Personnalisation d'analyses décisionnelles sur des données multidimensionnelles
Auteur / Autrice : | Houssem Jerbi |
Direction : | Gilles Zurfluh |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 20/01/2012 |
Etablissement(s) : | Toulouse 1 |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, informatique et télécommunications (Toulouse) |
Partenaire(s) de recherche : | Equipe de recherche : Institut de Recherche en Informatique de Toulouse (1995-....) |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Le travail présenté dans cette thèse aborde la problématique de la personnalisation des analyses OLAP au sein des bases de données multidimensionnelles. Une analyse OLAP est modélisée par un graphe dont les nœuds représentent les contextes d’analyse et les arcs traduisent les opérations de l’utilisateur. Le contexte d’analyse regroupe la requête et le résultat. Il est décrit par un arbre spécifique qui est indépendant des structures de visualisation des données et des langages de requête. Par ailleurs, nous proposons un modèle de préférences utilisateur exprimées sur le schéma multidimensionnel et sur les valeurs. Chaque préférence est associée à un contexte d’analyse particulier. En nous basant sur ces modèles, nous proposons un cadre générique comportant deux mécanismes de personnalisation. Le premier mécanisme est la personnalisation de requête. Il permet d’enrichir la requête utilisateur à l’aide des préférences correspondantes afin de générer un résultat qui satisfait au mieux aux besoins de l’usager. Le deuxième mécanisme de personnalisation est la recommandation de requêtes qui permet d’assister l’utilisateur tout au long de son exploration des données OLAP. Trois scénarios de recommandation sont définis : l’assistance à la formulation de requête, la proposition de la prochaine requête et la suggestion de requêtes alternatives. Ces recommandations sont construites progressivement à l’aide des préférences de l’utilisateur. Afin valider nos différentes contributions, nous avons développé un prototype qui intègre les mécanismes de personnalisation et de recommandation de requête proposés. Nous présentons les résultats d’expérimentations montrant la performance et l’efficacité de nos approches.