Apprentissage de la structure de réseaux bayésiens : application aux données de génétique-génomique

par Jimmy Vandel

Thèse de doctorat en Informatique, intelligence artificielle

Sous la direction de Brigitte Mangin et de Simon de Givry.

Soutenue en 2012

à Toulouse 3 .


  • Résumé

    Apprendre la structure d'un réseau de régulation de gènes est une tâche complexe due à la fois au nombre élevé de variables le composant (plusieurs milliers) et à la faible quantité d'échantillons disponibles (quelques centaines). Parmi les approches proposées, nous utilisons le formalisme des réseaux bayésiens, ainsi apprendre la structure d'un réseau de régulation consiste à apprendre la structure d'un réseau bayésien où chaque variable représente un gène et chaque arc un phénomène de régulation. Dans la première partie de ce manuscrit nous nous intéressons à l'apprentissage de la structure de réseaux bayésiens génériques au travers de recherches locales. Nous explorons plus efficacement l'espace des réseaux possibles grâce à un nouvel algorithme de recherche stochastique (SGS), un nouvel opérateur local (SWAP), ainsi qu'une extension des opérateurs classiques qui permet d'assouplir temporairement la contrainte d'acyclicité des réseaux bayésiens. La deuxième partie se focalise sur l'apprentissage de réseaux de régulation de gènes. Nous proposons une modélisation du problème dans le cadre des réseaux bayésiens prenant en compte deux types d'information. Le premier, classiquement utilisé, est le niveau d'expression des gènes. Le second, plus original, est la présence de mutations sur la séquence d'ADN pouvant expliquer des variations d'expression. L'utilisation de ces données combinées dites de génétique-génomique, vise à améliorer la reconstruction. Nos différentes propositions se sont montrées performantes sur des données de génétique-génomique simulées et ont permis de reconstruire un réseau de régulation pour des données observées sur le plante Arabidopsis thaliana.

  • Titre traduit

    Structure learning of bayesian networks : application to genetical genomics data


  • Résumé

    Structure learning of gene regulatory networks is a complex process, due to the high number of variables (several thousands) and the small number of available samples (few hundred). Among the proposed approaches to learn these networks, we use the Bayesian network framework. In this way to learn a regulatory network corresponds to learn the structure of a Bayesian network where each variable is a gene and each edge represents a regulation between genes. In the first part of this thesis, we are interested in learning the structure of generic Bayesian networks using local search. We explore more efficiently the search space thanks to a new stochastic search algorithm (SGS), a new local operator (SWAP) and an extension for classical operators to briefly overcome the acyclic constraint imposed by Bayesian networks. The second part focuses on learning gene regulatory networks. We proposed a model in the Bayesian networks framework taking into account two kinds of information. The first one, commonly used, is gene expression levels. The second one, more original, is the mutations on the DNA sequence which can explain gene expression variations. The use of these combined data, called genetical genomics, aims to improve the structural learning quality. Our different proposals appeared to be efficient on simulated genetical genomics data and allowed to learn a regulatory network for observed data from Arabidopsis thaliana.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (202 p.)
  • Annexes : Bibliogr. p. 191-202

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2012 TOU3 0267

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 2012TOU30267
  • Bibliothèque : Université Paris-Est Créteil Val de Marne. Service commun de la documentation. Section multidisciplinaire.
  • PEB soumis à condition
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.