Am− n
]

C(1+τ)
τ

[
g(ρ)
√

2Am− n
]

−ω

( φ0(ρ)
u0(ρ)

)
= 0 (5.28)
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The eigenfrequency solution of the dispersion relation depends on ρ:

ω±(ρ) = ±C
(

1 + τ

τ

)1/2 [
g(ρ)
√

2Am− n
]

(5.29)

The eigenvectors are then such that:

u0(ρ) =
C(1 + τ)

τω±
φ0(ρ) (5.30)

For a given expression of φ0(ρ), u0 can be calculated by using Eq. (5.30), with ω±
given by Eq. (5.29). Then, Eq. (5.27) provides exact solutions of the model (5.19),
which will be compared to their numerical counterparts in the next subsection.
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Figure 5.17: The new coordinates ρ (a) and η (b) as a function of the grid mesh
coordinates (x, y).

5.4.2 Numerical tests at the exterior and interior of the island

The first test aims at verifying that the numerical simulation of drift-wave propa-
gation across the X-point gives results in good agreement with the exact solutions
of this problem up to the order of accuracy of the chosen numerical scheme. We
consider a box of size ∆ = 0.1, an island of size 4

√
A with A = 10−3 and a mode

(m,n) resonant at ρ = ρmn, i.e: m/n = 1/(g(ρmn)
√

2A ). This means that k‖ = 0

at ρmn. For this value of A, we plot 1/(g(ρmn)
√

2A ) as a function of ρ for both
the exterior and the interior of the island as shown in Figs .(5.18a-5.18b). For ra-
tional values of 1/(g(ρ)

√
2A ), there exists a resonant (m,n). One sees that the

position around ρ = 1 is directly constrained by high (m,n) values, especially if
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Figure 5.18: (a) plot of m/n as a function of ρ for both the exterior and the interior
of the island (b) zoomed view around the separatrix region ρ = 1

one wishes to get closer to the separatrix starting from the interior of the island.
The next step is to initialize a perturbation

φ(t = 0) = φ0(ρ) cos(mη − nz) (5.31)

where φ0(ρ) is a Gaussian structure centered around ρmn and having the follow-
ing form

φ0(ρ) = exp

[
−(ρ− ρmn)2

∆ρ2

]
×
(

ρ

ρmn

)m
×
(

ρ− ρbd
ρmn − ρbd

)2

(5.32)

with ∆ρ = ρmn/m and ρbd is the value of ρ at the boundaries x = {xmin, xmax} for
y = 0. The small radial width of the envelope φ0, around the resonant surface
ρmn, ensures that k‖ � 1. Two cases are to be examined: the exterior of the island
(ρ > 1), and the interior (ρ < 1). The only difference between the two cases comes
from the two different expressions of g(ρ) given by Eq. (5.25) in the previous
subsection. For the former one, we consider a perturbation φ0(ρ) centered around
ρmn = 1.25 for (m,n) = (24, 1). The initial condition for a simulation of size
(800×800×20) is shown in Fig. 5.22a. With a time step ∆t = 10−3, the simulation
is run 1000 times up to t = 1 and the solution at the final time is given in Fig 5.22b.
For clarity, a zoomed view of the initial and the final solution are also shown in
Figs. (5.20a-5.20b).

The emphasis is now on showing that the exact slab solution given by (5.27)
is recovered at the exterior of the island where ρ > 1. In Fig. (5.21), we plot the
relative error

〈(φnum − φexact)2〉1/2

〈(φexact)2〉1/2
(5.33)
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(a) (b)

Figure 5.19: (a) Initial condition φ(t = 0) (b) solution φ at the final time step t = 1

(a) (b)

Figure 5.20: (a) zoomed view of the initial condition φ(t = 0) (b) zoomed view of
the solution φ at the final time step t = 1

between the exact and the numerical solution as a function of time for differ-
ent spatial resolutions (nx, ny, nz) = {(400, 400, 20); (600, 600, 20); (800, 800, 20)}
where 〈.〉 =

∫ 2π

0
dy
∫ 2π

0
dz
∫ xmax

1
dx. From Fig. 5.21, we see that the numerical

results converge quickly to the analytic solution.
The same tests are performed at the interior of the island where we consider

a perturbation φ0(ρ) centered around ρmn = 0.58 for (m,n) = (45, 1). The initial
condition for a simulation of size (800 × 800 × 20) is shown in Fig. 5.22a and the
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Figure 5.21: errors as a function of time given by different spatial resolutions

final solution at t = 1 is given in Fig 5.22b. A zoomed view of the initial and the
final solution are also shown in Figs. (5.23a-5.23b).

(a) (b)

Figure 5.22: (a) Initial condition φ(t = 0) (b) solution φ at the final time step t = 1

The numerical solution is again compared to the analytic solution given
by (5.27) for ρ < 1 . This is illustrated in Fig. (5.24) where we plot the relative
error as a function of time. We observe that the numerical solution to the drift-
wave problem converges to the exact one as the step size ∆x decreases. However,
the relative error for the resolutions considered here is still high (∼ 30%). We in-
terpret this by the fact that the poloidal resolution is still not sufficient to be able
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(a) (b)

Figure 5.23: (a) zoomed view of the initial condition φ(t = 0) (b) zoomed view of
the solution φ at the final time step t = 1

to resolve the m = 45 mode at the interior of the island. Further investigations
are ongoing to widen the box size and the island’s width in order to allow us to
take a smaller poloidal resonant mode number m.
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Figure 5.24: errors as a function of time given by different spatial resolutions
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5.4.3 Tests across the separatrix

At the separatrix, where ρ = 1, the analytic solutions (5.27) are no longer valid.
As stated in subsection 5.4.1, we do not have an expression for an analytic exact
solution at the separatrix, should such a solution exist. Given this limitation,
instead of considering an initial condition as a function of the variable η that
diverges at ρ = 1, we thus consider a perturbation crossing the separatrix of the
form

φ(t) = N0(ρ) cos(my − nz) (5.34)

where N0(ρ) is a Gaussian structure given by

N0(ρ) = e−(ρ−1)2/∆ρ2 (5.35)

where ∆ρ is a parameter set to ∆ρ = 0.5 here for the perturbation to cover both the
left and right-hand sides of the separatrix. A series of simulations is then run with
∆ = 0.1, A = 10−3 and (m,n) = (5, 1). Figures (5.25-5.26-5.27) show the evolution
of the electrostatic potential as a function of time (Bohm time). The time step for
this simulation is ∆t = 10−3 and the box size is (200 × 200 × 20). From Fig. 5.25
one sees that modes across the separatrix gradually evolve and shear. Due to the
periodicity of the simulation box, we also observe eddies sticking out of one side
of the box and reentering on the other side of the box. This process goes on until
t = 7 when the solution breaks up into separate filaments that bunch together
at the level of the X-point for the poloidal resolution is no more sufficient at this
stage as it appears in the 2D snapshots of Fig. 5.26. 3D illustrations are shown in
Fig. 5.27 showing the same simulation described above in its 3D state up to t = 5.

Because our ultimate goal was to prove the validity of the FCI approach for
X-point geometries, three main tests are to be considered hereafter. The first test
consists in showing the conservation of an energy-like quadratic quantity of the
drift-wave model (5.19). For this purpose, we perform a scan in nx and in nz,
the number of points in the x and z directions respectively. For a fixed number
of points in the z direction, nz = 20, a scan over the following pairs is done in
the x and y directions: (nx, ny) = {(100, 100); (200, 200); (400, 400); (600, 600)} un-
til t = 1. The Energy E ≡

∫
(φ2 + (1 + 1/τ)−1 u2)/2 dxdydz is trivially conserved

by Eqs. (5.19). It is plotted in Fig. 5.28a as a function of time. The conserva-
tion of E is guaranteed as the displacement ∆x decreases (in all simulations we
considered nx = ny). The line plot on the right-hand side graph 5.28b shows
that it is effectively the case since in the worst case where (nx, ny) = (100, 100)
the relative change is equal to 4.5 × 10−3 and in the well-resolved case where
(nx, ny) = (600, 600) the relative change is almost null.

For the special case where the box size is (nx, ny, nz) = (200, 200, 20) shown in
the 2D and 3D snapshots above, we performed the run up to t = 12. Though there
are filaments appearing after t = 6, the plot in graph 5.29a shows a relatively good
conservation of the Energy. The rate of change as a function of time, as calculated
in the plot of 5.29b reaches at most 5%.
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Figure 5.25: 2D snapshots of potential fluctuations at different simulation times
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Figure 5.26: 2D snapshots of potential fluctuations at different simulation times
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(a) t=0 (b) t=1

(c) t=2 (d) t=3

(e) t=4 (f) t=5

Figure 5.27: 3D snapshots of potential fluctuations at different simulation times
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Figure 5.28: (a) Conservation of Energy at the separatrix with respect to time for
different spatial resolutions (b) The relative change in energy with respect to ∆x
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Figure 5.29: (a) Conservation of Energy at the separatrix for a long simulation up
to t = 12 with (nx, ny, nz) = (200, 200, 20)(b) The relative change in energy with
respect to time

Similarly, the conservation of the Energy is well verified when scanning the
number of points in the z direction. A box of size (nx, ny, nz) = (400, 400, nz) is
considered where nz = {20, 40, 60, 80, 100}. In graph 5.30a, the energy converges
perfectly well as ∆z decreases. Furthermore, its relative change is in the worst
case equal to 5× 10−4 as shown in Fig. 5.30b.

The second important test targets the demonstration of the convergence
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Figure 5.30: (a) zoomed view of the initial condition φ(t = 0) (b) zoomed view of
the solution φ at the final time step t = 1

of the numerical solution when crossing the separatrix region. A series of
simulations performed with a box of size (nx, ny) = (400, 400) and nz =
{5, 10, 20, 40, 60, 80, 100} are again considered for this purpose. We start by con-
sidering the first two solutions given by the simulations having nz = 5 and
nz = 10. The idea is to calculate the difference between the two and repeat the
process over each pair of solutions. The process should be repeated over the en-
tire set of solutions φ given by all the simulations. It is called the moving difference.
In Fig. 5.31 and 5.32 the moving difference of the solutions is plotted in 2D at the
final time t = 1 for the first poloidal plane iz = 1. We clearly see that the difference
is equal to zero after nz = 40. Which means that one does not need to go beyond
nz = 40 for this simulation to study the same physics. This constitutes the main
strength of the field-aligned FCI approach and validates its application to X-point
configurations with a high exponential convergence rate shown in graph 5.33.

The graph of Fig. 5.33 indeed shows a plot line connecting all the fixed av-
erages. It is called the moving average. More specifically, the average is calcu-
lated by dividing the sum of the difference between each pair of solutions by the
total number of solutions. It is thus a mean that allowed us to prove that the
numerical solution converges exponentially as the displacement in the z direc-
tion, ∆z, decreases. To finish, we effectively do a last test showing the order of
convergence of the numerical solution. In fact, for the same set of simulations,
i.e: (nx, ny) = (400, 400) and nz = {5, 10, 20, 40, 60, 80, 100}, the test consists of
choosing a reference case supposed to be the closest possible case to the exact
solution. With this hypothesis, it is legitimate to calculate the average of the dif-
ference between all the simulations and the reference simulation chosen to be
that with nz = 100 (Root Mean Squared of the difference). The result is shown
in graph 5.34b where we see that as nz tends to 100, the error tends to 0 with an
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Figure 5.31: Moving difference
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5.4. Test Case for the Island Geometry

Figure 5.32: Moving difference
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Figure 5.33: Average of the norm of the moving difference showing convergence
of the numerical solution in nz at an exponential rate

estimation of the order of convergence given by the loglog plot in Fig. 5.34b. The
convergence is indeed fast, of the order of a = 2.6, the corresponding slope of the
loglog plot.
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Figure 5.34: (a)Average of the difference between the numerical solution at dif-
ferent nz values and the solution at the reference case nz = 100 (b) loglog plot
showing the convergence rate having a slope a = 2.6
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Chapter 6
Conclusions and Future Work
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6.1. Highlights from this Thesis

6.1 Highlights from this Thesis

The principle difficulty in achieving fusion in the laboratory arises from the
fact that the plasma is typically unstable to magnetohydrodynamical or kinetic
instabilities. These instabilities primarily driven by pressure (or temperature or
density) and current gradients inherent in tokamak confinement devices, are
known to govern plasma turbulence and MHD modes which in turn, seriously
impedes reaching the critical Lawson condition. An important step required to
reach practical fusion energy is thus the understanding of the mechanism behind
the coherent turbulent structures created by plasma drift-wave instabilities. In
the fusion community, numerical simulations of plasma micro-turbulence and
large-scale MHD instabilities efficiently complement experimental measure-
ments and empirical scaling laws.

The primary thrust of this work has been the development and implemen-
tation of a new approach to the problem of field-aligned coordinates in plasma
turbulence simulations that I called the FCI approach. The method exploits the
elongated nature of microinstability driven turbulence which typically have
perpendicular − to the guiding magnetic field − scales on the order of the ion
gyroradius, k⊥ρi ∼ 1/2, and parallel scales on the order of the machine size
∼ q R. Mathematically speaking, it relies on local transformations that align
a suitable coordinate to the magnetic field to allow efficient computation of
the parallel derivative. However, it does not rely on flux coordinates and this
permits discretizing any given field on a regular grid in the natural coordinates
such as (R,Z, ϕ) or (x, y, z) in the cylindrical limit. The several advantages of the
FCI approach over the old ones have been illustrated in Chapter 2. In particular, I
demonstrated that the method allows a more natural treatment of the operations
in the poloidal plane and deals without difficulty with X-point configurations
and with O-points such as the magnetic axis, since it is constructed on coordinate
systems with non-singular metric.

In light of these findings, I have developed a plasma simulation code in For-
tran that I called FENICIA, which successfully reproduces linear and nonlinear
microturbulence regimes. MHD regimes may be included in the code as well, but
this has been left for future work. The code’s features are detailed in Chapter 3.
In short, FENICIA is a modular code solving the class of plasma models 1.19 and
using the FCI approach. Operators relevant to the targeted ITG physics have
been implemented. Thus, any combination of these operators can be solved by
the code and addition of more operators is easy due to the modularity of the
program. Thanks to the Flux Coordinate Independent field-aligned approach
(FCI), FENICIA is flexible enough to permit switching between different types of
magnetic geometries including the separatrix region.

The FCI approach requires interpolation in the poloidal plane. To this end,
Hermite cubic interpolation with direct computation of the derivatives at the
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control points has been employed. Tests in Chapter 4 show that this choice is as
accurate as cubic splines but more efficient in terms of computational resources.
Tests using FENICIA were also carried out on the problem of spurious (numer-
ical) diffusion of zonal fields, and on the problem of drift-wave propagation.
With the zonal field test I show that the numerical diffusion rate due to the
new method is negligible with respect to the evolution rate of actual physics
processes of interest. On the other hand, with the wave propagation tests, I
show that the error per unit time due to the computation of parallel derivatives
with the new method is sub-dominant with respect to the error due to second
order algorithms commonly used to treat the perpendicular dynamics, such as
the Arakawa scheme. Both errors are anyway small enough to carry out feasible
plasma turbulence simulations for times longer than the Bohm time. These
tests also show explicitly the capability to simulate drift-wave propagation with
toroidal mode numbers exceeding the Nyquist cutoff (half of the toroidal grid
points). This is a situation which could not be dealt with by the straightforward
approach that computes the derivative as a combination of the poloidal and of
the toroidal derivatives, unless a large number of both poloidal and toroidal
points is used. Thus the new method needs only a few tens of toroidal points,
regardless of the toroidal mode number, provided that adequate resolution is
available in the poloidal plane. But high resolution in the poloidal plane is not
an additional constraint since it is anyway necessary to treat the perpendicular
dynamics accurately. When applied to turbulence simulations of a machine like
ITER, I showed that the new approach allows one to save a couple of orders of
magnitude in computer resources.

Fully nonlinear simulation results of a 3-dimensional 4-field ITG model are
presented in Chapter 5. Some of the linear properties of the ITG instability in
magnetized plasmas have been recalled with a special focus on its growth rates
and threshold. Then a convergence test was performed in the nonlinear turbu-
lent regime, showing fast convergence achieved at nz = 15, where more tradi-
tional approaches would have failed, as explained in the manuscript. A result
with which I have successfully showed that one needs only a few tens of toroidal
points to describe the target physics problem, regardless of the toroidal mode
number, provided that adequate resolution is available in the poloidal plane. Fi-
nally, I finish by proving that in the presence of a magnetic island, the study of
drift-wave propagation across the X-point gives results in good agreement with
the exact solutions of this problem. The corresponding quadratic properties are
also shown to be adequately conserved. Most importantly, convergence of the
numerical solution is verified with respect to the number of points in the z direc-
tion allowing one to consider a much thinner grid to study the same Physics.

I finally conclude this thesis by the following: the FCI approach prevails by
allowing, not only flux-coordinate independent operations in the poloidal plane
as discussed in Chapter 2, but it also allows complex magnetic geometries free
of singularities. It deals without difficulty with X-point configurations and with
O-points such as the magnetic axis. The flexible nature of the code FENICIA
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allowed us to demonstrate the application of this coordinate system to a magnetic
island in a slab (see Chapter 5), thus the validity of its application to X-point
configurations.

6.2 Future Work and Final Thoughts

Field-aligned mapping across the islands is now possible using our simulations
with FENICIA. Several critical problems can now be addressed. It is of great
importance to study the physics of the interaction of islands and turbulence. So
far, the results presented in Chapter 5 allowed one to validate the FCI approach
in the presence of a prescribed magnetic island. Investigating the effect of such
an island on drift-wave turbulence is a straightforward next step. This is a
foregoing work currently addressed by P. HILL. The next important step would
then be to study this interaction in a self-consistent model, where both the island
and turbulence are simultaneously evolved. Future work should also consider
including the physics of electrons and electromagnetic effects, so electrons can
no longer be adiabatic and resolving the electron motion would be a necessary
step forward.

Our primary focus should be to add more physics to our equations in
FENICIA until we are confident that they are experimentally relevant. Realistic
experimental ITER-type parameters for direct comparisons with experiments
will then be possible. One should certainly consider completing our transport
model by first incorporating the curvature terms in the code so as to model the
toroidal branch of ITG turbulence. But the nonlinear simulation results presented
in this thesis are in cylindrical magnetic geometry. Thus, including the effects
of a toroidal magnetic geometry is a straightforward next step. A long-term
foresight would be studying turbulence and transport across the last closed field
surface (LCFS) in an axisymmetric X-point configuration. This will require the
treatment of physics related to the the Scrape-Off Layer, particularly the physics
of plasma-wall interaction.

A difficulty using the Flux Coordinate Independent (FCI) approach is that
it hardly allows the computation of the flux-surface average term. In the case
of adiabatic electrons, the flux-surface-average term needs to be computed,
but is time and memory consuming for three-dimensional configurations. This
issue should thus be carefully addressed to figure out the cheapest algorithm to
implementing this term. This will also be very useful for physical diagnostics
looking into the time evolution of equilibrium quantities.

Finally, the validation of FENICIA has been done by comparing numerical
with exact solutions through purely theoretical simplified problems. Benchmarks
with other fluid simulations and kinetic simulations is worthy of further investi-
gations. An important point to say in that regard is that the FCI approach could
be implemented in any existing modular code, including gyrokinetic codes. An
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interesting extension would also be to implement the gyrokinetic description into
FENICIA, hence moving from three to five dimensions.
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Appendix A
This is a small note to draw the reader’s attention to some stability criteria that
should be satisfied when running a simulation. Consider the following equation:

∂tn+ C∇‖n = 0 (A.1)

where n is the density, C is the speed of the wave and ∇‖ = ∂θ/q + ∂ϕ. Solutions
to this equation can be written as

n(r, θ, ϕ) = n0(r)cos(mθ − nϕ− ω(r)t) (A.2)

with n0(r) being a function centered around the rational surface and∣∣∣∣∣∣∣∣∇‖nn
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣−n0(r) (m/q − n)sin(mθ − nϕ− ω(r)t)

n

∣∣∣∣∣∣∣∣ (A.3)

∼ ω′(r)t (A.4)

Knowing that the wave frequency ω(r) = C (m/q(r) − n). The constraint to be
satisfied for a wave to be well-resolved is

ω′(r)t∆x� 1 (A.5)

We write

ω′(r)t = − m

r q(r)

(
r q′(r)

q(r)

)
(A.6)

=
kθŝ

q(r)
(A.7)

For qs = 1+2r2
s , the expression of the magnetic shear at the rational surface writes

ŝ =
rs q

′(rs)

q(rs)
(A.8)

=
4r2

s

1 + 2r2
s

(A.9)

Replace expression A.9 in A.7 to get

ω′(r)t =
2m(qs − 1)

q2
s

(A.10)

For a given rs,m and ∆x, we get t the maximum sufficient time to study the
physics we seek. For instance, if rs =

√
2 /2, m = 4 and ∆x = 10−2, then the

maximum time is t = 10.
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Appendix B
Consider the one-dimensional version of (4.17), which is a good approximation
for the case of small wavelengths:

∂tn+ ∂xn = 0 (B.1)

Assume periodic boundary conditions in x and perform a uniform discretization
in x with centered finite differences. Take initial conditions of the form n = coskx
and look for solutions of the form

ni = αc cos kxi + αs sin kxi (B.2)

Then
ni+1 − ni−1 = −2αc sin k∆x sin kxi + 2αs sin k∆x cos kxi (B.3)

Call the numerical frequency

ωn =
sin k∆x

∆x
such that lim

x→0

sin k∆x

∆x
= k (B.4)

Thus the numerical solution to the system can be written, to all orders in time, as

ni = cosωnt cos kxi + sinωnt sin kxi (B.5)

and the exact solution as

nexact = cos k(xi − t) = cosωt cos kxi + sinωt sin kxi (B.6)

From the expression of the error

E2 =
〈(nexact − ni)2〉
〈(nexact)2〉

(B.7)

where < . > denotes the average over xi, one finds that E ≈ k3∆x2 for k∆x� 1.
This is indeed what is obtained for case 3 of Fig. 4.5, in both m (k) and ∆x.
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Appendix C
The problem can be illustrated by the vorticity equation for two-dimensional in-
compressible flow

∂ξ

∂t
+ v.∇∇∇ξ = 0, (C.1)

where
v = k×∇∇∇ψ

ξ = k.∇∇∇× v ≡ ∇2ψ

and ψ is the stream function so that{
vx = −∂yψ
vy = ∂xψ

because we are in a 2D incompressible case where ∇∇∇.v = 0, ∇∇∇ is the two-
dimensional del operator, and k is the unit vector perpendicular to the plane of
motion.
Verification:

v = k×∇∇∇ψ =

∣∣∣∣∣∣
i j k
0 0 1
∂xψ ∂yψ 0

∣∣∣∣∣∣ =

 −∂yψ∂xψ
0


and

ξ = k.∇∇∇× v

=

 0
0
1

∣∣∣∣∣∣
i j k

∂xψ ∂yψ 0
vx vy 0

∣∣∣∣∣∣
= ∇2ψ

In Eq. (C.1), use v = k×∇∇∇ψ to get

∂ξ

∂t
+ (k×∇∇∇ψ).∇∇∇ξ = 0

⇒ ∂ξ

∂t
+

 −∂yψ∂xψ
0

 .

 ∂xξ
∂yξ
0

 = 0
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Finally, Eq. (C.1) can be rewritten as

∂ξ

∂t
= ∂xξ ∂yψ − ∂yξ ∂xψ (C.2)

= {ξ, ψ} (C.3)
= J(ξ, ψ) (C.4)

Or
∂∇2ψ

∂t
= J(∇2ψ, ψ) (C.5)

where J is the Jacobian operator with respect to the cartesian coordinates, x and y,
in the plane. When the Jacobian in this equation is replaced by space differences
of the usual form,

Ji,j(ξ, ψ) =
1

4d2
[(ξi+1,j−ξi−1,j)(ψi,j+1−ψi,j−1)−(ξi,j+1−ξi,j−1)(ψi+1,j−ψi−1,j)], (C.6)

where i is the finite difference grid index in x, j is the index in y and d is
the grid interval, and the equation is integrated over some tens of time steps,
using an ordinary time-centered differencing scheme, it is found that the solu-
tion begins to show a characteristic structure termed “stretching" or “noodling"
[Baer 1961]. This is a structure in which the motion degenerates into eddies of a
few grid intervals in size and of elongated, filamented shape. The early stages
of this noodling can be due to physical processes, but, once formed, the eddies
usually intensify without limit, causing numerical computational instability and
explosive growth of the total kinetic energy of the system. Platzman [Baer 1961]
recognized the existence of “aliasing errors", or errors due to misrepresentation
of the shorter waves because of the inability of the finite grid to properly resolve
them. Phillips [Phillips 1959] further showed that the above computational insta-
bility can be caused by this “aliasing".

According to [Arakawa 1966], the proper derivation of the FD Jacobian in or-
der to overcome the instability without sacrificing its accuracy can be written as

Ji,j(ξ, ψ) = − 1

12d2
[ (ψi,j−1 + ψi+1,j−1 − ψi,j+1 − ψi+1,j+1)(ξi+1,j − ξi,j)

+ (ψi−1,j−1 + ψi,j−1 − ψi−1,j+1 − ψi,j+1)(ξi,j − ξi−1,j)

+ (ψi+1,j + ψi+1,j+1 − ψi−1,j − ψi−1,j+1)(ξi,j+1 − ξi,j)
+ (ψi+1,j−1 + ψi+1,j − ψi−1,j−1 − ψi−1,j)(ξi,j − ξi,j−1)

+ (ψi+1,j − ψi,j+1)(ξi+1,j+1 − ξi,j)
+ (ψi,j−1 − ψi−1,j)(ξi,j − ξi−1,j−1)

+ (ψi,j+1 − ψi−1,j)(ξi−1,j+1 − ξi,j)
+ (ψi+1,j − ψi,j−1)(ξi,j − ξi+1,j−1), (C.7)
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Appendix D
Consider the following model pertaining only the parallel dynamics:

∂tφ+ C∇‖φ = 0 (D.1)

with a magnetic field of the form

ψ(x, y) = −(x− 1)2

2
+ A cos(y) (D.2)

The parallel gradient operators can then be written as:

∇‖ = −[ψ, ·] + ∂z. (D.3)

In order to construct exact solutions to the above model in the presence of a mag-
netic island, the idea is to define a coordinate system: (x, y) −→ (ρ′, y′) such
thatψ is a magnetic surface label, i.e: ∇‖ψ = 0. One would write

ρ′ = −ψ/A =
(x− 1)2

2A
− cos y (D.4)

y′ = y (D.5)
x′ = x− 1 (D.6)

where ρ is a normalization of ψ so that ρ = 1 refers to the separatrix. Note that
at y = 0 (O-point), cos y ∼ 1 − y2/2 −→ ρ′ ' (x−1)2

2A
− 1 + y2/2 which defines the

equation of an ellipse. With this set of coordinates, the spatial derivatives in the
x and y directions write:

∂x = ∂xρ
′ ∂ρ′ + ∂xy

′ ∂y′ = x′ ∂ρ′/A (D.7)
∂y = ∂yρ

′ ∂ρ′ + ∂yy
′ ∂y′ = sin y ∂ρ′ + ∂y′ (D.8)

This leads to a parallel operator of the form

∇‖ = x′ ∂y + A sin y∂x + ∂z (D.9)
= x′(sin y ∂ρ′ + ∂y′)− x′ sin y ∂ρ′ + ∂z

= x′ ∂y′ + ∂z
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Eq. (D.1) can then be written as

∂tφ+ x′(ρ′, y′) ∂y′φ+ ∂zφ = 0 (D.10)

where x′(ρ′, y′) = ±
√

(2A) (ρ′ + cos y′)1/2. At this point, to ensure the separation
of variables, one defines a new system: (ρ′, y′) −→ (ρ, η) such that

x′∂y ≡
√

(2A) g(ρ) ∂η = ±
√

(2A) (ρ′ + cos y′)1/2 (D.11)

We conclude from (D.11) that

∂η =
g(ρ) dy′

(ρ′ + cos y′)1/2
(D.12)

so for x′ > 0, the new variable η can be expressed as

η =

g(ρ)

y∫
0

dy′

(ρ+ cos y′)1/2


ρ=x′2/(2A)−cos y

(D.13)

with g(ρ) chosen such that

η(x′, y = π) = π ∀x′ (D.14)
η(x′, y = −π) = −π

This gives

π = g

(
1 +

x′2

2A

) π∫
0

dy′[
cos y′ +

(
1 + x′2

2A

)]1/2 ∀x′ (D.15)

so

g(ρ) = π

 π∫
0

dy′

(cos y′ + ρ)1/2

−1

∀x′ (D.16)

The function η is regular everywhere, but delicate near ρ = ±1 (X and O points)
where

∫ y
0
dy′/(ρ′+cos y′)1/2 diverges. When ρ < 1, the argument of the integral in-

volves the term (cos y′+ρ)1/2 which becomes negative at cos y′ = −ρ. We choose to
limit the integration to the upper bound yM such that cos yM = −ρ. The situation
is described through a schematic of the island in Fig. D.1. The explicit expression
of g(ρ) at the exterior of the island (i.e: ρ > 1) can be derived as follows:

π∫
0

dy′

(ρ′ + cos y′)1/2
=

π/2∫
0

2dθ

(ρ+ cos 2θ)1/2
(D.17)

=

π/2∫
0

2dθ
[
ρ+ (1− 2 sin2 θ)

]−1/2

=

π/2∫
0

2dθ (ρ+ 1)−1/2
[
1− 2 sin2 θ/(1 + ρ)

]−1/2
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Figure D.1: A schematic of an island with the new variables

Use definitions of elliptic integrals of first kind

K(m) ≡
π/2∫
0

dθ (1−m sin2 θ)−1/2 (D.18)

to get
π∫

0

dy′ (ρ+ cos y′)−1/2 = 2 (1 + ρ)1/2K

(
2

1 + ρ

)
(D.19)

Note that K (2/(1 + ρ) diverges logarithmically as ρ −→ 1+. Finally, for ρ > 1,
g(ρ) can be written as

g(ρ) =
π

2
(1 + ρ)1/2

[
K

(
2

1 + ρ

)]−1

(D.20)

At the interior of the island (i.e: ρ < 1), however, the limit of integration is yM
such that cos yM = −ρ. Thus

η′ =

g(ρ)

y∫
0

dy′

(ρ+ cos y′)1/2


ρ=x′2/(2A)−cos y

(D.21)

but now

g(ρ) =
π

2

 yM∫
0

dy′

(cos y′ + ρ)1/2

−1

∀x′ (D.22)

In order to express g(ρ) as a function of K, the elliptic integral, we proceed by
first rewriting the expression I =

∫ yM
0

dy′ (cos y′ + ρ)−1/2 by change of variables.
We indeed have

cos y′ = 1− (1 + ρ) sin2 α (D.23)
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where 0 ≤ α ≤ π/2. Thus

(cos y′ + ρ)−1/2 = (1 + ρ)−1/2(1− sin2 α)−1 = (1 + ρ)−1/2(cosα)−1 (D.24)

Moreover, by differentiation we get

− sin y′ dy′ = −2(1 + ρ) sinα cosα dα (D.25)

Also,

sin2 y′ = 1− cos2 y′ = 2 (1 + ρ) sin2 α

[
1− 1 + ρ

2
sin2 α

]
(D.26)

yielding

sin y′ = [2 (1 + ρ)]1/2 sinα

[
1− 1 + ρ

2
sin2 α

]1/2

(D.27)

and

dy′ = [2 (1 + ρ)]1/2 cosα

[
1− 1 + ρ

2
sin2 α

]1/2

dα (D.28)

Hence,

I =
√

2

π/2∫
0

dα[
1− 1+ρ

2
sin2 α

]1/2 (D.29)

=
√

2 K

(
1 + ρ

2

)
(D.30)

Finally for ρ < 1 we have,

g(ρ) =
π

23/2

[
K

(
1 + ρ

2

)]−1

(D.31)

For x′ < 0, as shown in Fig. D.1, η′ needs to be completed. We define

η′ = π −

g(ρ)

y∫
0

dy′

(ρ+ cos y′)1/2


ρ=x′2/(2A)−cos y

(D.32)

so that π/2 ≤ η′ ≤ 3π/2 when x′ < 0. And

η′ = 2π +

g(ρ)

y∫
0

dy′

(ρ+ cos y′)1/2


ρ=x′2/(2A)−cos y

(D.33)

for x′ > 0, but y < 0 if one wants 3π/2 ≤ η′ ≤ 2π in the fourth quadrant.
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